桂园中学七年级下期中考试数学试卷
- 格式:doc
- 大小:304.50 KB
- 文档页数:5
(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.25的算数平方根是A.5B.±5 C.5±D.52.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A.B.C.D.3.在平面直角坐标系中,点(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列命题中假命题的是()A.同旁内角互补,两直线平行B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直5.如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠BCD C.∠EAD=∠ADC D.∠BCD+∠D=180°6.32.37323.732370)A.28.72 B.0.2872 C.13.3 D.0.13337.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图∠互余的角共有()中与αA .0个B .1个C .2个D .3个8.如图,在平面直角坐标系中,(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)-B .(1,2)-C .(1,1)-D .(0,2)-二、填空题9.8116的算术平方根是__________. 10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则EDC ∠=___º.14.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f (2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.三、解答题17.(1)计算:3317362271? 48-++-- (2)比较325- 与-3的大小18.已知6a b +=,4ab =-,求下列各式的值:(1)22a b +;(2)22a ab b -+.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.如图,数轴的正半轴上有A ,B ,C 三点,点A ,B 表示数1和2.点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为c .(1)请你求出数c 的值.(2)若m 为()2c -的相反数,n 为()3c -的绝对值,求6m n +的整数部分的立方根.22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?23.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.【参考答案】一、选择题1.D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】,255∴25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点(3,2)P -在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.D【分析】根据平行线的判定定理逐项分析即可判断.【详解】A. 同旁内角互补,两直线平行,是真命题,不符合题意;B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意;D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D 选项是假命题,符合题意;故选D【点睛】本题考查了真假命题的判断,掌握相关定理与性质是解题的关键.5.C【分析】根据平行线的判定定理对四个选项进行逐一判断即可.【详解】解:A 、若∠EAD=∠B ,则AD ∥BC ,故此选项错误;B 、若∠BAD=∠BCD ,不可能得到BE ∥CD ,故此选项错误;C 、若∠EAD=∠ADC ,可得到BE ∥CD ,故此选项正确;D 、若∠BCD +∠D =180°,则BC ∥AD ,故此选项错误.故选:C .【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键.6.C【分析】根据立方根的变化特点和给出的数据进行解答即可.【详解】解:∵, ∴10=13.3313.3⨯≈,故选:C .【点睛】本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.7.B【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【详解】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:B.【点睛】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.8.C【分析】先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题.【详解】解:∵A(1,1),B(−1,1),C(−1,−2),D(1,−2),∴AB=1−(−1解析:C【分析】先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题.【详解】解:∵A(1,1),B(−1,1),C(−1,−2),D(1,−2),∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2018÷10=201…8,∴细线另一端在绕四边形第202圈的第8个单位长度的位置,即细线另一端所在位置的点在D处上面1个单位的位置,坐标为(1,−1).故选:C.【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2018个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.二、填空题9.【分析】直接利用算术平方根的定义得出答案.【详解】解:,的算术平方根是:.故答案为:.【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:32【分析】直接利用算术平方根的定义得出答案.【详解】解:94=,∴的算术平方根是:32. 故答案为:32. 【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD 是角平分线,DE ⊥AC ,∴,又∵BC =6cm ,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作DF BC ⊥,∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.30【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠BCF=∠ABC ,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC 的度数,即可得到∠EDC.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠ED C.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=44°,∠B=90°,∴∠BEF=46°,∴∠DEC=1(180°-46°)=67°,2∴∠EDC =90°-∠DEC =23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.14.5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】 由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】 解:1()1f x x=+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A (0,0),点B 和点A 在同一坐标轴上,∴点B 在x 轴上或在y 轴上,∵|AB|=5,∴当点B 在x 轴上时,点B 的坐标为(5,0)或(﹣5,0),当点B 在y 轴上时,点B 的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式==31 63()22 -++--=-1;(2)∵3(3)27-=-2527->-∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.18.(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab 的值代入原式计算即可求出值.【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a 2+b 2与ab 的值代入原式计算即可求出值.【详解】解:(1)把6a b +=两边平方得:()222236a b a b ab +=++=,把4ab =-代入得:()222436a b ++⨯-=, ∴2244a b +=;(2)∵2244a b +=,4ab =-,∴22a ab b -+=22a b ab +-=()444--=48.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【点睛】本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键.20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB 之间的距离即为c 的值;(2)根据题意及c 的值求出m 和n 的值,再把m ,n 代入所求代数式进行计算即可.【详解】解:(1)点.分别表示解析:(11;(2)2【分析】(1)根据数轴上两点间的距离求出AB 之间的距离即为c 的值;(2)根据题意及c 的值求出m 和n 的值,再把m ,n 代入所求代数式进行计算即可.【详解】解:(1)点A .B 分别表示1,1AB ∴=,1c ∴=;(2)21c =-,11m ∴=-=,13|4n =-=661(410m n +=⨯+= 122<<,21∴-<-,8109∴<,6m n ∴+的整数部分是8,∴2=.【点睛】此题考查了估算无理数的大小,正确估算12<<及8109<是解题的关键. 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm,∴大正方形的边长为40020cm=故答案为:20cm;(2)设长方形纸片的长为5xcm,宽为4xcm,⋅=,54360x x解得:18x=,x=>,551820答:不能剪出长宽之比为5:4,且面积为2360cm的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.【详解】解:(1)如图,连接AB,,∠+∠+∠=︒,MAC ACB SBC360ACB ABC BAC∠+∠+∠=︒,180∴∠+∠=︒,MAB SBA180MN ST∴//(2)2∠=∠,CAE CANMN CF ST如图,理由:作//CF ST,则////,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-, //AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠. 即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=,180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n n βββ︒-∠=︒-∠-∠=︒--+=︒-, 11::1n CAE CAN n n n-∠∠==-, 故答案为1n -.【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.。
七年级数学下册期中测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.如果a、b互为倒数,c、d互为相反数,且m1=-,则()22ab c d m-++=___________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、90°3、104、(4,2)或(﹣2,2).5、①③④⑤.6、3三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)a+b=0,cd=1,m=±2;(2)3或-13、略4、证明略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、略。
七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四2.(3分)4的平方根是()A.±2 B.2 C.±D.3.(3分)在实数﹣,0.31,,0.1010010001,3中,无理数有()个A.1 B.2 C.3 D.44.(3分)如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B.60°C.102°D.112°5.(3分)如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G 点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)6.(3分)在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B 到达D点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)7.(3分)如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°8.(3分)下列说法错误的是()A.B.64的算术平方根是4C.D.,则x=19.(3分)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)10.(3分)下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)实数的绝对值是.12.(3分)x、y是实数,,则xy=.13.(3分)已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC=.14.(3分)若2n﹣3与n﹣1是整数x的平方根,则x=.15.(3分)在平面坐标系中,A(1,﹣1),B(2,3),M是x轴上一点,要使MB+MA的值最小,则M的坐标为.16.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)18.(8分)求下列各式中的x值(1)16(x+1)2=49(2)8(1﹣x)3=12519.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°()又∵∠1+∠2=180°(已知)∴∠1=∠DFE()∴BD∥EF()∴∠3=∠ADE()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠AED=∠C()20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.22.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.24.(12分)如图1,D在y轴上,B在x轴上,C(m,n),DC⊥BC且+(n﹣b)2+|b ﹣4|=0.(1)求证:∠CDO+∠OBC=180°;(2)如图2,DE平分∠ODC,BF平分∠OBC,分别交OB、CD、y轴于E、F、G.求证:DE∥BF;(3)在(2)问中,若D(0,2),G(0,5),B(6,0),求点E、F的坐标.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四【解答】解:点A(2,﹣3)在第四象限.故选:D.2.(3分)4的平方根是()A.±2 B.2 C.±D.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.3.(3分)在实数﹣,0.31,,0.1010010001,3中,无理数有()个A.1 B.2 C.3 D.4【解答】解:在实数﹣(无理数),0.31(有理数),(无理数),0.1010010001(有理数),3(无理数)中,无理数有3个,故选:C.4.(3分)如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B.60°C.102°D.112°【解答】解:∵∠1=60°,∠2=60°,∴a∥b,∴∠5+∠4=180°,∵∠3=68°=∠5,∴∠4=112°.故选:D.5.(3分)如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G 点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【解答】解:如图所示:G点坐标为:(﹣3,1).故选:C.6.(3分)在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B 到达D点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)【解答】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4),故选:C.7.(3分)如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°【解答】解:如图,延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=70°,又∵∠A=30°,∴∠AED=∠A+∠AFE=100°,故选:C.8.(3分)下列说法错误的是()A.B.64的算术平方根是4C.D.,则x=1【解答】解:A、,正确;B、64的算术平方根是8,错误;C、,正确;D、,则x=1,正确;故选:B.9.(3分)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)【解答】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的秒数分别是1(12)秒,到(0,2)用8(2×4)秒,到(0,3)用9(32)秒,到(0,4)用24(4×6)秒,到(0,5)用25(52)秒,到(0,6)用48(6×8)秒,依此类推,到(0,45)用2025秒.2025﹣1﹣6=2018,故第2018秒时跳蚤所在位置的坐标是(6,44).故选:A.10.(3分)下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.4【解答】解:两条平行线被第三条直线所截,同位角的平分线平行,①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,②是假命题;过直线外一点有且只有一条直线与已知直线平行,③是假命题;对顶角相等,邻补角互补,④是真命题;故选:A.二、填空题(每小题3分,共18分)11.(3分)实数的绝对值是.【解答】解:|﹣|=,故答案为:.12.(3分)x、y是实数,,则xy=﹣6 .【解答】解:由题意可知:x+2=0,y﹣3=0,∴x=﹣2,y=3∴xy=﹣6故答案为:﹣6=11 .13.(3分)已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC【解答】解:如图:S=.△ABC故答案为:1114.(3分)若2n﹣3与n﹣1是整数x的平方根,则x= 1 .【解答】解:当2n﹣3=n﹣1 时,解得n=2,所以x=(n﹣1)2=(2﹣1)2=1;当2n﹣3+n﹣1=0,解得n=,所以x=(n﹣1)=(﹣1)2=.∵x是整数,∴x=1,故答案为1.15.(3分)在平面坐标系中,A(1,﹣1),B(2,3),M是x轴上一点,要使MB+MA的值最小,则M的坐标为(,0).【解答】解:连接AB交x轴于M,则MB+MA的值最小.