高考数学(一轮复习)最基础考点:函数的周期性
- 格式:doc
- 大小:312.71 KB
- 文档页数:5
高考数学一轮总复习知识梳理:第三讲 函数的奇偶性与周期性知 识 梳 理知识点一 函数的奇偶性 偶函数 奇函数定义 如果对于函数f (x )的定义域内任意一个x 都有 f (-x )=f (x ) ,那么函数f (x )是偶函数 都有 f (-x )=-f (x ) ,那么函数f (x )是奇函数图象特征 关于 y 轴 对称关于 原点 对称 知识点二 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 f (x +T )=f (x ) ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个 最小的正数 ,那么这个 最小正数 就叫做f (x )的最小正周期.归 纳 拓 展1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f -xf x =1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f -xf x =-1(f (x )≠0)⇔f (x )为奇函数.2.若y =f (x )为奇函数,y =g (x )为奇函数,在公共定义域内(1)y =f (x )±g (x )为奇函数;(2)y =f (x )g (x )与y =f xg x 为偶函数;(3)y =f [g (x )]与y =g [f (x )]为奇函数.同理若y =f (x )与y =g (x )在公共定义域内均为偶函数,则y =f (x )±g (x ),y =f (x )g (x ),y =f xg x ,y =f [g (x )],y =g [f (x )]均为偶函数.若y =f (x )为奇函数,y =g (x )为偶函数,则在公共定义域内y =f (x )g (x )与y =f xg x 均为奇函数,y =f [g (x )]与y =g [f (x )]为偶函数.3.对f (x )的定义域内任一自变量的值x ,最小正周期为T(1)若f (x +a )=-f (x ),则T =2|a |;(2)若f (x +a )=1f x ,则T =2|a |;(3)若f (x +a )=f (x +b ),则T =|a -b |.4.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b 2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称.5.一些重要类型的奇偶函数(1)函数f (x )=a x +a -x 为偶函数,函数f (x )=a x -a -x为奇函数; (2)函数f (x )=a x -a -x a x +a -x =a 2x -1a 2x +1为奇函数;(3)函数f (x )=log a b -xb +x 为奇函数;(4)函数f (x )=log a (x +x 2+1)为奇函数.双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(-2,2]是偶函数.( × )(2)若函数f (x )是奇函数,则必有f (0)=0.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( √ )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b,0)中心对称.( √ )(5)2π是函数f (x )=sin x ,x ∈(0,+∞)的一个周期.( × )(6)周期为T 的奇函数f (x ),一定有f ⎝ ⎛⎭⎪⎫T 2=0.( × )[解析] (6)举反例.函数f (x )=tan x ,T =π,f (T )=f (π)=0,f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫π2无意义,所以f ⎝ ⎛⎭⎪⎫T 2=0不对.题组二 走进教材2.(多选题)(必修1P 85T2改编)给出下列函数,其中是奇函数的为( BC )A .f (x )=x 4B .f (x )=x 5C .f (x )=x +1xD .f (x )=1x 2[解析] 对于f (x )=x 4,f (x )的定义域为R ,由f (-x )=(-x )4=x 4=f (x ),可知f (x )=x 4是偶函数,同理可知f (x )=x 5,f (x )=x +1x 是奇函数,f (x )=1x 2是偶函数. 3.(必修1P 85T3改编)若函数y =f (x )(x ∈(a ,b ))为奇函数,则a +b = 0 .4.(必修1P 85T1改编)若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B )A .(a ,-f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.5. (必修1P 87T12改编)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为_(-2,0)∪(2,5]__.[解析] 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].6.(必修1P 87T11改编)定义在R 上的奇函数f (x )以2为周期,则f (1)+f (2)+f (3)的值是( A )A .0B .1C .2D .3[解析] 根据函数的周期性和奇偶性得到f (3)=f (-1)=-f (1)、f (2)=f (0)=0,从而可求f (1)+f (2)+f (3).因为函数以2为周期,所以f (3)=f (-1),f (2)=f (0),因为函数是定义在R 上的奇函数,所以f (-1)=-f (1),f (0)=0,所以f (1)+f (2)+f (3)=f (1)+f (0)-f (1)=0,故选A.7.(必修1P 86T3改编)已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-3)= -7 .[解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,故f (x )=2x-1(x ≥0),则f (-3)=-f (3)=-(23-1)=-7.题组三 走向高考8.(2023·新课标Ⅱ,4,5分)若f (x )=(x +a )·ln 2x -12x +1为偶函数,则a =( B )A .-1B .0 C.12 D .1 [解析] f (-x )=(-x +a )ln -2x -1-2x +1=(-x +a )ln 2x +12x -1=(x -a )ln 2x -12x +1,∵f (x )为偶函数,∴f (x )=f (-x ),∴x +a =x -a ,∴a =0.9.(2021·全国乙,4)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( B )A. f ()x -1-1B . f ()x -1+1 C. f ()x +1-1 D . f ()x +1+1[解析] 思路一:将函数f (x )的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f (x )的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解法一:f (x )=-1+2x +1,其图象的对称中心为(-1,-1),将y =f (x )的图象沿x 轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f (x -1)+1的图象,关于(0,0)对称,所以函数f (x -1)+1是奇函数,故选B.解法二:选项A ,f (x -1)-1=2x -2,此函数为非奇非偶函数;选项B ,f (x -1)+1=2x ,此函数为奇函数;选项C ,f (x +1)-1=-2x -2x +2,此函数为非奇非偶函数;选项D ,f (x +1)+1=2x +2,此函数为非奇非偶函数,故选B.。
第二节函数的性质第1课时系统知识一一函数的单调性与最值、奇偶性、周期性若函数y= f(x)在区间D上是增函数或减函数,则称函数y= f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y= f(x)的单调区间.[点拨](1)函数单调性定义中的X i , X2具有以下三个特征:一是任意性,即任意两数X i, D ”,任意”两字决不能丢;二是有大小,即X i VX2(或X1>X2);三是同属一个单调区间,三者缺一不可.⑵若函数在区间D上单调递增(或递减),则对D内任意的两个不等自变量X1, X2的值, 都有fXL二竺或fXk 4竺<。
