2016高考调研新课标版物理6-5第5单元 带电粒子在匀强电场中的运动
- 格式:ppt
- 大小:2.33 MB
- 文档页数:58
取夺市安慰阳光实验学校带电粒子在匀强电场中的运动一、带电粒子(带电体)在电场中的直线运动 1.带电粒子在匀强电场中做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动。
(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。
2.用动力学方法分析mF a 合=,dU E =;v 2–20v =2ad 。
3.用功能观点分析匀强电场中:W =Eqd =qU =21mv 2–21m 20v非匀强电场中:W =qU =E k2–E k14.带电体在匀强电场中的直线运动问题的分析方法 5.处理带电粒子在电场中运动的常用技巧(1)微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化。
(2)普通的带电体(如油滴、尘埃、小球等)在电场中的运动,除题中说明外,必须考虑其重力及运动中重力势能的变化。
二、带电粒子在电场中的偏转 1.粒子的偏转角(1)以初速度v 0进入偏转电场:如图所示设带电粒子质量为m ,带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U 1,若粒子飞出电场时偏转角为θ则tan θ=y xv v ,式中v y =at =mdqU1·0vL ,v x =v 0,代入得结论:动能一定时tan θ与q 成正比,电荷量一定时tan θ与动能成反比。
(2)经加速电场加速再进入偏转电场若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由动能定理有:,得:。
结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场。
2.带电粒子在匀强电场中的偏转问题小结(1)分析带电粒子在匀强电场中的偏转问题的关键①条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动。
②运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动。
专题: 带电粒子在匀强电场中的运动典型题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以压U 。
在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由开始从正极板向负极板运动,速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?二、带电粒子在电场中的偏转(垂直于场射入)⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动.⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解).02102v tat t 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等设粒子带电量为q ,质量为如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强UE d =,加速度qE qUammd, 通过偏转极板的时间:0L t v 侧移量:y22221242LU qUL at dU mdv 偏加偏转角:0tanat v 202LU qULdU mdv 偏加(U 偏、U加分别表示加速电场电压和偏转电场电压)带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2Ly .粒子可看作是从两板间的中点沿直线射出的 M N q U M N qUv 0 v 图6-4-3【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速运动,如图所示,若不计粒子重力,则可求出如下相关量:(1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v(3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ:(5)速度方向的反向延长线必过偏转电场的中点 解:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动,t v l 0=,0v l t =; (2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqUm qE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以20222)(mdv qUl v v v v y x +=+=。
高考物理带电粒子在电场中的运动专题训练答案及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cosd R a R L≥+=;min(632)3LTvπ+=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()2L LR R=+-解得0mvBqL=(2)粒子P从O003L v t=01122y L v t =解得03y v v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得233L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 06323L T v π+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W3.