6.4万有引力理论与成就
- 格式:ppt
- 大小:683.00 KB
- 文档页数:37
第四节 万有引力理论的成就一、天体质量的求解1、思路一:“地上公式”法(亦称为自力更生法)已知中心天体的半径R 和中心天体的重力加速度g :;,G g R M mg RGMm 22== 2、思路二:“天上公式”法(亦称为借助外援法)①已知中心天体匀速圆周运动的周期T 、轨道半径r 、;,)、、(23222244:GTr M r T m r GMm R r T ππ== ②已知中心天体匀速圆周运动的线速度v 、轨道半径r 、;,)、、(Gr v M r v m r GMm R r v 222:== ③中心天体匀速圆周运动的线速度v 、公转周期T 、;,,)、、(GT v M T v r v m r GMm R T v ππ22:322=== 3、说明:①环绕天体的质量只能给出不能求出。
②要想求某天体的质量只能将其作为中心天体来研究。
③求中心天体质量的几种情景。
A 已知环绕天体的轨道半径、线速度、周期(线速度、频率)中的任意两个。
B 已知中心天体的重力加速度和半径。
二、天体密度的求解1、思路一:“地上公式”法已知中心天体的半径R 和中心天体的重力加速度g :GR g R V G g R M mg R GMm R g πρπ4334:322====,;,)、(2、思路二:“天上公式”法①已知中心天体匀速圆周运动的周期T 、轨道半径r 、天体半径为R323323222233444:R GT r R V GT r M r T m r GMm R r T πρπππ====,;,)、、( 特别注意:吐过卫星绕天体表面运行时,天体密度ρ=3πGT 2,即只要测出卫星环绕天体表面运动周期T ,就可算中心天体的密度。
②已知中心天体匀速圆周运动的线速度v 、轨道半径r 、天体半径为R3232224334:GR r v R V G r v M r v m r GMm R r v πρπ====,;,)、、( ③中心天体匀速圆周运动的线速度v 、公转周期T 、天体半径为R323322833422:GR T v R V G T v M T v r v m r GMm R T v πρπππ=====,;,,)、、(3、说明:①一般情况求中心天体的密度必须知道中心天体的半径。
6.4万有引力理论的成就一、教材分析本节教材是“应用+检验”性的内容,主要介绍了万有引力理论在天文学上的重要应用,即“计算天体的质量”,“发现未知天体”。
教材首先通过“科学真是迷人”,在不考虑地球自转影响的情况下,认为地面上的物体所受重力和引力相等,进而得到只要知道了地球表面的重力加速度g和引力常量G,即可计算出地球的质量。
这种设计思路既给出了应用万有引力定律解决问题的一种思路,也展示了万有引力理论的魅力——“称量地球的质量”。
教材随后作为示范,以计算太阳质量为例,给出了运用万有引力定律计算天体质量的方法,思路清晰,表述规范。
最后从科学史的角度,简要介绍了亚当斯和勒维耶发现海王星的过程,都显示了万有引力理论的巨大成就。
因此,通过这一节课的学习,一方面要使学生了解运用万有引力定律解决问题的思路和方法,另一方面还要能体会到科学定律对人类探索未知世界的作用,激发学习兴趣和对科学的热爱之情。
二、学情分析通过前面三节的学习,同学们对天体的运动已经有了一定的认识,对万有引力的概念也已经比较熟悉,积累了一定的经验。
并且在上一章已经学习了匀速圆周运动的相关知识,知道匀速圆周运动的向心力由合外力提供,初步掌握了利用牛顿第二定律和向心力表达式处理匀速圆周运动的方法。
而本节知识就是在前面知识基础上的发散应用,所以只要在课堂上加以一定的引导和启发,结合必要的讨论和自学,同学们完全能够理解并应用本节课的内容三、教学目标1、知识与技能(1)会用万有引力定律计算天体的质量。
(2)理解并运用万有引力定律处理天体问题的思路和方法。
2、过程与方法(1)通过合作探究天体质量,理解称量天体质量的方法。
(2)通过天体质量的计算、未知天体的发现,明确万有引力定律的应用。
3、情感、态度与价值观(1)通过天体质量的计算、未知天体的预测的学习活动,体会万有引力定律对人类探索和认识未知世界的作用。
(2)通过对天体运动规律的认识,了解科学发展的曲折性,感悟科学是人类进步的动力。
