2017_2018学年高中数学第一章三角函数综合测试卷A卷新人教A版必修4
- 格式:doc
- 大小:1.17 MB
- 文档页数:13
第一章三角函数综合测试卷(A卷)(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.() A. B. C. D.2.函数的一条对称轴可能是()A. B. C. D.3.已知,则tanθ=()A. 2- B.4.已知,,则().A. B. C. D. ,5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是()A. 2B.C.D.6函数的是()7.已知α为第二象限角,则)A. -1B. 1C. -3D. 38.如图,函数(,)的图象过点,则的函数解析式为()A. B.C. D.9.将函数的图象向右平移个单位后关于轴对称,则的值可能为( ) A. B. C. D.10.已知tan 4θ=,则 )11.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. B. C. D.12.同时具有以下性质:“①最小正周期是π;②图象关于直线)第Ⅱ卷(共90分) 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届福建省惠安惠南中学高三10月月考】若角α的终边经过点()1,2--,则2sin2cos αα+=____________.14.则ω=__________, ϕ=__________.15.若()()sin 2cos 2,αππα-=-则____________. 16.给出下列四个命题:;②函数tan y x =的图象关于点对称; ③函数2cos sin y x x =+的最小值为1-;= 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10(1(2)2sin sin2αα+.18.(本小题12分)(1)已知角α终边上一点,求cos α和tan α的值. (2)已知α是第三象限的角,且()f α;②若,求()f α19.(本小题12分)【2018届湖北省枣阳市高级中学高三十月月考】已知函数(1)求函数()f x 的解析式;(2)求()f x 的图象的对称中心及()2f x 的递减区间.20.(本小题12分)【2018届江西省六校高三上第五次联考】某同学用“五点法”画函数如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并求出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心.21.(本小题12分)已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.(1)求的值;(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.22.(本小题12分)函数()()sin (0,)2f x x πωϕωϕ=+><在它的某一个周期内的单调减区间是511,1212ππ⎡⎤⎢⎥⎣⎦. (1)求()f x 的解析式;(2)将()y f x =的图象先向右平移6π个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),所得到的图象对应的函数记为()g x ,求函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.。
高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修41.对于三角函数线,下列说法正确的是( )A.对任何角都能作出正弦线、余弦线和正切线B.有的角的正弦线、余弦线和正切线都不存在C.任何角的正弦线、正切线总是存在,但余弦线不一定存在D.任何角的正弦线、余弦线总是存在,但是正切线不一定存在答案 D解析当角的终边落在y轴上时,正切线不存在,但对任意角来说,正弦线、余弦线都存在.2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A.y轴上 B.x轴上C.直线y=x上 D.直线y=-x上答案 B解析由题意得|cosα|=1,即cosα=±1,角α终边在x轴上,故选B.A.sin1>cos1>tan1 B.sin1>tan1>cos1C.tan1>sin1>cos1 D.tan1>cos1>sin1答案 C解析设1 rad角的终边与单位圆的交点为P(x,y),∵π4<1<π2,∴0<x<y<1,从而cos1<sin1<1<tan1.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<c B.b<a<cC.c<a<b D.a<c<b答案 C解析作α=-1的正弦线、余弦线、正切线,可知:b=OM>0,a=MP<0,c=AT<0,且MP>AT.∴c<a<b.5.若α为第二象限角,则下列各式恒小于零的是( )A.sinα+cosα B.tanα+sinαC.cosα-tanα D.sinα-tanα答案 B解析如图,作出sinα,cosα,tanα的三角函数线.显然△OPM∽△OTA,且|MP|<|AT|.∵MP>0,AT<0,∴MP<-AT.∴MP+AT<0,即sinα+tanα<0.6.已知MP,OM,AT分别是75°角的正弦线、余弦线、正切线,则这三条线从小到大的排列顺序是________.答案OM<MP<AT解析如图,在单位圆中,∠POA=75°>45°,由图可以看出OM<MP<AT.7.利用三角函数线比较下列各组数的大小.(1)tan 4π3与tan 7π6;(2)cos 11π6与cos 5π3.解 (1)如图1所示,设点A 为单位圆与x 轴正半轴的交点,角4π3和角7π6的终边与单位圆的交点分别为P ,P ′,PO ,P ′O 的延长线与单位圆的过点A 的切线的交点分别为T ,T ′,则tan 4π3=AT ,tan 7π6=AT ′.由图可知AT >AT ′>0,所以tan 4π3>tan 7π6.(2)如图2所示,设角5π3和角11π6的终边与单位圆的交点分别为P ,P ′,过P ,P ′分别作x 轴的垂线,分别交x 轴于点M ,M ′,则cos 11π6=OM ′,cos 5π3=OM .由图可知0<OM <OM ′,所以cos 5π3<cos 11π6.答案 0,π4∪π2,5π4∪3π2,2π解析 由0≤θ<2π且tan θ≤1,利用三角函数线可得θ的取值范围是0,π4∪π2,5π4∪3π2,2π.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12;(3)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k +4π3,k ∈Z.(3)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,所以α的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-π4+k π≤α<π2+k π,k ∈Z,如图.一、选择题1.已知α(0<α<2π)的正弦线与余弦线的长度相等,且方向相同,那么α的值为( ) A .5π4或7π4 B .π4或3π4C .π4或5π4D .π4或7π4答案 C解析 因为角α的正弦线与余弦线长度相等,方向相同,所以角α的终边在第一或第三象限,且角α的终边是象限的角平分线,又0<α<2π,所以α=π4或5π4,选C .2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形 答案 D解析 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cos α=23,∴α必为钝角. 3.如果π<θ<5π4,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ 答案 D解析 本题主要考查利用三角函数线比较三角函数值的大小.由于π<θ<5π4,如图所示,正弦线MP 、余弦线OM 、正切线AT ,由此容易得到cos θ<sin θ<0<tan θ,故选D .4.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .⎝ ⎛⎭⎪⎫-π3,π3 B .⎝⎛⎭⎪⎫0,π3 C .⎝⎛⎭⎪⎫5π3,2π D .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π答案 D解析 由图1知当sin α<32时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,2π.由图2知当cos α>12时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π,∴α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π. 5.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 解法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=120°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.解法二:如图,P 1,P 2为单位圆上的两点, 设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β, 则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2. ∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),其中sin α=y 1′,sin β=y 2′,则tan α-tan β=y 1′x 1′-y 2′x 2′=x 2′y 1′-x 1′y 2′x 1′x 2′. 而y 1′>y 2′>0,x 2′<x 1′<0, ∴-x 2′>-x 1′>0,∴x 1′x 2′>0,x 2′y 1′-x 1′y 2′<0,即tan α<tan β.