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v以及匀强电场的电场强度大小E;(2)求小球到达P点时的速度大小v P和B、C两点间的距离x.【答案】(1) 6m/s;7.5×104N/C (2) 2.5m/s ;0.85m【解析】【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bh tE =(2)2222225m g m gxq B q B≤≤(3)22211528m gy xq B=-+【解析】(1)粒子恰能在xoy平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv=洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg=+,()()2252qE mg mgvqB+==则v在y方向上分量大小sin2yqE E mgv v vBqv B qBθ====因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x轴为h处所用的时间2yh Bh qhBtv E mg===;(2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgEq=,则电场力''F qE mg==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-,所以22211528m gy x q B =-+点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M点的坐标为(233L ,0).求 (1)电子飞出磁场时的速度大小v (2)电子在磁场中运动的时间t【答案】(1)02v v =;(2)2049Lt v π= 【解析】 【详解】(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,(1)在电场中x 0123Lv t =,y 轴方向12y v L t =:,0tan 3y v v θ==得60θ=o ,002cos v v v θ== (2)在磁场中,2343L r L == 磁场中的偏转角度为23απ=202439rL t v v ππ==6.如图所示,OO′为正对放置的水平金属板M 、N 的中线,热灯丝逸出的电子(初速度、重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e 。
高考物理带电粒子在电场中的运动试题经典及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①43a π ②(31)B ae ≥- 【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离【答案】(1)mgq E∆=(2)(6N F mg =+(3)4v =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=- 由以上各式解得:425v gR =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为425V Rg =,方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+;(2)① ②()1122211sin 2e v mθϕϕ=-+4.两平行的带电金属板水平放置,板间电场可视为匀强电场.带电量相等粒子a ,b 分别以相同初速度水平射入匀强电场,粒子a 飞离电场时水平方向分位移与竖直方向分位移大小相等,粒子b 飞离电场时水平方向速度与竖直方向速度大小相等.忽略粒子间相互作用力及重力影响,求粒子a 、b 质量之比. 【答案】1:2 【解析】 【详解】假设极板长度为l ,粒子a 的质量为m a ,离开电场时竖直位移为y ,粒子b 的质量为m b ,离开电场时竖直分速度为v y ,两粒子初速度均为v 0,在极板间运动时间均为t 对粒子a :l =v 0t …① y =12a 1t 2…② 1aqEa m =…③ y =l …④①②③④联立解得:202a qEl m v = 对粒子b :v y =a 2t …⑤ v y =v 0…⑥2bqEa m =…⑦①⑤⑥⑦联立解得:20bqEl m v =则12a b m m =.5.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 02y )2y由数学知识可知,当(x 02y )2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm6.在竖直平面内,一根长为L 的绝缘细线,一端固定在O 点,另一端拴着质量为m 、电荷量为+q 的小球。
(物理)高考物理带电粒子在电场中的运动专题训练答案及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、 m B=2kg 的 A、B 两滑块放在水平面上,处于场强大小5A 不带电,B 带正电、电荷量-5E=3× 10N/C、方向水平向右的匀强电场中,q=2 × 10 C.零时刻, A、 B 用绷直的细绳连接 (细绳形变不计 )着,从静止同时开始运动,2s 末细绳断开.已知 A、 B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小 g=10m/s 2.求:(1)前 2s 内, A 的位移大小;(2)6s 末,电场力的瞬时功率.