万有引力理论的成就教材分析:万有引力定律在天文学上应用广泛,它与牛顿第二定律、圆周运动的知识相结合,可用来求解天体的质量和密度,分析天体的运动规律.万有引力定律与实际问题、现代科技相联系,可以用来发现新问题,开拓新领域.把万有引力定律应用在天文学上的基本方法是:将天体的运动近似看作匀速圆周运动处理,运动天体所需要的向心力来自于天体间的万有引力.因此,处理本节问题时要注意把万有引力公式与匀速圆周运动的一系列向心力公式相结合,就可推导出适用于天体问题的公式,并且在应用这些公式时,一定要正确认识公式中各物理量的意义.具体应用时根据题目中所给的实际情况,选择适当公式进行分析和求解.三维目标知识与技能1.了解万有引力定律在天文学上的重要应用.2.会用万有引力定律计算天体的质量.过程与方法1.理解运用万有引力定律处理天体问题的思路、方法,体会科学定律的意义.2.了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理天体问题的思路方法.情感态度与价值观1.通过测量天体的质量、预测未知天体的学习活动,体会科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用.2.通过对天体运动规律的认识,了解科学发展的曲折性,感悟科学是人类进步不竭的动力.教学重点运用万有引力定律计算天体的质量.教学难点在具体的天体运动中应用万有引力定律解决问题.教学过程一、“科学真是迷人”教师:引导学生阅读教材“科学真是迷人”部分的内容,思考问题. 课件展示问题:1、卡文迪许在实验室里测量几个铅球之间的作用力,测出了引力常量G 的值,从而“称量”出了地球的质量.测出G 后,是怎样“称量”地球的质量的呢?2、设地面附近的重力加速度g=9.8 m/s 2,地球半径R=6.4×106 m ,引力常量G=6.67×10-11 N·m 2/kg 2,试估算地球的质量. 学生活动:阅读课文,推导出地球质量的表达式,在练习本上进行定量计算.教师活动:让学生回答上述三个问题,投影学生的推导、计算过程,归纳、总结问题的答案,对学生进行情感态度教育.总结:1.自然界中万物是有规律可循的,我们要敢于探索,大胆猜想,一旦发现一个规律,我们将有意想不到的收获. 2.在地球表面,mg=GgR M R GMm 22=⇒,只要测出G 来,便可“称量”地球的质量.3.M=112621067.6)104.6(8.9-⨯⨯⨯=GgR kg=6.0×1024 kg.通过用万有引力定律“称”出地球的质量,让学生体会到科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用. 我们知道了地球的质量,自然也想知道其他天体的质量,下面我们探究太阳的质量.二、计算天体的质量引导学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题. 课件展示问题:1.应用万有引力定律求解天体的质量基本思路是什么?2.求解天体质量的方程依据是什么? 学生阅读课文,从课文中找出相应的答案. 1.应用万有引力求解天体质量的基本思路是:根据环绕天体的运动情况,求出向心加速度,然后根据万有引力充当心力,进而列方程求解.2.从前面的学习知道,天体之间存在着相互作用的万有引力,而行星(或卫星)都在绕恒星(或行星)做近似圆周的运动,而物体做圆周运动时合力充当向心力,这也是求解中心天体质量时列方程的根源所在.教师引导学生深入探究,结合课文知识以及前面所学匀速圆周运动的知识,加以讨论、综合,然后思考下列问题. 问题探究1.天体实际做什么运动?而我们通常可以认为做什么运动?2.描述匀速圆周运动的物理量有哪些?3.根据环绕天体的运动情况求解其向心加速度有几种求法?4.应用天体运动的动力学方程——万有引力充当向心力,求出的天体质量有几种表达式?各是什么?各有什么特点?5.应用此方法能否求出环绕天体的质量? 学生活动:分组讨论,得出答案.学生代表发言.1.天体实际是沿椭圆轨道运动的,而我们通常情况下可以把它的运动近似处理为圆形轨道,即认为天体在做匀速圆周运动.2.在研究匀速圆周运动时,为了描述其运动特征,我们引进了线速度v 、角速度ω、周期T 三个物理量.3.根据环绕天体的运动状况,求解向心加速度有三种求法,即 (1)a=rv2(2)a=ω2r (3)a=224Tπ·r4.