.X1 —X2 X1—X2 /(3)函数f(X)在给定区间上的单调性,是函数在此区间上的整体性质,不一定代表在整个定义域上有此性质.[谨记常用结论](1) 函数f(X)与f(x)+ c(c为常数)具有相同的单调性.(2) k>0时,函数f(x)与kf(x)单调性相同;k<0时,函数f(x)与kf(x)单调性相反.1⑶若f(x)恒为正值或恒为负值,贝y f(x)与具有相反的单调性.⑷若f(x), g(x)都是增(减)函数,则当两者都恒大于零时,f(x) •(x)是增(减)函数;当两者都恒小于零时,f(x) g(x)是减(增)函数.(5)在公共定义域内,增+增=增,减+减=减,增—减=增,减—增=减.[小题练通]1. [人教A版教材P39B组T1]函数f(x)= x2—2x的单调递增区间是______ .答案:[1 ,+^ )2. [教材改编题]如果二次函数f(x)= x2—(a—1)x + 5在区间2, 1上是增函数,则实数a的取值范围为_________ .解析:T函数f(x) = x2—(a —1)x+ 5的对称轴为x =旦^1且在区间2,1上是增函数,a —1答案:(—R, 2]3. [教材改编题]函数f(x)= log1 (x2—4)的单调递增区间为________ .2解析:由x2—4>0得x<—2或x>2.又u = x2—4在(一a,—2)上为减函数,在(2, + a)上为增函数,y= log 1 u为减函数,2故f(x)的单调递增区间为(一a,—2).答案:(一a,—2)4. [易错题]设定义在[—1,7]上的函数y= f(x)的图象如图所示,则函数y= f(x)的增区间为________ .答案:[—1,1], [5,7]2x + k5.若函数y= 与y= log3(x—2)在(3, +a )上具有相同的单调性,贝U实数k的取值x—2范围是_________ .解析:由于y= lOg3(x—2)的定义域为(2 , + a ), 且为增函数,故函数y=空土^ = 2x —2+ 4+ k= 2 + 也在(3, + a)上也是增函数,则有4+ k v 0, x —2 x —2 x —2得k v — 4.f(X)Vf —的实数x的取值范答案:(—a, —4)6•已知函数f(x)为定义在区间[—1,1]上的增函数,则满足围为________ .—1W x W1,解析:由题设得1x<2解得—1W x<1.答案:—1,—前提设函数f(x)的定义域为1,如果存在实数M满足条件对于任意x€ I,都有f(x)W M ;存在X o€ I,使得f(X o)= M对于任意x € I,都有f(x)》M ;存在x°€ I,使得f(x^)= M结论M为最大值M为最小值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值•当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值或最小值.[点拨](1)对于单调函数,最大(小)值出现在定义域的边界处;(2) 对于非单调函数求最值,通常借助图象求解更方便;(3) 一般地,恒成立问题可以用求最值的方法来解决,而利用单调性是求最值的常用方法•注意以下关系:f(x)> a恒成立?f(x)min> a ;f(x) W a恒成立?f(x)max <乱解题时,要务必注意“=”的取舍.[小题练通]21. __________________________________________________________ [人教A版教材P31例4]函数f(x)=二二在[2,6]上的最大值是___________________________ •答案:22. [教材改编题]设函数f(x)= 2~在区间[3,4]上的最大值和最小值分别为M ,m,则晋=x—2 M 解析:易知f(x)= x—2 = 2+七,所以f(x)在区间[3,4]上单调递减,4所以M = f(3) = 2 + ---- =6,3 —2 所以m!_ 16_ 8M —6 —3.答案:3.[教材改编题喏函数f(x)=—;+ b(a>0)在;,2上的值域为••• f(X )min = f 2 = 2 , f(x)max = f(2) = 2.1—2a 十 b = 1, 即 -1+b = 2,答案:1 54.[易错题]函数y =~22 i解析:由 y = X ^ ,可得 x 2 = —-^.由 x 2>0,知—0,解得—1 w y<1,x 十 1 1 — y 1 — y故所求函数的值域为[—1,1). 答案:[—1,1) 5.函数f(x) = x ,x> 1,的最大值为x 2 + 2, x<11解析:当x > 1时,函数f(x)= -为减函数,所以f(x)在x = 1处取得最大值,为 f(1) = 1; 当x<1时,易知函数f(x) = — x 2+ 2在x = 0处取得最大值,为 f(0) = 2.故函数f(x)的最大值 为2.答案:26.已知函数 f(x)=— x 2 + 4x 十a , x € [0,1],若f(x)有最小值一2,贝V f(x)的最大值为解析:函数 f(x)=— x 2 + 4x 十 a =— (x — 2)2+ 4+ a , x € [0,1],且函数 f(x)有最小值—2. 故当x = 0时,函数f(x)有最小值,当 x = 1时,函数f(x)有最大值•当 x = 0时,f(0) = a =—2,.・. f(x)=— x 2+ 4x — 2, •当 x = 1 时,f(x)max = f(1)=—十十 4X 1 — 2 = 1.答案:1[谨记常用结论]1. 函数奇偶性的几个重要结论-1解析:•/ f(x)=-三+ b(a>0)在 1,2 是增函数,a = 1, 解得 5b = 5.⑴如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0) = 0.⑵如果函数f(x)是偶函数,那么f(x) = f(|x|).(3) 既是奇函数又是偶函数的函数只有一种类型,即f(x)= 0, x€ D,其中定义域D是关于原点对称的非空数集.(4) 奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.2. 有关对称性的结论(1) 若函数y= f(x + a)为偶函数,则函数y= f(x)关于x = a对称.若函数y= f(x+ a)为奇函数,则函数y= f(x)关于点(a,0)对称.(2) 若f(x)= f(2a—x),则函数f(x)关于x = a 对称;若f(x) + f(2a—x) = 2b,则函数f(x) 关于点(a, b)对称.[小题练通]1. ________________ [人教A版教材P39A组T6]已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)= x(1 + x),贝U f( —1) = .答案:—22. [教材改编题]设f(x)是定义在R上的奇函数,当x>0时,f(x) = x1 2 3+ 1,则f( —2)+ f(0)解析:由题意知f( —2) =—f(2) = —(22+ 1) =—5, f(0) = 0,••• f(—2) + f(0) = — 5.答案:—53. [教材改编题]已知函数f(x)为偶函数,且当x<0时,f(x)= x + 1,则当x>0时,f(x)=解析:当x>0 时,一xv0,「. f(—x)=—x + 1,又f(x)为偶函数,• f(x)=—x+ 1.答案:—x+ 14. [易错题]已知f(x) = ax2+ bx是定义在[a —1,2 a]上的偶函数,那么 a + b的值是2 1解析:T f(x)= ax2+ bx是定义在[a —1,2 a]上的偶函数,• a—1 + 2a = 0,二a=;. 31又f( —x)= f(x) ,• b= 0,二a+ b= 3.3答案:5.在函数y= xcosx, y= e x+ x2, y= lg . x2—2, y= xsin x 中,偶函数的个数是___________ 解析:y= xcos x是奇函数,y= lg x2—2和y= xsin x是偶函数,y= e x+ x2是非奇非偶函数,所以偶函数的个数是 2.答案:26.已知函数 f(x)= asin x + bln*^ +1,若 f 1 + f — 2 =6,则实数 t=________________ ,解析:令g(x)= asin x + bln 齐,则易知g(x)为奇函数,所以gg g J — 2戶0,则由 f(x)= g(x)+1,得 f 1 + f —1 = g 1 + g —1 + 2t = 2t = 6,解得 t = 3.答案:31. 周期函数对于函数y = f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f(x + T) = f(x),那么就称函数 y = f(x)为周期函数,称T 为这个函数的周期.2. 最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最小正周期.[谨记常用结论]定义式f(x + T)= f(x)对定义域内的x 是恒成立的.(1)若 f(x + a) = f(x + b),则函数 f(x)的周期为 T = |a — b|; 1 1f(x + a) = — f(x), f(x + a)=,f(x + a)=—匚何>0),则 f(x)为周期函数,且T = 2a 为它的一个周期.[小题练通]1.[教材改编题]设f(x)是定义在 R 上的周期为 2的函数,当 x € (— 1,1)时,f(x)= 「4x + 2,—1<x <0,则虑 L __________________ .x , 0< x<1, 2答案:12.[教材改编题]若f(x)是R 上周期为2的函数,且满足 f(1) = 1, f(2) = 2,贝U f(3) — f(4)解析:由 f(x)是 R 上周期为 2 的函数知,f(3) = f(1) = 1, f(4) = f(2) = 2,••• f(3) — f(4) =— 1.答案:—1=x ,贝y f(2 019) = __________(2)若在定义域内满足3.