∴B 不正确.同理,C 不正确.故选D . 二、填空题6.若α是第一象限角,则sin2α,cos α2,tan α2中一定为正值的个数为________.答案 2解析 由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin2α>0.故一定为正值的个数为2.7.若0≤θ<2π,且不等式cos θ<sin θ和tan θ<sin θ成立,则角θ的取值范围是________.答案π2,π 解析 由三角函数线知,在[0,2π)内使cos θ<sin θ的角θ∈π4,5π4,使tan θ<sin θ的角θ∈π2,π∪3π2,2π,故θ的取值范围是π2,π.8.若函数f (x )的定义域是(-1,0),则函数f (sin x )的定义域是________. 答案 -π+2k π,-π2+2k π∪-π2+2k π,2k π(k ∈Z )解析 f (x )的定义域为(-1,0),则f (sin x )若有意义,需-1<sin x <0,利用三角函数线可知-π+2k π<x <2k π,且x ≠-π2+2k π(k ∈Z ).三、解答题9.比较下列各组数的大小:(1)sin1和sin π3;(2)cos 4π7和cos 5π7;(3)tan 9π8和tan 9π7;(4)sin π5和tan π5.解 (1)sin1<sin π3.如图1所示,sin1=MP <M ′P ′=sin π3.(2)cos 4π7>cos 5π7.如图2所示,cos 4π7=OM >OM ′=cos 5π7.(3)tan 9π8<tan 9π7.如图3所示,tan 9π8=AT <AT ′=tan 9π7.(4)sin π5<tan π5.如图4所示,sin π5=MP <AT =tan π5.10.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π(k ∈Z ),故k π+π4<θ2<k π+π2(k∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2(k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+3π2(k ∈Z )时,sin θ2<cos θ2<tan θ2.。
人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
§5 正弦函数的性质与图像 5.1 正弦函数的图像1.问题导航(1)用“五点法”作正弦函数图像的关键是什么?(2)利用“五点法”作y =sin x 的图像时,x 依次取-π,-π2,0,π2,π可以吗?(3)作正弦函数图像时应注意哪些问题? 2.例题导读P 27例1.通过本例学习,学会用五点法画函数y =a sin x +b 在[0,2π]上的简图. 试一试:教材P 28练习题你会吗?1.正弦函数的图像与五点法(1)图像:正弦函数y =sin x 的图像叫作正弦曲线,如图所示.(2)五点法:在平面直角坐标系中常常描出五个关键点(它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点):(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),用光滑的曲线顺次将它们连接起来,得到函数y =sin x 在[0,2π]上的简图,这种画正弦曲线的方法为“五点法”.(3)利用五点法作函数y =A sin x (A >0)的图像时,选取的五个关键点依次是:(0,0),⎝ ⎛⎭⎪⎫π2,A ,(π,0),⎝ ⎛⎭⎪⎫32π,-A ,(2π,0). 2.正弦曲线的简单变换函数y =sin x 与y =sin x +k 图像间的关系.当k >0时,把y =sin x 的图像向上平移k 个单位长度得到函数y =sin x +k 的图像; 当k <0时,把y =sin x 的图像向下平移|k |个单位长度得到函数y =sin x +k 的图像.1.判断正误.(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图像与y 轴只有一个交点.( )(2)函数y =sin x 的图像介于直线y =1与y =-1之间.( )(3)用五点法作函数y =-2sin x 在[0,2π]上的图像时,应选取的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0).( ) (4)将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像沿x 轴翻折到x 轴上方即可得到函数y =|sin x |,x ∈[-π,π]的图像.( )解析:(1)正确.观察正弦函数的图像知y =sin x 的图像与y 轴只有一个交点.(2)正确.观察正弦曲线可知正弦函数的图像介于直线y =1与y =-1之间.(3)正确.在函数y =-2sin x ,x ∈[0,2π]的图像上起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0). (4)正确.当x ∈[-π,π]时,y =|sin x |=⎩⎪⎨⎪⎧sin x ,sin x ≥0,-sin x ,sin x <0,于是,将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像翻折到x 轴上方即可得函数y =|sin x |,x ∈[-π,π]的图像.答案:(1)√ (2)√ (3)√ (4)√2.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列点不是关键点的是( ) A.⎝ ⎛⎭⎪⎫π6,12 B.⎝ ⎛⎭⎪⎫π2,1 C .(π,0) D .(2π,0)解析:选A.用五点法画y =sin x ,x ∈[0,2π]的图像,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0). 3.用五点法画y =sin x ,x ∈[0,2π]的简图时,所描的五个点的横坐标的和是________.解析:0+π2+π+3π2+2π=5π.答案:5π4.(1)正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________. (2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像形状________,位置________.(填“相同”或“不同”)解析:(1)由正弦曲线知,正弦曲线在(0,2π]内最高点为⎝ ⎛⎭⎪⎫π2,1,最低点为⎝ ⎛⎭⎪⎫3π2,-1.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像,形状相同,位置不同.答案:(1)⎝ ⎛⎭⎪⎫π2,1⎝ ⎛⎭⎪⎫3π2,-1 (2)相同 不同1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分. (2)因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠0的图像与函数y =sin x ,x ∈[0,2π]的图像形状完全一致,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x ∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”的实质是利用正弦线进行的尺规作图,这样作图较精确,但较为烦琐. (2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的形状.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的情况下常用此法,要切实掌握好.另外与“五点法”作图有关的问题经常出现在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必须是确定的五点.(3)用光滑的曲线顺次连接时,要注意线的走向,一般在最高(低)点的附近要平滑,不要出现“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.用五点法作正弦型函数的图像用五点法画函数y =2sin x -1,x ∈[0,2π]的简图. (教材P 27例1)[解] 步骤:①列表:x 0 π2 π 3π22π sin x 0 1 0 -1 0 y -1 1 -1 -3 -1②描点:在平面直角坐标系中描出下列五个点:(0,-1),⎝ ⎛⎭⎪⎫π2,1,(π,-1),⎝ ⎛⎭⎪⎫3π2,-3,(2π,-1). ③连线:用光滑曲线将描出的五个点连接起来,得函数y =2sin x -1,x ∈[0,2π]的简图,如图所示.方法归纳作形如函数y =a sin x +b ,x ∈[0,2π]的图像的步骤1.(1)函数f (x )=a sin x +b ,(x ∈[0,2π])的图像如图所示,则f (x )的解析式为( )A .f (x )=12sin x +1,x ∈[0,2π]B .f (x )=sin x +12,x ∈[0,2π]C .f (x )=32sin x +1,x ∈[0,2π]D .f (x )=32sin x +12,x ∈[0,2π](2)用五点法作出下列函数的简图. ①y =2sin x ,x ∈[0,2π]; ②y =2-sin x ,x ∈[0,2π].解:(1)选A.将图像中的特殊点代入f (x )=a sin x +b ,x ∈[0,2π],不妨将(0,1)与⎝ ⎛⎭⎪⎫π2,1.5代入得⎩⎪⎨⎪⎧a sin 0+b =1,a sin π2+b =1.5,解得b =1,a =0.5,故f (x )=12sin x +1,x ∈[0,2π].(2)①列表:x 0 π2 π 3π22π y =sin x 0 1 0 -1 0 y =2sin x 0 2 0 -2 0描点并将它们用光滑的曲线连接起来,如图所示.