设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=4x﹣5,令y=0,得到x=,∴M(,0)故本题答案为:(,0);16.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有 4 个.【解答】解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)【解答】解:(1)原式=4+4×2=12;(2)原式=﹣++﹣1=2.18.(8分)求下列各式中的x值(1)16(x+1)2=49(2)8(1﹣x)3=125【解答】解:(1)16(x+1)2=49(x+1)2=x+1=,∴.(2)8(1﹣x)3=1251﹣x=x=﹣.19.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°(邻补角的定义)又∵∠1+∠2=180°(已知)∴∠1=∠DFE(等量代换)∴BD∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)【解答】解:∵F是DG上的点(已知)∴∠2+∠DFE=180°(邻补角的定义)又∵∠1+∠2=180°(已知)∴∠1=∠DFE(等量代换)∴BD∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)故答案为:邻补角的定义;等量代换;内错角相等,两直线平行;等量代换;同位角相等,两直线平行;两直线平行,同位角相等.20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,=×5×2=5;∴S△ABC(3)存在;=10,∵AB=5,S△ABP∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.【解答】解:①由题意可知:9+的整数部分为12,9﹣的整数部分为5,∴9+=12+a,9﹣=5+b∴a=﹣3,b=4﹣,②原式=4(a+b)+5=4×1+5=9∴9的平方根为:±322.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE【解答】①证明:∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC,∠FOC=BOC,∵∠AOC+∠BOC=180°,∴∠EOF=∠EOC+∠FOC=90°,∴OE⊥OF;②证明:∵AB∥CD,∴∠A+∠C=180°,∵∠2+∠D+∠C=180°,∠1+∠A+∠B=180°,∠1=∠B,∠2=∠D,∴2∠1+2∠2=180°+180°﹣180°=180°,∴∠1+∠2=90°,∴∠BED=90°,∴BE⊥DE.23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是∠B+∠D=∠P;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是∠A+∠E+∠C=360°;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:(1)①如图1中,作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠B=∠1,∠D=∠2,∴∠B+∠D=∠1+∠2=∠BPD.②作EH∥AB,∵AB∥CD,∴EH∥CD,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°.故答案为∠B+∠D=∠P,∠A+∠E+∠C=360°.(2)①如图3中,作BE∥CD,∵∠EBQ=∠3,∠EBP=∠EBQ+∠1,∴∠BPD=∠EBP+∠2=∠1+∠3+∠2.②如图4中,连接EH.∵∠A+∠AEH+∠AHE=180°,∠C+∠CEB+∠CBE=180°,∴∠A+∠AEH+∠AHE+∠CEH+∠CHE+∠C=360°,∴∠A+∠AEC+∠C+∠AHC=360°.(3)如图5中,设AC交BG于H.∵∠AHB=∠A+∠B+∠F,∵∠AHB=∠CHG,在五边形HCDEG中,∠CHG+∠C+∠D+∠E+∠G=540°,∴∠A+∠B+∠F+∠C+∠D+∠E+∠G=540°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°24.(12分)如图1,D在y轴上,B在x轴上,C(m,n),DC⊥BC且+(n﹣b)2+|b ﹣4|=0.(1)求证:∠CDO+∠OBC=180°;(2)如图2,DE平分∠ODC,BF平分∠OBC,分别交OB、CD、y轴于E、F、G.求证:DE∥BF;(3)在(2)问中,若D(0,2),G(0,5),B(6,0),求点E、F的坐标.【解答】解:(1)∵DC⊥BC,∴∠BCD=90°,∵∠BOD=90°,∴∠OBC+∠ODC=360°﹣∠BOD﹣∠BCD=180°;(2)∵DE平分∠ODC,BF平分∠OBC,∴∠ODE=∠ODC,∠OBF=∠OBC,∵∠OBC+∠ODC=180°,∴∠ODE+∠OBF=90°,∵∠ODE+∠OED=90°,∴∠OED=∠OBF,∴DE∥BF,(3)∵+(n﹣b)2+|b﹣4|=0,∴m﹣3=0,n﹣b=0,b﹣4=0,∴m=3,b=4,n=4,∴C(3,4),∵D(0,2),∴直线CD的解析式为y=x+2①,∵G(0,5),B(6,0),∴直线BG的解析式为y=﹣x+5②,联立①②解得,,∴F(2,),∵DE∥BF,D(0,2),∴直线DE的解析式为y=﹣x+2,令y=0,得,﹣x+2=0,∴x=2.4,∴E(2.4,0).。
贵州部分学校七年级2023-2024学年度第二学期期中考试数学试卷(本试卷共3大题,26小题,满分150分,完成试卷120分钟)注意事项:1.答题时,务必将自己的姓名、准考证号填写在答题卡規定的位置.2.答选择題,必須使用2B铅笔将答題卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结来后,只需将答题卡交回,试题卷由考生自己留存.一、选择题(本题共有12小题,每题3分,只有唯一答案,共计36分1. 下列各数中,是无理数的是()A. B. C. D. 0答案:A解析:解:,,,0四个数中,是无理数,其它三个均为有理数,故选A.2. 下列各组角中,和是对顶角的是()A. B.C. D.答案:D解析:解:根据两条直线相交,才能构成对顶角进行判断,A、B、C都不是由两条直线相交构成的图形,选项错误,不符合定义;D是由两条直线相交构成的图形,选项正确,符合定义.故选:D.3. 如图,在平面直角坐标系中,被墨水污染的点的坐标可能是()A. B. C. D.答案:D解析:解:如上图,在平面直角坐标系中,被墨水污染的点的坐标可能是,故选:D.4. 下列方程组中,是二元一次方程组的是()A. B. C. D.答案:C解析:解:A.,第一个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;B.,第二个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;C.符合二元一次方程组的定义,故该选项符合题意;D.,第二个方程是分式方程,方程组不是二元一次方程组,故该选项不符合题意;故选:C.5. 如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是()A. B. C. D.答案:C解析:解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的,6. 下列各数:①,②3.14,③0,④,⑤,⑥,⑦,其中无理数有()A. 1个B. 2个C. 3个D. 4个答案:C解析:解:∵,,∴无理数有:,,,故选:C7. 某同学要从学校回家,所有道路的方向是向西或向北,若他的路线是.则阴影部分覆盖的数对可以是()A. B. C. D.答案:A解析:解:∵所有道路的方向是向西或向北,∴某同学的路线是.故选:A.8. 《九章算术》中有一题:“今有大器五、小器一,容三斛;大器一、小器五,容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容量各是多少斛?若大容器的容量为斛,小容器的容量为斛,则可列方程组()A. B. C. D.解析:解:根据题意,得,故选:B.9. 如图是一盏可调节台灯及其示意图.固定支撑杆垂直底座于点,与是分别可绕点和旋转的调节杆,台灯灯罩可绕点旋转调节光线角度,在调节过程中,最外侧光线、组成的始终保持不变.现调节台灯,使外侧光线,,若,则()A. B. C. D.答案:B解析:解:如图所示,过点A作,过点B作,∵,∴,∵,∴,即,∵,∴,∴,∵,,∴,∴,∴,故选:B.10. 如图,在数轴上表示的点可能是()A. PB. QC. MD. N答案:D解析:解:∵,∴,∴在数字4和5之间,故选:D.11. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,……,按这样的运动规律,经过第47次运动后动点的坐标是()A. B. C. D.答案:A解析:解:由题知,第1次运动后动点P的坐标是;第2次运动后动点P坐标是;第3次运动后动点P的坐标是;第4次运动后动点P的坐标是;第5次运动后动点P的坐标是;第6次运动后动点P的坐标是;第7次运动后动点P的坐标是;第8次运动后动点P的坐标是;…,由此可见,第n次运动后动点P的横坐标为n,且纵坐标按1,0,2,0依次出现,又因为余3,所以第47次运动后动点P的坐标是(47,2);故选:A.12. 若不论k取什么数,关于x的方程(a、b是常数)的解总是,则的值是()A B. C. D.答案:C解析:不论k取什么数,关于x的方程(a、b是常数)的解总是,,,,,,,故选:C.二、填空题(本题共有6小题,每小题4分,共计24分)13. 比较大小:______.答案:解析:解:,,,,,,故答案为:14. 如图,已知,,则______.答案:##60度解析:解:∵,∴,∴,∵,∴,故答案为:.15. 如果点在第二象限,那么m的取值范围________.答案:##解析:解:根据题意:,,故答案为:.16. 如图,数轴上A,B,C,D四点对应的数都是整数,若点A对应的数为a,点B对应的数为b,数轴上每个小格对应一个单位长度,且,则点C对应的数为__________.答案:0解析:解:根据数轴可知,,,解得:,点C对应的数为:,故答案为:0;17. 已知,的平方根是______.答案:解析:解:根据题意知,,,,的平方根为.故答案为:18. 已知关于,的方程组的解是,则方程组的解是____________________.答案:解析:解:方程组可化为,关于,的方程组的解是,方程组中,,解得:,,方程组的解是,故答案为:.三、解答题(8个小题,19题12分,20、21、22题每题10分,23、24、25、26题每小题12分,共计90分)19. (1)计算:.(2)解方程组:答案:(1);(2)解析:(1)解:.(2)解:,,得,把代入,得,故原方程组的解为.20. 如图,将直角三角形沿方向平移得到直角三角形,其中,,,求阴影部分的面积.答案:解析:解:直角三角形沿方向平移得到直角三角形,,.,.∴.21. 计算下列各式并归纳结论:(1);;(2);;(3)根据(1),(2)的结果,请猜想:与的值是否相等?结论:(选填“”或“”).答案:(1);(2)12;(3)小问1解析:解:;;故答案为:;;小问2解析:解:;;小问3解析:解:由(1)(2)的结果可知,,故答案为:22. 如图,在直角坐标平面内,已做,,(1)求的面积.(2)在y轴上找一点D,使,求点D的坐标.答案:(1)16 (2)或小问1解析:解:;小问2解析:设点D的坐标为,.解得.∴满足条件的点D的坐标为或;23. 一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数单位:辆乙种货车辆数单位:辆累计送货吨数单位:吨(1)问甲、乙两种货车的载质量分别为多少吨?(2)现租用该公司辆甲种货车及辆乙种货车一次刚好运完这批货物,如果按每吨付运费元计算,问货主这次应付运费多少元?答案:(1)甲货车的载质量为吨,乙货车的载质量为吨(2)货主这次应付运费元小问1解析:设甲货车的载质量为吨,乙货车的载质量为吨,依题意得:,解得:,答:甲货车的载质量为吨,乙货车的载质量为吨;小问2解析:货主应付运费为:元,答:货主这次应付运费元.24. 阅读下列材料:我们知道面积是5的正方形边长是,因为,且更接近于2,所以设,将正方形边长分为2与两部分,如图所示.由面积公式,可得.因为较小,略去,得方程,解得.(1)阅读上述材料,可以得到______;(2)请类比所给方法,探究的近似值.(画出示意图,表明数据,并写出求解过程,结果保留两位小数)答案:(1)2.25(2)小问1解析:解:根据题意,.故答案为:2.25;小问2解析:因为,且更接近于3,所以设,如下图,将正方形边长分为3与两部分,由面积公式,可得,因为较小,略去,得方程,解得∴.25. 如图,一只甲虫在的方格(每小格边长为1)纸上沿着网格线运动,它从A处出发去看望B,C,D处的其他甲虫.规定:向上向右走为正,向下向左走为负.例如从A到B记为,从D到C 记为,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中(______,______),(______,______),;(2)若这只甲虫从A处去P处的行走路线依次为,,,,请在图中标出P处的位置;(3)若这只甲虫的行走路线为,请计算该甲虫走过的路程.答案:(1),(2)作图见解析(3)10小问1解析:解:,,故答案为:,;小问2解析:解:如图,点P即为所求;小问3解析:解:,答:该甲虫走过的路程是10.26. 如图(1),已知,点E在直线、之间,探究与、之间的关系.学以致用(1)如图(1)当,时,求的度数.(2)如图(2),已知,若,,求出度数.答案:(1)(2)小问1解析:解:解:过点作.,,,,,,,又,,;小问2解析:解:过点作,如图:,,,,,又,,,,,答:的度为.。
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根为()A .9B .9±C .3D .3±2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.在平面直角坐标系中,点(2,0.01)P -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①9的平方根是3±;②5是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )A .0个B .1个C .2个D .3个5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根7.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋅⋅⋅的规律绕在四边形ABCD 的边上,则细线另--端所在位置的点的坐标是( )A .()1,1-B .()0,1C .()1,1D .()0,2-二、填空题9.比较大小,请在横线上填“>”或“<”或“=”9________327.10.在平面直角坐标系中,点P (-3,2)关于x 轴对称的点P 1的坐标是______________. 11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.12.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.已知221m <,若0,m >2m +m =______ .15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2021A 的坐标是______.三、解答题17.计算:(1) 333|3|--(2)1 333⎛⎫+⎪⎝⎭18.求下列各式中x的值:(1)23126x-=(2)()3180x--=19.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠3+∠4=180°,试说明∠1=∠2(请通过填空完善下列推理过程)解:∵∠3+∠4=180°(已知),∠FHD=∠4().∴∠3+∠FHD=180°(等量代换).∴FG∥BD().∴∠1=(两直线平行,同位角相等).∵BD平分∠ABC,∴∠ABD=(角平分线的定义).∴∠1=∠2(等量代换).20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;(2)求△A1B1C1的面积;21.阅读下面的文字,解答问题,例如:479<<,即273<<,7∴的整数部分是2,小数部分是72-; (1)试解答:17的整数部分是____________,小数部分是________(2)已知917-小数部分是m ,917+小数部分是n ,且()21x m n +=+,请求出满足条件的x 的值.22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积)(2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义即可得.【详解】解:239=,∴的算术平方根为3,9故选:C.【点睛】本题考查了算术平方根,熟记定义是解题关键.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确.故选:D.【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.B【分析】根据直角坐标系的性质分析,即可得到答案.【详解】P-位于第二象限点(2,0.01)故选:B.【点睛】本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解.4.B【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.【详解】解:①93±,故原命题错误,是假命题,不符合题意;=,3的平方根是3②5是5的算术平方根,正确,是真命题,符合题意;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.真命题只有②,故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴四边形ABCD的解析:B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴四边形ABCD的周长为10,2021÷10的余数为1,又∵AB=2,∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1).故选:B.【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型.二、填空题9.=【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可【详解】解:∵,∴=故答案为:=【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌解析:=【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可【详解】解:∵∴故答案为:=【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键.10.(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).【点解析:(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).【点睛】本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.11.【解析】已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因∠=︒⊥,,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.B DE AB3012.10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解析:10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解:如图,过点C作CG∥AB,过点D作DH∥EF,∵AB//EF,∴AB∥CG∥DH∥EF,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m 是整数,∵,∴m2≤4,∴−2≤m≤2,∴m =−2,−1解析:2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 整数即可求出答案.