[教材改编题]已知f(x)是定义在R 上的函数,并且 1f(x + 2)= f x ,f(x)1 1解析:由已知,可得f(x + 4) = f[(x + 2) + 2]= —— =-—=f(x),故函数f(x)的周期为f (X + 2)4.A f(2 019) = f(4X 504+ 3) = f(3)= 3.答案:34. [易错题]函数f(x)的周期为4,且x€ (-2,2], f(x) = 2x- x2,则f(2 018) + f(2 019) + f(2 020)的值为________ .解析:由f(x)= 2x-x2, x€ (-2,2],知f(- 1)=- 3, f(0)= 0, f(2) = 0,又f(x)的周期为4,所以f(2 018) + f(2 019) + f(2 020) = f(2) + f( - 1)+ f(0) = 0 - 3+ 0=- 3.答案:—35. 已知f(x)是R上的奇函数,且对任意x€ R都有f(x+ 6)= f(x) + f(3)成立,则f(2 019)解析:•/ f(x)是R上的奇函数,••• f(0) = 0,又对任意x€ R都有f(x + 6) = f(x) + f(3),二当x=- 3 时,有f(3) = f( - 3) + f(3) = 0, • f( - 3) = 0 , f(3) = 0 , • f(x+ 6) = f(x),周期为6. 故f(2 019) = f(3) = 0.答案:06.偶函数y= f(x)的图象关于直线x= 2对称,f(3) = 3,则f( - 1) = __________ .解析:因为f(x)的图象关于直线x= 2对称,所以f(x) = f(4- x) , f( - x) = f(4 + x),又f(- x) = f(x),所以f(x) = f(4 + x),则f( - 1) = f(4 - 1) = f(3) = 3.答案:3。
高考数学一轮总复习函数的对称性与周期性分析方法高考数学一轮总复习:函数的对称性与周期性分析方法函数是数学中一个重要的概念,对称性与周期性是函数研究中的两个关键方面。
在高考数学中,对于函数的对称性与周期性的分析方法,学生需要掌握清楚并能够熟练运用。
本文将详细介绍高考数学中函数的对称性与周期性分析方法。
一、函数的对称性分析方法1. 基本对称性函数的基本对称性是指关于坐标轴的对称性,包括关于x轴的对称性和关于y轴的对称性。
关于x轴的对称性:如果函数$f(x)$满足$f(x) = f(-x)$,则函数关于x轴对称。
关于y轴的对称性:如果函数$f(x)$满足$f(x) = -f(-x)$,则函数关于y轴对称。
2. 奇偶性函数的奇偶性是对称性的一种特殊情况。
奇函数:如果函数$f(x)$满足$f(-x) = -f(x)$,则函数为奇函数。
奇函数的图像关于原点对称。
偶函数:如果函数$f(x)$满足$f(-x) = f(x)$,则函数为偶函数。
偶函数的图像关于y轴对称。
3. 周期性函数的周期性是指函数在一定区间内有规律地重复的性质。
函数$f(x)$的周期为T:如果对于任意的x值,有$f(x+T) = f(x)$,则函数的周期为T。
二、函数的周期性分析方法1. 函数图像法通过观察函数的图像,可以直观地判断函数的周期。
例如,对于正弦函数$y = \sin(x)$,我们可以观察到在区间[0, 2π]中,函数的图像重复周期为2π。
2. 方程法对于周期函数,可以通过解方程来确定函数的周期。
例如,对于正弦函数$y = \sin(ax)$,其中a为常数,若函数的周期为T,则有:$\sin(a(x+T)) = \sin(ax)$根据正弦函数的性质,上式成立的条件为:$a(x+T)-ax= k2π$其中k为整数,解得:$T = \frac{2π}{a}$通过方程法,我们可以得到正弦函数的周期为$\frac{2π}{a}$。
三、实例分析下面以一个具体的例子来说明函数的对称性与周期性分析方法。
第8节 函数的周期性【基础知识】1.周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.关于函数周期性常用的结论(1)若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠);(2)若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1()f x a +=()f x ,所以2a 是函数的一个周期(0a ≠);(3)若函数满足1()()f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). (4)如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±.(5)函数图像关于b x a x ==,轴对称)(2b a T -=⇒.(6)函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.(7)函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒.【规律技巧】1.求函数周期的方法求一般函数周期常用递推法和换元法,形如y =Asin(ωx +φ),用公式T =2π|ω|计算.递推法:若f(x +a)=-f(x),则f(x +2a)=f[(x +a)+a]=-f(x +a)=f(x),所以周期T =2a.换元法:若f(x +a)=f(x -a),令x -a =t ,x =t +a ,则f(t)=f(t +2a),所以周期T =2a .2.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.3.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.4.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想.【典例讲解】例1、设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 013).(3)解 ∵f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 008)+f (2 009)+f (2 010)+f (2 011)=0.∴f (0)+f (1)+f (2)+…+f (2 013)=f (0)+f (1)=1.【拓展提高】判断函数的周期只需证明f (x +T )=f (x ) (T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.【变式探究】 已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x ,当2≤x ≤3时, f (x )=x ,则f (105.5)=________.【答案】2.5【针对训练】1、设定义在R 上的函数()f x 满足()()22012f x f x ⋅+=,若()12f =,则()99________f =.【答案】10062、已知()f x 是R 上的奇函数,对x R ∈都有(4)()(2)f x f x f +=+成立,若(1)2f -=-,则(2013)f 等于( )A .2B .﹣2C .﹣1D .2013【答案】A3、已知周期函数()f x 的定义域为R ,周期为2,且当11x -≤≤时,2()1f x x =-.若直线y x a =-+与曲线()y f x =恰有2个交点,则实数a 的所有可能取值构成的集合为( )A .3{|24a a k =+或52,}4k k Z +∈ B .1{|24a a k =-或32,}4k k Z +∈ C .{|21a a k =+或52,}4k k Z +∈ D .{|21a a k =+,}k Z ∈【答案】C【综合点评】函数周期性的应用主要有两个方面,其一是求函数值,理论依据是周期性的定义,通过加减周期的整数倍,使得自变量变到适合已知解析式的范围内,进而求值;其二是利用周期函数图象重复出现的特征,先画出一个周期内的函数图象,然后依次向左向右平移周期的整数倍即得整个定义域内的函数图象.【练习巩固】1、已知定义在R 上的函数()f x 满足条件;①对任意的x R ∈,都有()()4f x f x +=;②对任意的[]()()121212,0,2x x x x x f x ∈<<且,都有f ;③函数()2f x +的图象关于y 轴对称.则下列结论正确的是( )A.()()()7 6.5 4.5f f f <<B.()()()7 4.5 6.5f f f <<C.()()()4.5 6.57f f f <<D.()()()4.57 6.5f f f <<【答案】D2、设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[0,1]上的值域为[-2,5],则()f x 在区间[0,3]上的值域为 .【答案】()[]2,7f x ∈-【综合点评】充分利用周期函数的定义将所求函数值的问题转化为已知区间的求值问题是解题关键.3.定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++=( )(A )336 (B )355 (C )1676 (D )2015【答案】A4.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) 【答案】A5.设()f x 是定义在R 上的函数,且满足1(1)()f x f x +=-.当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = . 【答案】16、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则 ( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)【答案】D7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)等于 ( )A .-2B .2C .-98D .98【答案】A8.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 013)+f (2 015)的值为( ) A .-1B .1C .0D .无法计算【答案】C 9.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a 的取值范围是 ( )A .a <-1或a ≥23B .a <-1C .-1<a ≤23D .a ≤23 【答案】C【解析】函数f (x )为奇函数,则f (1)=-f (-1).由f (1)=-f (-1)≥1,得f (-1)≤-1;函数的最小正周期T =3,则f (-1)=f (2),由2a -3a +1≤-1,解得-1<a ≤23.。