②列表:x 0 π2π 3π2 2π y =sin x 0 1 0 -1 0 y =2-sin x 2 1232描点并将它们用光滑的曲线连接,如图:利用正弦函数的图像求函数的定义域求函数f (x )=lg (sin x )+16-x 2的定义域. (教材P 30习题1-5 A 组T 4)[解] 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0, 即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图像,如图所示.结合图像可得:该函数的定义域为[-4,-π)∪(0,π).方法归纳一些三角函数的定义域可以借助函数图像直观地观察得到,同时要注意区间端点的取舍.有时利用图像先写出在一个周期区间上的解集,再推广到一般情况.2.求函数y =log 21sin x-1的定义域.解:为使函数有意义,需⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0⇔0<sin x ≤12.根据正弦曲线得,函数定义域为⎝ ⎛⎦⎥⎤2k π,2k π+π6∪⎣⎢⎡⎭⎪⎫2k π+5π6,2k π+π,k ∈Z .利用正弦函数的图像确定方程解的个数在同一坐标系中,作函数y =sin x 和y =lg x 的图像,根据图像判断出方程sinx =lg x 的解的个数.(教材P 30习题1-5 A 组T 1(1))[解] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图像,再依次向右连续平移2π个单位,得到y =sin x 的图像.作出y =lg x 的图像,如图所示.由图像可知方程sin x =lg x 的解有3个.若本例中的函数y =lg x 换为y =x 2,则结果如何?解:在同一直角坐标系中画出函数y =x 2和y =sin x 的图像,如图所示.由图知函数y =x 2和y =sin x 和图像有两个交点,则方程x 2-sin x =0有两个根.方法归纳方程根(或个数)的两种判断方法(1)代数法:直接求出方程的根,得到根的个数.(2)几何法:①方程两边直接作差构造一个函数,作出函数的图像,利用对应函数的图像,观察与x 轴的交点个数,有几个交点原方程就有几个根.②转化为两个函数,分别作这两个函数的图像,观察交点个数,有几个交点原方程就有几个根.3.(1)函数y =2sin x 与函数y =x 的图像的交点有( ) A .2个 B .3个 C .4个 D .5个 (2)研究方程10sin x =x (x ∈R )根的个数.解:(1)选B.在同一直角坐标系中作出函数y =2sin x 与y =x 的图像,由图像可以看出有3个交点.(2)如图所示,当x ≥4π时,x 10≥4π10>1≥sin x ;当x =52π时,sin x =sin 52π=1,x10=5π20,1>5π20,从而x >0时,有3个交点,由对称性知x <0时,有3个交点,加上x =0时的交点为原点,共有7个交点.即方程有7个根.思想方法数形结合思想的应用求满足下列条件的角的X 围.(1)sin x ≥12;(2)sin x ≤-22.[解] (1)利用“五点法”作出y =sin x 的简图,过点⎝ ⎛⎭⎪⎫0,12作x 轴的平行线,在[0,2π]上,直线y =12与正弦曲线交于⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫5π6,12两点.结合图形可知,在[0,2π]内,满足y ≥12时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6≤x ≤5π6.因此,当x ∈R 时,若y ≥12,则x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+56π,k ∈Z .(2)同理,满足sin x ≤-22的角的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪5π4+2k π≤x ≤74π+2k π,k ∈Z .[感悟提高] 形如sin x >a (<a )的不等式,求角x 的X 围,一般采用数形结合的思想来解题,具体步骤:(1)画出y =sin x 的图像,画直线y =a . (2)若解sin x >a ,则观察y =sin x 在直线y =a 上方的图像.这部分图像对应的x 的X围,就是所求的X 围.若解sin x <a ,则观察y =sin x 在直线y =a 下方的图像.这部分图像对应的x 的X 围,就是所求的X 围.1.函数y =1-sin x ,x ∈[0,2π]的大致图像是( )解析:选B.利用五点法画图,函数y =1-sin x ,x ∈[0,2π]的图像一定过点(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,1),⎝ ⎛⎭⎪⎫32π,2,(2π,1),故B 项正确. 2.已知点M ⎝ ⎛⎭⎪⎫π4,b 在函数f (x )=2sin x +1的图像上,则b =________. 解析:b =f ⎝ ⎛⎭⎪⎫π4=2sin π4+1=2. 答案:23.若函数f (x )=2sin x -1-a 在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,则实数a 的取值X 围是________.解析:令f (x )=0得2sin x =1+a .作出y =2sin x 在x ∈⎣⎢⎡⎦⎥⎤π3,π上的图像,如图所示. 要使函数f (x )在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,需满足3≤1+a <2,所以3-1≤a <1. 答案:[3-1,1),[学生用书单独成册])[A.基础达标]1.关于正弦函数y =sin x 的图像,下列说法错误的是( ) A .关于原点对称 B .有最大值1C .与y 轴有一个交点D .关于y 轴对称解析:选D.正弦函数y =sin x 的图像如图所示.根据y =sin x ,x ∈R 的图像可知A ,B ,C 均正确,D 错误. 2.函数y =sin x 的图像与函数y =-sin x 的图像关于( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称解析:选A.在同一直角坐标系中画出函数y =sin x 与函数y =-sin x 在[0,2π]上的图像,可知两函数的图像关于x 轴对称.3.下列函数图像相同的是( ) A .y =sin x 与y =sin(x +π)B .y =sin ⎝ ⎛⎭⎪⎫x -π2与y =sin ⎝ ⎛⎭⎪⎫π2-xC .y =sin x 与y =sin(-x )D .y =sin(2π+x )与y =sin x解析:选D.对A ,由于y =sin(x +π)=-sin x ,故排除A ;对B ,由于y =sin ⎝⎛⎭⎪⎫π2-x =-sin ⎝⎛⎭⎪⎫x -π2,故排除B ;对C ,由于y =sin(-x )=-sin x ,故排除C ;对D ,由于y=sin(2π+x )=sin x ,故选D.4.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:选D .当x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,故排除A 、B 、C ,选D . 5.函数y =x sin x 的部分图像是( )解析:选A .函数y =x sin x 的定义域为R ,令f (x )=x sin x ,则f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )为偶函数,排除B 、D ;当x ∈⎝⎛⎭⎪⎫0,π2时,f (x )>0,故排除C ,故选A.6.在[0,2π]上,满足sin x ≥22的x 的取值X 围为________.解析:在同一直角坐标系内作出y =sin x 和y =22的图像如图,观察图像并求出交点横坐标,可得到x 的取值X 围为⎣⎢⎡⎦⎥⎤π4,34π.答案:⎣⎢⎡⎦⎥⎤π4,34π7.函数y =sin x 的图像和y =x2π的图像交点个数是________. 解析:在同一直角坐标系内作出两个函数的图像如图所示:由图可知交点个数是3. 答案:38.已知sin x =m -1且x ∈R ,则m 的取值X 围是________. 解析:由y =sin x ,x ∈R 的图像知,-1≤sin x ≤1, 即-1≤m -1≤1,所以0≤m ≤2. 答案:0≤m ≤29.用“五点法”画出函数y =3-sin x (x ∈[0,2π])的图像. 解:(1)x 0 π2 π 32π2π y =sin x 0 1 0 -1 0 y =3-sin x 3 2 3 4 3(2)10.若函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点,求k 的取值X 围.解:f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π,作出函数的图像如图:由图可知当1<k <3时函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点.[B.能力提升]1.若y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3,则函数的值域为( )A.⎝⎛⎭⎪⎫22,1 B.⎣⎢⎡⎦⎥⎤22,1 C .(1,2]D .[1,2]解析:选B.画出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3的图像如图所示,可知y ∈⎣⎢⎡⎦⎥⎤22,1.2.设a >0,对于函数f (x )=sin x +asin x(0<x <π),下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值也无最小值解析:选B.f (x )=sin x +a sin x =1+asin x.因为0<x <π,所以0<sin x ≤1.所以1sin x≥1.所以1+asin x≥a +1.所以f (x )有最小值而无最大值. 故选B.3.已知f (sin x )=x 且x ∈⎣⎢⎡⎦⎥⎤0,π2,则f ⎝ ⎛⎭⎪⎫12=________.解析:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x =12时,x =π6, 所以f ⎝ ⎛⎭⎪⎫12=f ⎝⎛⎭⎪⎫sin π6=π6. 