【详解】解:∵∴m 是整数, ∵2m <∴m 2≤4,∴−2≤m ≤2,∴m =−2,−1,0,1,2当m =±2或−1∴m=2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型.15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.【详解】解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.【详解】解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,-1)【分析】A的坐标.根据图象可得移动8次图象完成一个循环,从而可得出点2022解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化,横坐标每一次循环增加4∵2021÷8=252…5,∴A的坐标为(252×4+2,-1),2021∴点A的坐标是是(1010,-1).2021故答案为:(1010,-1).【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.18.(1);(2)(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -= ∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD=180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD ,解析:对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD =180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD,根据角平分线的定义得出∠ABD=∠2即可.【详解】解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等),∴∠3+∠FHD=180°(等量代换),∴FG∥BD(同旁内角互补,两直线平行),∴∠1=∠ABD(两直线平行,同位角相等),∵BD平分∠ABC,∴∠ABD=∠2(角平分线的定义),∴∠1=∠2(等量代换),故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2.【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)7 2【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).(2)△A1B1C1的面积=3×3-12×3×2-12×1×2-12×1×3=72.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)4,;(2)【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m ,n 的值,进而得出m+n 的值,可求满足条件的x 的值.【详解】(1)∵,即,∴的整数部分是4,小数部分解析:(1)44;(2)122,0x x =-=【分析】(1(2)首先估算出m ,n 的值,进而得出m+n 的值,可求满足条件的x 的值.【详解】(1)∵<45<, ∴44,故答案是:44;(2)∵45<<, ∴54-<-,∴95994-<-,∴94,小数部分是945m ==∵45<,∴94995+<+,∴913,小数部分是9134n ==,∵2(1)541x m n +=+==所以11x +=±解得:122,0x x =-=.【点睛】本题考查了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m ,m 的整数部分a 为不大于m 的最大整数,小数部分b 为数m 减去其整数部分,即b=m-a ;理解概念是解题的关键.22.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.23.(1);(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到,再由折叠的性质及平角的定义解析:(1)1902a︒-;(2)①1454a︒+;②50︒【分析】(1)由平行线的性质得到4'B FC a∠=∠=,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a∠=︒-,根据平行线的性质得到1BFE C'GB902a∠=∠=︒-,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE =19012EFB'∠=︒-∠,由''B FC G⊥可知:''90B FC FGC∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC+=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.16的平方根是()A .4±B .4C .2±D .22.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20° 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)二、填空题9.324-=________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____. 16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.222﹣12的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.【详解】解:16的平方根是4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.A【分析】1,0的纵坐标为0,则可判断点(1,0)在x轴上.由于点()【详解】1,0的纵坐标为0,解:点()故在x轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点P关于x轴的对称点为(,1)a-,则点P的纵坐标为1点P关于y轴的对称点为(2,)b-,则点P的横坐标为2则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】(1)∵34<<,∴3﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152又∵()2152=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.实数4的算术平方根是()A .2B .2C .2±D .162.下列各组图形可以通过平移互相得到的是( ) A . B .C .D .3.在平面直角坐标系中,点()2,1-位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①5是25的算术平方根;②()24-的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A .0个 B .1个 C .2个 D .3个5.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④ 6.下列各组数中,互为相反数的是( )A .2-与2B .2-与12- C .()23-与23- D .38-与38- 7.如图,将木条a ,b 与c 钉在一起,1110∠=︒,250∠=︒,要使木条a 与b 平行,木条a 顺时针旋转的度数至少是( )A .10︒B .20︒C .30D .40︒8.如图,动点P 在平面直角坐标系xOy 中,按图中箭头所示方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()20,,第3次接着运动到点()3,1,第4次接着运动到点()4,0,……,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2二、填空题9.若,则()m a b +的值为10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.11.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC =130°,∠C =30°,则∠DAE 的度数是__________.12.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.14.已知a ,b 为两个连续的整数,且19a b <<,则a b +的平方根为___________. 15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.16.在平面直角坐标系中,已知点()2,4A -,()3,4B ,()3,C m ,且4m <,下列结论:①//AB x 轴,②将点A 先向右平移5个单位,再向下平移m 个单位可得到点C ;③若点D 在直线BC 上,则D 点的横坐标为3;④三角形ABC 的面积为()542m -,其中正确的结论是___________(填序号). 三、解答题17.(1)计算:()2228-+ (2)计算:()()2232527243⎛⎫---+-+÷- ⎪⎝⎭ (3)已知()2116x +=,求x 的值.18.(1)已知a m =3,a n =5,求a 3m ﹣2n 的值.(2)已知x ﹣y =35,xy =1825,求下列各式的值: ①x 2y ﹣xy 2;②x 2+y 2.19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)20.如图,在平面直角坐标系中,△ABC 的顶点都在网格点上,每个小正方形边长为1个单位长度.(1)将△ABC向右平移6个单位,再向下平移3个单位得到△A1B1C1,画出图形,并写出各顶点坐标;(2)求△ABC的面积.21.已知a是10的整数部分,b是10的小数部分,求代数式()1-的平方根.b10a-22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足30a+(β﹣-60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可.【详解】解:解:在平面直角坐标系中,点P(−2,1)位于第二象限,故选:B.【点睛】本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限.4.C【分析】根据相关概念逐项分析即可.【详解】①5是25的算术平方根,故原命题是真命题;②()24-的平方根是4±,故原命题是假命题;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题; ④两直线平行,同旁内角互补,故原命题是假命题;故选:C .【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.5.B【分析】 根据角平分线的性质可得12ACB ACD ∠=∠,12ACF ACG ∠=∠,,再利用平角定义可得∠BCF =90°,进而可得①正确;首先计算出∠ACB 的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE 的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC 平分∠ACD ,CF 平分∠ACG ,∴1122ACB ACD ACF ACG ∠=∠∠=∠,, ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,故①正确,∵CD ∥AB ,∠BAC =50°,∴∠ACG =50°,∴∠ACF =∠4=25°,∴∠ACB =90°-25°=65°,∴∠BCD =65°,∵CD ∥AB ,∴∠2=∠BCD =65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD =65°,∴∠ACB =65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE =15°,∴③∠ACE =2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=--故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.B【分析】根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a 旋转的度数.【详解】解:要使木条a 与b 平行,∴旋转后∠1+∠2=180°,∵∠2=50°,∴旋转后∠1=180°﹣50°=130°,∴当∠1需变为130 º,∴木条a 至少旋转:130º﹣110º=20º,故选B .【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依解析:D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依次递增,则第2021个点的横坐标为2021; 纵坐标2,0,1,0,2,0,1,0…4个一循环,2021÷4=505…1,∴经过第2021次运动后,P (2021,2).故选D .【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b 10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.11.5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠C解析:5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=12∠BAC=12×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.12.【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,∴,∴,,,∵,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了平解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//BC,∴∠DEF=∠EFB=19°,在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°,在图3中,∠CFE=∠GFC-∠EFG=123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.±3【分析】分别算出a,b计算即可;【详解】∵a,b为两个连续的整数,且,∴,∴,∴,,∴,∴的平方根为±3;故答案是:±3.【点睛】本题主要考查了无理数的估算和求一个数的平解析:±3【分析】分别算出a,b计算即可;【详解】∵a ,b 为两个连续的整数,且a b <,∴∴45,∴4a =,5b =,∴9a b +=,∴a b +的平方根为±3;故答案是:±3.【点睛】本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键.15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),B (2,0),∴AB=2-1=1,∴△ABC 的面积=12×1•h=2,解得h=4,点C 在y 轴正半轴时,点C 为(0,4),点C 在y 轴负半轴时,点C 为(0,-4),所以,点C 的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB 边上的高的长度是解题的关键. 16.①③④【分析】①两点纵坐标相同,得到 AB //x 轴,即可判断;②根据平移规律求得平移后的点的坐标,即可判断;③根据两点的坐标特征可知直线BCx 轴,即可判断;④求得三角形的面积,即可判断.解析:①③④【分析】①两点纵坐标相同,得到 AB //x 轴,即可判断;②根据平移规律求得平移后的点的坐标,即可判断;③根据两点的坐标特征可知直线BC ⊥x 轴,即可判断;④求得三角形的面积,即可判断.【详解】 解:A (-2,4),B (3,4),它们的纵坐标相同,∴AB //x 轴,故①正确;将点A 先向右平移 5 个单位,再向下平移m 个单位可得到点(3,4-m ),故②错误;B (3,4),C (3,m ),它们的横坐标相同,∴BC ⊥x 轴,点 D 在直线BC 上,∴点 D 的横坐标为 3,故③正确;点A (-2,4),B (3, 4),C (3,m ),且m <4,∴AB =5,C 点到 AB 的距离为(4-m ),∴三角形 ABC 的面积为()542m -, 故④正确;故答案为:①③④.【点睛】本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键.三、解答题17.(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 3x =或5x =-【解析】【分析】(1(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案.【详解】解:(1)22=-2=;(2()22243⎛⎫-+÷- ⎪⎝⎭()353442⎛⎫=--++⨯- ⎪⎝⎭, 5346=++-,6=;(3)∵()2116x +=∴14x +=±解得:3x =或5x =-.故答案为:(1)2;(2)6;(3) 3x =或5x =-.【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 18.(1);(2)①;②【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1),,解析:(1)2725;(2)①54125;②95 【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】 解:(1)3m a =,5n a =,32m n a -∴ 32m n a a =÷32()()m n a a =÷3235=÷2725=; (2)①35x y -=,1825xy =, 22x y xy ∴-183()255xy x y =-=⨯ 54125=; ②35x y -=,1825xy =, 22x y ∴+2()2x y xy =-+23182525⎛⎫=+⨯ ⎪⎝⎭9362525=+ 95=. 【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE +∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠DEF =∠EHC ,再运用等量代换得到∠EHC =∠B ,最后推出BD ∥EH ,∠BDG =∠DFE ,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED =∠C (已知)∴ED ∥BC (同位角相等,两直线平行)∴∠DEF =∠EHC (两直线平行,内错角相等)∵∠DEF =∠B (已知)∴∠EHC =∠B (等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵∠DFE +∠EFG =180∘(邻补角的意义)∴∠EFG +∠BDG =180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.20.(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC 的面积为11.【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位解析:(1)见解析;A 1(1,-2)、B 1(4,2)、C 1(5,-4)(2)△ABC 的面积为11.【分析】(1)根据平移的规律得到A 1,B 1,C 1点,再顺次连接即可;根据A 1,B 1,C 1在坐标系中的位置写出各点坐标即可;(2)根据图形的面积的和差求出△ABC 的面积即可.【详解】解:()1如图所示,()11,2A -、()14,2B 、()15,4C -;()11126461423411222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21..【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解.【详解】解:∵,∴,∴的整数部分是3,则,的小数部分是,则,∴,∴9的平方根为.【点睛】本题考查实数的估算、实数解析:3±.【分析】根据223104<<可得34<<33,即可求解.【详解】解:∵223104<<, ∴34,∴3,则3a =3,则3b ,∴(()1312339a b --==-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm 2的正方形纸片的边长为a cm∴a 2=400又∵a >0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152又∵()2152=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】α-+(β﹣60)2=0,解:(1)∵30∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为1,2故答案为:1.2【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.。
