含氟硅环氧树脂的固化及其性能
- 格式:pdf
- 大小:235.66 KB
- 文档页数:4
UV固化水性含氟环氧丙烯酸酯树脂的合成与性能研究倪晓婷;张力;陈黄锰【摘要】以环氧树脂、甲基丙烯酸十二氟庚酯、丙烯酸、马来酸酐为原料,通过“接枝反应-开环反应-酯化反应”三步合成光固化水性含氟环氧丙烯酸酯树脂聚合物.采用红外光谱、热重法(TG)、差示扫描量热仪(DSC)、激光粒度分布仪等技术对光固化水性含氟树脂结构与性能进行了分析,结果表明:添加含氟单体使聚合物的力学性能明显提高,热稳定性增强,玻璃化转变温度明显降低,接触角增大;当n(环氧树脂)∶n(甲基丙烯酸十二氟庚酯)=4∶1时,光固化水性含氟树脂的综合性能最佳:乳液平均粒径为2.3 μm,固化膜附着力为1级,硬度为6H,耐冲击性120 cm.【期刊名称】《华南师范大学学报(自然科学版)》【年(卷),期】2014(046)004【总页数】5页(P60-64)【关键词】水性;UV固化;丙烯酸;马来酸酐;甲基丙烯酸十二氟庚酯;双酚A环氧树脂【作者】倪晓婷;张力;陈黄锰【作者单位】华南师范大学化学与环境学院,广州510006;广东工业大学材料与能源学院,广州510006;广州大学化学化工学院,广州510006【正文语种】中文【中图分类】TQ630.7UV光固化技术具有环保、节能的突出优点,不但可以提高涂膜的性能,又可降低成本、提高固化效率、减少环境污染,因此近20多年来在涂料、胶黏剂和油墨等方面的应用日益广泛[1-2]. 又因为光固化含氟树脂固化速度快,光固化后不需要热处理,机械性能、耐热性及耐候性良好所以受到了生产应用者的青睐[3-5]. 但普通光固化含氟树脂使用前需要加入一定量的反应活性稀释剂及多官能团丙烯酸脂来调节粘度和流变性,而这些活性稀释剂大部分具有毒性和刺激性,对环境和人体健康有影响[6-8]. 因此水性紫外光(UV)固化涂料技术因其符合环保、节能、清洁生产理念而日益为人们所关注. 水性紫外光固化体系可通过调节配方的固含量来获得极薄的涂层,具有设备易于清洗、储运更方便、不易燃烧和安全性高(大大减少火灾隐患)等诸多优点. 随着人们环保意识的提高,兼具高性能和环保特征的光固化含氟涂料将成为科研和应用热点[9-10]. 贾茹等[11]采用多异氰酸酸酯和多官能团含氟丙烯酸酯为原料制备了紫外光固化水性聚氨酯-含氟丙烯酸乳液,乳液稳定性较好,涂层性能佳,具有良好的应用前景.本文合成了含有双键和羧基官能团的含氟树脂,经光固化后涂层具有耐刮、耐化学腐蚀、耐候、耐水耐油、耐冲击等优点,涂层硬度大、与基底的附着力强、树脂储存稳定性好,满足对水性光固化高性能树脂涂料的性能要求. 该研究结果对推广氟碳涂料与水性UV光固化技术的应用具有重要的意义.1 实验部分1.1 实验原料甲基丙烯酸十二氟庚烷酯:工业品,哈尔滨雪佳化学品有限公司;丙烯酸(acrylic acid,AA):分析纯,天津市福晨化学试剂厂;过氧化苯甲酰(BPO),三乙胺:化学纯,天津市大茂化学试剂厂;丙二醇甲醚醋酸酯,马来酸酐,光引发剂Darocur2959:化学纯,广州双键有限公司;N-N二甲基甲酰胺,对羟基苯甲醚:分析纯,上海化学试剂总厂;丙酮,乙醇,强氧化钾:分析纯,天津市博建化工有限公司.1.2 实验步骤1.2.1 聚合物的合成(1)称一定量的双酚A环氧树脂和少量的助溶剂于装有电动搅拌器、回流冷凝管、滴液装置的四口烧瓶中,120 ℃回流反应,以8~10滴/min的速度滴加甲基丙烯酸十二氟庚酯、BPO以及助溶剂的混合溶液,滴加完毕以后继续回流反应1 h,降温至70 ℃进行下一步反应.反应原理见图1.(2)降温至70 ℃,加入一定量的阻聚剂,在搅拌下滴加一定量的丙烯酸和催化剂的混合液,约0.5 h滴完,缓慢升温到80~90 ℃,每隔0.5 h取样测定酸值,酸值(以KOH计,下同)小于5 mg/g停止反应,降温至70 ℃进行下一步反应. 反应原理见图2.图1 第一步反应原理Figure 1 Reaction principle of step 1图2 第二步反应原理Figure 2 Reaction principle of step 2(3)降温至70 ℃,加入一定量的阻聚剂和催化剂,充分搅拌均匀后,投入一定量的马来酸酐,升温至75~80 ℃,每隔0.5 h取样测定酸值,当酸值接近理论酸值(153.2 mg/g)停止反应,加入少量的阻聚剂,降温. 