答案:π64.若x 是三角形的最小角,则y =sin x 的值域是________.解析:不妨设△ABC 中,0<A ≤B ≤C ,得0<A ≤B ,且0<A ≤C ,所以0<3A ≤A +B +C ,而A +B +C =π,所以0<3A ≤π,即0<A ≤π3. 若x 为三角形中的最小角,则0<x ≤π3, 由y =sin x 图像知y ∈⎝ ⎛⎦⎥⎤0,32. 答案:⎝⎛⎦⎥⎤0,32 5.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题:(1)观察函数图像,写出满足下列条件的x 的区间.①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值X 围. 解:列表如下:x -π -π2 0 π2π sin x 0 -1 0 1 01-2sin x 1 3 1 -1 1描点连线得:(1)由图像可知图像在y =1上方部分时y >1,在y =1下方部分时y <1,所以当x ∈(-π,0)时,y >1;当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1. 所以a 的取值X 围是{a |1<a <3或-1<a <1}.6.(选做题)已知函数y =f (x )为奇函数,且是⎝ ⎛⎭⎪⎫-12,12上的减函数,f (1-sin α)+f (1-sin 2α)<0,求α的取值X 围.解:由题意可知f (1-sin α)<-f (1-sin 2α).因为f (x )是奇函数,所以-f (1-sin 2α)=f (sin 2α-1),所以f (1-sin α)<f (sin 2α-1).又由f (x )是⎝ ⎛⎭⎪⎫-12,12上的减函数, 所以⎩⎪⎨⎪⎧-12<1-sin α<12,-12<sin 2α-1<12,1-sin α>sin 2α-1,所以⎩⎪⎨⎪⎧12<sin α<32,12<sin 2α<32,sin 2α+sin α-2<0, 解得22<sin α<1, 所以2k π+π4<α<2k π+π2(k ∈Z )或2k π+π2<α<2k π+3π4(k ∈Z ), 所以α的取值X 围为⎝⎛⎭⎪⎫2k π+π4,2k π+π2∪⎝ ⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z ).。
人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。
专题二任意角的三角函数测试卷(A 卷)(测试时间:120分钟 满分:150分)第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 目要求的•1 .若 sin :• ::: 0,且 tan 用 > 0,则:•是( )A.第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C【解析】根据各个象限的三角函数符号 :一全二正三切四余,可知 :-是第三象限角. 12【解析】••• a 是第二象限角,二cosa =-(1—sin 2 a = -- ,故选D.133.若口是第四象限角,tan a =- 5 则 sin a =1八1155A .—.B .- —.CD551313【答案】 选D【解析】 根据tanasin a 51 m '・sin 2 a +cos2 . .a = 1,二 sin a =- 5cosa12134 .若角a 的终边经过点 P(1-2) ,则tana 的值为()A. —2B.C.1 D.122【答案】A【解析】由正切函数的定义即得 tan - = ^ = — - -2 .x 15 .已知角的终边上一点(),且,则的值是( )A. B. C. D. 【答案】B【解析】由三角函数定义知,,当时,;项是符合题13A12 r 5 512 A . — B . —— CD .-13 13 13152.已知a 是第二象限角,sina=—,则cosa =()当时,,故选B6.【2018河北石家庄二中八月模拟】点 P 、、3,a 是角660终边上一点,贝U a 二() A. -3 B. 3 C.-1 D. 1【答案】A因为 tan660、>_a _,所以 _、3」_]=V 3V 327 .已知 tan=2,,贝U 3sin -cossin+1 =()A.3B.-3C.4D.-4 【答案】A【解析】3sin 5 Cf _cos OC sm^+l=4sin (2~cos CC sinCZ+cos a C£4 sin 2 a-sin acosa+cos'2 a.nasin" tz+cos - a-4tan 2 a —taxi a+1 =3 tan 2 a+lCOST tan r+ ~~肓+ _石的值是()cos 8| |ta n 6|A . 1B . — 1 C. 3D . 4【答案】B—1 = — 1./rr 19 •若…'0,则点 Q(cos 〉, sin :•)位于()2【解析】a = -3,应选答案A 。
(A 卷 学业水平达标)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°答案:B2.若-π2<α<0,则点P (tan α,cos α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:B3.已知角α的始边与x 轴的非负半轴重合,终边过点P (sin 120°,cos 120°),则α可以是( )A .60°B .330°C .150°D .120°答案:B4.若sin 2θ+2cos θ=-2,则cos θ=( ) A .1 B.12C .-12D .-1答案:D5.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( ) A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝ ⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 答案:C6.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32D .-32答案:C7.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2 C .0 D.34答案:A8.如图是函数y =A sin(ωx +φ)(x ∈R)在区间⎣⎢⎡⎦⎥⎤-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:A9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4答案:C10.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a答案:A二、填空题(本大题共4小题,每小题5分,共20分)11.已知sin(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(2π-α)=________. 解析:sin(π-α)=sin α=-23,∵α∈⎝ ⎛⎭⎪⎫-π2,0, ∴cos α=1-sin 2α=53,tan(2π-α)=-tan α=-sin αcos α=255. 答案:25512.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为________.解析:∵sin θ+cos θ=43,∴(sin θ+cos θ)2=1+2sin θcos θ=169,∴2sin θcos θ=79.又0<θ<π4,∴sin θ<cos θ.∴sin θ-cos θ=-θ-cos θ2=-1-2sin θcos θ=-23. 答案:-2313.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1] .解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 14.已知函数f (x )=A tan(ωx +φ)ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝ ⎛⎭⎪⎫π24=________. 解析:由图象可知,此正切函数的半周期等于3π8-π8=2π8=π4,即周期为π2,所以ω=2.由题意可知,图象过定点⎝ ⎛⎭⎪⎫3π8,0,所以0=A tan ⎝ ⎛⎭⎪⎫2×3π8+φ,即3π4+φ=k π(k ∈Z),所以φ=k π-3π4(k ∈Z), 又|φ|<π2,所以φ=π4.再由图象过定点(0,1),所以A =1.综上可知f (x )=tan ⎝⎛⎭⎪⎫2x +π4. 故有f ⎝ ⎛⎭⎪⎫π24=tan ⎝⎛⎭⎪⎫2×π24+π4=tan π3= 3. 答案: 3三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α =3tan 2α+tanα+2tan 2α+1=3⎝ ⎛⎭⎪⎫122+12+2⎝ ⎛⎭⎪⎫122+1=135. 16.(本小题满分12分)已知α是第二象限角,且f (α)=sin ⎝⎛⎭⎪⎫α-π2cos ⎝ ⎛⎭⎪⎫3π2+απ-α-α-π-π-α.(1)化简f (α);(2)若cos ⎝⎛⎭⎪⎫α+3π2=35,求f (α)的值.解:(1)f (α)=-cos αsin α-tan α-tan αsin α=-cos α.(2)∵cos ⎝⎛⎭⎪⎫α+3π2=sin α=35, ∴sin α=35.又∵α是第二象限角,∴cos α=-1-⎝ ⎛⎭⎪⎫352=-45.∴f (α)=-⎝ ⎛⎭⎪⎫-45=45.17.(本小题满分12分)已知函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将y =f (x )的图象上所有点的横坐标缩短到原来的13倍,纵坐标不变,然后再将所得的图象沿x 轴向右平移π3个单位长度,得到函数y =g (x )的图象,写出函数y =g (x )的解析式,并用“五点法”作出y =g (x )在长度为一个周期的闭区间上的图象.