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
七年级(下)数学期中考试试题(含答案)一.选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.(2分)点(,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2分)实数﹣3,,,,π,0中,无理数有()A.2个B.3个C.4个D.5个3.(2分)下列各式中,有意义的是()A.B.C.D.4.(2分)下列各式正确的是()A.=±4B.=C.﹣|﹣|=0D.+=5.(2分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()A.B.C.D.6.(2分)在平面坐标系内,点A位于第二象限,距离x轴2个单位长度,距离y轴3个单位长度,则点A的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)7.(2分)将一直角三角板与两边平行的纸条如图放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠4=∠5;(4)∠4+∠5=180°其中正确的个数是()A.1B.2C.3D.48.(2分)下列命题中,真命题是()A.的平方根是±9B.0没有平方根C .无限小数都是无理数D .垂线段最短9.(2分)点P 是直线1外一点,A 、B 、C 为直线l 上的三点,PA =6cm ,PB =5cm ,PC =4cm ,点P 到直线l 的距离为dcm ,则( )A .0<d ≤4B .d =4C .0≤d ≤4D .d ≥410.(2分)如图,两个相同的四边形重叠在一起,将其中一个四边形沿DA 方向平移AE 长,则下列关于阴影部分面积的说法正确的是( )A .S 阴影=S 四边形EHGFB .S 阴影=S 四边形DHGKC .S 阴影=S 四边形EDKFD .S 阴影=S 四边形EDKF ﹣S 四边形DHGK二、填空题(本大题共8个小题,每小题2分,共16分,把答案写在题中横线上) 11.(2分)2﹣的相反数是 .12.(2分)点A (3,4)向左平移3个单位后,再向下平移2个单位,对应点A 1坐标为 . 13.(2分)比较2,3,的大小 (用“<”连接).14.(2分)把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是 . 15.(2分)﹣27的立方根是 .16.(2分)如图所示,直线AB ∥CD ,∠A =23°,则∠C = .17.(2分)已知(x ﹣1)3=﹣8,y 2﹣1=0,则x +y = .18.(2分)如图,点A (0,0),向右平移1个单位,再向上平移2个单位,得到点A 1;点A 1向右平移2个单位,再向上平移4个单位,得到点A 2;点A 2向右平移4个单位,再向上平移8个单位,得到点A 3;……;按这个规律平移得到点A n ,则点A n 的坐标为 .三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(7分)计算:(1)﹣|1﹣|(2)()2+.20.(7分)如图,若每个小格的边长均为1,按要求解答:(1)建立适当的平面直角坐标系,写出点A、B、C、D、E的坐标.(2)三角形ACD的面积为.21.(7分)在下列括号内,填上推理的根据.已知:如图,∠1=110°,∠2=70°,求证:a∥b.解:∵∠1=110°(),∠3=∠1(),∴∠3=110°(),又∵(已知)∴∠2+∠3=180°∴a∥b().22.(7分)我们知道,一个正数有两个平方根,它们的关系是互为相反数,请用这个结论解答下题:已知:3x+2与2x﹣7是正数a的平方根,试求x和a的值.23.(8分)如图,已知△ABC,按要求画图;(1)把三角形ABC向右平移8个小格,得到三角形A1B1C1,画出三角形A1B1C1.(2)把三角形A1B1C1向下平移4个小格,得到三角形A2B2C2,画出三角形A2B2C2.(3)若在同一个平面直角坐标系中,点A(﹣5,2),则点B坐标为();点C2坐标为().24.(8分)已知:如图,AB∥CD,DB⊥BC,∠1=40°.求∠2的度数.25.(10分)在《5.3.1平行线的性质》一节,我们用测量的方法得出了“两直线平行,同位角相等”这一性质,但事实上,它可以用我们学过的基本事实来证明,阅读下列证明过程并把它补充完整:(1)若利用基本事实,证明“两直线平行,同位角相等.”如图1,已知直线a∥b,直线AB分别与a、b交于点P、Q求证:∠1=∠2证明:假设∠1≠∠2,则可以过点P作∠APC=∠2,∴PC∥b()又a∥b,且直线a经过点P,∴过点P存在两条直线a、PC与直线b平行,这与基本事实()矛盾,∴假设不成立,∴∠1=∠2(2)利用(1)的结论,证明“两直线平行,同旁内角互补.”要求画图,写出已知、求证、证明.已知:如图2,直线a、b被直线AB所截,分别交于点P、Q,且a∥b.求证:.证明:.26.(10分)认真研究下列探究过程,并将它补充完整:探究:已知直线l1∥l2直线l3和直线l1、l2交于点C和D,直线l3上有一点P.(1)若点P在C、D之间运动时,如图(1),问∠PAC,∠APB,∠PBD之间有什么关系?是否随点P的运动发生变化?并说明理由.解:∠APB=∠PAC+∠PBD,不发生变化.理由如下:作PE∥l1,又∵l1∥l2∴PE∥l2()∴∠PAC=∠APE,∠PBD=∠BPE,()又∵∠APB=∠APE+∠BPE∴∠APB=∠PAC+∠PBD().(2)若点P在l1上方运动时如图(2),试探索∠PAC,∠APB,∠PBD之间的关系,并说明理由.2017-2018学年辽宁省葫芦岛市建昌县七年级(下)期中数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.(2分)点(,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣,﹣5)所在的象限是第三象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2分)实数﹣3,,,,π,0中,无理数有()A.2个B.3个C.4个D.5个【分析】利用无理数的定义判断即可.【解答】解:实数﹣3,,,,π,0中,无理数有,π,共2个,故选:A.【点评】此题考查了无理数,以及算术平方根,熟练掌握各自的定义是解本题的关键.3.(2分)下列各式中,有意义的是()A.B.C.D.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:A、,C、,D、,根号下不能是负数,故此选项错误;只有B选项,三次根号下可以为负数,故此选项正确.故选:B.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4.(2分)下列各式正确的是()A.=±4B.=C.﹣|﹣|=0D.+=【分析】直接利用算术平方根以及立方根的性质分别化简得出答案.【解答】解:A、=4,故此选项错误;B、=,故此选项错误;C、﹣|﹣|=0,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()A.B.C.D.【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【解答】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C.【点评】本题考查平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.6.(2分)在平面坐标系内,点A位于第二象限,距离x轴2个单位长度,距离y轴3个单位长度,则点A的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点A的横坐标与纵坐标,然后写出即可.【解答】解:∵点A位于第二象限,距离x轴2个单位长度,距离y轴3个单位长度,∴点A的横坐标为﹣3,纵坐标为2,∴点A的坐标为(﹣3,2).故选:D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.7.(2分)将一直角三角板与两边平行的纸条如图放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠4=∠5;(4)∠4+∠5=180°其中正确的个数是()A.1B.2C.3D.4【分析】利用平行线的性质可求解.【解答】解:∵将一直角三角板与两边平行的纸条如图放置∴∠1=∠2,∠3=∠4,∠4+∠5=180°∴正确的结论有3个,故选:C.【点评】本题考查了平行线的性质,熟练运用平行线的性质是本题的关键.8.(2分)下列命题中,真命题是()A.的平方根是±9B.0没有平方根C.无限小数都是无理数D.垂线段最短【分析】利用算术平方根的定义、无理数的定义及垂线段的性质分别判断后即可求解.【解答】解:A、的平方根是±3,故错误,是假命题;B、0的平方根是0,故错误,是假命题;C、无限不循环小数是无理数,故错误,是假命题;D、垂线段最短,正确,是真命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解算术平方根的定义、无理数的定义及垂线段的性质,难度不大.9.(2分)点P是直线1外一点,A、B、C为直线l上的三点,PA=6cm,PB=5cm,PC =4cm,点P到直线l的距离为dcm,则()A .0<d ≤4B .d =4C .0≤d ≤4D .d ≥4【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短, ∴点P 到直线l 的距离≤PC ,即点P 到直线l 的距离不大于4.故选:A .【点评】本题考查的是点到直线的距离,熟知直线外一点到直线的垂线段的长度,叫做点到直线的距离是解答此题的关键10.(2分)如图,两个相同的四边形重叠在一起,将其中一个四边形沿DA 方向平移AE 长,则下列关于阴影部分面积的说法正确的是( )A .S 阴影=S 四边形EHGFB .S 阴影=S 四边形DHGKC .S 阴影=S 四边形EDKFD .S 阴影=S 四边形EDKF ﹣S 四边形DHGK【分析】根据平移的性质可知,平移后图形的面积不变即可得到答案.【解答】解:∵两个相同的四边形重叠在一起,将其中一个四边形沿DA 方向平移AE 长, ∴阴影的面积+梯形EIKD 的面积=梯形EIKD 的面积+梯形DKGH 的面积, ∴S 阴影=S 四边形DHGK ,故选:B .【点评】本题考查了平移的性质,是基础题,熟记平移的性质是解题的关键.二、填空题(本大题共8个小题,每小题2分,共16分,把答案写在题中横线上)11.(2分)2﹣的相反数是﹣2.【分析】由于相反数只在原数前添上“﹣”可变为原数的相反数,由此即可求解.【解答】解:∵﹣(2﹣)=﹣2,根据相反数的定义,2﹣的相反数是﹣2.【点评】此题考查相反数的性质及其定义,并能熟练运用到解题中.12.(2分)点A(3,4)向左平移3个单位后,再向下平移2个单位,对应点A1坐标为(0,2).【分析】利用点平移的坐标变换规律求解.【解答】解:点A(3,4)向左平移3个单位后,再向下平移2个单位,对应点A1坐标为(0,2).故答案为(0,2).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.13.(2分)比较2,3,的大小2<<3(用“<”连接).【分析】首先求出2,3,的平方的大小;然后根据实数大小比较的方法,比较出它们的平方的大小,即可判断出它们的大小关系.【解答】解:22=4,32=9,=8,∵4<8<9,∴2<<3.故答案为:2<<3.【点评】此题主要考查了实数大小比较的方法,以及算术平方根的含义和求法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个正实数,平方大的这个数也越大.14.(2分)把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是如果两个角相等,那么它们是对顶角.【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】解:∵原命题的条件是:“相等的角”,结论是:“这两个角是对顶角”,∴命题“相等的角是对顶角”写成“如果,那么”的形式为:“如果两个角相等,那么两个角是对顶角”故答案为:如果两个角相等,那么两个角是对顶角.【点评】本题考查了确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式,难度适中.15.(2分)﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(2分)如图所示,直线AB∥CD,∠A=23°,则∠C=23°.【分析】由平行线的性质可解.【解答】解:∵AB∥CD∴∠C=∠A=23°故答案为:23°【点评】本题考查了平行线的性质,熟练运用平行线的性质是本题的关键.17.(2分)已知(x﹣1)3=﹣8,y2﹣1=0,则x+y=0或﹣2.【分析】利用平方根、立方根的定义求出x与y的值,代入原式计算即可求出值.【解答】解:∵(x﹣1)3=﹣8,y2﹣1=0,∴x=﹣1,y=1或x=﹣1,y=﹣1,则x+y=0或﹣2,故答案为:0或﹣2【点评】此题考查了立方根,平方根,以及有理数的乘方,熟练掌握各自的定义是解本题的关键.18.(2分)如图,点A(0,0),向右平移1个单位,再向上平移2个单位,得到点A1;点A1向右平移2个单位,再向上平移4个单位,得到点A2;点A2向右平移4个单位,再向上平移8个单位,得到点A3;……;按这个规律平移得到点A n,则点A n的坐标为(2n﹣1,2n+1﹣2).【分析】从特殊到一般探究规律后,利用规律即可得到点A n的横坐标以及纵坐标的表达式.【解答】解:点A1的横坐标为1=21﹣1,纵坐标为2=22﹣2,点A2的横坐为标3=22﹣1,纵坐标为6=23﹣2,点A3的横坐标为7=23﹣1,纵坐标为14=24﹣2,点A4的横坐标为15=24﹣1,纵坐标为30=25﹣2,……以此类推,点A n的横坐标为2n﹣1,纵坐标为2n+1﹣2,∴A n的坐标为(2n﹣1,2n+1﹣2),故答案为:(2n﹣1,2n+1﹣2).【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(7分)计算:(1)﹣|1﹣|(2)()2+.【分析】(1)直接利用绝对值的性质化简,进而计算即可;(2)直接利用二次根式的性质以及立方根的性质化简得出答案.【解答】解:(1)﹣|1﹣|=﹣(﹣1)=1;(2)()2+=2﹣2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)如图,若每个小格的边长均为1,按要求解答:(1)建立适当的平面直角坐标系,写出点A、B、C、D、E的坐标.(2)三角形ACD的面积为 6.5.【分析】(1)以BC所在的直线为x轴,点A在y轴上,建立平面直角坐标系,即可得出点A、B、C、D、E的坐标;(2)△ACD的面积=矩形的面积减去三个直角三角形的面积,即可得出结果.【解答】解:(1)以BC所在的直线为x轴,点A在y轴上,建立平面直角坐标系,如图所示:点A、B、C、D、E的坐标分别为A(0,2),B(0,﹣2),C(0,3),D(5,3),E(﹣3,3);(2)△ACD的面积=5×3﹣×3×2﹣×2×3﹣×5×1=6.5;故答案为:6.5.【点评】本题考查了三角形面积公式、坐标与图形性质、平面直角坐标系的建立、矩形面积公式等知识;熟练掌握三角形面积的求法是关键.21.(7分)在下列括号内,填上推理的根据.已知:如图,∠1=110°,∠2=70°,求证:a∥b.解:∵∠1=110°(已知),∠3=∠1(对顶角相等),∴∠3=110°(等量代换),又∵∠2=70°(已知)∴∠2+∠3=180°∴a∥b(同旁内角互补,两直线平行).【分析】依据对顶角相等以及∠2的度数,即可得到∠2+∠3=180°,即可判断a∥b.【解答】解:∵∠1=110°(已知),∠3=∠1(对顶角相等),∴∠3=110°(等量代换),又∵∠2=70°(已知),∴∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:已知;对顶角相等;等量代换;∠2=70°;同旁内角互补,两直线平行.【点评】本题主要考查了平行线的判定,解题时注意:同旁内角互补,两直线平行.22.(7分)我们知道,一个正数有两个平方根,它们的关系是互为相反数,请用这个结论解答下题:已知:3x+2与2x﹣7是正数a的平方根,试求x和a的值.【分析】利用一个正数的两个平方根互为相反数可得到(3x+2)+(2x﹣7)=0,可求得x,再由平方根的定义可求得a的值【解答】解:由正数的两个平方根互为相反数可得(3x+2)+(2x﹣7)=0,解得x=1,所以3x+2=3+2=5,所以a=52=25.【点评】本题主要考查平方根及实数的性质,正确理解平方根的定义是解题的关键.23.(8分)如图,已知△ABC,按要求画图;(1)把三角形ABC向右平移8个小格,得到三角形A1B1C1,画出三角形A1B1C1.(2)把三角形A1B1C1向下平移4个小格,得到三角形A2B2C2,画出三角形A2B2C2.(3)若在同一个平面直角坐标系中,点A(﹣5,2),则点B坐标为(0,3);点C2坐标为(﹣2,﹣4).【分析】(1)将三顶点分别向右平移8个小格得到对应点,再首尾顺次连接即可得;(2)将三顶点分别向下平移4个小格得到对应点,再首尾顺次连接即可得;(3)根据点A的坐标建立平面直角坐标系,据此可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,点B坐标为(0,3),点C2坐标为(﹣2,﹣4),故答案为:0,3;﹣2,﹣4.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义及其性质,并据此得出变换后的对应点.24.(8分)已知:如图,AB∥CD,DB⊥BC,∠1=40°.求∠2的度数.【分析】由平行线的性质和垂线的性质可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数.【解答】解:∵AB∥CD∴∠1=∠BCD=40°,∵BD⊥BC∴∠CBD=90°∵∠CBD+∠2+∠BCD=180°∴∠2=50°.【点评】本题考查了平行线的性质,垂线的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.25.(10分)在《5.3.1平行线的性质》一节,我们用测量的方法得出了“两直线平行,同位角相等”这一性质,但事实上,它可以用我们学过的基本事实来证明,阅读下列证明过程并把它补充完整:(1)若利用基本事实,证明“两直线平行,同位角相等.”