【答案】 (1) 2m (2) 60W【解析】【分析】【详解】(1) B 所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s 2;由运动规律: x= 1a1 t12 2解得 A 在 2s 内的位移为x=2m;(2)设绳断瞬间,AB 的速度大小为v1, t2 =6s 时刻, B 的速度大小为v2,则v1=a1 t1=2m/s ;绳断后,对 B 由牛顿第二定律:F-μm B g=m B a2解得 a2=2m/s 2;由运动规律可知:v2=v1+a2(t 2-t 1 )解得 v2=10m/s电场力的功率P=Fv,解得 P=60W2.如图 1 所示,光滑绝缘斜面的倾角θ=30,°整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图- 5 2 所示.一个质量 m=0.2kg,电量 q=1×10 C的带正电的滑块被挡板P 挡住,在 t=0 时刻,撤去挡板 P.重力加速度 g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少?(2)0~4s 内电场力做了多少功?【答案】(1) 20m/s ( 2) 40J【解析】【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度【详解】【解】 (l)在 0~2 s 内,滑块的受力分析如图甲所示,.电场力 F=qEF1mg sin ma12在 2 ---4 s 内,滑块受力分析如图乙所示F2 mg sin ma2解得 a2 10m / s2因此物体在0~ 2 s 内,以a110 m / s2的加速度加速,在 2~ 4 s 内,a 10m / s2 2s时,速度最大2的加速度减速,即在由 v a1t 得,v max 20m / s(2)物体在 0~ 2s 内与在 2~ 4s 内通过的位移相等.通过的位移xvmax t20 m 2在 0~2 s 内,电场力做正功W1 F1 x 60 J - 在 2~ 4 s 内,电场力做负功W2 F2 x 20J电场力做功W=40 J3 MN与 x 轴垂直放置,与 x 轴相交于 Q 点, Q 点的横坐标.如图所示,荧光屏x0 6cm ,在第一象限y 轴和 MN 之间有沿 y 轴负方向的匀强电场,电场强度E 1.6 105N / C,在第二象限有半径R 5cm 的圆形磁场,磁感应强度 B 0.8T ,方向垂直 xOy 平面向外.磁场的边界和x 轴相切于P点.在P点有一个粒子源,可以向x 轴上方 180°范围内的各个方向发射比荷为q 1.0 108 C / kg 的带正电的粒子,已知粒子的m发射速率 v0 4.0106 m / s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径;(2)粒子从y轴正半轴上射入电场的纵坐标范围;(3)带电粒子打到荧光屏上的位置与Q 点间的最远距离.【答案】( 1)5cm ( 2)0 y 10cm ( 3)9cm【解析】【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动qv0 B m v2rmv05cm解得: rqB(2)由( 1)问中可知r R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形PO FO1为菱形,所以 FO1 / /O P ,又O P垂直于 x 轴,粒子出射的速度方向与轨迹半径FO1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从 y 轴正半轴上射入电场的纵坐标范围为0 y 10cm .(3)假设粒子没有射出电场就打到荧光屏上,有x 0v 0 t 0h1at 022qEam 解得: h 18cm 2R10cm ,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x轴方向的位移为x ,则x vt 0y 1 at 22代入数据解得 x2 y设粒子最终到达荧光屏的位置与 Q 点的最远距离为 H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为,v yqE g xtanm v 0 ,v 0v 02 y所以 Hx 0 x tanx 0 2 y g 2 y ,由数学知识可知,当 x 02y2 y 时,即 y 4.5cm 时 H 有最大值,所以 H max 9cm4. 如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN成=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。
试题类型:第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器 A .极板上的电荷量变大,极板间的电场强度变大 B .极板上的电荷量变小,极板间的电场强度变大 C .极板上的电荷量变大,极板间的电场强度不变 D .极板上的电荷量变小,极板间的电场强度不变 【答案】D【学科网考点定位】平行板电容器【名师点睛】本题主要考查平行板电容器的动态平衡,要注意正确应用电容的决定式4πr SC kdε=、定义式Q C U=,板间场强公式U E d =。
15.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。
此离子和质子的质量比约为A .11B .12C .121D .144【答案】D 【解析】试题分析:根据动能定理可得:212qUmv =,带电粒子进入磁场时速度2qUv m=,带电粒子在匀强磁场中做圆周运动的向心力由洛伦兹力提供,2mv qvB r=,解得:222qB rm U =,所以此离子和质子的质量比约为144,故A 、B 、C 错误,D 正确【学科网考点定位】带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动【名师点睛】本题主要考查带电粒子在匀强磁场和匀强电场中的运动。