反应原理见图3.(4)降温至40~50 ℃时,在中速搅拌下,加入适量的有机碱,中和至pH值为6~7. 在剧烈搅拌下,慢慢滴加去离子水至一定的固体份,出料保存.1.2.2 聚合物的光固化配制成固含量一定的乳液后,向乳液中加入适量的光引发剂Darocur2959混合均匀,涂于马口铁上,恒温干燥一定时间后,置于UV固化机(采用2 kW高压汞灯为光源,空气气氛)进行固化.1.2.3 表征与测试(1)以KBr压片法采用美国NICOLET5-MX傅立叶变换红外光谱仪(FT-IR)进行红外表征.(2)热稳定性:采用热重分析(TGA)法进行表征(N2气氛,温度范围为20~800 ℃,升温速率为20 ℃/min).(3)采用美国Perkin Elmer DSC-2C差示扫描量热仪表征玻璃化转变温度,氮气氛围,升温速率10 ℃/min,升温范围为室温至100 ℃.图3 第三步反应原理Figure 3 Reaction principle of step 3(4)乳液粒径:将乳液稀释至一定浓度,采用激光粒度分布仪进行测定.(5)涂膜铅笔硬度的测定(GB/T 6739—1996).(6)涂膜耐冲击性的测定(GB/T 1732—1993).(7)涂膜附着力的测定(GB 1720—79).2 结果与讨论2.1 聚合物FT-IR分析图4为n(环氧树脂)∶n(甲基丙烯酸十二氟庚酯)=4∶1含氟共聚物的FT-IR红外谱图.曲线a中,3 439.3 cm-1处是环氧树脂的羟基吸收峰,920 cm-1处的环氧基吸收峰已经消失,在3 041.1、1 504.7和1 459.8 cm-1处3个峰是苯环的吸收峰,在2 962.6和2 878.5 cm-1的吸收峰分别是甲基上C—H的不对称伸缩振动和对称伸缩振动吸收峰,在1 723.4 cm-1处是羰基的吸收峰,1 633.8 cm-1左右是双键的吸收峰,1 185.0 cm-1是C—F键的吸收峰,723.3和687.5 cm-1是CF3的吸收峰,对比曲线a,曲线b 2 500~3 439 cm-1出现了弥散峰,为羧基的特征峰,另外1 633.8 cm-1处双键的吸收峰明显增强,说明顺酐已经与第二步产物的羟基反应,反应产物与理论结构一致.a:第二步光固化含氟聚合物; b:第三步光固化水性含氟聚合物图4 共聚物FT-IR谱图Figure 4 FT-IR spectra of the fluorine copolymers2.2 聚合物涂膜的热稳定性图5是光固化水性含氟聚合物和光固化水性无氟聚合物的TG谱图,曲线a在180 ℃时无明显失重,在350 ℃左右失重率为10%,在350 ℃以后,随着温度的增加,失重加剧,温度升至800 ℃时,含氟聚合物的失重率为80%;与曲线a相比,曲线b在120 ℃开始失重,在380 ℃左右失重率已经为20%,温度升至800 ℃时,聚合物的失重率为90%,上述数据说明,氟烷基的引入在一定程度上提高了热稳定性. 因为C—F键非常稳定,其键能比普通烷基中C—C键的键能高50 kJ/mol. 当含氟烷基化合物遇到化学试剂进攻或受到高温刺激时,发生断裂的首先是C—C键而不是C—F键,经过含氟烷基化合物改性后的聚合物的稳定性得到提高[12].a:光固化水性含氟聚合物;b:光固化水性无氟聚合物图5 聚合物TG谱图Figure 5 TG spectra of fluorinated and non-fluorinated copolymers2.3 共聚物的DSC涂膜谱图分析图6是光固化水性含氟聚合物和光固化水性无氟聚合物的DSC谱图,含氟聚合物的Tg为49.5 ℃,无氟聚合物的Tg为103.5 ℃. 增加氟元素使聚合物涂膜的玻璃化转变温度大幅度降低. 