解:(1)∵f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,∴A =2,1=2sin φ,∴sin φ=12.又∵|φ|<π2,∴φ=π6.∵两相邻的最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2),∴T =2[(x 0+3π)-x 0]=6π, ∴ω=2πT =2π6π=13. ∴函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6. (2)将y =f (x )的图象上所有点的横坐标缩短到原来的13,纵坐标不变,得函数的解析式为y =2sin ⎝ ⎛⎭⎪⎫x +π6,再向右平移π3个单位后,得g (x )=2sin ⎝⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6.列表如下:描点并连线,得g (x )在一个周期的闭区间上的图象如下图.18.(本小题满分14分)如图,函数y =2cos(ωx +θ)x ∈R ,ω>0,0≤θ≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝ ⎛⎭⎪⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈⎣⎢⎡⎦⎥⎤π2,π时,求x 0的值.解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6.∵T =π,且ω>0,∴ω=2πT =2ππ=2. (2)∵点A ⎝ ⎛⎭⎪⎫π2,0,Q (x 0,y 0)是PA 的中点,y 0=32,∴点P 的坐标为⎝ ⎛⎭⎪⎫2x 0-π2,3. ∵点P 在y =2cos ⎝⎛⎭⎪⎫2x +π6的图象上, 且π2≤x 0≤π, ∴cos ⎝⎛⎭⎪⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6. ∴x 0=2π3或x 0=3π4.。
(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4的全部内容。
1.2.2 同角三角函数的基本关系预习课本P18~20,思考并完成以下问题(1)同角三角函数的基本关系式有哪两种?(2)已知sin α,cos α和tan α其中的一个值,如何求其余两个值?[新知初探]同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan_α=错误!错误!。
这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切错误!.[点睛] 同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里“同角”有两层含义:一是“角相同",二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin23α+cos23α=1。
[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)对任意角α,sin2α3+cos2错误!=1都成立.( )(2)对任意角α,sin 2αcos 2α=tan 2α都成立.()(3)若cos α=0,则sin α=1.()答案:(1)√(2)×(3)×2.已知α∈错误!,sin α=错误!,则cos α=( )A.错误! B.-错误!C.-错误!D.错误!答案:A3.已知cos α=错误!,且α是第四象限角,则sin α=()A.±错误!B.±错误!C.-错误!D.-错误!答案:C4.已知sin α=错误!,α∈错误!,则tan α=________。
第10课时 正、余弦函数的周期性对应学生用书P21知识点一 周期函数的定义1.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( ) 答案 D解析 显然D 中函数图象不是经过相同单位长度,图象重复出现.而A ,C 中每经过一个单位长度,图象重复出现.B 中图象每经过2个单位,图象重复出现.所以A ,B ,C 中函数是周期函数,D 中函数不是周期函数.2.下列函数中,不是周期函数的是( ) A .y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x | 答案 D解析 画出y =sin|x |的图象(图略),易知选D .知识点二 正、余弦函数的周期求法3.函数y =sin x ,y =cos x 的最小正周期分别是T 1,T 2,则tan T 1+T 216=________.答案 1解析 T 1=T 2=2π,则tanT 1+T 216=tan 4π16=tan π4=1. 4.若函数y =3cos ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为π,则ω的值为________. 答案 ±2解析 由已知得3cos ⎣⎢⎡⎦⎥⎤ωx +π+π4=3cos ⎝ ⎛⎭⎪⎫ωx +π4,即3cos ⎝ ⎛⎭⎪⎫ωx +π4+ωπ=3cos ⎝⎛⎭⎪⎫ωx +π4,易知ωπ=±2π,解得ω=±2.知识点三 周期函数的应用5.函数y =|cos x |-1的最小正周期是________. 答案 π解析 因为函数y =|cos x |-1的周期同函数y =|cos x |的周期一致,由函数y =|cos x |的图象知其最小正周期为π,所以y =|cos x |-1的最小正周期也为π.6.已知f (x )是R 上的奇函数,f (x +3)=f (x ),则f (2016)=________. 答案 0解析 因为f (x )是R 上的奇函数,所以f (0)=0, 又因为f (x +3)=f (x ),所以T =3, 所以f (2016)=f (672×3)=f (0)=0. 7.已知f (n )=sin n π4(n ∈Z ),那么f (1)+f (2)+…+f (100)=________.答案2+1解析 ∵f (n )=sinn π4(n ∈Z ),∴f (1)=22,f (2)=1,f (3)=22,f (4)=0,f (5)=-22,f (6)=-1,f (7)=-22,f (8)=0,…,不难发现,f (n )=sin n π4(n ∈Z )的周期T =8,且每一个周期内的函数值之和为0.∴f (1)+f (2)+…+f (100)=f (97)+f (98)+f (99)+f (100)=f (1)+f (2)+f (3)+f (4)=22+1+22+0=2+1. 8.已知函数y =5cos2k +1π3x -π6(其中k ∈N ),对任意实数a ,在区间[a ,a +3]上要使函数值54出现的次数不少于4次且不多于8次,求k 的值.解 由5cos2k +1π3x -π6=54,得cos 2k +1π3x -π6=14.∵函数y =cos x 在每个周期内出现函数值14有两次,而区间[a ,a +3]长度为3,为了使长度为3的区间内出现函数值14不少于4次且不多于8次,必须使3不小于2个周期长度且不大于4个周期长度.即2×2π2k +1π3≤3,且4×2π2k +1π3≥3.∴32≤k ≤72.又k ∈N ,故k =2,3.一、选择题1.定义在R 上的函数f (x ),存在无数个实数x 满足f (x +2)=f (x ),则f (x )( ) A .是周期为1的周期函数 B .是周期为2的周期函数 C .是周期为4的周期函数 D .不一定是周期函数 答案 D解析 根据周期函数的定义可知f (x +T )=f (x )中的x 必须是定义域中的任意值,否则不一定为周期函数.2.下列函数中,周期为π2的是( )A .y =cos4|x |B .y =-sin2xC .y =cos x 4D .y =sin x -π2答案 A解析 对于A ,∵y =cos4|x |=cos4x ,∴T =2π4=π2;对于B ,T =2π2=π;对于C ,T =2π4=8π;对于D ,y =sin x -π2=-cos x ,T =2π.故选A .3.函数y =cos k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( )A .10B .11C .12D .13 答案 D解析 ∵T =2πk4=8πk≤2,∴k ≥4π,又k ∈Z ,∴正整数k 的最小值为13.4.函数y =cos(sin x )的最小正周期是( ) A .π2 B .π C.2π D.4π答案 B解析 cos[sin(x +π)]=cos(-sin x )=cos(sin x ), ∴T =π,故选B .5.设函数f (x )=sin3x +|sin3x |,则f (x )为( ) A .周期函数,最小正周期为π3 B .周期函数,最小正周期为2π3C .周期函数,最小正周期为2πD .非周期函数 答案 B解析 f (x )=⎩⎪⎨⎪⎧0,sin3x ≤0,2sin3x ,sin3x >0,大致图象如图所示,由图可知f (x )为周期函数,最小正周期为2π3.二、填空题6.设函数f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为________. 答案 ±45解析 由题意知π2=2πω,∴ω=4,∴f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫α4+π12+π6 =3sin ⎝ ⎛⎭⎪⎫α+π2=3cos α=95∴cos α=35,∴sin α=±1-⎝ ⎛⎭⎪⎫352=±45.7.函数f (x )=sin ωx +π4(ω>0)的周期为π4,则ω=________.答案 8解析 由题意,2πω=π4,∴ω=8.8.已知定义在R 上的函数f (x )是以2为周期的奇函数,则方程f (x )=0在[-2,2]上至少有________个实数根.答案 5解析 因为函数f (x )是定义在R 上的奇函数, 所以f (0)=0,又因为函数f (x )以2为周期, 所以f (2)=f (-2)=f (0)=0,且⎩⎪⎨⎪⎧f -1=-f 1,f -1=f1,解得f (-1)=f (1)=0,故方程f (x )=0在[-2,2]上至少有5个实数根. 三、解答题9.已知定义在R 上的函数f (x )满足f (x +2)f (x )=1,求证:f (x )是周期函数. 证明 ∵f (x +2)=1f x,∴f (x +4)=f [(x +2)+2]=1fx +2=11f x=f (x ).∴函数f (x )是周期函数,4是一个周期. 10.设函数f (x )=a sin kx -π3和函数g (x )=b cos2kx -π6(a >0,b >0,k >0),若它们的最小正周期之和为3π2,且f π2=g π2,f π4=-3g π4-1,求这两个函数的解析式.解 ∵f (x )和g (x )的最小正周期和为3π2,∴2πk +2π2k =3π2,解得k =2. ∵f π2=g π2,∴a sin2×π2-π3=b cos4×π2-π6,即a ·sinπ-π3=b ·cos2π-π6.∴32a =32b ,即a =b .① 又f π4=-3g π4-1,则有a ·sin π6=-3b ·cos 5π6-1,即12a =32b -1.② 由①②解得a =b =1.∴f (x )=sin2x -π3,g (x )=cos4x -π6.。