要特别注意带电粒子在匀强磁场中做圆周运动的向心力由洛伦兹力提供,根据动能定理求出带电粒子出电场进磁场的速度。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .2.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.3.如图所示,有一比荷qm=2×1010C/kg 的带电粒子,由静止从Q 板 经电场加速后,从M 板的狭缝垂直直线边界a 进入磁感应强度为B =1.2×10-2T 的有界矩形匀强磁场区域后恰好未飞出直线边界b ,匀强磁场方向垂直平面向里,a 、b 间距d =2×10-2m(忽略粒子重力与空气阻力)求:(1)带电粒子射入磁场区域时速度v ; (2)Q 、M 两板间的电势差U QM 。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。
现用大小F =4.5N 、方向水平向右的恒力推滑块,滑块到达B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。
小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。
取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x ;(3)若小球从P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q 、C 两点间的距离L 。
【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C ;(2)小球到达P 点时的速度大小是2.5m/s ,B 、C 两点间的距离是0.85m 。
(3)Q 、C 两点间的距离为0.5625m 。
【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:Fd =12m 1v 2, 代入数据解得:v =6m/s小球到达P 点时,受力如图所示,由平衡条件得:qE =m 2g tanθ, 解得:E =7.5×104N/C 。
(2)小球所受重力与电场力的合力大小为:G 等=2cos m g①小球到达P点时,由牛顿第二定律有:G等=m22Pvr②联立①②,代入数据得:v P=2.5m/s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v1、v2,以向右方向为正方向,由动量守恒定律得:m1v=m1v1+m2v2 ③由能量守恒得:22211122111222m v m v m v=+④联立③④,代入数据得:v1=﹣2m/s(“﹣”表示v1的方向水平向左),v2=4m/s小球碰后运动到P点的过程,由动能定理有:qE(x﹣r sinθ)﹣m2g(r+r cosθ)=222221122Pm v m v-⑤代入数据得:x=0.85m。
课时作业(三十四)1.(单选) 如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B 项.答案 B2.(单选) 如图所示,从炽热的金属丝漂出的电子(速度可视为零),经加速电场加速后从两极板中间垂直射入偏转电场.电场的重力不计.在满足电子能射出偏转电场的条件下,下述四种情况下,一定能使电子的偏转角变大的是( )A .仅将偏转电场极性对调B .仅增大偏转电极间的距离C .仅增大偏转电极间的电压D .仅减小偏转电极间的电压解析 设加速电场电压为U 0,偏转电压为U ,极板长度为L ,间距为d ,电子加速过程中,由U 0q =mv 22,得v 0=2U 0q m ,电子进入偏转电场后做类平抛运动,时间t =L v 0,a =Uq dm ,v y =at ,tan θ=v y v 0=UL2U 0d,由此可判断C 项正确.答案 C3.(多选) 如图所示,一电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,P 、Q 两点的电势差为U ,不计重力作用,设P 点的电势为零.则下列说法中正确的是( )A .带电粒子在Q 点的电势能为-qUB .带电粒子带负电C .此匀强电场的电场强度大小为E =23U3dD .此匀强电场的电场强度大小为E =3U 3d解析 根据带电粒子的偏转方向,可判断B 项错误;因为P 、Q 两点的电势差为U ,电场力做正功,电势能减少,而P 点的电势为零,所以A 项正确;设带电粒子在P 点时的速度为v 0,在Q 点建立直角坐标系,垂直于电场线为x 轴,平行于电场线为y 轴,由曲线运动的规律和几何知识,求得带电粒子在y 轴方向的分速度为v y =3v 0.带电粒子在y 轴方向上的平均速度为v -y =3v 02;带电粒子在y 轴方向上的位移为y 0,带电粒子在电场中的运动时间为t ,y 0=3v 02t ,d =v 0t ,得y 0=3d 2,由E =U y 0,得E =23U 3d,C 项正确,D 项错误. 答案 AC4.(单选) 如图所示,示波器的示波管可视为加速电场与偏转电场的组合,若已知加速电压为U 1,偏转电压为U 2,偏转极板长为L ,极板间距为d ,且电子被加速前的初速度可忽略,则关于示波器灵敏度[即偏转电场中每单位偏转电压所引起的偏转量(yU 2)]与加速电场、偏转电场的关系,下列说法中正确的是( )A .L 越大,灵敏度越高B .d 越大,灵敏度越高C .U 1越大,灵敏度越高D .U 2越大,灵敏度越高解析 偏转位移y =12at 2=12qU 2md (L v )2=U 2L 24dU 1,灵敏度y U 2=L24dU 1,故A 项正确,B 、C 、D 项错误.答案 A5.(多选) (2018·课标全国)如图所示,平行板电容器的两个极板与水平面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )A .