专题19 函数的周期性主要考查:函数周期性的应用一、单选题1.已知函数()f x 对于任意实数x 满足条件1(2)()f x f x +=-,若1(2)2f =,则(2020)f =( ) A .12- B .12 C .2-D .2 【解析】11(2)(4)()4()(2)f x f x f x T f x f x +=-∴+=-=∴=+,,, 1(2020)(4)2(2)f f f ∴==-=-,故选:C 2.已知函数()y f x =对任意x ∈R 都有(2)()f x f x +=-且(4)()0f x f x -+=成立,若(0)0f =,则()2019(2020)(2021)f f f ++的值为( )A .4B .2C .0D .2-【解析】由(2)()f x f x +=-,可知(2)()f x f x -=.又(4)()f x f x -=-,(4)(2)0f x f x ∴-+-=,(2)()f x f x ∴+=-,(4)[(2)2](2)()f x f x f x f x ∴+=++=-+=,∴函数()y f x =是周期为4的周期函数,(2019)(3)f f ∴=,(2020)(0)f f =,(2021)(1)f f =.由(4)()0f x f x -+=可得(41)(1)0f f -+=,即(3)(1)0f f +=,(2019)(2020)(2021)000f f f ∴++=+=.故选:C .3.已知()f x 是定义在R 上的奇函数,且满足()()4f x f x =-,当[]0,2x ∈时,()21x f x =-,则()21f =( )A .-3B .-1C .1D .3【解析】由()()4f x f x =-知,()f x 图像对称轴为2x =;由()f x 为奇函数得,()f x 图像对称中心为()0,0,则()f x 的周期为8;所以()()()()213311f f f f =-=-=-=-,故选:B.4.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为( )A .()21x f x =+B .4()21x f x -+=--C .4()21x f x -+=+D .()21x f x -=+【解析】当[2,0)x ∈-时,(]0,2x -∈,(]44,6x ∴-+∈又∵当(]4,6x ∈时,()21x f x =+,4(4)21x f x -+∴-+=+ 又(4)()f x f x +=,∴函数()f x 的周期为4T =,(4)()f x f x ∴-+=- ,又∵函数()f x 是R 上的奇函数,()()f x f x ∴-=- ,∴4()21x f x -+-=+,∴当[)2,0x ∈-时,4()21x f x -+=--.故选:B .5.已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且122f ⎛⎫=⎪⎝⎭()00f ≠,则()2021f =( ).A .2021B .1C .0D .1- 【解析】令0x y ==,则()()()()00200f f f f +=,故()()()20010f f -=,故()01f =,(()00f =舍),令12x y ==,则()()1110222f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故()10f =.∴()()()()11210f x f x f x f ++-==,即()()()()()()1124f x f x f x f x f x f x +=--⇒+=-⇒+=,故()f x 的周期为4,即()f x 是周期函数.∴()()202110f f ==.故选:C .6.已知函数()f x 的定义域为R 且满足()()f x f x -=-,()(4)f x f x =+,若(1)6f =,则()()22log 128log 16f f +=( )A .6B .0C .6-D .12-【解析】因为()(4)f x f x =+,所以()f x 的周期4T =,因为函数()f x 的定义域为R 且满足()()f x f x -=-,所以(0)0f =,(1)(1)6f f -=-=-,所以()()22log 128log 16f f +=7422(log 2)(log 2)f f +(7)(4)f f =+()()870f f =-++(1)(0)f f =-+(1)(0)f f =-+60=-+6=-.故选:C7.已知()f x 是定义在R 上的偶函数,且满足()()2f x f x +=,当[]0,1x ∈时,()21x f x =-,则函数()4log y f x x =-的零点个数为( )A .2B .4C .6D .8【解析】()4log y f x x =-的零点个数,即()y f x =与4log y x =的图像的交点个数,作出图像可得共有8个交点.故选:D.8.已知函数()f x 是定义在R 上的偶函数,满足()()2f x f x +=,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( )A .2B .3C .4D .5 【解析】∵()()2f x f x +=,则函数()f x 是周期2T =的周期函数.又∵函数()f x 是定义在R 上的偶函数,且[]0,1x ∈时,()πcos2f x x =, ∴当[)1,0x ∈-时,()()ππcos cos 22f x f x x x ⎛⎫=-=-= ⎪⎝⎭, 令()0f x x -=,则函数()y f x x =-的零点个数即为函数()y f x =和()g x x =的图象交点个数, 分别作出函数()y f x =和()g x x =的图象,如下图,显然()f x 与()g x 在[)1,0-上有1个交点,在0,1上有一个交点, 当1x >时,()1g x >,而()1f x ≤,所以1x >或1x <-时,()f x 与()g x 无交点.综上,函数()y f x =和()g x x =的图象交点个数为2,即函数()y f x x =-的零点个数是2. 故选:A二、多选题9.已知()f x 的定义域为R ,其函数图象关于直线3x =-对称且(3)(3)f x f x +=-,当[0,3]x ∈时,()2211x f x x =+-,则下列结论正确的是( )A .()f x 为偶函数B .()f x 在[6,3]--上单调递减C .()f x 关于3x =对称D .(2021)7f =-【解析】对于A ,因为()f x 的定义域为R ,其函数图象关于直线3x =-对称,所以(3)(3)f x f x -=--,又(3)(3)f x f x +=-,所以(3)(3)f x f x +=--,所以[][](3)3(3)3f x f x -+=---,即()()f x f x =-,所以函数为偶函数,故A 正确;对于B :因为(3)(3)f x f x +=-,所以()()()(3)333f x f x ++=+-,即()()6f x f x +=所以函数是周期为6的周期函数,当[6,3]x ∈--时,[]60,3x +∈,因为当[0,3]x ∈时,()2211x f x x =+-函数在[]0,3上单调递增,所以当[6,3]x ∈--时,()()()6622611x f x f x x +=+=++-,函数在[]6,3--上单调递增,故B 错误;对于C :因为函数图象关于直线3x =-对称,所以(3)(3)f x f x -=--,又函数是偶函数,所以()()f x f x =-,即()()(3)33f x f x f x ⎡⎤-=--=-⎣⎦,()()(3)33f x f x f x ⎡⎤--=---=+⎣⎦,所以()()33f x f x +=-,所以()f x 关于3x =对称,故C 正确;对于D :()()()()()()20213366555561f f f f f f =⨯+==-=-+=,又[0,3]x ∈时,()2211x f x x =+-,所以()()120211221117f f ==+⨯-=-,故D 正确;故选:ACD10.