电子技术基础实验指导书
- 格式:doc
- 大小:1.35 MB
- 文档页数:29
《电工与电子技术》实验指导书前言《电工与电子技术》课带实验是本课程重要的实践性教学环节。
实验的目的不仅要帮助学生巩固和加深理解所学的理论知识、更重要的是要训练他们的实验技能,树立工程实际观点和严谨的科学作风,使学生能独立进行实验。
对学生实验技能训练的基本要求是:1. 能使用常用的电工、电子仪表、仪器及电工、电子设备。
2.学习查阅元器件参数,对常用的电子元器件具有使用的基本知识。
3. 能根据电路图连接简单的电子线路接线、查线和排除简单的线路故障。
4. 能进行实验操作、观察实验现象、能准确测取数据和测绘波形曲线。
5.能整理分析实验数据、绘制曲线并写出规范的、条理清楚的、内容完整的实验报告。
本实验指导书是根据《电工与电子技术》实验大纲的要求以及电学基础实验室的现状编写。
本课程的所有实验均在实验台上开设,为了保质保量的完成每一次实验任务,学生应充分预习实验的原理,熟知实验步骤。
目录学生实验手则 (2)实验的过程、方法与实验报告内容 (3)实验一元件伏安特性测试..................... 错误!未定义书签。
实验二基尔霍夫定律验证..................... 错误!未定义书签。
实验三三相交流电路电压、电流的测量.......... 错误!未定义书签。
学生实验手则1.严格遵守实验室的规章制度及管理措施,执行实验纪律。
2.服从教师及有关实验技术人员的指导,实验前要认真预习,明确实验目的、要求、方法和步骤,认真按要求进行操作,不得在实验室内做与本实验无关的事。
3.实验中不得动用与本实验无关的仪器设备,不得动用他组的仪器、工具与材料。
实验时,按教师规定做好实验的准备工作,经指导教师检查同意后,方可开始做实验。
违反操作规程造成仪器设备及实验材料损坏者,按我校《设备器材损坏丢失处理和赔偿办法》办理。
4.严格遵守仪器设备的操作规程,设备发生故障应立即停止实验,报指导教师和实验员处理,不得擅自拆卸,严防事故,确保实验室的安全。
《电力电子技术》实验指导书电力电子实验室编华北电力大学二00六年十月1. 实验总体目标《电力电子技术》是电气工程及其自动化专业必修的专业基础课。
本实验是《电力电子技术》课程内实验,实验的主要目的是使学生在学习的过程屮通过实验环节进一步加深对电力电子电路工作原理的认识和理解,掌握测试电力电子电路的技能和方法,为后续课程打好基础。
2. 适用专业电气工程及其自动化以及和关各专业本科3・先修课程模拟电子技术基础,数字电子技术基础4.实验课时分配5. 实验环境实验室要求配有电力电子专用实验台,示波器,万用表等实验设备。
6. 实验总体要求掌握电力电子电路的测试和实验方法,拿握双踪示波器的使用方法;通过对实验电路的波形分析加深对电力电子电路工作原理的理解,建立电力电子电路的整体概念。
7. 本实验的重点、难点及教学方法建议《电力电子技术》实验的重点是:熟悉各种电力电子器件的特性和使用方法;掌握常用电力电子电路的拓扑、工作原理、控制方法和实验方法。
《电力电子技术》实验的难点是:电力电子电路的工作原理的理解和示波器的使用方法。
教学方法建议:在开始实验之前,通过多媒体设备对实验原理及实验方法进行讲解,同时对示波器的使用方法进行详细的讲解,对以通过实验演示的形式加深学牛对于实验内容的理解。
实验一、电力电子器件特性实验 (4)实验二、整流电路实验 (8)实验三、直流斩波电路实验(一)11实验四、直流斩波电路实验(二)14实验五、SPWM逆变电路实验17实验一、电力电子器件特性实验一、实验目的1 •熟悉MOSFET主要参数与开关特性的测童方法2.熟悉IGBT主要参数与开关特性的测试方法。
二、实验类型(验证型)木实验为验证型实验,通过实验对MOSFET和IGBT的主要参数和特性的测量,验证其开关特性。
三、实验仪器1 • MCL-07电力电子实验箱中的MOSFET与IGBT器件及英驱动电路部分2.双踪示波器3.毫安表4.电流表5.电压表四.实验原理MOSFET主要参数的测量电路原理图如图所示。
『数字电子技术基础实验指导书』实验一实验设备认识及门电路一、目的:1、掌握门电路逻辑功能测试方法;2、熟悉示波器及数字电路学习机的使用方法;3、了解TTL器件和CMOS器件的使用特点。
二、实验原理门电路的静态特性。
三、实验设备与器件设备1、电路学习机一台2、万用表两快器件1、74LS00 一片(四2输入与非门)2、74LS04 一片(六反向器)3、CD4001 一片(四2输入或非门)四、实验内容和步骤1、测试74LS04的电压传输特性。
按图1—1连好线路。
调节电位器,使VI在0~+3V间变化,记录相应的输入电压V1和输入电压V的值。
至少记录五组数据,画出电压传输特性。
2、测试四二输入与非门74LS00的输入负载特性。
测试电路如图1—2所示。
请用万用表测试,将VI 和VO随RI变化的值填入表1—1中,画出曲线。
表1-13、测试与非门的逻辑功能。
测量74LS00二输入与非门的真值表:将测量结果填入表1—2中。
表1—24、测量CD4001二输入或非门的真值表,将测量结果填入表1-2中。
注意CMOS 电路的使用特点:应先加入电源电压,再接入输入信号;断电时则相反,应先测输入信号,再断电源电压。
另外,CMOS 电路的多余输入端不得悬空。
五、预习要求1、阅读实验指导书,了解学习机的结构;2、了解所有器件(74LS00,74LS04,CD4001)的引脚结构;3、TTL 电路和CMOS 电路的使用注意事项。
图1-1 图1-2300V O一、实验目的1、学习并掌握小规模芯片(SSI)实现各种组合逻辑电路的方法;2、学习用仪器检测故障,排除故障。