所受重力与电场力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动解析 带电粒子在平行板电容器之间受到两个力的作用,一是重力mg ,方向竖直向下;二是电场力F =Eq ,方向垂直于极板向上,因二力均为恒力,又已知带电粒子做直线运动,所以此二力的合力一定在粒子运动的直线轨迹上,根据牛顿第二定律可知,该粒子做匀减速直线运动,选项D 正确,选项A 、C 错误;从粒子运动的方向和电场力的方向可判断出,电场力对粒子做负功,粒子的电势能增加,选项B 正确.答案 BD6.(单选) 一个带负电荷量为q 、质量为m 的小球,从光滑绝缘的斜面轨道的A 点由静止下滑,小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动.现在竖直方向上加如图所示的匀强电场,若仍从A 点由静止释放该小球,则( )A .小球不能通过B 点 B .小球仍恰好能通过B 点C .小球能通过B 点,且在B 点与轨道之间压力不为0D .以上说法都不对解析 小球从光滑绝缘的斜面轨道的A 点由静止下滑,恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动,则mg =m v 21R ,mg(h -2R)=12mv 21;加匀强电场后仍从A 点由静止释放该小球,则(mg -qE)(h -2R)=12mv 22,联立解得mg -qE =m v 22R,满足小球恰好能通过B 点的临界条件,选项B 正确.答案 B7.(多选)如图甲所示,三个相同的金属板共轴排列,它们的距离与宽度均相同,轴线上开有小孔,在左边和右边两个金属板上加电压U 后,金属板间就形成匀强电场;有一个比荷q m =1.0×10-2C/kg 的带正电的粒子从左边金属板小孔轴线A 处由静止释放,在电场力作用下沿小孔轴线射出(不计粒子重力),其vt 图象如图乙所示,则下列说法正确的是( )A .右侧金属板接电源的正极B .所加电压U =100 VC .乙图中的v 2=2 m/sD .通过极板间隙所用时间之比为1∶(2-1)解析 带正电的粒子在电场力作用下由左极板向右运动,可判断右侧金属板接电源负极,A 选项错误.由vt 图象可知,0-0.5 s 带电粒子的加速度a =2 m/s 2,两板间距离d =12at 2=0.25 m ,由Eq =ma ,得E =200 V/m ,U =2Ed =100 V ,B 选项正确.可将粒子在两个极板间隙间的运动看成是初速度为零的连续的匀加速运动,两间隙距离相等,则有t 1∶t 2=1∶(2-1),D 选项正确.v 1∶v 2=1∶2,将v 1=1.0 m/s 代入,得v 2= 2 m/s ,C 选项错误.答案 BD8.如图所示,一带电荷量为+q 、质量为m 的小物块处于一倾角为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中,小物块恰好静止.重力加速度取g ,sin37°=0.6,cos37°=0.8.求:(1)水平向右电场的电场强度;(2)若将电场强度减小为原来的1/2,小物块的加速度是多大; (3)电场强度变化后小物块下滑距离L 时的动能.解析 (1)小物块静止在斜面上,受重力、电场力和斜面支持力,示意图如图所示,则有F N sin37°=qE ① F N cos37°=mg ② 由①②可得E =3mg4q(2)若电场强度减小为原来的12,即E′=3mg8q由牛顿第二定律,得mgsin37°-qE′cos37°=ma 可得a =0.3g(3)电场强度变化后小物块下滑距离L 时,重力做正功,电场力做负功,由动能定理,得 mgLsin37°-qE′Lcos37°=E k -0 可得E k =0.3mgL答案 (1)3mg4q(2)0.3g (3)0.3mgL9. 如图所示,绝缘光滑轨道AB 部分是倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?解析 小球先在斜面上运动,受重力、电场力和支持力,然后在圆轨道上运动,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg′=2+2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)要满足等效重力刚好提供向心力,即有 mg′=mv 2DR因θ=30°与斜面的倾角相等,由几何关系,可知AD =2R 令小球以最小初速度v 0运动,由动能定理,知-2mg′·2R=12mv 2D -12mv 2解得v 0=103gR3,因此要使小球安全通过圆轨道,初速度应为v≥103gR3答案 v≥103gR310. 如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O.试求:(1)粒子从射入到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打到屏上的点P 到O 点的距离x.