第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。
2017年人教A 版必修四第一章三角函数第四节《三角函数的图象与性质》课时跟踪检测一、选择题1.(2017·广州五校联考)下列函数中,周期为π的奇函数为( ) A .y =sin x cos x B .y =sin 2x C .y =tan2xD .y =sin2x +cos2x2.(2017·衡水中学检测)已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫π6,2π3B .⎝ ⎛⎭⎪⎫π3,5π6C .⎝ ⎛⎭⎪⎫π2,πD .⎝ ⎛⎭⎪⎫2π3,π 3.y =|cos x |的一个单调增区间是( ) A .⎣⎢⎡⎦⎥⎤-π2,π2B .[0,π]C .⎣⎢⎡⎦⎥⎤π,3π2D .⎣⎢⎡⎦⎥⎤3π2,2π 4.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12D .345.(2016·合肥质检)函数y =sin ⎝⎛⎭⎪⎫ωx +π6在x =2处取得最大值,则正数ω的最小值为( )A .π2 B .π3 C .π4D .π66.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为( )A .2或0B .-2或2C .0D .-2或07.下列各点中,能作为函数y =tan ⎝ ⎛⎭⎪⎫x +π5的一个对称中心的点是( )A .(0,0)B .⎝ ⎛⎭⎪⎫π5,0 C .(π,0)D .⎝ ⎛⎭⎪⎫3π10,0 8.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0对称,那么|φ|的最小值为( )A .π6B .π4C .π3D .π29.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A .⎣⎢⎡⎦⎥⎤12,54B .⎣⎢⎡⎦⎥⎤12,34 C .⎝ ⎛⎦⎥⎤0,12D .(0,2]二、填空题10.(2017·湖南六校联考)函数y =3sin x +3cos xx ∈⎣⎢⎡⎭⎪⎫0,π2的单调递增区间是________.11.函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为______,此时x =______.12.若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k的值为________.13.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________________.14.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=________.三、解答题15.已知函数f (x )=(sin x +cos x )2+2cos 2x -2. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值,最小值.16.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.17.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.参考答案:1.A2.B3.D4.D5.D6.B7.D8.A9.A 10答案:⎣⎢⎡⎦⎥⎤0,π311.答案:53π4+2k π(k ∈Z) 12答案:2或313答案:⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z 14.答案:5π1215.解:(1)f (x )=sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z . (2)∵x ∈⎣⎢⎡⎦⎥⎤π4,3π4,∴3π4≤2x +π4≤7π4,∴-1≤sin ⎝⎛⎭⎪⎫2x +π4≤22,∴-2≤f (x )≤1,∴当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为-2.16.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ). (1)当f (x )为偶函数时,φ=π2+k π,k ∈Z , ∴cos φ=0,∵0<φ<2π3,∴φ=π2. (2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝ ⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .17.解:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z , 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)当x =π6时,f (x )取得最大值4,即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π], 可解得x =-π2,-π6,π2,5π6, 所以x的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-π2,-π6,π2,5π6.。
第一章三角函数综合测试卷(A卷)(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】D【解析】 ,选D.2.函数的一条对称轴可能是()A. B. C. D.【答案】B3.已知1sin3θ=,,2πθπ⎛⎫∈ ⎪⎝⎭,则tanθ=A. 2- B. 2- C.24- D.28-【答案】C【解析】∵1sin3θ=,,2πθπ⎛⎫∈ ⎪⎝⎭,∴222cos1sin3θθ=--=-,则1sin23tancos4223θθθ===--,故选C.4.已知,,则().A. B. C. D. ,【答案】D 【解析】 ∵,,∴,,∴.故选.5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A. 2 B. C.D.【答案】C【解析】6.下列区间上函数cos 3y x π⎛⎫=+⎪⎝⎭为增函数的是( ) A. ,44ππ⎡⎤-⎢⎥⎣⎦ B. 2,63ππ⎡⎤⎢⎥⎣⎦ C. 24,33ππ⎡⎤⎢⎥⎣⎦ D. 711,66ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】当44x ππ-≤≤时,712312x πππ≤+≤, 函数不是增函数;当263x ππ≤≤时, 23x πππ≤+≤,函数是减函数;当2433x ππ≤≤时, 533x πππ≤+≤,函数是增函数;选C.7.已知α为第二象限角,则222sin 1-sin cos 1-cos αααα+的值是( ) A. -1 B. 1 C. -3 D. 3 【答案】B8.如图,函数(,)的图象过点,则的函数解析式为( )A. B. C. D.【答案】B【解析】由题意可得A=2,f(0)=由所以,,选B. 9.【2018届河南省天一大联考高三上测试二(10月】将函数的图象向右平移个单位后关于轴对称,则的值可能为( ) A. B.C. D.【答案】D10.已知tan 4θ=,则2sin cos sin 17sin 4θθθθ++的值为( )A.1468 B. 2168 C. 6814 D. 6821【答案】B【解析】()2222sin cos sin 1sin 17sin 417tan 4sin cos tan θθθθθθθθθ+++=++ ()22141162117tan 68686841tan tan tan θθθθ++=+=+=+,故选B 11.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. 向右平移12π个单位长度B. 向右平移512π个单位长度 C. 向左平移12π个单位长度 D. 向左平移512π个单位长度【答案】B【解析】试题分析:由题意可得,解之得,故,又可得,即,所以,而,即函数可由函数的图象向右平移512π个单位长度而得到,故应选B.12.【2018届广西柳州市高三上摸底】同时具有以下性质:“①最小正周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数;④一个对称中心为,012π⎛⎫⎪⎝⎭”的一个函数是( ) A. sin 26x y π⎛⎫=+⎪⎝⎭ B. sin 23y x π⎛⎫=+ ⎪⎝⎭C. sin 26y x π⎛⎫=- ⎪⎝⎭D. sin 23y x π⎛⎫=-⎪⎝⎭【答案】C第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届福建省惠安惠南中学高三10月月考】若角α的终边经过点()1,2--,则2sin2cos αα+=____________.【答案】1【解析】由三角函数定义得2tan 21α-==∴- 2sin2cos αα+= 22222sin cos cos 2tan 1411sin cos 141tan ααααααα+++===+++14.