二、实验原理用门电路设计组合逻辑电路的方法。
三、实验内容及要求1、用TTL与非门和反向器实现“用三个开关控制一个灯的电路。
”要求改变任一开关状态都能控制灯由亮到灭或由灭到亮。
试用双四输入与非门74LS20和六反向器74LS04和开关实现。
测试其功能。
2、用CMOS与非门实现“判断输入者与受血者的血型符合规定的电路”,测试其功能。
实验四射极跟随器一、实验目的1.进一步学习放大器参数的测量方法2.掌握射极跟随器的特性及测试方法二、预习要求1.熟悉射极跟随器的原理及特点。
2.结合教材练习静态工作点的估算和交、直流负载线的画法。
三、实验内容和步骤射极跟随器电路如图4-1所示。
1.按图4-1连线。
检查无误后通电,准备测量。
2.静态工作点的调整和测量令交流输入u s=0(即A点接地)。
调节R p使V E约在7V左右,测V C和V E并填入表4-1。
计算V BE、V CE,估算I E、r be。
设β=50~60。
图4-1V B(V) V E(V) V C(V) V BE (V) V CE(V)估算值I E(mA) r be(kΩ)3.理论计算根据图4-1中的元件参数,计算射极跟随器的电压放大倍、源电压放大倍数、输入电阻和输出电阻,并填入表4-2中。
A u1(R L=∞) A u2(R L=1k) A us1(R L=∞) A us2(R L=1k) R i R o4.测量A u、R i、R o保持R p不变,调节信号波发生器使其输出f=1kHz,u s=0.5V的正弦波,用晶体管毫伏表测量输入电压u i(B点对地电压)及空载输出电压u o1和负载输出电压u o2。
填入表4-3。
u s(V) u i(V) u o1(R L=∞) u o2(R L=1k) A u1A u2A s1A s2(1) 其中。
,,,so us s o us i o u i o u u uA u u A u u A u u A 12112211====与理论值比较。
(2) 计算s i s ii R u u u R -=和 s o o o R u u R ⎪⎪⎭⎫ ⎝⎛-=121,与理论值比较。
5. 电压跟随特性测试接入负载电阻,并在电路输入端加入f=1kHz 的正弦信号。
用示波器观察输出信号,直至输出电压幅度最大(没有失真),用晶体管毫伏表测u i 和u o ,填入表4-4中。
《电子技术基础》实验指导书勘查专业适用信息学院实验中心2014年9月目录第一部分《模拟电子技术》实验................................................................ - 1 -实验一电子仪器使用及常用元件的识别与测试 ..................................... - 3 -实验二晶体管共射极放大电路.................................................................. - 6 -实验三多级放大电路中的负反馈(仿真) ........................................... - 10 -实验四由集成运算放大器组成的文氏电桥振荡器(仿真) ............... - 12 -实验五集成运算放大器.................................................... 错误!未定义书签。
第二部分《数字电子技术》实验.............................................................. - 17 -实验一组合逻辑电路................................................................................ - 17 -实验二触发器............................................................................................ - 19 -实验三计数器设计.................................................................................... - 22 -实验四计数、译码和显示电路设计(仿真) ......................................... - 23 -第一部分《模拟电子技术》实验实验一电子仪器使用及常用元件的识别与测试一、实验目的1.掌握常用电子仪器的基本功能并学习其正确使用方法;2.学习掌握用双踪示波器观察和测量波形的幅值、频率及相位的方法;3.掌握常用元器件的识别与简单测试方法。
《电工电子技术》(上)实训指导书模块1 直流电路实训1 欧姆定律仿真实验1。
实验目的1) 学习使用万用表测量电阻。
2) 验证欧姆定律I=U/R 。
2。
元器件选取1)电源:Place Source →POWER_SOURCES →DC_POWER ,选取直流电源,设置电源电压为12V 。
2)接地:Place Source →POWER_SOURCES →GROUND ,选取电路中的接地。
3)电阻:Place Basic →RESISTOR ,选取R 1=10Ω,R 2=2k Ω。
4)数字万用表:从虚拟仪器工具栏调取数字万用表XMM1。
5)电流表:Place Indicators →AMMETER ,选取电流表并设置为直流档. 6)电压表:Place Indicators →VOLTMETER ,选取电压表并设置为直流档。