解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入到打到屏上所用的时间t =2L v 0(2)设粒子射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,得粒子在电场中的加速度为a =Eqm所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 0(3)方法一 设粒子在电场中的偏转距离为y ,则 y =12a(L v 0)2=12·qEL 2mv 20又x =y +Ltan α,解得x =3qEL 22mv 20方法二 x =v y L v 0+y =3qEL22mv 20方法三 由x y =L +L 2L 2,得x =3y =3qEL22mv 20答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL22mv 2011. 绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,场强方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C ,一带电量q =-1×10-5C ,质量m =1×10-5kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场,求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有 Eq =ma ,x =12at 2沿y 轴方向做匀速运动,有 y =v 0t x 2+y 2=R 2解得t =1 s(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有 x 1=12at 2=1 m ,y 1=v 0t =1 m ,即为(-1 m,1 m)(3)射出时由动能定理,得Eqx 1=E k -12mv 2代入数据,解得E k =2.5×10-5J答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5J12. 如图所示,两块平行金属板竖直放置,两板间的电势差U =1.5×103V(仅在两板间有电场),现将一质量m =1×10-2kg 、电荷量q =4×10-5C 的带电小球从两板的左上方距两板上端的高度h =20 cm 的地方以初速度v 0=4 m/s 水平抛出,小球恰好从左板的上边缘进入电场,在两板间沿直线运动,从右板的下边缘飞出电场,g 取10 m/s 2.求:(1)金属板的长度L ; (2)小球飞出电场时的动能E k .解析 (1)小球到达左板上边缘时的竖直分速度 v y =2gh =2 m/s设小球此时速度方向与竖直方向之间的夹角为θ,则 tan θ=v 0v y=2小球在电场中沿直线运动,所受合力方向与运动方向相同,设板间距为d ,则 tan θ=qE mg =qUmgdL =d tan θ,解得L =qU mgtan 2θ=0.15 m (2)进入电场前v 1=v 20+v 2y 电场中运动过程qU +mgL =E k -12mv 21联立解得E k =0.175 J答案 (1)0.15 m (2)0.175 J13.(2018·福建) 反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动.已知电场强度的大小分别是E 1=2.0×103N/C 和E 2=4.0×103N/C ,方向如图所示,带电微粒质量m =1.0×10-20kg ,带电荷量q =-1.0×10-9C ,A 点距虚线MN的距离d 1=1.0 cm ,不计带电微粒的重力,忽略相对论效应.求:(1)B 点距虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t.解析 (1)带电微粒由A 运动到B 的过程中,由动能定理,有 |q|E 1d 1-|q|E 2d 2=0①由①式,解得d 2=E 1E 2d 1=0.50 cm ②(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律,有 |q|E 1=ma 1③ |q|E 2=ma 2④设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式,有 d 1=12a 1t 21⑤d 2=12a 2t 22⑥又t =t 1+t 2⑦由②③④⑤⑥⑦式,解得t =1.5×10-8s 答案 (1)0.50 cm (2)1.5×10-8s14.(2018·全国) 如图所示,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘轻线悬挂于O 点.现给电容器缓慢充电,使两极板所带电荷量分别为+Q 和-Q ,此时悬线与竖直方向的夹角为π6.再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π3,且小球与两极板不接触.求第二次充电使电容器正极板增加的电荷量.解析 设电容器电容为C.第一次充电后两极板之间的电压为U =QC ①两极板之间电场的场强为 E =U d②式中d 为两极板间的距离. 按题意,当小球偏转角θ1=π6时,小球处于平衡状态.设小球质量为m ,所带电荷量为q ,则有 Tcos θ1=mg ③ Tsin θ1=qE ④式中T 为此时悬线的张力. 联立①②③④式,得 tan θ1=qQmgCd⑤设第二次充电使正极板上增加的电荷量为ΔQ ,此时小球偏转角θ2=π3,则tan θ2=+ΔmgCd⑥联立⑤⑥式,得tan θ1tan θ2=QQ +ΔQ代入数据,解得ΔQ =2Q 答案 2Q。
高考物理带电粒子在电场中的运动试题(有答案和解析)含解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r'='联立可得所加匀强磁场的磁感应强度大小:4mvB qr'=='T 根据左手定则可知所加磁场方向垂直纸面向外。
【物理】 高考物理带电粒子在电场中的运动专题训练答案及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m= 222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W4.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯5.从宏观现象中总结出来的经典物理学规律不一定都能适用于微观体系。
高考物理带电粒子在电场中的运动及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。