在聚合物中接枝甲基丙烯酸十二氟庚酯,氟元素连接在聚合物的侧链上,大大增加了聚合物链段的柔性,因此含氟聚合物的玻璃化转变温度降低了.2.4 乳液的粒径分布图7为n(环氧树脂)∶n(甲基丙烯酸十二氟庚酯)∶n(环氧树脂)=4∶1∶4的光固化水性含氟共聚物乳液的粒径分布图,其乳液的平均粒径约为2.3 μm,粒径分布只出现了1个较窄的峰,说明粒径分布比较窄,粒径均匀.a:光固化水性含氟聚合物;b:光固化水性无氟聚合物图6 聚合物DSC谱图Figure 6 DSC spectra of fluorinated copolymer (a) and non-fluorinatedcopolymer(b)图7 光固化水性含氟树脂乳液粒径Figure 7 Particle size distribution of fluorine emulsion2.5 接触角法表征共聚物的表面性能图8和图9是水滴和油滴分别滴在含氟固化膜和无氟固化膜的形状图,含氟聚合物的接触角显著增大,含氟丙烯酸酯单体作为侧链引入聚合物中赋予聚合物良好的憎水憎油性能. 因为氟碳链可以整齐排列伸向空气一侧,成膜过程中经分子重排后, 疏水性基团全氟烷基向树脂表面迁移、富集,使得树脂的表面能降低,接触角增大,水与有机物液滴均难以在其表面润湿. 对于乳液聚合物,乳化剂及助乳化剂的存在都会对聚合物膜的疏水、疏油性产生影响[13-14]. 本文采用不加入助乳化剂的聚合可以将这种影响减小到最低.图8 水滴在固化膜上的形状Figure 8 Water drops on copolymer films图9 油滴在固化膜上的形状Figure 9 Oil drops on copolymer films2.6 氟用量对聚合物性能的影响氟含量对聚合物性能的关系如表1所示,在聚合物链中,氟单体所占比例越大,乳液成膜后硬度越大,附着力和耐冲击性也随着增强,这可能是因为引入带有极性基团的氟单体,可以增加涂层与基材之间的附着力,此外由于聚合物含有亲水性基团,即可溶于水相又可溶于油相,可明显抑制凝胶的产生,同时使合成的乳液具有良好的机械稳定性和存储稳定性[15]. 由于长的氟碳侧链与树脂具有微观不相容的特性,在固化过程中形成微观相分离,有效吸收冲击能量,提高了树脂冲击强度,但是氟单体比例过大时,力学性能反而下降,产生凝胶,这可能是由于氟单体自身产生自聚造成,由表1可得出,当n(E- 44)∶n(氟单体)=4∶1时,获得的树脂性能最佳.表1 氟含量对聚合物性能的影响Table 1 Effect of fluorinated concentrationon properties of copolymer序号n(E-44)∶n(氟单体)树脂的稳定性涂膜的外观硬度/H耐冲击性/cm附着力13∶1一周出现凝胶较为平整,有少量针孔4502级24∶1一个月无明显变化涂膜外观光滑透明61201级35∶1一个月无明显变化涂膜外观较光滑透明5802级46∶1一个月无明显变化较为平整有少量针孔4502级51∶0一个月无明显变化涂膜外观较光滑透明4203级3 结论采用环氧树脂、甲基丙烯酸十二氟庚酯,丙烯酸、马来酸酐为原料,通过“接枝反应-开环反应-酯化反应”三步制得含有羧基、双键的氟树脂,赋予其水性和UV固化性. 红外光谱测试表明,含氟基团进入了聚合物侧链中,与无氟聚合物相比,含氟单体使聚合物具有良好的力学性能及热稳定性,接触角显著增大,玻璃化转变温度明显降低. 当树脂氟含量为7.6%~11.3%,n(环氧树脂)∶n(甲基丙烯酸十二氟庚酯)=4∶1时氟树脂的性能最佳. 其乳液平均粒径为2.3 μm,固化膜附着力为1级,硬度为6 H,耐冲击性120 cm.参考文献:[1] 李田霞, 陈峰.有机氟改性环氧丙烯酸阴极电泳涂料的研究[J].涂料工业,2012,42(1):28-31.Li T X, Chen F. Study fo organofluorine modified epoxy acrylic cathodic electrodeposition coatings[J]. Paint & Coatings Industry, 2012,42(1):28-31.[2] Tang C Y, Liu W Q, Ma S Q, et al. Synthesis of UV-curable polysiloxanes containing methacryloxy/fluorinated side groups and the performances of their cured composite coatings[J]. Progress in OrganicCoatings,2010,69(4):359-365.