如图1,已知直线a∥b,直线AB分别与a、b交于点P、Q求证:∠1=∠2证明:假设∠1≠∠2,则可以过点P作∠APC=∠2,∴PC∥b(同位角相等,两直线平行)又a∥b,且直线a经过点P,∴过点P存在两条直线a、PC与直线b平行,这与基本事实(过直线外一点有且只有一条直线与已知直线平行)矛盾,∴假设不成立,∴∠1=∠2(2)利用(1)的结论,证明“两直线平行,同旁内角互补.”要求画图,写出已知、求证、证明.已知:如图2,直线a、b被直线AB所截,分别交于点P、Q,且a∥b.求证:∠1+∠2=180°.证明:∵a∥b,∴∠2=∠3,∵∠1+∠3=180°,∴∠1+∠2=180°.【分析】(1)利用同位角相等,两直线平行可判断PC∥b,然后利用过直线外一点有且只有一条直线与已知直线平行得出矛盾;(2)先利用平行线的性质得到∠2=∠3,然后根据邻补角的定义可证明∠1+∠2=180°.【解答】解:(1)若利用基本事实,证明“两直线平行,同位角相等.”如图1,已知直线a∥b,直线AB分别与a、b交于点P、Q求证:∠1=∠2证明:假设∠1≠∠2,则可以过点P作∠APC=∠2,∴PC∥b(同位角相等,两直线平行)又a∥b,且直线a经过点P,∴过点P存在两条直线a、PC与直线b平行,这与基本事实(过直线外一点有且只有一条直线与已知直线平行)矛盾,∴假设不成立,∴∠1=∠2;故答案为:同位角相等,两直线平行;过直线外一点有且只有一条直线与已知直线平行;(2)利用(1)的结论,证明“两直线平行,同旁内角互补.”要求画图,写出已知、求证、证明.已知:如图2,直线a、b被直线AB所截,分别交于点P、Q,且a∥b.求证:∠1+∠2=180°.证明:∵a∥b,∴∠2=∠3,∵∠1+∠3=180°,∴∠1+∠2=180°.故答案为:∠1+∠2=180°.:∵a∥b,∴∠2=∠3,∵∠1+∠3=180°,∴∠1+∠2=180°.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的判定与性质.26.(10分)认真研究下列探究过程,并将它补充完整:探究:已知直线l1∥l2直线l3和直线l1、l2交于点C和D,直线l3上有一点P.(1)若点P在C、D之间运动时,如图(1),问∠PAC,∠APB,∠PBD之间有什么关系?是否随点P的运动发生变化?并说明理由.解:∠APB=∠PAC+∠PBD,不发生变化.理由如下:作PE∥l1,又∵l1∥l2∴PE∥l2(平行公理的推论)∴∠PAC=∠APE,∠PBD=∠BPE,(两直线平行,内错角相等)又∵∠APB=∠APE+∠BPE∴∠APB=∠PAC+∠PBD(等量代换).(2)若点P在l1上方运动时如图(2),试探索∠PAC,∠APB,∠PBD之间的关系,并说明理由.【分析】(1)利用平行线的判定和性质可求解;(2)过点P作PE∥l1,利用平行线的判定和性质可求解.【解答】解:(1):作PE∥l1,∵l1∥l2∴PE∥l2(平行公理的推论)∴∠PAC=∠APE,∠PBD=∠BPE,(两直线平行,内错角相等)又∵∠APB=∠APE+∠BPE∴∠APB=∠PAC+∠PBD(等量代换)故答案为:平行公理的推论,两直线平行,内错角相等,等量代换,(2)∠PBD=∠PAC+∠APB理由如下:过点P作PE∥l1,∵l1∥l2,PE∥l1,∴PE∥l2(平行公理的推论)∴∠PAC=∠APE,∠PBD=∠BPE,(两直线平行,内错角相等)又∵∠EPB=∠APE+∠BPA,∴∠PBD=∠PAC+∠APB(等量代换)【点评】本题考查了平行线的性质与判定.注意作已知直线的平行线,是常见辅助线,需要掌握.最新七年级下学期期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1. 下列各数中,是有理数的是()A. B. C. D.2. 下列语句中正确的是()A.-9的平方根是-3B.9的平方根是3C.9的立方根是D.9的算术平方根是33. 下列图形中,由AB//CD,能得到的是()A. B. C. D.4. 在平面直角坐标中,已知点P(-2,3),则点P在()A.第一象限B. 第二象限C. 第三象限D. 第四象限5. 如果是关于的二元一次方程,那么的值分别为()A. B. C. D.6. 线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A. (2,9)B. (5,3)C.(1,2)D.(-9,-4)7.如图,把一块三角板的直角顶点放在直尺的一边上,如果,那么为()A. B. C. D.8.某年级学生共有246人,其中男生人数比女生人数的2倍多2人,则下面所列的方程组中符合题意的是()A. B.C. D.9. 已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(-3,4)B. (3,4)C.(-4,3)D.(4,3)10.在平面直角坐标系中,对于平面内任一点,若规定以下三种变换:○1○2○3按照以上变换有:那么等于()A.(-5,-3)B. (5,3)C.(5,-3)D. (-5,3)二、填空题(本大题共6小题,每小题3分,共18分)11. 如图,直线两两相交,,,则=_________.12. 已知一个正数的两个平方根是和,则这个正数的值为______.13. 命题“两直线平行、同旁内角互补”中,题设是_________,结论是_______,此命题是_______命题.14. 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则=__________.15.在方程,当时,=_______.16.已知长方形ABCD中,AB=5,BC=8,并且AB//轴,若点A的坐标为(-2,4),则点C的坐标为_______.三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,计算:(1)(2)18.解下列方程组:(1)(2)19.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系,按要求解答下列问题:(1)写出△ABC三个顶点的坐标.(2)画出△ABC向右平移6个单位后的图形△.(3)求△ABC的面积.20.阅读理解填空,并在括号内填注理由.如图,已知AB//CD,M,N分别交AB,CD于点E,F,,求证:EP//FQ.证明:AB//CD(_________),(__________).又(_____________)(___________)即:EP//______.(________)21.已知:如图,,和互余,BE FD于G点,求证:AB//CD.22.已知方程组的解互为相反数,求的值,并求此方程组的解.23.某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价-进价),这两种服装的进价,标价如下表:(1)这两种服装各购进的件数.(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?24.如图1,在平面直角坐标系中,A(),C(),且满足,过C 作CB轴于B.(1)求△ABC的面积.(2)若过B作BD//AC交轴于D,且AE、DE分别平分、,如图2,求的度数.(3)在轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.D.2.D.3.B.4.B.5.D.6.C.7.B.8.B.9.C.10.B.11.140°;12.49;13.两条直线被第三条直线所截的同旁内角互补,着两条直线平行;14.110°;15.-4;16.(6,9)或(-10,9);17.(1)原式=-3;(2)x=12;18.(1)x=1,y=1;(2)x=2,y=3;19.解:(1)A (-1,8),B (-5,3),C (0,6);(2)画图略;(3)面积为6.5;20.解:已知;两直线平行,同位角相等;已知;同位角相等;∠MFQ ,QF ;同位角相等,两直线平行.21.证明:∵BE ⊥FD∴∠EGD=90°∴∠1+∠D=90°∵∠2+∠D=90°∴∠1=∠2∵∠C=∠1∴∠C=∠2∴AB//CD.22.解:由题意只可知,x+y=0.4m+0.4,因为x+y=0,所以m=-1.23.解:(1)设A 型购进x 件,B 型购进y 件⎩⎨⎧=+=+38006040600010060y x y x 最新七年级下册数学期中考试题(含答案)一、选择题(每小题4分,共52分)1.(4分)计算(a m)3•a n的结果是()A.a B.a3m+n C.a3(m+n)D.a3mn2.(4分)下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)3.(4分)生活中太阳能热水器已进入千家万户,你知道吗,在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.所晒时间D.热水器4.(4分)如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A.线段AM B.线段BN C.线段CN D.无法确定5.(4分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为()A.12×10﹣8B.1.2×10﹣8C.1.2×10﹣7D.0.12×10﹣7 6.(4分)下列说法中,正确的是()A.一个角的补角一定大于这个角B.任何一个角都有补角C.若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余D.一个角如果有余角,则这个角的补角与它的余角的差为90°7.(4分)在一个数值转换机中(如图),当输入x=﹣5时,输出的y值是()A.26B.﹣13C.﹣24D.78.(4分)已知x a=2,x b=3,则x3a﹣2b=()A.﹣1B.1C.D.9.(4分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A.B.C.D.10.(4分)如图,OA⊥OB,OC⊥OD,∠AOC=α,则∠BOD=()A.180°﹣2αB.2α﹣90°C.90°+αD.180°﹣α11.(4分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 12.(4分)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°13.(4分)长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)二、填空题(每题4分,共28分)14.(4分)长为3m+2n,宽为5m﹣n的长方形的面积为.15.(4分)已知x2﹣kx+9是一个完全平方式,则k的值是.16.(4分)a2﹣ab+b2=()2﹣3ab,(a﹣b)()=b2﹣a2.17.(4分)游客爬山所用时间t(小时)与山高h(千米)间的函数关系如图所示,请写出游客爬山的过程:.18.(4分)若a+b=5,ab=6,则(a﹣b)2=.19.(4分)有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.20.(4分)已知直线l1、l2、l3互相平行,直线l1与l2的距离是4cm,直线l2与l3的距离是6cm,那么直线l1与l3的距离是.三、解答题(写出必要的计算和步骤,共70分)21.(20分)计算:(1)(﹣1)2006+(﹣)﹣2﹣(3.14﹣π)0(2)(x﹣2y)(x2﹣4y2)(x+2y)(3)(0.125)1998•(﹣8)1999(4)(+5)2﹣(﹣5)2(5)10252﹣1024×1026(运用乘法公式计算)22.(5分)已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)。
2022-2023年人教版七年级数学下册期中试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC36+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.6的相反数为( )A .-6B .6C .16-D .169.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 互为相反数,则a 2﹣b 2=________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如果a 的平方根是3±,则a =_________。
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.下列各式中,没有平方根的是()A .-22B .(-2)2C .-(-2)D .∣-2∣ 2.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面3.下列各点在第二象限的是( )A .()3,4B .()4,3-C .()4,3-D .()3,4-- 4.下列命题是假命题的是( )A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .4 6.下列说法中正确的是( ) A .81的平方根是9B .16的算术平方根是4C .3a -与3a -相等D .64的立方根是4± 7.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2021的坐标为( ) A .(﹣3,1) B .(0,﹣2) C .(3,1) D .(0,4)二、填空题9.41=___.10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.若点A (9﹣a ,3﹣a )在第二、四象限的角平分线上,则A 点的坐标为_____.12.如图,∠B =∠C ,∠A =∠D ,有下列结论:①AB //CD ;②AE //DF ;③AE ⊥BC ;④∠AMC =∠BND .其中正确的有_____.(只填序号)13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.14.阅读下列解题过程:计算:232425122222++++++ 解:设232425122222S =++++++① 则232526222222S =+++++②由②-①得,2621S =- 运用所学到的方法计算:233015555++++⋯⋯+=______________.15.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点2021A 的坐标为__________.三、解答题17.(1)计算:34|22|89+; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.19.如图,点D ,F 分别是BC 、AB 上的点,//DF AC ,FDE A ∠=∠.(1)对//DE AB 说明理由,将下列解题过程补充完整.解://DF AC (已知)A ∴∠=________(________________________)A FDE ∠=∠(已知)FDE ∴∠=___________(________________________)//DE AB ∴(______________________________)(2)若AED ∠比BFD ∠大40︒,求BFD ∠的度数.20.如图,已知ABC 在平面直角坐标系中的位置如图所示.(1)写出ABC 三个顶点的坐标;(2)求出ABC 的面积;(3)在图中画出把ABC 先向左平移5个单位,再向上平移2个单位后所得的A B C '''. 21.已知:31a +的立方根是2-,21b -的算术平方根3,c 43 (1)求,,a b c 的值;(2)求922a b c -+的平方根. 22.求下图44⨯的方格中阴影部分正方形面积与边长.23.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.【参考答案】一、选择题1.A解析:A【分析】把各数进行化简,再根据平方根的性质即可进行求解.【详解】解:A、-22=-4,是负数,负数没有平方根,故该选项符合题意;B、(-2)2=4,是正数,正数有平方根,故该选项不符合题意;C、-(-2)=2,是正数,正数有平方根,故该选项不符合题意;D、∣-2∣=2,是正数,正数有平方根,故该选项不符合题意;故选:A.【点睛】本题主要考查了平方根,熟练掌握平方根的性质是解本题的关键.2.B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A 、将一张纸对折,不符合平移定解析:B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A 、将一张纸对折,不符合平移定义,故本选项错误;B 、电梯的上下移动,符合平移的定义,故本选项正确;C 、摩天轮的运动,不符合平移定义,故本选项错误;D 、翻开的封面,不符合平移的定义,故本选项错误.故选B .【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.3.C【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A .()3,4在第一象限,故本选项不合题意;B .()4,3-在第四象限,故本选项不合题意;C .()4,3-在第二象限,故本选项符合题意.D .()3,4--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A 、对顶角相等;真命题;B 、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C 、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.C【分析】根据平方根,立方根,算术平方根的定义解答即可.【详解】A.81的平方根为9±,故选项错误;B2,故选项错误;CD.64的立方根是4,故选项错误;故选:C.【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.7.D【分析】因为AD⊥AC,所以∠CAD=90°.由AB//CD,得∠BAC=180°﹣∠ACD,进而求得∠BAD的度数.【详解】解:∵AB//CD,∴∠ACD+∠BAC=180°.∴∠CAB=180°﹣∠ACD=180°﹣53°=127°.又∵AD⊥AC,∴∠CAD=90°.∴∠BAD=∠CAB﹣∠CAD=127°﹣90°=37°.故选:D.【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A2021的坐标与A1的坐标相同,为(3,1).故选:C.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题9.1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.10.-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称,∴,解得,∴a+b =解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a=0,∴a=6,∴A点的坐标解析:(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.【详解】∵点P在第二、四象限角平分线上,∴9﹣a+3﹣a=0,∴a=6,∴A点的坐标为(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.12.①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC解析:①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故答案为:①②④.【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般.13.35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折解析:35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折叠可知:∠DEF=∠DEB,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=1(180°-30°)=75°;2当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.14..【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=31514-. 