已知函数()f x 为偶函数,且()()22f x f x +=--,则下列结论一定正确的是( )A .()f x 的图象关于点(2,0)-中心对称B .()f x 是周期为4的周期函数C .()f x 的图象关于直线2x =-轴对称D .(4)f x +为偶函数【解析】因为()2()2f x f x +=--,所以()f x 的图象关于点()2,0中心对称,又因为函数()f x 为偶函数,所以()f x 是周期为8的周期函数,且它的图象关于点(2,0)-中心对称和关于直线4x =轴对称,所以()4f x +为偶函数.故选:AD.11.已知(2)y f x =+为奇函数,且(3)(3)f x f x +=-,当[]0,1x ∈时,4()2log (1)1x f x x =++-,则( )A . ()f x 的图象关于(2,0)-对称B .()f x 的图象关于(2,0)对称C . 4(2021)3log 3f =+D . 3(2021)2f = 【解析】因为(2)f x +为奇函数,所以(2)(2)f x f x -+=-+,即(2)(2)f x f x +=--,,所以()f x 的图象关于(2,0)对称.故选项B 正确,由(2)(2)f x f x +=--可得(4)()f x f x +=--,由(3)(3)f x f x +=-可得()(6)f x f x -=+,所以(4)(6)f x f x -+=+,可得(2)()f x f x +=-,所以()2(()4)f x f x f x -+=+=,所以()f x 周期为4,所以()f x 的图象关于(2,0)-对称,故选项A 正确,43(2021)(45051)(1)2log 212f f f =⨯+==+-=.故选项D 正确,选项C 不正确,故选: ABD .12.已知函数()f x 的定义域为R ,满足(2)(6),(2)(6)f x f x f x f x +=+-=-,当02x ≤≤时,()22f x x x =-,则下列说法正确的是( )A .(2021)(1)f f =B .函数(2)f x +是偶函数C .当06x ≤≤时,()f x 的最大值为6D .当68x ≤≤时,()f x 的最小值为14- 【解析】对任意实数x 满足(2)(6)f x f x +=+,(4)()f x f x ∴+=即函数()f x 是周期函数,周期为4.(2)(6)(2)(42)(2)f x f x f x f x f x -=-⇒-=+-=-,那么()()f x f x -=,∴函数()f x 是偶函数,(2)(6)f x f x -=-,可得函数()f x 关于2x =对称轴, 又当02x 时,2()2f x x x =-,故函数对应图像大致如图,∴函数()f x 在区间1[4,2]上单调递增.∴函数()f x 在区间[0,1]4上单调递减. ∴当02x 时,函数()f x 的最小值为11()48f =-,最大值为f (2)6=. 且(2021)f f =(1)成立,函数(2)f x +是偶函数成立,当06x 时,()f x 的最大值为6,当68x 时,()f x 的最小值为14-不成立,故正确答案为ABC . 三、填空题13.已知定义在R 上的函数()f x 满足1(1)()f x f x +=,当(0,1]x ∈时,()2x f x =,则23(log )(2018)16f f +=___________. 【解析】函数()f x 满足:()()11f x f x +=,可得:对x R ∀∈,都有()()()121f x f x f x +==+,∴ 函数()f x 的周期2T =. ∴ ()()()()2log 2223123112log log 34log 3163132log f f f f -⎛⎫=-==== ⎪-⎝⎭, 由()()11012f f ==得()()1201802f f ==, ∴()23217log 201816326f f ⎛⎫+=+= ⎪⎝⎭. 14.已知定义在R 上的奇函数()f x 满足(3)(3)0f x f x ++-=,且当(3,0)x ∈-时,2()log (3)f x x a =+-,若(7)2(11)f f =,则实数a =______.【解析】因为函数是奇函数,所以()()33f x f x -=--,即()()()()()()33330,33f x f x f x f x f x f x ++-=+--=+=-,所以函数()f x 的周期为6, ()()()()()721112121f f f f f =⇔=-=-,即()10f =,()()110f f -=-=,而()21log 20f a -=-=,解得:1a =.15.设函数()f x 满足对任意x ∈Z ,都有()(1)(1)f x f x f x =-++成立,(1)f a -=,(1)f b =,则(2019)(2020)f f +=________【解析】∵函数()f x 满足()(1)(1)f x f x f x =-++,∴(1)()(2)f x f x f x +=++,两式相加得到0(1)(2)f x f x =-++,即()(3)0f x f x ++=,①,∴f (x +3)+f (x+6)=0,②由①②可得f (x )=f (x+6),∴函数f (x )的一个周期T =6,∴f (2019)=f (6×336+3)=f (3)=-f (0),f (2020)=f (6×336+4)=f (4)=-f (1),又(0)(01)(01)(1)(1)f f f f f a b =-++=-+=+,∴(2019)(2020)(0)(1)2f f f f a b +=--=--16.已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin F x f x x π=-,在区间[]2,m -上有2021个零点,则m 的取值范围是___________【解析】由题意,函数()f x 为R 上奇函数,所以(0)0f =,且()()f x f x -=-,又(2)()0f x f x -+=,可得(2)()f x f x -=-,可得函数()f x 的图象关于点()1,0对称,联立可得(2)()f x f x -=-,所以()f x 是以2为周期的周期函数,又由函数sin y x =π的周期为2,且关于点(,0)()k k Z ∈对称,因为当(0,1]x ∈时,2()log f x x =-,由图象可知,函数2()log f x x =-和sin y x =π的图象在[)1,1-上存在1234111,,0,22x x x x =-=-==四个零点, 即一个周期内有4个零点,要使得函数()()sin F x f x x π=-,在区间[2,]m -上有2021个零点, 其中1234312,,1,22x x x x =-=-=-=-都是函数的零点,即函数()()sin F x f x x π=-在[]0,m 上有2017个零点,如果m 是第2017个零点,则20171210084m -=⨯=,如果m 是第2018个零点,则12017100822m =+=,即20171008,2m ⎡⎫∈⎪⎢⎣⎭.四、解答题17.设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有(2)()f x f x +=-.当[0,2]x ∈时,2()2f x x x =-.(1)当[2,4]x ∈时,求()f x 的解析式;(2)计算(0)(1)(2)(2020)f f f f ++++的值.【解析】(1)因为(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=.所以()f x 是周期为4的周期函数.当[2,0]x ∈-时,[0,2]x -∈,由已知得22()2()2f x x x x x -=---=--,又()f x 是奇函数,所以2()()2f x f x x x -=-=--,所以2()2f x x x =+.当[2,4]x ∈时,4[2,0]x -∈-,所以2(4)(4)2(4)f x x x -=-+-,又()f x 是周期为4的周期函数,所以22()(4)(4)2(4)68f x f x x x x x =-=-+-=-+.故当[2,4]x ∈时,2()68f x x x =-+.(2)(0)0f =,(1)1f =,(2)0f =,(3)1f =-,又()f x 是周期为4的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++=+++(2012)(2013)(2014)(2015)f f f f ==+++(2016)(2017)(2018)(2019)0f f f f =+++=,所以(0)(1)(2)(2020)(2020)(0)0f f f f f f =+++=+=. 18.设()f x 是定义在R 上的函数,且[0,2]x ∈时,2()2f x x x =-,(2)()f x f x +=-.(1)当[2,0]x ∈-时,求()f x 的表达式;(2)求(1)(2)(3)(2008)f f f f ++++的值;(3)判断()f x 的奇偶性,并求出()f x 的单调区间及()f x 的解析式.【解析】(1)当[2,0]x ∈-时,2[0,2]x +∈,()(2)f x f x =-+=22[2(2)(2)]2x x x x -+-+=+;(2)由(2)()f x f x +=-,得()f x 的周期为4.(1)1f =,(2)0f =,(0)0f =,(1)1f -=-.