[3] 杨小毛, 杨建文, 陈用烈, 等. 光固化氨酯改性丙烯酸系水性涂料[J]. 功能高分子学报,1999,12(3):285-288.Yang X M, Yang J W, Chen Y L, et al. Photocurable urethane modified water-Borne Acrylic coatings[J]. Journal of Functional Polymers,1999,12(3):285-288.[4] 韩静, 姜敏, 郑朝晖, 等.光固化环氧全氟辛酸酯聚氨酯的研究[J].热固性树脂,2007,22(2):1-6.Han J, Jiang M, Zheng Z H, et al. Study on epoxy perfluorooctanoate polyurethane[J]. Thermosetting Resin, 2007,22(2):1-6.[5] 高青雨, 李小红, 张锡兰, 等. 含氟不饱和聚酯树脂得合成及其光固化性能研究[J].应用化学,2004,21(1):84-86.Gao Q Y, Li X H, Zhang X L, et al. Synthesis of unsaturated fluoro-polyester resins and their UV-curing properties[J]. Chinese Journal of Applied Chemistry, 2004,21(1):84-86.[6] Vink P, Koster T P M, Fontijin H F N,et al. UV stability of water-borne acrylic coatings[J]. Polymer Degradation and Stability,1995,48(1):155-160.[7] Kahraman M V, Bayramoglu G, Boztoprak Y, et al. Synthesis of fluorinated/methacrylated epoxy based oligomers and investigation of its performance in the UV curable hybrid coating[J]. Progress in Organic Coatings,2009,66(1):52-58.[8] 姚伯龙, 罗侃, 杨同华, 等.国内外水性紫外光固化涂料研究进展及应用[J]. 涂料技术与文摘,2007,28(11):1-4;7.Yao B L, Luo K, Yang T H, et al. Advancement & application of waterborne UV-curable coatings at home and abroad[J]. Coatings Technology & Abstracts,2007,28(11):1-4;7.[9] 钱伯章. 涂料市场和技术发展现状与趋势(II)[J].涂料技术与文摘,2007,28(10):14-20.Qian B Z. Current situation and development of coatings market and technology (II)[J]. Coatings Technology & Abstracts, 2007,28(10):14-20. [10] 徐小龙, 李保松, 乌学东, 等. 甲基丙烯酸六氟丁酯接枝环氧粉末涂料研究[J].涂料工业,2010,40(4):56-59.Xu X L, Li B S, Wu X D, et al. Study on Hexafluorobutyl methacrylate grafted epoxy resin powder coatings[J]. Paint & Coatings Industry, 2010,40(4):56-59.[11] 贾茹, 梁红波, 熊磊. 紫外光固化水性聚氨酯一含氟丙烯酸酯乳液的制备及其稳定性研究[J].