故答案是:31514-. 【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 15.(,)或(7,-7).【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.【详解】解:∵P(2-a ,2a+3)到两坐标轴的距离相等,∴.∴或,解得或,当时,P 点解析:(73,73)或(7,-7). 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.【详解】解:∵P (2-a ,2a +3)到两坐标轴的距离相等, ∴223a a -=+.∴223a a -=+或2(23)a a -=-+, 解得13a =-或5a =-, 当13a =-时,P 点坐标为(73,73); 当5a =-时,P 点坐标为(7,-7). 故答案为(73,73)或(7,-7). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.16.(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n 的坐标为(2n ,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x 轴上,解析:(1010,1)【分析】根据图象先计算出A 4和A 8的坐标,进而得出点A 4n 的坐标为(2n ,0),再用2020÷4=505,可得出点A 2021的坐标.【详解】解:由图可知A 4,A 8都在x 轴上,∵蚂蚁每次移动1个单位,∴OA 4=2,OA 8=4,∴A 4(2,0),A 8(4,0),∴OA 4n =4n ÷2=2n ,∴点A 4n 的坐标为(2n ,0).∵2020÷4=505,∴点A 2020的坐标是(1010,0).∴点A 2021的坐标是(1010,1).故答案为:(1010,1).【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.三、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩, (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x ,∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.19.(1)∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)70°【分析】(1)根据平行线的性质得出∠A =∠BFD ,求出∠BFD =∠FDE ,根据平行线的判定得出即可解析:(1)∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)70°【分析】(1)根据平行线的性质得出∠A =∠BFD ,求出∠BFD =∠FDE ,根据平行线的判定得出即可;(2)根据平行线的性质得出∠A +∠AED =180°,∠A =∠BFD ,再求出∠AED ﹣∠A =40°,即可求出答案.【详解】(1)证明:∵DF //AC (已知),∴∠A =∠BFD (两直线平行,同位角相等),∵∠A =∠FDE (已知),∴∠FDE =∠BFD (等量代换),∴DE //AB (内错角相等,两直线平行);故答案为:∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)解:∵DF //AC ,∴∠A =∠BFD ,∵∠AED 比∠BFD 大40°,∴∠AED ﹣∠BFD =40°,∴∠AED ﹣∠A =40°,∴∠AED =40°+∠A ,∵DE //AB ,∴∠A +∠AED =180°,∴∠A +40°+∠A =180°,∴∠A =70°,∴∠BFD =70°.【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=. 364349<6437∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为4±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x叫做a 23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)解析:(1)150°;(2)∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)如图②,过O 点作OF ∥CD ,根据平行线的判定和性质可得∠OCD 、∠BO ′E ′的数量关系;(3)由已知推出CP ∥OB ,得到∠AOB +∠PCO =180°,结合角平分线的定义可推出∠OCD =2∠PCO =360°-2∠AOB ,根据(2)∠OCD +∠BO ′E ′=360°-∠AOB ,进而推出∠AOB =∠BO ′E ′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.。
初中数学试卷桑水出品2009—2010桂园中学七年级下期中考试数学试卷一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、 A.整式必是单项式 B.单项式b a 2的系数为0 C.22z xy +是二次多项式 D.多项式2222y x +的系数为22、下列运算中,正确的个数有 ( ▲ )①()633mmm =-+; ②632m m m =⋅; ③()44482y x xy =-;④33x x x n n =÷; ⑤()515502=⨯--; ⑥()114.30=-π A. 1个 B. 2个 C. 3个 D.4个 3、若(x +4)(x -3) = x 2+ mx -n 则 (▲ )A 、m=-1,n=12B 、m=-1,n=-12C 、m=1,n=-12,D 、m=1,n=12 4、下列计算中,正确的是 ( ▲ )A .a a a a --=--223)13( B. 249)32)(32(a a a -=--- C. 222)(b a b a -=- D.22224)2(b ab a b a +-=-5、如图,∠1和∠2是同位角的是 (▲ ) A B C D6、下列说法:①两条直线被第三条直线所截,内错角相等;②相等的角是对顶角;③互余的两个角一定都是锐角;④互补的两个角一定有一个为钝角,另一个角为锐角。
其中正确的有 ( ▲ )A. 1个B. 2个C. 3个D.4个7、如图,下列条件中,能判断直线1l //2l 的是 ( ▲ )A .32∠=∠B . 18054=∠+∠C .31∠=∠D .42∠=∠(第7题) (第8题)8、如图,已知∠1=∠2,∠3=80O,则∠4= ( ▲ )A. 70OB. 80OC. 60OD. 50O2 12 2 2 1 1 19、用四舍五入法得到的近似数3.20×104精确到的位数和有效数字的个数分别为 ( ▲ ) A 百分位,两个 B 百分位,三个 C 百位,两个 D 百位,三个 10、数学课上老师给出了下面的数据,请问哪一个数据是精确的 ( ▲ ) A 、2003年美国发动的伊拉克战争每月耗费约40..亿.美元 B 、地球上煤储量为5.万亿..吨左右 C 、人的大脑约有1.×.10..10..个细胞D 、某次期中考试中小颖的数学成绩是98..分 二、填空题(每题3分,共18分)11.多项式3a 2b 2-5ab 2+a 2-6是_____次_____项式,其中常数项是_______. 12.若3,2==n ma a,则2m n a +=________13.若1622++ax x 是一个完全平方式,则=a ____________ 14.角α的余角比它的补角的一半少 20,则=∠α__________15.如右图,若∠A+∠B=180º,∠C=65º,∠ADE=900,则∠1=____º, ∠2=_____º.16.自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知1纳米=000000001.0米,则2.25纳米用科学记数法表示为 米 .(结果保留两位有效数字)。
桂园实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)8的立方根是()A. 4B. 2C. ±2D. -2【答案】B【考点】立方根及开立方【解析】【解答】解:∵23=8,∴8的立方根是2.故答案为:B【分析】根据立方根的意义,2的立方等于8,所以8的立方根是2 。
2、(2分)如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班【答案】D【考点】用坐标表示地理位置【解析】【解答】解:年2班记作,表示8年4班,故答案为:D.【分析】根据7 年2班记作(7 ,2 )可知第一个数表示年级,第二个数表示班,所以(8 ,4 )表示8年4班。
3、(2分)甲、乙两人参加某体育项目训练,为了便于了解他们的训练情况,教练将他们最近五次的训练成绩用如图所示的复式统计图表示出来,则下面结论错误的是()A. 甲的第三次成绩与第四次成绩相同B. 第三次训练,甲、乙两人的成绩相同C. 第四次训练,甲的成绩比乙的成绩少2分D. 五次训练,甲的成绩都比乙的成绩高【答案】D【考点】折线统计图【解析】【解答】解:如图所示:A、甲的第三次成绩与第四次成绩相同,正确,故选项不符合题意;B、第三次训练,甲、乙两人的成绩相同,正确,故选项不符合题意;C、第四次训练,甲的成绩比乙的成绩少2分,正确,故选项不符合题意;D、五次训练,乙的成绩都比甲的成绩高,错误,故选项符合题意.故答案为:D【分析】根据统计图中对应的数据对选项进行判断即可解答.4、(2分)用代入法解方程组的最佳策略是()A.消y,由②得y= (23-9x)B.消x,由①得x= (5y+2)C.消x,由②得x= (23-2y)D.消y,由①得y= (3x-2)【答案】B【考点】解二元一次方程组【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,所以用代入法解方程组的最佳策略是:由①得再把③代入②,消去x.故答案为:B【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。
2024罗湖区桂园中学七下期中考数学卷一.选择题(每小题3分共30分)1. 计算,正确结果是( )A. B. C. D. 【答案】A【解析】【详解】原式=,故选A2. 下列各图中,与是对顶角的是( )A. B. C. D.【答案】B【解析】【分析】本题考查对顶角,根据“一个角的两边分别是另一个角两边的反向延长线,这样的两个角是对顶角”结合具体的图形进行判断即可.【详解】解:对于选项A ,图中的与不符合对顶角的定义,它们不是对顶角,故选项A 不符合题意;对于选项B ,图中的与符合对顶角的定义,它们是对顶角,故选项B 符合题意;对于选项C ,图中的与不符合对顶角的定义,它们不是对顶角,故选项C 不符合题意;对于选项D ,图中的与不符合对顶角的定义,它们不是对顶角,故选项D 不符合题意.故选:B .3. 下列各组线段能组成三角形的是( )A. B. C. D. 【答案】A【解析】【分析】根据三角形三边关系,任意两边之和大于第三边即可求解.【详解】解:A 、,,能组成三角形,故本选项正确;B 、,,不能组成三角形,故本选项错误;C 、,,不能组成三角形,故本选项错误;23x x ⋅5x 6x 8x 9x 235x x +=1∠2∠1∠2∠1∠2∠1∠2∠1∠2∠3cm 4cm 5cm、、4cm 6cm 10cm 、、3cm 3cm 6cm、、5cm 12cm 18cm、、 345+>∴3cm 4cm 5cm 、、 4610+=∴4cm 6cm 10cm 、、 336+=∴3cm 3cm 6cm 、、D 、,,不组成三角形,故本选项错误.故选:A .【点睛】本题考查了三角形的三边关系,熟记三边关系是解题的关键.4. 在下列多项式乘法中,可以用平方差公式计算的是 ( )A. B. C. D. 【答案】B【解析】【分析】平方差公式的形式是,平方差公式的特点是两个数的和乘以两个数的差,逐一判断四个选项,即可求解.【详解】解:A 、,不可以用平方差公式计算.B 、,可以用平方差公式计算;C 、,不可以用平方差公式计算;D 、,不可以用平方差公式计算.故选:B .【点睛】本题考查了平方差公式,熟练掌握平方差公式的特点是解题的关键.5. 一年365天,天安门广场的升旗仪式与太阳的节奏同步,唤醒一座城市的梦,唤醒一个国家的清晨.当升旗手匀速升旗时,旗子的高度(米)与时间(分)这两个变量之间的关系用图象可以表示为( )A. B.C. D.【答案】B【解析】【分析】利用用图像表示变量间关系的方法解答即可.【详解】解∶∵升旗手匀速升旗,5121718+=<∴5cm 12cm 18cm 、、()()2323a b a b --+()()3443a b b a -+--()()11a a +--()()22a b a b -+()()a b a b +-(23)(23)(23)(23)a b a b a b a b --+=---(34)(43)(34)(34)a b b a a b a b -+--=-+--(1)(1)(1)(1)a a a a +--=-++()()22a ba b -+h t∴高度h 将随时间t 的增大而变增大,且变化快慢相同,∴应当用上升趋势的直线型表示,∴只有B 符合题意,故选∶B .【点睛】本题考查了用图象表示变量间关系,根据题意明确因变量随自变量变化的趋势是解题的关键.6. 在圆锥体积公式中(其中,表示圆锥底面半径表示圆锥的高),常量与变量分别是( )A.常量是变量是 B. 常量是变量是C. 常量是变量是 D. 常量是变量是【答案】C【解析】【分析】根据常量,变量的概念,逐一判断选项,即可得到答案.【详解】在圆锥体积公式中,常量是变量是,故选C .【点睛】本题主要考查常量与变量的概念,掌握“在一个过程中,数值变化的量是变量,数值不变的量是常量”是解题的关键.7. 用两个相同的三角板按照如图所示的方式作一组平行线,则其数学依据是( )A. 两直线平行,同位角相等B. 同位角相等,两直线平行C. 内错角相等,两直线平行D. 两直线平行,内错角相等【答案】C【解析】【分析】根据平行线的判定定理:内错角相等,两直线平行分析解答即可.【详解】解:由图可知,,根据内错角相等,两直线平行可得.故选:C .的213V r h π=r ,h 1,,3π,V h 1,,3π,h r 1,,3π,,V h r 1,3,,,V h r π213V r h π=1,,3π,,V h r ,m n CAB ABD ∠=∠m n ∥【点睛】此题主要考查平行线判定,解题的关键是:对内错角相等,两直线平行这一判定定理的理解和掌握.8. 下列说法正确的是( )A. 不相交的两直线一定是平行线B. 点到直线的垂线段就是点到直线的距离C. 两点之间线段最短D. 过一点有且只有一条直线与已知直线垂直【答案】C【解析】【分析】根据平行线的定义、点到直线的距离的概念、线段的性质以及垂直的定义逐项判断即得答案.【详解】A 、在同一平面内, 不相交的两直线一定是平行线 ,故此选项错误,不符合题意;B 、 直线外一点到直线的垂线段的长度就是点到直线的距离,故此选项错误,不符合题意;C 、两点之间线段最短,故此选项正确,符合题意;D 、同一平面内,过一点有且只有一条直线与已知直线垂直,故此选项错误,不符合题意;故答案为:C .【点睛】本题考查了平行线的定义、点到直线的距离、线段的性质以及两线垂直的定义等知识,属于基础概念题型,熟知相关概念是解题的关键.9. 若定义表示,表示,则运算的结果为( )A. B. C. D. 【答案】A【解析】【分析】根据新定义列出算式进行计算,即可得出答案.详解】解:根据定义得:的【3xyz 2b d a c -3412m n -256m n -4312m n 3412m n=3×m ×n ×2×(-2)×m 2×n 3=-12m 3n 4,故选:A .【点睛】本题考查了整式的混合运算,根据新定义列出算式是解决问题的关键.10. 如图,AB //CD ,OP ⊥CD ,OE 平分∠BOC ,OF ⊥OE ,∠OCD =50°.下列结论:①∠COE =65°;②OF 平分∠AOC ;③∠AOF =∠POE ;④∠POC =2∠AOF .其中结论正确的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由于AB //CD ,则∠AOC =∠OCD =50°,利用平角等于得到∠BOC =130°,再根据角平分线定义得到∠BOE =65°;利用OF ⊥OE ,可计算出∠COF =25°,则∠AOF =∠AOC -∠COF =25°,即OF 平分∠AOC ;利用同角的余角相等可得到∠AOF =∠POE ;由∠POC =90°-∠AOC =40°,∠AOF =25°,可知④不正确.【详解】解:∵AB //CD ,∴∠AOC =∠OCD =50°,∴∠BOC =180°-50°=130°,∵OE 平分∠BOC ,∴∠BOE =∠COE=×130°=65°,故①正确;∵OF ⊥OE ,∴∠EOF =90°,∴∠COF =∠EOF -∠COE =90°-65=25°,∴∠AOF =∠AOC -∠COF =50°-25°=25°,∴∠COF =∠AOF ,∴OF 平分∠AOC ,故②正确;12∵OP ⊥CD ,∴∠CPO =90°,∵AB //CD ,∴∠AOP =90°,∴∠AOF +∠FOP =∠POE +∠FOP =90°,∴∠AOF =∠POE ,故③正确;∵∠POC =90°-∠AOC =90°-50°=40°,∠AOF =25°,∴∠POC ≠2∠AOF ,故④错误;综上所述:正确结论为①②③.故选:C .【点睛】本题考查了平行线的性质,角平分线的定义,余角的定义,根据平行线的性质求出∠AOC =50°是解决问题的关键.二.填空题(每小题3分,共15分)11. 已知∠A =35°,则∠A 的余角为______°.【答案】55°【解析】【分析】根据“和为90°的两个角互为余角”求解即可.【详解】解:∵∠A =35°,∴∠A 的余角=90°-35°=55°,故答案为:55°.【点睛】此题考查了余角,属于基础题,较简单,主要记住互为余角的两个角的和为90°.12. 计算:_____.【答案】【解析】【分析】根据同底数幂的乘法、积的乘方的逆运算进行计算即可求出答案.【详解】解:的20232023512125⎛⎫⎛⎫-⨯= ⎪ ⎪⎝⎭⎝⎭1-20232023512125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭2023512125⎛⎫=-⨯ ⎪⎝⎭()20231=-故答案为:.【点睛】本题考查的是同底数幂的乘法法则和积的乘方的逆运算.解题过程中需要注意的是一个负数数的奇次幂依然等于这个负数是易错点.13. 如图,在立定跳远中,体育老师是这样测运动员的成绩的,用一块三角尺的一边紧贴在起跳线上,另一边与拉直的皮尺重合,这样做的理由是___________________.【答案】连接直线外一点与直线上各点的所有线段中,垂线段最短【解析】【分析】根据垂线段的性质:垂线段最短进行解答即可.【详解】解:这样做的理由是:连接直线外一点与直线上各点的所有线段中,垂线段最短.故答案为:连接直线外一点与直线上各点的所有线段中,垂线段最短.【点睛】此题主要考查了垂线段的性质,解题的关键是掌握垂线段的定义和性质.垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段,垂线段的性质:垂线段最短.14. 若是一个完全平方式,则______.【答案】【解析】【分析】本题考查了完全平方式,先根据已知平方项和乘积二倍项确定出这两个数,再根据完全平方公式求解即可,熟记完全平方公式是解题的关键.【详解】解:∵,∴,故答案为:.15. 将纸片沿折叠使点A 落在点处,若,则的度数为________.1=-1-26x x k -+k =922623x x k x x k -+=-⨯+239k ==9ABC DE A '180228∠=︒∠=︒,A ∠【答案】##度【解析】【分析】先由折叠的性质得到,再由三角形外角的性质推出,据此求解即可.【详解】解:由折叠的性质可知,∵,∴,∵,∴,故答案为:.【点睛】本题主要考查了折叠的性质,三角形外角的性质,熟知三角形一个外角的度数等于与其不相邻的两个内角度数之和是解题的关键.三.解答题(共7小题共55分)16. 