∴(3)1f =-,(4)0f =,(1)(2)(3)(2008)0f f f f ++++=;(3)由(1)(2)可知:222,[0,2]()2,[2,0)x x x f x x x x ⎧-∈=⎨+∈-⎩,当[2,0)x ∈-时,22()2()()(2)()f x x x x x f x -=---=-+=-,当2(]0,x ∈时,22()()2()(2)()f x x x x x f x -=-+-=--=-,而(0)0f =,所以当[2,2]x ∈-时,函数是奇函数,因为函数的周期为4,所以函数在整个定义域内是奇函数;当[0,2]x ∈时,()()22211f x x x x =-=--+, 则有当[0,1]x ∈时,函数单调递增,当[1,2]x ∈函数单调递减,当[2,0)x ∈-时,()222(1)1f x x x x =+=+-,则有当[2,1]x ∈--时,函数单调递减,当[1,0)x ∈-函数单调递增,而(0)0f =因此有当[2,1]x ∈--时,函数单调递减,当[1,1]x ∈-函数单调递增,当[1,2]x ∈函数单调递减,而函数的周期为4,所以函数单调区间为:()f x 在[41,41]k k -+上递增,在[4143]k k ++,递减,其中k Z ∈.因为[2,2]x ∈-时,222,[0,2]()2,[2,0)x x x f x x x x ⎧-∈=⎨+∈-⎩ 由函数的周期为4,所以函数的解析式为:222(4)(4),[4,42]()()(4)2(4),[42,4)x k x k x k k f x k Z x k x k x k k ⎧---∈+=∈⎨-+-∈-⎩. 19.已知函数()y f x =,()f x 对于任意实数x 满足条件()()12f x f x +=,且()15f =-. (1)求()f x 的一个周期;(2)求()()25f f 的值.【解析】(1)由()()12f x f x +=,所以()()()142f x f x f x +==+, 所以函数的一个周期为4(2)()()251f f =,又()15f =-,所以()()2515f f ==-,所以()()()()()11255115f f f f f =-=-==- 20.已知()f x 是定义在R 上的函数,满足()1()11()f x f x f x -+=+. (1)若1122f ⎛⎫= ⎪⎝⎭,求52f ⎛⎫ ⎪⎝⎭; (2)证明:2是函数()f x 的周期;(3)当[)0,1x ∈时,()f x x =,求()f x 在[)1,0x ∈-时的解析式,并写出()f x 在[)()21,21x k k k Z ∈-+∈时的解析式.【解析】(1)1122f ⎛⎫= ⎪⎝⎭,1111312211231122f f f ⎛⎫-- ⎪⎛⎫⎝⎭∴=== ⎪⎛⎫⎝⎭++ ⎪⎝⎭, 3111512313221132f f f ⎛⎫-- ⎪⎛⎫⎝⎭∴=== ⎪⎛⎫⎝⎭++ ⎪⎝⎭; (2)因为()1()11()f x f x f x -+=+,令x 取1x +得, 所以1()11(1)1()(2)()1()1(1)11()f x f x f x f x f x f x f x f x ---+++===-++++, 所以,2是函数()f x 的周期.(3)当[)1,0x ∈-时,[)10,1x +∈,则()11f x x +=+,又()1()11()f x f x f x -+=+,即1()11()f x x f x -=++,解得()2x f x x =-+. 所以,当[)1,0x ∈-时,()2x f x x =-+.所以,[)[),1,0()2,0,1x x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩. 因为()f x 的周期为2,所以当[)()21,21x k k k Z ∈-+∈时, ()[)[)2,21,2()2222,2,21x k x k k f x f x k x k x k x k k -⎧-∈-⎪=-=-+⎨⎪-∈+⎩.21.已知定义域为R 的函数()f x 是以2为周期的周期函数,当[]0,2x ∈时,()()21f x x =-; (1)求()2015f 的值;(2)求()f x 的解析式;(3)若()()lg g x f x x =-,求函数()g x 的零点的个数.【解析】(1)由题意,()f x 是以2为周期的周期函数,∴()()()()220152*********f f f =⨯+==-=.(2)由题意,对于任意的x ∈R ,必存在一个k Z ∈,使得(]2,22x k k ∈+,则(]20,2x k -∈,∴()()()2221f x f x k x k =-=--, ∴()f x 的解析式为:()()(]()221,2,22,f x x k x k k k Z =--∈+∈. (3)由()0g x =,()lg 0f x x -=,即()lg f x x =,∵当[]0,2x ∈时,()01f x ≤≤.()f x 最小值为0,最大值1,其它区间可根据周期性进行平移. 又∵lg101=,∴当010x <<时,lg 1x <;当10x >时,lg 1x作出()y f x =与lg y x =的大致图像如下:()y f x =与lg y x =的图像在(]0,10上有10个交点,在()10,+∞上没有交点.∴函数()g x 的零点的个数为10.22.设()f x 是定义在R 上的奇函数,对任意的x ∈R 有3()2f x f x ⎛⎫+=-⎪⎝⎭成立. (1)证明:对任意实数x ,等式(3)()f x f x +=成立;(2)若(1)2f =,求(2)(3)+f f 的值; (3)若函数2()3g x x ax =++,且函数()|()|()h x f x g x =⋅是偶函数.求函数21y x x a=++的单调区间. 【解析】(1)由3()2f x f x ⎛⎫+=- ⎪⎝⎭,且()()f x f x -=-, 可知33(3)22f x f x ⎡⎤⎛⎫+=++ ⎪⎢⎥⎝⎭⎣⎦[]3()()2f x f x f x ⎛⎫=-+=--= ⎪⎝⎭,所以()y f x =是周期函数,且3T =是其一个周期.所以对任意实数x ,等式(3)()f x f x +=成立.(2)因为()f x 为定义在R 上的奇函数,所以(0)0f =,且(1)(1)2f f -=-=-,又3T =是()y f x =的一个周期, 所以()()()()2310202f f f f +=-+=-+=-;(3)因为|()|()y f x g x =⋅是偶函数,由于|()||()||()|-=-=f x f x f x ,所以|()|y f x =是偶函数,所以2()3g x x ax =++为偶函数,即()()g x g x -=恒成立.于是22()()33x a x x ax -+-+=++恒成立,于是20ax =恒成立,所以0a =. 所以()22111==1y x x a x x x x =++++,1x ≠-且0x ≠,由复合函数的单调性可知, 函数单调递增为1(,1),(1,)2-∞---;单调递减为1(,0),(0,)2-+∞.。
专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。
【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。
2024年高考数学高频考点题型归纳与方法总结第08讲函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练)【A组在基础中考查功底】一、单选题....【答案】A【分析】首先判断函数的奇偶性,再代入计算)π和2f π⎛⎫⎪⎝⎭的值即可得到正确答案【详解】因为()()2cos cos sin f x x x x x f x -=+=,且函数定义域为R ,关于原点对称,所以是偶函数,其图象关于y 轴对称,排除)22πcosππsinπππ=+=-<2πππππcos sin 22222⎛⎫=+= ⎪⎝⎭故选:A.2023·高三课时练习)设f 上的偶函数,且()f x 在[0,1的解集为().1,12⎛⎫ ⎪⎝⎭11,2⎛⎫-- ⎪⎝⎭111,,122⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭.111,,122⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U【答案】C【解析】由函数为偶函数可将不等式化为12f ⎛⎫⎪⎝⎭,即可利用单调性求解【详解】 ()f x 是定义在(11122f f ⎛⎛⎫-= ⎪⎝ ⎪⎝⎭⎭⎫=,则不等式()1f x <为()f x <12⎫⎪⎭,()x 在[)0,1上是严格减函数,12>,解得12x <-或x >)1,1,故不等式的解集为11,2⎛⎫-- ⎪⎝⎭二、多选题9.(2023·全国·高三专题练习)已知定义在R 上的奇函数()f x 的图象连续不断,且满足()()2f x f x +=,则以下结三、填空题11.(2023秋·吉林长春·高三长春市第二中学校考期末)设()y f x =是定义在R 上的奇函数,且()()2f x f x +=-,又当[]0,1x ∈时,()2f x x =,则()25.5f 的值为______.【答案】1【分析】由已知可得函数的周期为4,然后根据函数解析式结合周期性奇偶性可求得结果.