中国胶黏剂,2011,20(3):30-35.Jia R, Liang H B, Xiong L. Study on preparation and stability of UV-curing waterborne polyurethane/fluorine-containing acrylate emulsion[J]. China Adhesives, 2011,20(3):30-35.[12] 蒋蓓蓓, 杨建军, 吴庆云, 等. 软段含离子的含氟水性聚氨酯的制备[J].应用化学,2011,28(12):1634-1639.Jiang B B, Yang J J, Wu Q Y, et al. Preparation of fluorinated waterborne polyurethane containing ionic in soft segment[J]. Chinese Journal of Applied Chemistry, 2011,28(12):1634-1639.[13] 张庆华, 詹晓力, 陈丰秋. 氟代丙烯酸酯三元共聚物细乳液的合成与表征[J].高等学校化学学报,2005,26(3):575-579.Zhang Q H, Zhan X L, Chen F Q. Synthesis of fluorinated acrylate ternary copolymer latex by miniemulsion polymerization and characterization[J]. Chemical Journal of Chinese Universities,2005,26(3):575-579.[14] 陈美玲, 李健, 杨莉, 等. 氟改性环氧丙烯酸核壳乳液的合成及其涂膜性能[J]. 材料保护,2011,44(10):68-70.[15] 刘敬芹, 张力, 朱志博, 等. 丙烯酸酯乳液的合成与性能研究[J]. 华南师范大学学报:自然科学版,2002(4):98-103.Liu J Q, Zhang L, Zhu Z B, et al. Study on synthesis and properties of acrylic emulsions[J]. Journal of South China Normal University:Natural Science Edition,2002(4):98-103.。
一、环氧树脂的粘接特点及基本原理1、环氧树脂粘接的基本原理:环氧树脂粘接是由两种力量产生的,一是机械粘附力。
即当粘接剂处于液态时,渗入到洁净的被粘接表面的孔隙中,待粘接剂固化后便形成了一种机械结合的锚固力;二是化学粘合力,因为环氧树脂分子结构中含有脂肪族羟基醚基及其中极为活泼的环氧基。
由于羟基和醚基的极性,使得环氧树脂分子和相邻表面之间产生电磁吸力,而且环氧基与含有活泼氢的金属表面起反应而生成化学勾健,既在胶层间产生了分子之间结合。
这种结合被称为化学粘合力,一般认为环氧树脂粘合力主要是由于化学粘合力起作用。
2、环氧树脂粘接的特点:2.1 可粘接各种材料,对金属与金属、金属与非金属、非金属与非金属之间均有较强的粘合能力。
2.2 有较高的粘接强度及其他的物理性能(表1)2.3 粘结工艺简单,容易掌握,经济效果好。
如有一台100m长裂纹的拖拉机发动机机体,仅用几元钱即可修复,且两天之内既可装车使用。
修复一根输油管只需几角钱。
2.4胶合缝处具有不漏气、不漏油、不漏水和耐化学药品腐蚀等优良特性。
2.5粘结表面可进行机械加工。
2.6粘结过程中,不需要对工件进行高温度处理,因此,对零件金相组织无影响。
2.7收缩性较小,其收缩率为1—2%;如填加适当填料其收缩率可达到0.1-0.2%,环氧树脂的耐温性较好,可在150-200℃温度范围内长期工作,其耐寒性可达-50℃—55℃。
2.8粘结表面较脆、耐冲性性能较差,粘结固化后无毒。
二、环氧树脂粘结剂的组成及其性能环氧树脂和固化剂是环氧树脂粘结剂的基本成份,但为了改变粘结层的韧性、抗磨性、耐热性、硬度及工艺性等,可加适量的增塑剂、填料和稀释剂。
1、环氧树脂:环氧树脂一般是指双酚A型环氧树脂,即由环氧氯丙烷与双酚A在碱的作用下缩合而成的高聚物,它具有一般高分子聚合物的通性。
根据不同条件,可以制得不同分子量的环氧树脂,其分子量在300-7000之间。