计算:(1)(2)(3)(4)(运用整式乘法公式简便计算)26︒26A A ∠'=∠221A ∠+∠=∠A A ∠'=∠12A AED AFD A ∠=∠+∠∠=∠+∠',221A ∠+∠=∠180228∠=︒∠=︒,26A ∠=︒26︒32232x y x y -⋅()224332()()ab a b a b-⋅-⋅-()()23842x y x x -÷2202220232021-⨯【答案】(1)(2)(3)(4)1【解析】【分析】(1)由单项式乘以单项式的运算法则进行计算即可;(2)先计算积的乘方运算,再计算单项式乘以单项式即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)把原式化为,再利用平方差公式进行计算即可.【小问1详解】解:原式.【小问2详解】原式.【小问3详解】原式.【小问4详解】原式.【点睛】本题考查的是积的乘方运算,单项式乘以单项式,多项式除以单项式,平方差公式的应用,熟记基础运算的运算法则是解本题的关键.536x y -1164a b 242xy x -()()220222022120221-+⨯-321232x y ++=-⨯536x y =-()192422()a b a b a b =⋅-⋅-1212249a b ++++=1416a b =238242x y x x x=÷-÷242xy x =-()()220222022120221=-+⨯-()22202220221=--22202220221=-+1=17. 先化简,再求值:,其中,.【答案】,.【解析】【分析】本题考查的是整式的化简求值.根据完全平方公式、平方差公式、多项式除以单项式的运算法则把原式化简,把、的值代入计算即可.【详解】解:,当,时,原式.18. 探究:如图①,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、CB 上,且DE ∥BC ,EF ∥AB ,若∠ABC =65°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE ∥BC ( )∴∠DEF = ( )∵EF ∥AB∴ =∠ABC ( )∴∠DEF =∠ABC ( )∵∠ABC =65°∴∠DEF = 应用:如图②,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 的延长线上,且DE ∥BC ,EF ∥AB ,若∠ABC=()()()222262x y x y x y xy x ⎡⎤-++-+÷⎣⎦4x =-2y =4x y +14-x y ()()()222262x y x y x y xy x ⎡⎤-++-+÷⎣⎦()222244462x xy y x y xy x=-++-+÷()2822x xy x=+÷4x y =+4x =-2y =4(4)214=⨯-+=-β,则∠DEF 的大小为 (用含β的代数式表示).【答案】探究:见解析;应用:见解析.【解析】【分析】探究:依据两直线平行,内错角相等以及两直线平行,同位角相等,即可得到∠DEF =∠ABC ,进而得出∠DEF 的度数.应用:依据两直线平行,同位角相等以及两直线平行,同旁内角互补,即可得到∠DEF 的度数.【详解】解:探究:∵DE ∥BC (已知)∴∠DEF =∠CFE (两直线平行,内错角相等)∵EF ∥AB∴∠CFE =∠ABC (两直线平行,同位角相等)∴∠DEF =∠ABC (等量代换)∵∠ABC =65°∴∠DEF =65°故答案为已知;∠CFE ;两直线平行,内错角相等;∠CFE ;两直线平行,同位角相等;等量代换;65°.应用:∵DE ∥BC∴∠ABC =∠D =β∵EF ∥AB∴∠D+∠DEF =180°∴∠DEF =180°﹣∠D =180°﹣β,故答案为180°﹣β.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.19. 如图,与互为补角,与互为余角,且.AOC ∠BOC ∠BOC ∠BOD ∠4BOC BOD ∠=∠(1)求的度数;(2)若平分,求的度数.【答案】(1)(2)【解析】【分析】题目主要考查余角和补角及角平分线的计算,根据题意,结合图形,找出各角之间的关系是解题关键.(1)根据题意得出,再由即可求解;(2)根据题意得,求出,再由角平分线求解即可.小问1详解】解:因为与互为余角,所以,因为,所以;【小问2详解】因为与互为补角,所以,所以.因为平分,所以,所以.20. 将长为40cm ,宽为15cm 的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.【BOC ∠OE AOC ∠∠BOE 72BOC ∠=︒126BOE ∠=︒90BOC BOD ∠+∠=︒4BOC BOD ∠=∠180AOC BOC ∠+∠=︒108AOC ∠=︒BOC ∠BOD ∠90BOC BOD ∠+∠=︒4BOC BOD ∠=∠490725BOC ∠=⨯︒=︒AOC ∠BOC ∠180AOC BOC ∠+∠=︒180********AOC BOC ∠=︒-∠=︒-︒=︒OE AOC ∠111085422COE AOC ∠=∠=⨯︒=︒5472126BOE COE BOC ∠=∠+∠=︒+︒=︒(1)根据上图,将表格补充完整.白纸张数12345……纸条长度40110145……(2)设x 张白纸粘合后的总长度为y cm ,则y 与x 之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2022cm 吗?为什么?【答案】(1)75,180(2)(3)不能,理由见解析【解析】【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填表即可;(2)x 张白纸黏合,需黏合(x -1)次,重叠5(x -1)cm ,所以总长可以表示出来;(3)当y =2022时,列出方程并解之,注意x 是整数,若x 为自变量取值范围内的值则能,反之不能.【小问1详解】由题意可得,2张白纸粘合后的长度为:40-5=75cm ,5张白纸黏合后的长度为:40-5=180cm ,故答案为:75,180;【小问2详解】根据题意和所给图形可得出:y =40x -5(x -1)=35x +5,所以,y 与x 之间的关系式是;【小问3详解】不能.理由如下:令y =2022得:2022=35x +5,解得x ≈57.6,∵x 为整数,355y x =+2⨯5⨯4⨯355y x =+∴不能使黏合的纸片总长为2022cm .【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.21. 如图1所示,长方形的长为、宽为,沿图中虚线用剪刀剪开,平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2所示).(1)观察图2,请你直接写出,,之间的等量关系:_________;(2)根据(1)中的结论,若,,求的值;(3)拓展应用:若,求的值.【答案】(1)(2)16(3)1【解析】【分析】(1)根据图2可知,大正方形面积等于内部小正方形与4个小长方形的面积之和,分别用含a 和b 的代数式表示可得出答案;(2)由(1)可得出,即可得出答案;(3)由,即可求解.【小问1详解】解:由图2可知,大正方形的边长为,内部小正方形的边长为,小长方形的长为b ,宽为a ,∴大正方形的面积为,小正方形的面积为,小长方形的面积为,由题可知,大正方形面积等于小正方形与4个小长方形的面积之和,即.故答案为:.4a b 2()a b +2()a b -ab 5x y +=94xy =2()x y -22(2023)(2022)15m m -+-=(2023)(2022)8m m --+22()()4a b a b ab +=-+()()224x y x y xy -=+-()()()()()()2222023202220232022220232022m m m m m m -+-=-+-+--⎡⎤⎣⎦a b +b a -()2a b +()2b a -ab ()222()4()4a b b a ab a b ab +=-+=-+22()()4a b a b ab +=-+【小问2详解】∵,,∴.【小问3详解】∵,,∴,解得:,∴.【点睛】本题考查整式的化简求值、完全平方公式,能正确根据完全平方公式进行变形是解题的关键.22. 已知,点P 是直线,外一点.(1)【问题初探】如图1,点E ,F 分别在直线,上,连接,.求证:①;②.证明:过点P 作,…,请将问题①,②的证明过程补充完整;(2)【结论应用】如图2,的角平分线交于点E ,点F 是射线上一动点且点F 不在直线上,连接,作的角平分线与相交于点Q ,问:与有怎样的数量关系?说明理由;(3)【拓展延伸】如图3,O 是上一定点,.在内部作射线,使得,与相交于点F .动点P 在射线上,点Q 在上,连接,,若在点P 的运动过程中,始终有,求n ,α的值.5x y +=94x y ⋅=2229()()454259164x y x y xy -=+-=-⨯=-=22(2023)(2022)15m m -+-=222[(2023)(2022)](2023)(2022)2(2023)(2022)m m m m m m -+-=-+-+--1152(2023)(2022)m m =+--(2023)(2022)7m m --=-(2023)(2022)8781m m --+=-+=AB CD ∥AB CD AB CD PE PF 12EPF ∠+∠=∠34360EPF ∠+∠+∠=︒PQ AB ∥ABP ∠CD ED BP PF PFE ∠BE BQF ∠BPF ∠CD ABO α∠=ABO ∠BE 13OBE ABO ∠=∠BE CD FE PF OQ FOQ n POQ ∠=∠4350FQO FPO ∠-∠=︒【答案】(1)①详见解析;②详见解析(2),详见解析(3),【解析】【分析】(1)①过点P 作,可得,再利用平行线的性质可得结论;②由,再结合平角的含义可得答案;(2)由(1)可得,结合,三角形的内角和定理可得结论;(3)先证明,,结合,可得,从而可得答案.【小问1详解】证明:①过点P 作.∵,∴,∴,,∴,即.②∵,∴.【小问2详解】.理由如下:∵、分别是、的平分线,2360BQF BPF ∠+∠=︒3n =75α=︒PQ AB ∥AB PQ CD ∥∥12EPF ∠+∠=∠()2360ABP BPF EFP ABE EFQ BPF ∠+∠+∠=∠+∠+∠=︒ABE BED ∠=∠23BFO α∠=350FQO POQ ∠+∠=︒FOQ n POQ ∠=∠23503n FOQ nα-+∠=︒PQ AB ∥AB CD ∥AB PQ CD ∥∥1EPQ ∠=∠2FPQ ∠=∠12EPF EPQ FPQ ∠=∠+∠=∠+∠12EPF ∠+∠=∠12EPF ∠+∠=∠343124180180360EPF ∠+∠+∠=∠+∠+∠+∠=︒+︒=︒2360BQF BPF ∠+∠=︒BE FQ ABP ∠EFP ∠∴,,∴根据(1)②可知,.∵,∴,∴.∴.【小问3详解】∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∵α,n 为定值,ABE EBP ∠=∠EFQ PFQ ∠=∠()2360ABP BPF EFP ABE EFQ BPF ∠+∠+∠=∠+∠+∠=︒AB CD ∥ABE BED ∠=∠180BQF EQF BED EFQ ABE EFQ ∠=︒-∠=∠+∠=∠+∠2360BQF BPF ∠+∠=︒AB CD ∥BFO ABF ∠=∠13OBE ABO ∠=∠23BFO α∠=FQO FPO POQ ∠=∠+∠()4343FQO FPO FPO POQ FPO∠-∠=∠+∠-∠4FPO POQ=∠+3FQO POQ=∠+∠50=︒FOQ n POQ ∠=∠350FQO FOQ n∠+∠=︒BFO FQO FOQ ∠=∠+∠3150BFO FOQ n ⎛⎫∠+-∠=︒ ⎪⎝⎭23503n FOQ nα-+∠=︒∴为变量,要使等式恒成立,需要,∴,.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,三角形的外角的性质的应用,角的和差运算,整式的加减运算中与某项无关的含义,本题难度大,理清思路是解本题的关键.FOQ ∠30n n-=3n =75α=︒。
2022-2023学年初中七年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 将点向右平移个单位长度得到点,则点所处的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2. 在实数,,,,,(每两个之间依次多一个)中,无理数有( )个.A.B.C.D.3. 的平方根是( )A.B.C.D.4. 式子中的取值范围是( )A.且B.且A(−2,−3)3B B 258π28–√27−−√32–√30.3030030003 (30)23454–√2–√±2–√±22x −1−−−−−√x +2x x ≥1x ≠−2x >1x ≠−2x ≠−2C.D.5. 已知是方程的一个解,则的值为( )A.B.C.D.6. 已知是方程组的解,则,间的关系是( )A.B.C.D.7. 若是方程组的解,则、的值分别是( )A.B.C.D.8. 下列说法中,正确的是( )A.点到轴的距离是B.在平面直角坐标系中,点和点表示同一个点C.若,则点在轴上D.在平面直角坐标系中,第三象限的点的横、纵坐标异号9. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到,第次接着运动到点,第次接着运动到点,按这样的运动规律,经过第次运动后,动点的坐标是( )x ≠−2x ≥1{x =2,y =−3ax −3y =13a −225−5{x =−3,y =−2{ax +cy =1,cx −by =2a b 4b −9a =13a +2b =14b −9a =−19a +4b =1{x =2y =1{mx −ny =1nx +my =8m n m =2,n =1m =2,n =3m =1,n =8m =2,n =8P (3,2)y 3(2,−3)(−2,3)y =0M (x,y)y P 1(1,1)2(2,0)3(3,2)2019PA.B.C.D.10. 已知轴,点的坐标为,且,则点的坐标为 ( )A.B.或C.或D.11. 如图,,且,则 的度数为( )A.B.C.D. 12. 在平面直角坐标系中,一蚂蚁从原点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动个单位,其行走路线如图所示,则蚂蚁从点到的移动方向是( )A.从左向右(2019,0)(2019,1)(2019,2)(2020,0)AB//x A (3,2)AB =4B (2,−1)(−1,2)(2,7)(−1,2)(7,2)(7,2)AB =,BC =AC =A 1B 1B 1C 1A 1C 1∠A =,∠B =110∘40∘∠C 1110∘40∘30∘20∘O 1A 2021A 2022B.从下向上C.从上向下D.从右向左卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 如果是二元一次方程,那么________.14. 如果,那么整数________.15. 如图,如果,,的同旁内角等于________.16.如图,,与相交于点,,,那么_______度.17. 若在第二、四象限的角平分线上,与的关系是________.18. 如图,已知,平分,平分,且.则下列结论:①平分,②,③,④点是线段上任意一点,则.正确的是________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19. 计算: .3−2+10=0x 3m−2n y m+n mn =a <<a +112−−√a =∠1=40∘∠2=100∘∠3AB//CD AF CD E ∠A =30∘∠BED =60∘∠BEF =A(a,b)a b AC//BD BC ∠ABD CE ∠DCM BC ⊥CE CB ∠ACD AB//CD ∠A =∠BDC P BE ∠APM =∠BAP +∠PCD −+2cos ()12−1tan 245∘30∘sin 60∘20. 已知方程组和有相同的解,求的值.21. 在平面直角坐标系中:若点到两坐标轴的距离相等,求的坐标;若点,点,且轴,求的坐标;若点,点,且轴,,求的坐标.22. 已知:如图,,分别探讨下列四个图形中,与、的关系,得出四个关系式,请以所得的四个关系中任选一个加以说明.23. 某厂接受生产一批农具的任务,按计划的天数生产,若平均每天生产件,到时将比订货任务少件;若平均每天生产件,则可提前天完成.问:这批农具的订货任务是多少?原计划几天完成?24. 如图,在平面直角坐标系中,已知,且满足,线段交轴于点.填空:________,________;如图,点为轴正半轴上一点,,且,分别平分,求度数;如图,在坐标轴上是否存在点,使得的面积与的面积相等?若存在,求出点坐标;若不存在,请说明理由.{4x−y=5,ax+by=−1{3x+y=9,3ax+4by=182b−a−−−−−√(1)A(m−6,2m+3)A(2)A(m−6,2m+3)B(5,2)AB//y A(3)A(a,b)B(5,2)AB//x AB=3AAB//CD∠APC∠PAB∠PCD201002311A(a,0),B(b,3),C(2,0)+=0(a+b)2a−b+6−−−−−−−√AB y F(1)a=b=(2)2D y ED//AB AM DM∠CAB,∠ODE∠AMD(3)1P△ABP△ABC P参考答案与试题解析2022-2023学年初中七年级下数学期中试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】D【考点】坐标与图形变化-平移【解析】先利用平移中点的变化规律求出点的坐标,再根据各象限内点的坐标特点即可判断点所处的象限.【解答】解:点向右平移个单位长度,得到点的坐标为,故点在第四象限.故选.2.【答案】C【考点】无理数的判定【解析】先把化为的形式,再根据无理数的定义进行解答,无理数即为无限不循环小数.【解答】解:∵,∴由无理数的定义可知,这一组数中无理数有:,,,(两个之间依次多一个),共个.故选.3.【答案】B B A(−2,−3)3B (1,−3)D 27−−√33=327−−√3π28–√2–√30.3030030003⋯304CB【考点】算术平方根平方根【解析】利用平方根、立方根定义判断即可.【解答】解:,根据平方根的定义,显然的平方根为.故选.4.【答案】D【考点】二次根式有意义的条件无意义分式的条件【解析】根据分式有意义分母不为零,二次根式有意义被开方数为非负数,可得出的范围.【解答】解:要使有意义,则解得.故选.5.【答案】B【考点】二元一次方程的解【解析】=24–√2±2–√B x x −1−−−−−√x +2{x −1≥0,x +2≠0,x ≥1D根据题意把代入方程中,得到关于的方程,解出即可.【解答】解:∵是方程的一个解,∴,解得.故选.6.【答案】D【考点】二元一次方程组的解【解析】根据方程组解得定义,将代入方程组中,可得关于、、的方程组,然后消去即可得出结论.【解答】解:把代入可得①,②,得④③得.故选.7.【答案】B【考点】二元一次方程组的解【解析】此题暂无解析【解答】{x =2,y =−3ax −3y =13a {x =2,y =−3ax −3y =132a −3×(−3)=13a =2B :=−l a b c C {x =−3,y =−2{ax +cy =1,cx −by =2,{−3a −2c =1①,−3c +2b =2②,×3×2{−9a −6c =3③,−6c +4b =4④,−9a +4b =1D解:把代入方程组,得,①②,得,把代入②得.故选.8.【答案】A【考点】点的坐标平面直角坐标系的相关概念【解析】利用点的坐标相关概念,逐个判断即可.【解答】解:,点到轴的距离为,故正确;,与两点横纵坐标不全相等,故不是同一个点,故错误;,若,则点在轴上,故错误;,在平面直角坐标系中,第三象限的点的横、纵坐标都是负数,故错误.故选.9.【答案】C【考点】点的坐标【解析】分析点的运动规律,找到循环次数即可【解答】分析图象可以发现,点的运动每次位置循环一次.每循环一次向右移动四个单位.∴=,当第循环结束时,点位置在,在此基础之上运动三次到,10.【答案】{x =2y =1{mx −ny =1nx +my =8{2m −n =1①2n +m =8②×2+m =2m =2n =3B A P (3,2)y 3A B (−2,3)(2,−3)B C y =0M (x,y)x C D D A P P 420194×504+3504P (2016,0)(2019,2)C【考点】坐标与图形性质【解析】【解答】解:因为轴,,,所以或.故选.11.【答案】C【考点】平行线的性质【解析】由三角形内角和定理求出=,再由证明,即可得出结果.