函数()()π20,2f x sin x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则ω=__________, ϕ=__________.【答案】2π3 π615.若()()sin 2cos 2,αππα-=-则()()()()sin 5cos 23cos sin παπαπαα-+----的值为____________.【答案】35-【解析】因为()()sin 2cos 2sin 2cos ,αππααα-=-∴=-()()()()sin 5cos 2sin 5cos 3cos 33cos sin 3cos sin 5cos 5παπααααπααααα-+-+===-----+-故答案为35-.16.给出下列四个命题: ①函数2sin 23y x π⎛⎫=-⎪⎝⎭的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③函数2cos sin y x x =+的最小值为1-; ④若12sin 2sin 244x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭= 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号). 【答案】①②③ 【解析】把512x π=代入函数得1y =,为最大值,故正确; 结合函数tan y x =的图象可得点,02π⎛⎫⎪⎝⎭是函数tan y x =的图象的一个对称中心,故正确; 函数 22215cos sin sin 124y x x x sinx sinx ⎛⎫=+=-++=--+ ⎪⎝⎭ []1,1sinx ∈-当sin 1x =-时,函数取得最小值为1-,故正确。
第一章 三角函数综合测试卷(B 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是第三象限的角,若,则( ) α1tan 2α=cos α=A. B. 【答案】B【解析】 , ,解方程组得: B. 1sin 1tan ,,cos 2sin 2cos 2ααααα===22sin cos 1αα+=cos α=2.【2018届江西省赣州市崇义中学高三上第二次月考】设函数, ,则()sin 22f x x π⎛⎫=+⎪⎝⎭x R ∈()f x 是(C )A. 最小正周期为的奇函数B. 最小正周期为的奇函数 π2πC. 最小正周期为的偶函数 D. 最小正周期为的偶函数 π2π【答案】C3.是第二象限角, 为其终边上一点且,则x 的值为 ( ) α(P x cos x α=B. 【答案】C【解析】由三角函数的定义可得: ,cos x α==解方程可得:x =位于第二象限,则,α0x <综上可得: x =本题选择C 选项.4.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则θx 20x y -=( ) 221sin2cos sin 2θθθ+-=A. B. C. D. 1515-2525-【答案】B5.若函数()在上为减函数,则的取值范围为 ( ) ()()sin f x x ω=0ω>ππ,42⎡⎤⎢⎥⎣⎦ωA. B. C. D.(]0,3[]2,3(]0,4[)2,+∞【答案】B【解析】由题意可得: ,且, 242k ππωπ⨯≥+()3222k k Z ππωπ⨯≥+∈求得8k+2⩽ω⩽4k+3.令k=0,求得2⩽ω⩽3,本题选择B 选项.6.【2018届深圳中学高三第一次测试】若函数的定义域为,且函数是偶函数, 函数()f x R ()sin f x x +是奇函数,则 ()cos f x x +π3f ⎛⎫= ⎪⎝⎭A. 【答案】A【解析】∵函数为偶函数,()sin f x x +∴,即 ① sin sin 3333f f ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭∵函数为奇函数,()cos f x x +∴,即 ② cos cos 3333f f ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭113232f f ππ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭由①②得-, 23f π⎛⎫=+ ⎪⎝⎭∴选A . 3f π⎛⎫= ⎪⎝⎭7.设函数对任意的,都有,若函则()()2cos f x x ωϕ=+x R ∈33f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则的值是( ) ()()3sin 2g x x ωϕ=+-3g π⎛⎫ ⎪⎝⎭A. B. 或 C. D.15-32-12【答案】C8.函数(,,)的部分图象如图所示,则的值分别为( ) f(x)=Asin(ωx +φ)A >0ω>0|φ|<π2ω,φA. 2,0B. 2,C. 2,D. 2, π4-π3π6【答案】D。
(A卷学业水平达标)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分)1.在0°~360°的范围内,与-510°终边相同的角是( ) A.330°B.210°C.150°D.30°答案:B2.若-错误!〈α<0,则点P(tan α,cos α)位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B3.已知角α的始边与x轴的非负半轴重合,终边过点P(sin 120°,cos 120°),则α可以是()A.60°B.330°C.150°D.120°答案:B4.若sin2θ+2cos θ=-2,则cos θ=()A.1 B.错误!C.-错误!D.-1答案:D5.函数f(x)=tan错误!的单调增区间为( )A.错误!,k∈ZB.(kπ,(k+1)π),k∈ZC。
错误!,k∈ZD。
错误!,k∈Z答案:C6.已知sin错误!=错误!,则sin错误!的值为()A。
错误!B.-错误!C.错误!D.-错误!答案:C7.函数y=cos2x+sin x错误!的最大值与最小值之和为()A。
错误!B.2 C.0 D.错误!答案:A8.如图是函数y=A sin(ωx+φ)(x∈R)在区间错误!上的图象,为了得到这个函数的图象,只要将y=sin x(x∈R)的图象上所有的点()A.向左平移错误!个单位长度,再把所得各点的横坐标缩短到原来的错误!倍,纵坐标不变B.向左平移错误!个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移错误!个单位长度,再把所得各点的横坐标缩短到原来的错误!倍,纵坐标不变D.向左平移错误!个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:A9.已知函数y=A sin(ωx+φ)(A〉0,ω>0,|φ|〈π)的一段图象如图所示,则函数的解析式为( )A.y=2sin错误!B.y=2sin错误!或y=2sin错误!C.y=2sin错误!D.y=2sin错误!答案:C10.函数f(x)=A sin ωx(ω>0),对任意x有f错误!=f错误!,且f错误!=-a,那么f错误!等于( )A .aB .2aC .3aD .4a答案:A 二、填空题(本大题共4小题,每小题5分,共20分)11.已知sin (π-α)=-23,且α∈错误!,则tan(2π-α)=________. 解析:sin (π-α)=sin α=-错误!,∵α∈错误!,∴cos α=错误!=错误!,tan (2π-α)=-tan α=-错误!=错误!.答案:错误!12.已知sin θ+cos θ=43错误!,则sin θ-cos θ的值为________. 解析:∵sin θ+cos θ=错误!,∴(sin θ+cos θ)2=1+2sin θcos θ=错误!,∴2sin θcos θ=79.又0<θ<错误!,∴sin θ<cos θ. ∴sin θ-cos θ=-错误! =-1-2sin θcos θ=-错误!。
第一章 三角函数综合测试卷(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.( )A.B.C.D.【答案】D 【解析】,选D.2.函数的一条对称轴可能是( )A. B. C. D.【答案】B3.已知1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ= A. 2- B. 2- C. 24- D. 28- 【答案】C 【解析】∵1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,∴222cos 1sin 3θθ=--=-,则1sin 23tan cos 4223θθθ===--,故选C.4.已知,,则( ).A. B. C. D. ,【答案】D【解析】 ∵,,∴,,∴.故选.5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A. 2 B. C.D.【答案】C【解析】6.下列区间上函数cos 3y x π⎛⎫=+⎪⎝⎭为增函数的是( )A. ,44ππ⎡⎤-⎢⎥⎣⎦ B. 2,63ππ⎡⎤⎢⎥⎣⎦ C. 24,33ππ⎡⎤⎢⎥⎣⎦ D. 711,66ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】当44x ππ-≤≤时,712312x πππ≤+≤, 函数不是增函数;当263x ππ≤≤时, 23x πππ≤+≤,函数是减函数;当2433x ππ≤≤时, 533x πππ≤+≤,函数是增函数;选C.7.已知α为第二象限角,则222sin 1-sin cos 1-cos αααα+的值是( ) A. -1 B. 1 C. -3 D. 3 【答案】B8.如图,函数(,)的图象过点,则的函数解析式为( )A. B.C. D.【答案】B【解析】由题意可得A=2,f(0)=由所以,,选B.9.【2018届河南省天一大联考高三上测试二(10月】将函数的图象向右平移个单位后关于轴对称,则的值可能为( ) A.B.C.D.【答案】D10.