应用天体运动的动力学方程——万有引力充当向心力,结合圆周运动向心加速度的三种表达方式可得三种形式的方程,即(以月球绕地球运行为例) (1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r,根据万有引力等于向心力,即22)2(Tr m rm GMπ月月地=∙,可求得地球质量M 地=2324GTr π.(2)若已知月球绕地球做匀速圆周运动的半径r 和月球运行的线速度v ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得rvm rm MG 22月月地=∙.解得地球的质量为M 地=rv 2/G.(3)若已知月球运行的线速度v 和运行周期T ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得2rm M G 月地∙=m 月·v·Tπ2.2rm M G月地∙=m 月v 2/r.以上两式消去r,解得M 地=v 3T/(2πG).5.从以上各式的推导过程可知,利用此法只能求出中心天体的质量,而不能求环绕天体的质量,因为环绕天体的质量同时出现在方程的两边,已被约掉. 师生互动:听取学生代表发言,一起点评.综上所述,应用万有引力计算某个天体的质量,有两种方法:一种是知道这个天体的表面的重力加速度,根据公式M=GgR 2求解;另一种方法必须知道这个天体的一颗行星(或卫星)运动的周期T 和半径r.利用公式M=2324GTr π求解.知识拓展天体的质量求出来了,能否求天体的平均密度?如何求?写出其计算表达式. 展示学生的求解过程,作出点评、总结: 1.利用天体表面的重力加速度来求天体的自身密度 由mg=2RMm G和M=334R π·ρ 得:ρ=GRg π43其中g 为天体表面重力加速度,R 为天体半径. 2.利用天体的卫星来求天体的密度.设卫星绕天体运动的轨道半径为r ,周期为T ,天体半径为R ,则可列出方程:r Tm rMm G 2224π= M=ρ·334R π得ρ=32332323334/434RGT rRGTr R M ππππ==当天体的卫星环绕天体表面运动时,其轨道半径r 等于天体半径R ,则天体密度为:ρ=23GTπ.例1 地球绕太阳公转的轨道半径为1.49×1011 m ,公转的周期是3.16×107 s ,太阳的质量是多少?解析:根据牛顿第二定律,可知:F 向=ma 向=m·(Tπ2)2r①又因为F 向是由万有引力提供的所以F 向=F 万=G·2rMm②所以由①②式联立可得 M=kgr 27113112232)1049.1(14.344⨯⨯⨯=-π=1.96×1030kg.答案:1.96×1030 kg说明:(1)同理,根据月球绕地球运行的轨道半径和周期,可以算出地球的质量是5.98×1024kg ,其他行星的质量也可以用此法计算.(2)有时题干不给出地球绕太阳的运动周期、月球绕地球运转的周期,但日常生活常识告诉我们:地球绕太阳一周为365天,月球绕地球一周为27.3天. 课堂训练三、发现未知天体让学生阅读课文“发现未知天体”部分的内容,考虑以下问题:课件展示问题:1.应用万有引力定律除可计算天体的质量外,在天文学上还有何应用?2.应用万有引力定律发现了哪个行星? 学生阅读课文,从课文中找出相应的答案. 1.应用万有引力定律还可以用来发现未知天体. 2.海王星就是应用万有引力定律发现的.小结:1.本节学习了万有引力定律在天文学上的成就,计算天体质量的方法是F 引=F 向.2.解题思路: (1)⎪⎪⎩⎪⎪⎨⎧=⇒=⇒===⇒=⇒=3222232323222243)(3344GR r v G r v M r v m R r GTR GT rGT rM T mr r GMm πρππρππ(2)GR g G gR M mg RGMm πρ4322=⇒=⇒=. 布置作业1.教材“问题与练习”第1、2、3、4题.2.查阅发现未知天体的有关资料.。
6-4 万有引力理论的成就一计算天体的质量1.利用天体表面重力等于万有引力若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得 mg=G M地mR2解得地球质量为 M地=R2gG2.利用天体绕另一天体的运动看作匀速圆周运动,其万有引力提供向心力,有以下几种情况:(1)若已知月球绕地球做匀速圆周运动的周期T、半径r,根据万有引力提供向心力,即GM地m月r2=m月r(2πT)2,可求得地球质量 M地=4π2r3GT2.(2)若执意月球绕地球做匀速圆周运动的半径r和月球运行的线速度v,由于地球对月球的引力提供月球做匀速圆周运动的向心力,根据牛顿第二定律,得GM地m月r2=m月v2r,解得气球的质量为M地=rv2G(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力提供月球做匀速圆周运动的向心力,根据牛顿第二定律,得GM地m月r2=m月v2r,由v=2πrT,得 r=vT2π,解得 M地=v3T2πG。