【解答】解:∵在中,=,=,∴==.在和中,,∴.∴==;故选.12.【答案】A【考点】规律型:点的坐标【解析】根据除以余数为,可知从点到点的移动方向与从点到的方向一致.AB//x A(2,3)AB =4B(−1,2)(7,2)C ∠C 30∘SSS △ABC ≅△A 1B 1C 1△ABC ∠A 110∘∠B 40∘∠C −∠A −∠B 180∘30∘△ABC △A 1B 1C 1 AB =A 1B 1BC =B 1C 1AC =A 1C 1△ABC ≅△(SSS)A 1B 1C 1∠C ∠C 130∘C 202141A 2021A 2022A 1A 2【解答】解: ,从点到点的移动方向与从点到的方向一致,为从左向右.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13.【答案】【考点】二元一次方程的定义【解析】二元一次方程满足的条件:含有个未知数,未知数的项的次数是的整式方程.【解答】解:根据题意得:,解得:,,故答案为:.14.【答案】【考点】估算无理数的大小【解析】首先估算大小,再确定整数的值即可.【解答】解:∵,∵2021÷4=505…1∴A 2021A 2022A 1A 2A 62521{3m −2n =1m +n =1m =35n =25mn =×=3525625625312−−√a <<9–√12−−√16−−√3<<4−−√∴.∵,∴整数.故答案为:.15.【答案】【考点】同位角、内错角、同旁内角对顶角【解析】根据同旁内角的定义可得的同旁内角是,根据对顶角相等得到,可得答案.【解答】解:∵,∴的对顶角,的同旁内角为.故答案为:.16.【答案】【考点】平行线的性质【解析】利用平行线的性质求出,再由对顶角相等得到,从而可计算.【解答】解:,,,,,.故答案为:.17.【答案】互为相反数3<<412−−√a <<a +112−−√a =33100∘∠3∠4∠2=∠4∠2=100∘∠2=100∘∴∠3100∘100∘90∠AEC ∠DEF ∠BEF ∵AB//CD ∠A =30∘∠BED =60∘∴∠AEC =∠A =30∘∴∠DEF =∠AEC =30∘∴∠BEF =∠BED +∠DEF =90∘90【考点】象限中点的坐标【解析】在第二、四象限的角平分线上,则与的值互为相反数,则.【解答】解:∵在第二、四象限的角平分线上,∴,即与互为相反数.故答案为:互为相反数.18.【答案】①②③【考点】平行线的判定与性质角平分线的定义【解析】根据平行线的判定与性质和角平分线的定义逐一进行判断即可.【解答】解:如图,∵,∴.∵平分,∴,∴.∵平分,∴.∵,∴,∴.∵,∴,∴平分,故①正确,∴,A(a,b)a b a =−b A(a,b)a =−b a b AC//BD ∠2=∠3BC ∠ABD ∠1=∠2∠1=∠3CE ∠DCM ∠4=∠5BC ⊥CE ∠4+∠6=90∘∠5+∠6=90∘∠3+∠5=90∘∠3=∠6CB ∠ACD ∠1=∠6AB//CD,故②正确.∴四边形是平行四边形,∴,故③正确;如图,点是线段上任意一点,∵与不平行.与不平行,∴,,∴,故④不正确.所以正确的是①②③.故答案为:①②③.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19.【答案】解:原式 .【考点】特殊角的三角函数值实数的运算【解析】无【解答】解:原式 .20.【答案】解:先解方程组解得AB//CD ABCD ∠A =∠BOC P BE AB PC CD PM ∠BAP ≠∠APC ∠PCD ≠∠CPM ∠APM ≠∠BAP +∠PCD =2−1+2××3–√23–√2=52=2−1+2××3–√23–√2=52{4x −y =5,3x +y =9,{x =2,y =3.将,代入另外两个方程,得方程组解得所以.【考点】二元一次方程组的解同解方程组【解析】将两方程组中的第一个方程联立,求出与的值,代入两方程组中的第二个方程中得到关于与的方程组,求出方程组的解即可得到与的值.【解答】解:先解方程组解得将,代入另外两个方程,得方程组解得所以.21.【答案】解:∵点)到两坐标轴的距离相等,∴,∴,当时,解得,此时的坐标为;当时,解得,此时的坐标为,综上所述,点的坐标为或.∵轴,∴,解得,∴,,∴的坐标 .∵轴,∴,当点在点左侧时,;当点在点右侧时,,∴点坐标为或.x =2y =3{2a +3b =−1,6a +12b =18,{a =−11,b =7.==52b −a −−−−−√14+11−−−−−−√x y a b a b {4x −y =5,3x +y =9,{x =2,y =3.x =2y =3{2a +3b =−1,6a +12b =18,{a =−11,b =7.==52b −a −−−−−√14+11−−−−−−√(1)A(m −6,2m +3|m −6|=2m +3m −6=±(2m +3)m −6=2m +3m =−9A (−15,−15)m −6=−(2m +3)m =1A (−5,5)A (−5,5)(−15,−15)(2)AB//y m −6=5m =11m −6=11−6=52m +3=2×11+3=25A (5,25)(3)AB//x b =2A B a =5−3=2A B a =5+3=8A (2,2)(8,2)【考点】点的坐标【解析】【解答】解:∵点)到两坐标轴的距离相等,∴,∴,当时,解得,此时的坐标为;当时,解得,此时的坐标为,综上所述,点的坐标为或.∵轴,∴,解得,∴,,∴的坐标 .∵轴,∴,当点在点左侧时,;当点在点右侧时,,∴点坐标为或.22.【答案】解:,理由:过点作,∵∴.∴,,∴即.;理由:过做,则,∴,,∴;;(1)A(m −6,2m +3|m −6|=2m +3m −6=±(2m +3)m −6=2m +3m =−9A (−15,−15)m −6=−(2m +3)m =1A (−5,5)A (−5,5)(−15,−15)(2)AB//y m −6=5m =11m −6=11−6=52m +3=2×11+3=25A (5,25)(3)AB//x b =2A B a =5−3=2A B a =5+3=8A (2,2)(8,2)(1)∠P +∠A +∠C =360∘P PQ //AB AB //CDPQ //CD ∠A +∠APQ =180∘∠C +∠CPQ =180∘∠A +∠APC +∠C =360∘∠P +∠A +∠C =360∘(2)∠P =∠A +∠C P PQ //AB PQ //CD ∠A =∠APQ ∠C =∠CPQ ∠P =∠A +∠C (3)∠P =∠C −∠A PQ //AB理由:过做,则,∴,,∴;;理由:过做,则,∴,,∴.【考点】平行线的判定与性质平行线的性质【解析】本题考查的是平行线的性质以及平行线的判定定理.,都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;,是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.【解答】解:,理由:过点作,∵∴.∴,,∴即.;理由:过做,则,∴,,∴;;理由:过做,则,∴,,∴;;理由:过做,则,∴,,∴.23.P PQ //AB PQ //CD ∠A +∠APQ =180∘∠1=∠C ∠P =∠C −∠A (4)∠P =∠A −∠C P PQ //AB PQ //CD ∠A =∠APQ ∠C =∠CPQ ∠P =∠A −∠C (1)(2)(3)(4)(1)∠P +∠A +∠C =360∘P PQ //AB AB //CDPQ //CD ∠A +∠APQ =180∘∠C +∠CPQ =180∘∠A +∠APC +∠C =360∘∠P +∠A +∠C =360∘(2)∠P =∠A +∠C P PQ //AB PQ //CD ∠A =∠APQ ∠C =∠CPQ ∠P =∠A +∠C (3)∠P =∠C −∠A P PQ //AB PQ //CD ∠A +∠APQ =180∘∠1=∠C ∠P =∠C −∠A (4)∠P =∠A −∠C P PQ //AB PQ //CD ∠A =∠APQ ∠C =∠CPQ ∠P =∠A −∠C【答案】解:设这批农具的订货任务是件,原计划天完成.据题意得方程组:由②①得:,③,将③代入②得,故这批订货任务是件,原计划用天完成.【考点】二元一次方程组的应用——销售问题【解析】设原计划用天完成任务,根据题意可得,等量关系为订货任务是一定的,据此列方程求解,然后求出订货任务.【解答】解:设这批农具的订货任务是件,原计划天完成.据题意得方程组:由②①得:,③,将③代入②得,故这批订货任务是件,原计划用天完成.24.【答案】,设,由三角形内角和等于,得,即∴,∵,∴,即,∴,∴∴.存在符合要求的点.①当点在轴上时,过点作轴于点.由得x y {20y +100=x ①,23y −x =23②,−3y =123y =41x =92092041x x y {20y +100=x ①,23y −x =23②,−3y =123y =41x =92092041−33(2)∠BAM =∠CAM =α,∠ODM =∠EDM =β180∘∠PAO +∠APO +∠AOP=∠DPM +∠PDM +∠M =180∘α+=β+∠M90∘∠M =+α−β90∘ED//AB ∠EDF =∠AFD 2β=2α+90∘β−α=45∘∠M =+α−β=90∘45∘(3)P P x B BG ⊥x G =S △ABP S △ABC AP ⋅BG =AC ⋅BG 1212AP =AC =5∴,∴.②当点在轴上时,将沿轴向右平移,使点与点重合,得,则点在的延长线上.∴.过点作轴于点.由得,即,∴,∴.综上,符合要求的点坐标分别为.【考点】非负数的性质:偶次方非负数的性质:算术平方根平行线的性质三角形内角和定理三角形的面积【解析】【解答】解:∵,∴,∴,,故答案为:设,22AP =AC =5(2,0),(−8,0)P 1P 2P y △AFO x A O △OF ′O ′B O ′F ′OF =B ==B =F ′O ′F ′12O ′32B BH ⊥y H =+=S △ABP S △APF S △BPF S △ABC PF ⋅AO +PF ⋅BH =AC ⋅B 121212O ′3PF +3PF =15PF =52(0,4),(0,−1)P 3P 4P (2,0),(−8,0),(0,4),(0,−1)P 1P 2P 3P 4(1)+=0(a +b)2a −b +6−−−−−−−√a +b =0,a −b +6=0a =−3b =3−3;3.(2)∠BAM =∠CAM =α,∠ODM =∠EDM =β由三角形内角和等于,得,即∴,∵,∴,即,∴,∴∴.存在符合要求的点.①当点在轴上时,过点作轴于点.由得∴,∴.②当点在轴上时,将沿轴向右平移,使点与点重合,得,则点在的延长线上.∴.过点作轴于点.由得,即,∴,∴.综上,符合要求的点坐标分别为.180∘∠PAO +∠APO +∠AOP=∠DPM +∠PDM +∠M =180∘α+=β+∠M90∘∠M =+α−β90∘ED//AB ∠EDF =∠AFD 2β=2α+90∘β−α=45∘∠M =+α−β=90∘45∘(3)P P x B BG ⊥x G =S △ABP S △ABC AP ⋅BG =AC ⋅BG1212AP =AC =5(2,0),(−8,0)P 1P 2P y △AFO x A O △OF ′O ′B O ′F ′OF =B ==B =F ′O ′F ′12O ′32B BH ⊥y H =+=S △ABP S △APF S △BPF S △ABC PF ⋅AO +PF ⋅BH =AC ⋅B 121212O′3PF +3PF =15PF =52(0,4),(0,−1)P 3P 4P (2,0),(−8,0),(0,4),(0,−1)P 1P 2P 3P 4。
桂园初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A. ∠1=∠2B. ∠2=∠4C. ∠3=∠4D. ∠1+∠4=180°【答案】D【考点】平行线的判定【解析】【解答】解:A.∠1=∠2无法进行判断;B.∠2和∠4是同位角,但是不能判断a∥b;C.∠3和∠4没有关系,不能判断a∥b;D.∠1的对顶角与∠4的和是180°,能判断a∥b,故答案为:D【分析】解本题的关键在于找到同位角、内错角与同旁内角.2、(2分)的值为()A. 5B.C. 1D.【答案】C【考点】实数的运算【解析】【解答】原式= =1.故答案为:C.【分析】先比较与3、与2的大小,再根据绝对值的意义化简,最后运用实数的性质即可求解。
3、(2分)若整数同时满足不等式与,则该整数x是()A.1B.2C.3D.2和3【答案】B【考点】解一元一次不等式组,一元一次不等式组的特殊解【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.故答案为:B.【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.4、(2分)如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()A.2αB.90°+2αC.180°﹣2αD.180°﹣3α【答案】D【考点】平行线的性质,翻折变换(折叠问题)【解析】【解答】解:∵AD∥BC,∴∠DEF=∠EFB=α在图(2)中,∠GFC=180°-2EFG=180°-2α,在图(3)中,∠CFE=∠GFC-∠EFC=180°-2α-α=180°-3α。
桂园中学七年级下期中考试数学试卷
一、选择题(每题3分,共30分)
1、下列说法中正确的是 ( ) A.整式必是单项式 B.单项式b a 2的系数为0 C.22z xy +是二次多项式 D.多项式2222y x +的系数为2
2、下列运算中,正确的个数有 ( )
①()
633m m m =-+; ②632m m m =⋅; ③()444
82y x xy =-;
④33x x x n n =÷; ⑤()
5
15502
=
⨯--; ⑥()114.30
=-π A. 1个 B. 2个 C. 3个 D.4个 3、若(x +4)(x -3) = x 2 + mx -n 则 ( ) A 、m=-1,n=12 B 、m=-1,n=-12 C 、m=1,n=-12, D 、m=1,n=12
4、下列计算中,正确的是 ( ) A .a a a a --=--223)13( B. 249)32)(32(a a a -=--- C. 222)(b a b a -=- D.22224)2(b ab a b a +-=- 5
、如图,∠1和∠2是同位角的是
( )
A B C D
6、下列说法:①两条直线被第三条直线所截,内错角相等;②相等的角是对顶角;③互余的两个角一定都是锐角;④互补的两个角一定有一个为钝角,另一个角为锐角。
其中正确的 有 ( )
A. 1个
B. 2个
C. 3个
D.4个
7、如图,下列条件中,能判断直线1l //2l 的是 ( )
A .32∠=∠
B . 18054=∠+∠
C .31∠=∠
D .42∠=∠
(第7题) (第8题)
8、如图,已知∠1=∠2,∠3=80O ,则∠4= ( ) A. 70O B. 80O C. 60O D. 50O
9、用四舍五入法得到的近似数3.20×104精确到的位数和有效数字的个数分别为 ( )
A 百分位,两个
B 百分位,三个
C 百位,两个
D 百位,三个
2 1
2 2 2
1
1
1
10、数学课上老师给出了下面的数据,请问哪一个数据是精确的 ( ) A 、2003年美国发动的伊拉克战争每月耗费约40..亿.美元 B 、地球上煤储量为5.万亿..
吨左右 C 、人的大脑约有1×10....10..个细胞
D 、某次期中考试中小颖的数学成绩是98..
分 二、填空题(每题3分,共18分)
11.多项式3a 2b 2-5ab 2+a 2-6是_____次_____项式,其中常数项是_______. 12.若3,2==n m a a ,则2m n a +=________
13.若1622++ax x 是一个完全平方式,则=a ____________
14.角α的余角比它的补角的一半少
20,则=∠α__________
15.如右图,若∠A+∠B=180º,∠C=65º,∠ADE=900,则∠1=____º, ∠2=_____º.
16.自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知1纳米=000000001.0米,则2.25纳米用科学记数法表示为 米 .(结果保留两位有效数字)。
三、解答题
17.尺规作图题.不写作法,但保留作图痕迹:如图,过点C 作 AB 的平行线。
(4分)
18.计算(每题4分,共计16分) 1、()
()abc ab c b a 25103
2
⋅÷
2、3(2)(2)(3)x x x x -+-+
解:原式= 解:原式=
3、2)
3()32)(32(b a b a b a -+-+
4、
[]
)2()()22xy y x y x ÷--+(
解:原式= 解:原式=
E D
C
B
A
2
1
19.化简求值:[]2
2
(2)()(3)52x y x y x y y
x +-+--÷其中 2,1x y =-=(5分)
20.规定运算()(),,X a b Y c d ac bd →→∙=+,如()()1,23
,4132411A B →
→
=⨯+⨯=。
若m+n=5,
且()(),1,20P m Q n →→
∙-=(6分)
求(1)mn 的值 (2)2
2
m n +、()2
m n +
21.完成下列证明过程:(6分) 已知:如图,AD ⊥BC 于D ,EF ⊥BC 于F ,∠1=∠3, 求证 :AD 平分∠BAC 。
证明:∵AD ⊥BC 于D EF ⊥BC 于F (已知)
∴90ADB EFB ∠=∠=︒ ( ) ∴AD ∥EF ( ) ∴∠1=∠E ( ) ∠2=∠3( ) 又∵∠3=∠1(已知) ∴∠1=∠2( )
∴AD 平分∠BAC ( ) 22.有10张卡片,分别写有0至9十个数字,将它们背面向上后洗匀,任意抽出一张,回答下列问题,并在图上用相应的字母表示。
(6分) (1) 抽到一位数的概率。
用A 表示。
(2) 抽到奇数的概率,抽到偶数的概率。
用B 表示。
(3) 抽到不超过6的数字的概率。
用C 表示。
(4) 抽到两位数。
用D 表示。
0.5
1
23.如图,已知AB//CD ,猜想图1、图2、图3中∠B,∠BED,∠D 之间有什么关系?请用等式表示出它们的关系。
并证明其中的一个等式。
(9分)
1. 2. 3.
参考答案
11、多项式3a 2b 2-5ab 2+a 2-6是__四__次_三___项式,其中常数项是__-6___ 12、12 13、4± 14、40° 15、165,225∠=∠= 16、9
2.310-⨯
17、作图题略(注:此题作图必须用尺规作出,不能采用平移方法作出) 18、(1)解:原式= (2)解:原式=
2232
224ab c abc a b c
⋅=
222
36326456
x x x x x x x -++--=--
(3)解:原式= (4)解:原式=
()()
()
22
2
22222
223233496956a b a a b b a b a ab b a ab
-+-+=-+-+=-
()22222222
222222422
x xy y x xy y xy x xy y x xy y xy xy xy ⎡⎤++--+÷⎣⎦
⎡⎤=++-+-÷⎣⎦=÷= 19、
()()()22222222222223352443252222x x y y x x xy xy y y x x xy y x xy y y x
x xy x x y
⎡⎤+⋅⋅+-⋅-+--÷⎣⎦
⎡⎤=++--+-÷⎣⎦=-+÷=-+
当 1
2,2
x y =-= 时 原式=2+1=3
20、(1)()()
(),1,2120
2
P m Q n mn mn →
→
∙-+⨯-==(2分)
(2)
()()()
2
2222
2252229
433
m n m n mn m n m n mn
+=-+=+⨯=+=-+=(4分)
21、已知:如图,AD ⊥BC 于D ,EF ⊥BC 于F ,∠1=∠3, 求证 :AD 平分∠BAC 。
证明:∵AD ⊥BC 于D EF ⊥BC 于F
∴90ADB EFB ∠=∠=︒ (垂线的性质) ) ∴AD ∥EF ( 同位角相等,两直线平行 ) ∴∠1=∠E (两直线平行,同位角相等 ) ∠2=∠3 (同位角相等,内错角相等 ) 又∵∠3=∠1(已知) ∴∠1=∠2 ( 等量代换 )
∴AD 平分∠BAC (角平分线定义 )
22、
(1)100% (2)50% (3)60% (4)0(每个1分)
图略(2分) 23、
1.BED B D ∠=∠+
2.BED B D ∠=∠-∠
3.360BED D B ∠+∠+∠=
(每个1分) 2.证明6分,(略)。