已知tan 4θ=,则2sin cos sin 17sin 4θθθθ++的值为( )A.1468 B. 2168 C. 6814 D. 6821【答案】B【解析】()2222sin cos sin 1sin 17sin 417tan 4sin cos tan θθθθθθθθθ+++=++ ()22141162117tan 68686841tan tan tan θθθθ++=+=+=+,故选B 11.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. 向右平移12π个单位长度B. 向右平移512π个单位长度 C. 向左平移12π个单位长度 D. 向左平移512π个单位长度【答案】B【解析】试题分析:由题意可得,解之得,故,又可得,即,所以,而,即函数可由函数的图象向右平移512π个单位长度而得到,故应选B. 12.【2018届广西柳州市高三上摸底】同时具有以下性质:“①最小正周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数;④一个对称中心为,012π⎛⎫⎪⎝⎭”的一个函数是( ) A. sin 26x y π⎛⎫=+⎪⎝⎭ B. sin 23y x π⎛⎫=+ ⎪⎝⎭C. sin 26y x π⎛⎫=- ⎪⎝⎭D. sin 23y x π⎛⎫=-⎪⎝⎭【答案】C第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届福建省惠安惠南中学高三10月月考】若角α的终边经过点()1,2--,则2sin2cos αα+=____________.【答案】1【解析】由三角函数定义得2tan 21α-==∴- 2sin2cos αα+= 22222sin cos cos 2tan 1411sin cos 141tan ααααααα+++===+++ 14.函数()()π20,2f x sin x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则ω=__________, ϕ=__________.【答案】2π3 π615.若()()sin 2cos 2,αππα-=-则()()()()sin 5cos 23cos sin παπαπαα-+----的值为____________.【答案】35-【解析】因为()()sin 2cos 2sin 2cos ,αππααα-=-∴=-()()()()sin 5cos 2sin 5cos 3cos 33cos sin 3cos sin 5cos 5παπααααπααααα-+-+===-----+-故答案为35-.16.给出下列四个命题: ①函数2sin 23y x π⎛⎫=-⎪⎝⎭的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③函数2cos sin y x x =+的最小值为1-; ④若12sin 2sin 244x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ = 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号).【答案】①②③ 【解析】把512x π=代入函数得1y =,为最大值,故正确; 结合函数tan y x =的图象可得点,02π⎛⎫⎪⎝⎭是函数tan y x =的图象的一个对称中心,故正确; 函数 22215cos sin sin 124y x x x sinx sinx ⎛⎫=+=-++=--+ ⎪⎝⎭ []1,1sinx ∈-Q 当sin 1x =-时,函数取得最小值为1-,故正确。
如12sin 2sin 244x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭则有1222244x k x πππ-=+-或 1222244x k x ππππ⎛⎫-=+-- ⎪⎝⎭, k z ∈, 12x x k π∴-=,或123,4x x k k z ππ+=+∈,故不正确。
故答案为①②③.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)【2018届黑龙江省齐齐哈尔八中高三8月月考】已知()3sin 32sin 2ππαα⎛⎫+=+ ⎪⎝⎭,求下列各式的值: (1)sin 4cos 5sin 2cos αααα-+;(2)2sin sin2αα+.【来源】【全国百强校】2018届黑龙江省齐齐哈尔八中高三8月月考数学(文)试卷 【答案】(1)-16(2)85(2)∵sin 2cos αα=,即tan 2a =,18.(本小题12分)(1)已知角α终边上一点,求cos α和tan α的值.(2)已知α是第三象限的角,且简()fα;②若,求()fα 【答案】(1(2【解析】试题分析:(1,在根据定义求出cos α和tan α的值;(2)①利用诱导公式、同角三角函数基本关系式即可得出()cos f αα=-,根据角的位置求出cos α,继而得最后结果.试题解析:(1(2)∵α是第三象限的角,∴cos 0α<,∴19.(本小题12分)【2018届湖北省枣阳市高级中学高三十月月考】已知函数()()sin (0,24,)2f x A wx b A w πϕϕ=++><<<.(1)求函数()f x 的解析式;(2)求()f x 的图象的对称中心及()2f x 的递减区间. 【答案】(1) ()2sin 16f x x ππ⎛⎫=-- ⎪⎝⎭;(2) ()2f x 的递减区间为15,36k x k k Z ⎡⎤+≤≤+∈⎢⎥⎣⎦. 【解析】试题分析:(1)根据条件分别求出b ,A ,ω和φ的值,即可求函数f (x )的解析式; (2)令()6x k k Z πππ-=∈即可求出()f x 的图象的对称中心,令3222,262k x k k Z ππππππ+≤-≤+∈即可求函数()2f x 的递减区间.(2)令()6x k k Z πππ-=∈,得()16x k k Z =+∈. 则()f x 的图象的对称中心为()1,16k k Z ⎛⎫+-∈ ⎪⎝⎭. 则()22sin 216f x x ππ⎛⎫=-- ⎪⎝⎭,令3222,262k x k k Z ππππππ+≤-≤+∈,解得15,36k x k k Z +≤≤+∈, 故()2f x 的递减区间为15,36k x k k Z ⎡⎤+≤≤+∈⎢⎥⎣⎦. 20.(本小题12分)【2018届江西省六校高三上第五次联考】某同学用“五点法”画函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><在某一个周期内的图象时,列表并填入了部分数据,如下表:6π23π0 22-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并求出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动12π个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心. 【答案】(Ⅰ)答案见解析;(Ⅱ) ,06π⎛⎫- ⎪⎝⎭. 【解析】试题分析:(Ⅰ)补充完整相应的表格,然后计算可得函数()f x 的解析式是()226f x sin x π⎛⎫=+⎪⎝⎭; (Ⅱ)由题意可求得()223g x sin x π⎛⎫=+⎪⎝⎭,据此可得()y g x =的图象离原点O 最近的对称中心是,06π⎛⎫- ⎪⎝⎭. 试题解析:(Ⅰ)数据补全如下表:12π-6π 512π 23π 1112π22-根据表中已知数据可得: 2A =, 262{ { 23632ππωωϕπππϕωϕ=+=⇒=+=且函数表达式为 ()226f x sin x π⎛⎫=+⎪⎝⎭21.(本小题12分)已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.(1)求的值;(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.【答案】(1)(2)【解析】试题分析:(1)由两相邻对称轴间的距离为可得半个周期为.进而求出,由偶函数可得,由三角函数恒等变形可得.代入自变量即得的值;(2)先根据图像变换得到的解析式.再根据余弦函数性质求的单调递减区间.试题解析: 解:(1)∵为偶函数,∴对恒成立,∴.即:又∵,故.∴由题意得,所以故,∴(2)将的图象向右平移个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.∴.当,即时,单调递减,因此的单调递减区间为.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.22.(本小题12分)函数()()sin (0,)2f x x πωϕωϕ=+><在它的某一个周期内的单调减区间是511,1212ππ⎡⎤⎢⎥⎣⎦. (1)求()f x 的解析式;(2)将()y f x =的图象先向右平移6π个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),所得到的图象对应的函数记为()g x ,求函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【答案】(1)()sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)最大值为1,最小值为12-. 【解析】试题分析:(1)利用三角函数的性质可求得函数的解析式为()sin 23f x x π⎛⎫=-⎪⎝⎭; (2)首先求得函数的解析式()2sin 43g x x π⎛⎫=-⎪⎝⎭结合函数的定义域可得函数的最大值为1,最小值为12- 试题解析: (1)由条件,115212122T πππ=-=, ∴2,ππω= ∴2ω= 又5sin 21,12πϕ⎛⎫⨯+= ⎪⎝⎭∴3πϕ=- ∴()f x 的解析式为()sin 23f x x π⎛⎫=-⎪⎝⎭(2)将()y f x =的图象先向右平移6π个单位,得2sin 23x π⎛⎫- ⎪⎝⎭∴()2sin 43g x x π⎛⎫=-⎪⎝⎭而325,,488636x x πππππ⎡⎤∈∴-≤-≤⎢⎥⎣⎦∴函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值为1,最小值为12-。