环氧树脂按分子量的不同,可分为低分子量、中分子量和高分子量三种。
环氧树脂固化剂环氧树脂固化剂是一种被广泛应用于工业领域的材料。
它是一种能够使环氧树脂在一定条件下发生反应,从而形成具有特定性能的固体材料的物质。
环氧树脂固化剂在自动化生产中扮演着重要的角色,并且具有广泛的应用领域。
接下来将介绍环氧树脂固化剂的特性、分类、应用和未来发展前景。
首先,环氧树脂固化剂具有固化速度快、高强度、耐化学腐蚀等优点。
固化剂可以通过调节比例和温度来控制固化速度,提高生产效率。
由于环氧树脂固化剂能够与环氧树脂发生化学反应,可以形成具有高强度的固体材料。
此外,这种固化剂还具有良好的耐化学腐蚀性能,能够在各种恶劣环境下使用。
根据固化机理的不同,环氧树脂固化剂可以分为两类:热固化剂和光固化剂。
热固化剂是指在一定的温度下,通过热量促进环氧树脂与固化剂之间的反应。
这种固化方式适用于需要在较高温度下进行固化的情况,例如汽车制造和航空航天领域。
光固化剂是指通过紫外线或可见光的照射来引发固化反应。
这种固化方式具有固化速度快、操作简单的特点,适用于表面固化和光学材料。
环氧树脂固化剂在工业生产中有着广泛的应用。
首先,它被广泛应用于粘接材料的制备。
环氧树脂固化剂能够与各种基材发生固化反应,形成强度高、抗剪切能力强的结合界面,适用于金属、陶瓷、塑料等多种材料的粘接。
其次,环氧树脂固化剂还可用于电子封装材料的制备。
由于其优异的电绝缘性能和封闭性能,可以用于电子元件的灌封和封装,提高产品的可靠性和稳定性。
此外,环氧树脂固化剂还被广泛应用于复合材料的制备、涂层材料的制备等领域。
环氧树脂固化剂的未来发展前景十分广阔。
随着工业自动化水平的提高,对于固化剂的要求也越来越高。
未来,环氧树脂固化剂可能向着高效、环保、低成本方向发展。
例如,可以研发出更快速固化的固化剂,提高生产效率。
同时,可以探索使用更环保的固化剂替代传统的有机固化剂,减少对环境的影响。
此外,还可以通过改变固化剂的配方和工艺来降低制备成本,提高竞争力。
综上所述,环氧树脂固化剂是一种在工业领域广泛应用的材料。
环氧树脂固化温度和固化时间环氧树脂是一种重要的高分子材料,广泛应用于建筑、航空航天、电子、汽车等领域。
而环氧树脂的性能和品质很大程度上取决于固化温度和固化时间。
因此,本文将从固化温度和固化时间两个方面来探讨环氧树脂的性能特点以及影响因素。
一、固化温度对环氧树脂性能的影响环氧树脂的固化温度是指环氧树脂在加热过程中开始发生化学反应的温度。
不同的环氧树脂固化温度不同,一般在室温下会停留在液态状态,需要加热到一定温度才能开始固化。
固化温度对环氧树脂的性能有着重要的影响,主要表现在以下几个方面。
1.影响环氧树脂的黏度环氧树脂在室温下黏度较低,难以进行涂覆和加工。
而在一定温度下,环氧树脂的黏度会逐渐升高,变得更加粘稠。
当固化温度达到一定值时,环氧树脂的黏度会急剧上升,形成硬质固体。
因此,通过调节固化温度可以控制环氧树脂的黏度,以满足不同的加工需求。
2.影响环氧树脂的硬度和强度环氧树脂的硬度和强度是固化温度的重要影响因素。
一般来说,固化温度越高,环氧树脂的硬度和强度就越高。
这是因为高温下,环氧树脂分子之间的化学键会更加紧密,形成更强的结构。
但是,过高的固化温度也会导致环氧树脂的收缩率变大,容易出现龟裂、翘曲等问题。
3.影响环氧树脂的耐热性环氧树脂的耐热性也与固化温度密切相关。
一般来说,固化温度越高,环氧树脂的耐热性就越好。
这是因为高温下,环氧树脂的分子结构更加紧密,能够抵御高温环境的腐蚀和氧化。
二、固化时间对环氧树脂性能的影响环氧树脂的固化时间是指环氧树脂在一定温度下从液态到固态的时间。
固化时间是影响环氧树脂性能的重要因素,主要体现在以下几个方面。
1.影响环氧树脂的硬化程度固化时间是影响环氧树脂硬化程度的重要因素。
一般来说,固化时间越长,环氧树脂的硬化程度就越高。
但是,过长的固化时间也会导致环氧树脂的收缩率增大,出现龟裂、翘曲等问题。
2.影响环氧树脂的黏度固化时间也会影响环氧树脂的黏度。
一般来说,固化时间越长,环氧树脂的黏度就越高。
环氧树脂固化剂特点和反应机理环氧树脂是一类重要的聚合物材料,具有优异的物理性能和化学稳定性。