【详解】因为()()2f x f x +=-,所以()()42f x f x +=-+,所以()()4f x f x +=,所以()y f x =的周期为4,因为()y f x =是定义在R 上的奇函数,当[]0,1x ∈时,()2f x x =,所以()()25.546 1.5f f =⨯+()1.5f =()0.52f =-+()0.5f =--()0.5f =20.51=⨯=,故答案为:112.(2023·全国·高三对口高考)已知函数()y f x =,x ∈R ,()y f x =是奇函数,且当0x ≥时,()32x f x x a =++,则0x <时,()f x =________.【答案】321x x --+【分析】由奇函数性质得1a =-,再根据奇函数求解析式即可.【详解】解:因为()f x 为R 上的奇函数,当0x ≥时,()32xf x x a =++,所以()0010f a =++=,解得1a =-.【B 组在综合中考查能力】一、单选题A .()sin 2e e x xx xf x -=-C .()cos 2e ex xx xf x -=-【答案】A【分析】根据给定的函数图象特征,利用函数的奇偶性排除【详解】对于B ,[2,0)(0,2]x ∈-⋃,f 对于C ,[2,0)(0,2]x ∈-⋃,()x f x --=对于D ,[2,0)(0,2]x ∈-⋃,cos (1)e e f =-对于A ,[2,0)(0,2]x ∈-⋃,()x f x --=且()1sin 210e ef -=>-,A 符合题意.故选:由(6)()f x f x -=②,得()f x 的图象关于直线3x =对称;由①②可得:(6)(2)f x f x -=--,即(4)()f x f x +=-,所以()(4)f x f x =--,故(4)(4)f x f x +=-,所以函数()f x 的周期8T =;所以(5)(1)20,(12)(4)(2)4f f a b f f f ==+====-,即1a b +=-,联立201a b a b +=⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,故2()22x f x x =-.所以()32(2023)(1)(3)22310f f f =-=-=--⨯=.故选:A.二、多选题三、填空题四、解答题【C 组在创新中考查思维】一、单选题1.(2023·辽宁·校联考二模)设函数()f x 在(),-∞+∞上满足()()22f x f x -=+,()()55f x f x -=+,且在闭区间[]0,5上只有()()130f f ==,则方程()0f x =在闭区间[]2020,2020-上的根的个数().A .1348B .1347C .1346D .1345【答案】B【分析】根据周期函数性质可知,只需求出一个周期里的根的个数,可求得()f x 在[]2,7上的零点个数,再分区间[)2022,2-和[]0,2020讨论即可.【详解】()f x 在R 上满足(2)(2)f x f x -=+,(5)(5)f x f x -=+,()f x 关于直线2x =和直线5x =对称,()(4)f x f x ⇒=-,()(10)f x f x =-,(4)(10)f x f x ⇒-=-,二、多选题三、填空题四、解答题。
高考数学一轮复习----三角函数的周期性、奇偶性及对称性考点一 三角函数的周期性例、(1)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2C .πD .2π (2)若函数f (x )=2tan ⎪⎭⎫ ⎝⎛+3πkx 的最小正周期T 满足1<T <2,则正整数k 的值为________.[解题技法]1.三角函数最小正周期的求解方法(1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx +φ)的最小正周期T =π|ω|; (3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|. (2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.跟踪训练1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎪⎭⎫ ⎝⎛+62πx ,④y =tan ⎪⎭⎫ ⎝⎛-42πx 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 2.若x =π8是函数f (x )=2sin ⎪⎭⎫ ⎝⎛-4πωx ,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________. 考点二 三角函数的奇偶性例、函数f (x )=3sin ⎪⎭⎫ ⎝⎛+-ϕπ32x ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3 C.5π6 D.2π3[解题技法]判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.跟踪训练1.(2018·日照一中模拟)下列函数中,周期为π,且在]2,4[ππ上单调递增的奇函数是( ) A .y =sin ⎪⎭⎫ ⎝⎛+232πx B .y =cos ⎪⎭⎫ ⎝⎛-22πx C .y =cos ⎪⎭⎫ ⎝⎛+22πx D .y =sin ⎪⎭⎫ ⎝⎛-x 2π 2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________.考点三 三角函数的对称性典例.(1)已知函数f (x )=2sin ⎪⎭⎫ ⎝⎛+6πωx (ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎪⎭⎫ ⎝⎛03,π对称 B .关于点⎪⎭⎫ ⎝⎛035,π对称 C .关于直线x =π3对称 D .关于直线x =5π3对称 (2)已知函数y =sin(2x +φ)⎪⎭⎫ ⎝⎛≤≤-23πϕπ的图象关于直线x =π3对称,则φ的值为________.[解题技法] 三角函数图象的对称轴和对称中心的求解方法:求三角函数图象的对称轴及对称中心,须先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再把(ωx +φ)整体看成一个变量,若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .跟踪训练1.若函数y =3cos(2x +φ)的图象关于点⎪⎭⎫ ⎝⎛034,π对称,则|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π22.函数f (x )=2sin(2x +φ)⎪⎭⎫ ⎝⎛≤≤20πϕ,且f (0)=1,则下列结论中正确的是( ) A .f (φ)=2 B.⎪⎭⎫ ⎝⎛06,π是f (x )图象的一个对称中心C .φ=π3D .x =-π6是f (x )图象的一条对称轴。
2022年新高考数学总复习:函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有__f (x +T )=f (x )__,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个__最小的正数__,那么这个__最小正数__就叫做f (x )的最小正周期.例6(1)已知定义在R 上的函数f (x )满足f (2)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2022)=__2-3__.(2)已知定义在R 上周期为3的奇函数f (x ),则f (1.5)=__0__.(3)设f (x )是周期为2的偶函数,当0≤x ≤1时,f (x )=2x (1-x ),当-4≤x ≤-3时,f (x )=__-2(x +4)(x +3)__,当2021<x <2022时,f (x )=__2×(2022-x )(x -2021)__.[解析](1)f (x )=-1f (x +2)=f (x +4),∴y =f (x )的周期T =4,f (2022)=f (4×505+2)=f (2)=2-3.(2)f (1.5)=-f (-1.5)=-f (-1.5+3)=-f (1.5),∴f (1.5)=0.(3)设-4≤x ≤-3,则0≤x +4≤1,∴f (x )=f (x +4)=2(x +4)[1-(x +4)]=-2(x +4)(x +3),设2021<x <2022,则0<2022-x <1,f (x )=f (x -2022)=f (2022-x )=2×(2022-x )(x -2021).名师点拨利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.函数三大性质的综合应用例7已知函数y =f (x )是R 上的偶函数,对于任意x ∈R ,都有f (x +6)=f (x )+f (3)成立,当x 1,x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,给出下列命题:①直线x =-6是函数y =f (x )的图象的一条对称轴;②函数y =f (x )在[-9,-6]上为增函数;③函数y =f (x )在[-9,9]上有四个零点.其中所有正确命题的序号为__①③__.[解析]①对于任意x ∈R ,都有f (x +6)=f (x )+f (3)成立,令x =-3,则f (-3+6)=f (-3)+f (3),又因为f (x )是R 上的偶函数,所以f (3)=0.