以上计算地球质量的方法,也适用于其他任何天体,上述方法只能求出中心天体的质量,而不能求出做圆周运动的行星或卫星的质量。
在选公式计算的时候,要注意区分中心天体的半径R和环绕半径r。
在天文观测中,天体运动的轨道半径和周期容易测量,因此计算天体的质量常用这两个数据。
【例1】若已知行星绕太阳公转的半径为r,公转周期为T,引力常量为G,则由此可求出()A.该行星的质量B.太阳的质量C.该行星的密度D.太阳的密度【例2】利用下列哪组数据,可以计算出地球的质量()A.已知地球的半径R地和地面的重力加速度gB.已知卫星绕地球做匀速圆周运动的轨道半径r和周期TC.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度vD.已知卫星绕地球做匀速圆周运动的线速度v和周期T【例3】有一星球的密度跟地球密度相同,但它表面处的重力加速度是地面上重力加速度的4倍,则该星球的质量是地球质量的()A.14倍 B.4倍 C.16倍 D.64倍【例4】已知下面的哪组数据,可以算出地球的质量M (引力常量G 为已知)( ) A.月球绕地球运行的周期T 1 及月球到地球中心的距离R 1 B.地球绕太阳运行周期T 2 及地球到太阳中心的距离R 2 C.地球绕太阳运行的速度v 2 及地球到太阳中心的距离R 3 D.地球表面的重力加速度g 及地球到太阳中心的距离R 4【例5】宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。
人教版普通高中课程标准试验教科书物理必修2第六章第4节《万有引力理论的成就》教学设计一、教学分析1.教材分析本节课是《万有引力定律》之后的一节,内容是万有引力在天文学上的应用。
教材主要安排了“科学真是迷人”、“计算天体质量”和“发现未知天体”三个标题性内容。
学生通过这一节课的学习,一方面对万有引力的应用有所熟悉,另一方面通过卡文迪许“称量地球的质量”和海王星的发现,促进学生对物理学史的学习,并借此对学生进行情感、态度、价值观的学习。
2.教学过程概述本节课从宇宙中具有共同特点的几幅图片入手,对万有引力提供天体圆周运动的向心力进行了复习引入万有引力在天体运动中有什么应用呢?接下来,通过“假设你成为了一名宇航员,驾驶宇宙飞船……发现前方未知天体”,围绕“你有什么办法可以测出该天体的质量吗”全面展开教学。
密度的计算以及海王星的发现自然过渡和涉及。
在教材的处理上,既立足于教材,但不被教科书所限制,除了介绍教科书中重要的基本内容外,关注科技新进展和我国天文观测技术的发展,时代气息浓厚,反映课改精神,着力于培养学生的科学素养。
二、教学目标1.知识与技能(1)通过“计算天体质量”的学习,学会估算中数据的近似处理办法,学会运用万有引力定律计算天体的质量;(2)通过“发现未知天体”,“成功预测彗星的回归”等内容的学习,了解万有引力定律在天文学上的重要应用。
2.过程与方法运用万有引力定律计算天体质量,体验运用万有引力解决问题的基本思路和方法。
3.情感、态度、价值观(1)通过“发现未知天体”、“成功预测彗星的回归”的学习,体会科学定律在人类探索未知世界的作用;(2)通过了解我国天文观测技术的发展,激发学习的兴趣,养成热爱科学的情感。
三、教学重点1.中心天体质量的计算;2. “称量地球的质量”和海王星的发现,加强物理学史的教学。
四、教学准备实验器材、PPT课件等多媒体教学设备五、教学过程(一)、图片欣赏复习引入问题一:已知地球的质量M =6.0×1024kg,地球半径R =6.4×103km.请根据以上数据计算:(1)在赤道表面上质量为60 kg 的物体所受的重力及万有引力(2)该物体随地球自转所需的向心力.根据以上计算结果,在忽略地球自转的影响的情况下,你能得出什么结论?设计思想:学生通过计算比较既巩固了已学的知识,又理解了为什么可以忽略地球自转的影响。