然而,单组分的环氧树脂在常温下并不能自行固化成坚硬的材料,需要通过添加固化剂来完成固化反应。
环氧树脂固化剂是一种能够引发环氧树脂高效固化的化合物,其特点和反应机理为:一、特点:1.高活性:环氧树脂固化剂引发的固化反应速度较快,可以在较短的时间内固化环氧树脂,形成坚硬的固体材料。
2.低挥发性:环氧树脂固化剂通常具有低挥发性,不易挥发出来,可以保持固化剂的活性,保证固化反应的进行。
3.高选择性:环氧树脂固化剂具有对环氧树脂高度选择性的特点,能够引发环氧树脂的固化反应,而不对其他基团发生反应。
4.适应性广泛:环氧树脂固化剂可以选择性地与不同类型的环氧树脂反应,形成具有不同性能的固化产品,可以根据不同的要求进行选择。
二、反应机理:1.加氮型反应机理:加氮型环氧树脂固化剂通常是一种含有活性氢原子的化合物,环氧树脂中的环氧基通过与固化剂中的活性氢原子发生加成反应,形成醚键。
同时,固化剂中的活性氢原子与环氧树脂中的环氧基发生环氧-胺开环反应,形成胺基。
这两个反应同时进行,从而导致环氧树脂的固化。
2.加硫型反应机理:加硫型环氧树脂固化剂一般是含有硫原子的化合物。
固化剂中的硫原子与环氧树脂中的环氧基发生亲核加成反应,形成硫-氧键。
同时,生成的硫-氧键会进一步反应形成硫-硫键,形成三维网状结构,从而导致环氧树脂的固化。
总之,环氧树脂固化剂是一类能够高效引发环氧树脂的固化反应的化合物。
根据不同的特点和反应机理,可以选择不同类型的固化剂,实现对环氧树脂的选择性固化,形成具有不同性能的固化材料。
有机氟-硅杂化环氧树脂涂层的构筑与功能化研究有机氟/硅杂化环氧树脂涂层的构筑与功能化研究引言近年来,随着科学技术和工业发展的迅速推进,对于表面涂层材料被广泛关注。
有机氟/硅杂化环氧树脂涂层以其优异的性能,如高耐热性、耐候性、耐化学侵蚀性和超级疏水性等,逐渐成为涂层领域的研究热点。
构筑和功能化有机氟/硅杂化环氧树脂涂层已成为材料科学和表面工程领域的研究重点。
本文旨在综述有机氟/硅杂化环氧树脂涂层的构筑方法与功能化研究进展。
有机氟/硅杂化环氧树脂涂层的结构与构筑方法有机氟/硅杂化环氧树脂涂层是通过将有机氟和硅杂化剂添加到环氧树脂体系中构筑而成的。
有机氟是一种具有高度的化学惰性和疏水性的材料,硅杂化剂可以引入硅基团和有机氟基团。
通过引入有机氟基团可以提高涂层的疏水性,使其具有超级疏水性能。
同时,硅基团引入涂层后可以增加涂层的附着力和耐候性。
构筑有机氟/硅杂化环氧树脂涂层的方法主要有两种,即直接添加法和预聚物添加法。
直接添加法是将有机氟和硅杂化剂直接添加到环氧树脂体系中,通过混合和交联反应构筑涂层。
预聚物添加法是将有机氟和硅杂化剂先与环氧树脂等预聚物进行反应制备含有有机氟/硅杂化基团的预聚物,然后通过预聚物与环氧树脂的混合和交联反应来构筑涂层。
有机氟/硅杂化环氧树脂涂层的功能化研究1. 超级疏水性有机氟基团的引入使有机氟/硅杂化环氧树脂涂层具有超级疏水性,水滴在其表面形成近球形,具有自洁效果。
该涂层在建筑材料、汽车等领域有着广泛的应用潜力。
2. 耐化学侵蚀性由于有机氟基团的引入,有机氟/硅杂化环氧树脂涂层对酸、碱和有机溶剂具有良好的耐蚀性能,能够保护基材免受化学侵蚀。
3. 耐热性和耐候性有机氟/硅杂化环氧树脂涂层具有较高的热稳定性和耐候性,可以在高温和恶劣的环境下稳定工作。
这种涂层在航空航天、化工等领域有着广泛的应用前景。
4. 防腐性有机氟/硅杂化环氧树脂涂层对金属材料具有良好的防腐性能,能够有效防止金属材料受到腐蚀。
含氟甲基硅树脂
含氟甲基硅树脂是一类具有特殊性质的高分子材料,它通常由硅氧烷链和含氟基团组成。
这些含氟基团赋予了材料一些独特的性质,如优异的耐高温性、耐化学腐蚀性和低表面能的特性。
这些性质使得含氟甲基硅树脂在各种应用中得以广泛使用。
以下是含氟甲基硅树脂的一些特性和应用:
1.耐高温性:含氟甲基硅树脂通常具有出色的耐高温性能,可以
在高温环境中长时间稳定使用,这使其在航空航天、电子、汽
车等领域得到应用。
2.耐化学腐蚀性:这类树脂对许多化学物质具有很好的稳定性,
表现出较强的耐化学腐蚀性,适用于化学工业、石油化工等领
域。
3.低表面能:含氟基团的引入使得该类树脂表面能较低,表现出