所以f (x +6)=f (x ),所以f (x )的周期为6,又因为f (x )是R 上的偶函数,所以f (x +6)=f (-x ),而f (x )的周期为6,所以f (x +6)=f (-6+x ),f (-x )=f (-x -6),所以f (-6-x )=f (-6+x ),所以直线x =-6是函数y =f (x )的图象的一条对称轴,故①正确.②当x 1,x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,所以函数y =f (x )在[0,3]上为增函数,因为f (x )是R 上的偶函数,所以函数y =f (x )在[-3,0]上为减函数,而f (x )的周期为6,所以函数y =f (x )在[-9,-6]上为减函数,故②错误,③f (3)=0,f (x )的周期为6,所以f (-9)=f (-3)=f (3)=f (9)=0,函数y =f (x )在[-9,9]上有四个零点,故③正确.名师点拨函数的奇偶性、周期性及单调性,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.〔变式训练2〕定义在R 上的函数f (x )满足f (x )=0,且函数y =f 给出下列命题:①函数f (x )的最小正周期是32;②函数y =f (x )-34,③函数y =f (x )的图象关于y 轴对称.其中真命题的个数是(C )A .0B .1C .2D .3[解析]由f (x )=0知f (x )为周期函数,且周期为3,故①不正确;由函数y =f f (x )-34,由f (x )-34,f (x )+-32-0,又f (x )=0,∴-32-∴f (-x )=f (x ),或∵∴x 又f (x )=0,即f f (x )∴x +32=x f -f (x )=f (-x ).∴f (x )为偶函数,其图象关于y 轴对称,故③正确.。
专题6 函数的周期性
函数的周期性
★★★
○○○○
1.周期函数
对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
2.最小正周期
如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.周期函数y=f(x)满足:
(1)若f(x+a)=f(x-a),则函数的周期为2a;
(2)若f(x+a)=-f(x),则函数的周期为2a;
(3)若f(x+a)=-1
f x,则函数的周期为2
a;
(4)若f(x+a)=1
f x,则函数的周期为2
a;
(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;
(6)若函数f(x)关于点(a,0)对称,又关于点(b, 0)对称,则函数f(x)的周期是2|b-a|;
(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;
(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;
(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.
函数周期性的判定与应用
(1)判定:判断函数的周期性只需证明f(x +T)=f(x)(T≠0)即可.
(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT(k ∈Z 且k≠0)也是函数的周期.
[典例] (1)(·郑州模拟)已知函数f (x )=⎩⎨
⎧
21-x ,0≤x ≤1,
x -1,1<x ≤2,
如果对任意的n ∈N *
,定义f n (x )=
,那么f 2 016(2)的值为( )
A .0
B .1
C .2
D .3
(2)设定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=2x -x 2
,则f (0)+f (1)+f (2)+…+f (2 018)=________.
[解析] (1)∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2, ∴f n (2)的值具有周期性,且周期为3, ∴f 2 016(2)=f 3×672(2)=f 3(2)=2,故选C.
1.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3
a +1,则实数a 的取值范围为
________.
解析:∵f (x )是定义在R 上的周期为3的偶函数,
∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4
a +1<0,解得-1<a <4.
答案:(-1,4)
2.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2
,则f (2 018)+f (2 019)+f (2 020)的值为________.
3.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,
f (x )=2x -1.则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭
⎪⎫52
=________.
解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭
⎪⎫-12+f (0)+f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12+f (1)+f (0)=212-1+21-1+20
-1= 2.
答案:2
1.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨
⎧
4x 2
-2,-2≤x ≤0,
x ,0<x <1,
则f ⎝ ⎛⎭
⎪⎫52=( )
A .0
B .1 C.1
2
D .-1
解析:选D 因为f (x )是周期为3的周期函数,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫-12+3=f ⎝ ⎛⎭⎪⎫-12=4×⎝ ⎛⎭
⎪⎫-122
-2=-1,故选
D.
2.(·沈阳模拟)函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭
⎪⎫52的值为( )
A.12
B.14 C .-14
D .-1
2
解析:选A ∵f (x +1)=-f (x ),∴f (x +2)=-f (x +1)=f (x ),即函数f (x )的周期为2.∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭
⎪⎫12+2
=f ⎝ ⎛⎭
⎪⎫12=2×12×⎝ ⎛⎭⎪⎫1-12=12. 3.(·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=
⎩⎪⎨⎪
⎧
x +a ,-1≤x <0,⎪⎪⎪⎪
⎪⎪
25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭
⎪⎫92,则f (5a )的值是________.
4.若对任意x ∈R ,函数f (x )满足f (x +2 017)=-f (x +2 018),且f (2 018)=-2 017,则f (-1)=________.
解析:由f (x +2 017)=-f (x +2 018),得f (x +2 017)=-f (x +2 017+1),令x +2 017=t ,即f (t +1)=-f (t ),所以f (t +2)=f (t ),即函数f (x )的周期是2.令x =0,得f (2 017)=-f (2 018)=2 017,即f (2 017)=2 017,又f (2 017)=f (1)=f (-1),所以f (-1)=2 017. 答案:2 017
5.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2
;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 018)的值. 解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2
; 当-1≤x <3时,f (x )=x ,
∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0, ∴f (1)+f (2)+…+f (6)=1,
∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)
=…=f (2 005)+f (2 006)+…+f (2 010)=f (2 011)+f (2 012)+…+f (2 016)=1, ∴f (1)+f (2)+…+f (2 016)=1×2 016
6=336.
而f (2 017)+f (2 018)=f (1)+f (2)=1+2=3.
∴f(1)+f(2)+…+f(2 018)=336+3=339.
____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________。