6.4 万有引力理论的成就教学目标(1)了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;(2)行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;(3)了解万有引力定律在天文学上有重要应用。
思路与方法通过数据分析找到地球表面物体万有引力与两个分力——重力和物体随地球自转的向心力的大小关系,得到结论向心力远小于重力,万有引力大小近似等于重力,从而推导地球质量的计算表达式。
通过对太阳系九大行星围绕太阳运动的分析,根据万有引力作为行星圆周运动的向心力,计算太阳的质量;进一步类比联想推理到月亮、人造卫星围绕地球圆周运动求地球质量等,最后归纳总结建立模型——中心天体质量的计算。
引入:伽利略在研究杠杆原理后,曾经说过一句名言“给我一个支点,我可以撬动地球。
”天平测量地球的质量? 一、“科学真是迷人”——地球质量的称量(1)称量条件:不考虑地球自转的影响。
物体m 在纬度为θ的位置,万有引力指向地心,分解为两个分力:m 随地球自转围绕地轴运动的向心力和重力。
给出数据:地球半径R 、纬度θ(取900)计算两个分力的大小比值,引导学生得出结论:向心力远小于重力,万有引力大小近似等于重力。
(2)称量原理:地面上物体所受的重力等于地球对它的万有引力:mg =GMm /R 2。
(3)称量结果:M =gR 2/G =5.96×1024kg 。
二、 计算天体的质量——卫星在天文研究中的地位(1)运动模型:行星绕太阳的运动近似为匀速圆周运动,太阳对行星的万有引力提供向心力。
(2)基本方程:22GMm r mr ω=,2T ωπ=。
(3)太阳质量:2324M r π=。
(4)方法推广:通过观测天体卫星的运动而测量该天体质量,是测量天体质量的重要方法之一。
(5)测量天体的密度:根据M=ρV 设星体半径为R ,V=343R π 则ρ=M V =3233r GT R π 如果星体半径未知,则只要发射一颗贴着星体表面飞行的卫星,使R=r 上式可变为ρ=23GT π 三、发现未知天体——万有引力定律地位的确立(1)发现过程:①由最外侧天体轨道的“古怪”现象提出猜想;②根据轨道的“古怪”情况和万有引力定律计算“新”天体的可能轨道;③根据计算出的轨道预测可能出现的时刻和位置;④进行实地观察验证。
6.4 万有引力理论的成就知识与技能1.了解万有引力定律在天文学上的重要应用。
2. 会用万有引力定律计算天体质量。
3.理解并运用万有引力定律处理天体问题的思路和方法。
过程与方法1.通过万有引力定律推导出计算天体质量的公式。
2.了解天体中的知识。
情感态度与价值观1.通过推导,巩固前面所学的知识,使自己更好地了解天体中的物理。
2.体会万有引力定律在人类认识自然界奥秘中的巨大作用,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。
教学重点1. 万有引力定律在天文学上的应用,要掌握利用万有引力定律计算天体质量、天体密度的基本方法。
学好本节有利于对天体运行规律的认识,更有利于我们在今后学习人造卫星。
教学难点1.熟知并掌握计算天体质量的不同表达式,由于题目所给条各不相同,因此从多种表达式中挑选合适的形式较难,主要是对表达式的形式和含义不够熟悉,应理解并记住各种表达式。
教学过程新课教学一、由地面可测量求地球的质量1、思考:地面上物体的重力与地球对物体的引力是什么关系?分析:地球对物体的引力指向地心,一部分提供物体随地球自转所需向心力,另一部分为物体的重力。
只有在赤道和两极处物体的重力方向才指向地心,且赤道处物体的重力最小,两极处物体的重力最大;物体随地球自转的向心力很小,在计算时可近似认为物体的重力就等于地球对它的引力。
2、若不考虑地球自转的影响,地面上的物体的重力等于地球对它的引力。
mg =G 2Mm R g =G 2M R M =2gR G ρ=M V =34g RG14例1、离地面某一高度h 处的重力加速度是地球表面重力加速度的 ,则高度h 是地球半径的 倍。
例2、假设火星和地球都是球体,火星的质量M火和地球的质量M 地之比M 火/M 地=p ,火星的半径R 火和地球的半径R 地之比R火/R 地=q ,那么火星表面处的重力加速度g 火和地球表面处的重力的加速度g 地之比等于[ ] A.p/q 2 B.pq 2 C.p/q D.pq二、由行星或卫星运动量求中心天体的质量行星或卫星绕中心天体做圆周运动的向心力由中心天体对它的引力提供,由此可列出方程。