良好的防粘附性和抗污染性,因此在涂料、润滑油、密封材料
等方面得到广泛应用。
4.电绝缘性:由于硅氧烷链的存在,含氟甲基硅树脂通常表现出
良好的电绝缘性能,适用于电气绝缘材料的制备。
5.生物相容性:一些特殊设计的含氟甲基硅树脂也可能具有一定
的生物相容性,因此在医疗领域有时也可用于一些生物医学应
用。
需要注意的是,含氟甲基硅树脂的具体性质和应用会因其具体的化学结构、聚合度和添加剂的不同而有所变化。
在使用时,应根据具
体需求选择合适的含氟甲基硅树脂。
基金项目:国家“九五”重点科技攻关(98-A28-01-17);国家“863”(863-410-7-5)及大连市优秀青年基金项目;作者简介:陈 平,教授、博士生导师。
先后主持完成国家科技攻关、军工配套和省部级科技基金项目10余项。
获国家发明奖1项,省部级科技奖多项。
发表学术论文60余篇。
主要从事高性能高分子材料、聚合物基复合材料方面的研究工作。
专 论环氧树脂体系固化反应及其复合材料介电性能陈 平1,陈 辉2,蹇锡高1,高巨龙2,张 岩2(1.大连理工大学高分子材料系,大连 116012;2.国家树脂基复合材料工程技术研究中心,哈尔滨 150036) 摘要:环氧树脂是一类综合性能优异的热固性高分子材料,作为胶粘剂、复合材料用树脂基体、涂料等形式广泛应用于电子电气、机械制造、化工防腐、航空航天等众多领域中,成为各工业领域中不可缺少的基础材料。
本文综述了本研究室在咪唑 环氧树脂体系,稀土有机化合物、叔胺羧酸复盐 酸酐 环氧树脂体系,氰酸酯 环氧树脂体系,硼胺络合物 环氧树脂体系的固化反应机理、固化反应动力学及其固化物结构与性能关系,纤维含量、排列方向、偶联剂种类等对玻璃纤维增强环氧树脂基复合材料及其界面介电性能的影响等6个方面的研究进展。
关键词:环氧树脂;咪唑;酸酐;硼胺络合物;氰酸酯;树脂基复合材料环氧树脂是一类具有良好粘接、耐腐蚀、电气绝缘、高强度等性能的热固性高分子合成材料,已广泛地应用于多种金属与非金属的粘接、耐腐蚀涂料、电气绝缘材料、玻璃钢 复合材料等的方面。
在电子、电气、机械制造、化工防腐、航空航天、船舶运输等许多工业领域中具有重要的作用,与其它材料相似,材料结构与性能之间存在着密切的联系。
环氧树脂基体材料在固化反应过程中,由于采用的固化剂,促进剂种类不同,即使采用相同的固化剂和促进剂,由于采取的固化工艺制度不同,都将导致环氧树脂体系按照不同的反应历程进行固化反应,从而导致形成不同的固化物交联结构,因此,最终的固化物性能千差万别。
环氧树脂固化胶环氧树脂固化胶是一种常见的胶粘剂,具有很高的粘接强度和抗化学腐蚀能力。
它由环氧树脂和固化剂组成,通过化学反应形成高分子聚合物,从而实现胶粘的效果。
环氧树脂是一种热固性树脂,具有优异的物理性能和化学稳定性。
它具有良好的耐腐蚀性、耐热性和绝缘性能,因此广泛应用于电子、航空、汽车、建筑等领域。
环氧树脂固化胶的固化剂通常是胺类化合物,如乙二胺、三乙烯四胺等。
这些固化剂与环氧树脂发生反应,形成交联结构的聚合物,使胶粘剂具有高强度和高耐久性。
环氧树脂固化胶具有良好的粘接性能。
它可以与金属、塑料、陶瓷等各种材料粘接,形成牢固的连接。
与传统的胶水相比,环氧树脂固化胶的粘接强度更高,能够承受较大的拉伸、剪切和剥离力。
同时,它的粘接效果不受温度、湿度等环境因素的影响,具有较好的耐候性和耐化学腐蚀性。
环氧树脂固化胶还具有一定的加工性能。
在固化前,它呈现为液体或半固体状态,可以进行涂覆、浸渍、注射等操作。
在固化过程中,可以根据需要调节固化时间和固化温度,以适应不同材料和工艺要求。
固化后的环氧树脂固化胶成为一种坚硬、耐磨的材料,可以进行精密加工和表面处理,如打磨、抛光、涂装等。
然而,环氧树脂固化胶也有一些局限性。
首先,固化过程需要一定的时间和温度条件,无法立即实现粘接效果。
其次,固化胶的使用寿命较短,一旦固化剂与环氧树脂发生反应,胶粘剂就会失去使用价值。
此外,固化胶的成本较高,不适用于大规模生产。
环氧树脂固化胶是一种重要的胶粘剂,具有高粘接强度、耐腐蚀性和耐候性等优点。
它在各个领域都有广泛的应用,如电子组装、汽车制造、建筑施工等。
随着科学技术的不断进步,环氧树脂固化胶的性能和应用领域还将不断拓展和完善。