3。
仿真电路图1—1 数字万用表测量电阻阻值的仿真实验电路及数字万用表面板V112 VR110.0U1DC 1e-0091.200A+-XMM1a )b )图1—2 欧姆定律仿真电路及数字万用表面板4。
电路原理简述:欧姆定律I=U/R 5.仿真分析(1) 测量电阻阻值的仿真分析1)搭建图1-1a 所示的用数字万用表测量电阻阻值的仿真实验电路,数字万用表按图设置. 2)单击仿真开关,激活电路,记录数字万用表显示的读数。
3)将两次测量的读数与所选电阻的标称值进行比较,验证仿真结果。
(2) 欧姆定律电路的仿真分析1)搭建图1—2a所示的欧姆定律仿真电路。
2)单击仿真开关,激活电路,电压表和电流表均出现读数,记录R两端的电压值U和流过R的电流值I. 3)根据电压测量值U、电流测量值I及电阻测量值R验证欧姆定律。
4)改变电源V1的电压数值分别为2V、4V、6V、8V、10V、12V,读取U和I的数值,填入表1-1,根据记录数值验证欧姆定律,画出U(I)特性曲线.表1—1 记录U和I的数值V1/v U/v I1/A (R1=10Ω)I2/mA (R2=2kΩ)测量值计算值测量值计算值220。
数字电子技术基础实验指导书实验一、认识实验一、实验目的:1、熟悉面包板的结构2、进一步掌握与非门、或非门、异或门的功能3、初步尝试在面包板上连接逻辑电路 二、实验用仪器:面包板一块 74LS00一块 74LS20一块74LS02(四二输入或非门)一块、 74LS86(四二输入异或门)一块 万用表一块 导线若干 稳压电源一台三、面包板和4LS00、74LS20、74LS02、74LS86的介绍: 1面包板上的小孔每5个为一组,其内部有导线相连。
横排小孔是4、3、4(3、4、3)的结构,即每5*4(5*3)、5*3(5*4)、5*4(5*3)组横排小孔内部有导线相连。
用到的双列直插式集成块跨接在凹槽两边,管脚插入小孔。
通常用面包板的上横排小孔接电源,用下横排小孔接地。
2、74LS00的内部结构示意图:74LS00的管脚排列如上图所示,为双列直插式14管脚集成块,是四集成二输入与非门。
74LS20是二四输入与非门。
VCC 3A 3B 3Y 4A 4B 4Y VCC 2A 2B NC 2C 2D 4Y1A 1B 1Y 2A 2B 2Y GND 1A 1B NC 1C 1D 1Y GND 74LS00 74LS20VCC 3Y 3B 3A 4Y 4B 4A VCC 3B 3A 3Y 4B 4A 4Y1Y 1A 1B 2Y 2A 2B GND 1A 1B 1Y 2A 2B 2Y GND四、实验内容与步骤:1、测试面包板的内部结构情况:用两根导线插入小孔,用万用表的电阻挡分别测试小孔组与组之间的导通情况,并记录下来。
2、验证与非门的逻辑功能:1)将4LS00插入面包板,并接通电源和地。
2)选择其中的一个与非门,进行功能验证。
3)、将验证结果填入表1: 表1其中,A 、B 1”时,输入端接电源;Y 是输出端,用万用表(或发光二极管)测得在不同输入取值组合情况下的输出,并将结果填入表中。
5)分析测得的结果是否符合“与非”的关系。
电力电子技术实验指导书兰勇青岛大学自动化工程学院电气工程系实验室2012.9实验一三相半波可控整流电路的研究实验一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。
实验线路见图1-1。
图1-1 三相半波可控整流实验电路三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.MCL系列教学实验台主控制屏。
2.MCL—51组件3.MCL—52组件4.MCL—53组件5.MCL—54组件6.双踪示波器。
7.万用电表。
五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.研究三相半波可控整流电路供电给电阻性负载时的工作接上电阻性负载,合上主电源:(a)改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。
(b)记录不同α时的Ud=f(t)及id =f(t)的波形图。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—54的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A观察不同移相角α时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录不同α时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。
七.实验报告1.画出三相半波可控整流电路的主电路原理图。
第一章 数字电子技术基础实验1.1 实验设备认识及门电路功能测试一、实验目的1. 熟悉万用表及电子技术综合实验平台的使用方法;2. 掌握门电路逻辑功能测试方法;3. 了解TTL 器件和CMOS 器件的使用注意事项。
二、实验原理门电路的逻辑功能。
三、实验设备与器件1. 电子技术综合实验平台 一台2. 万用表 一块3. 器件(1) 74LS02 一片(四二输入或非门) (2) 74HC86 一片(四二输入异或门)(3) 74LS03 一片(四二输入与非门(OC)) (4) 74LS00 一片(四二输入与非门)四、实验内容和步骤1. 测试74LS02和74HC86的逻辑功能。
注意CMOS 电路的多余输入端不得悬空,应按需要接成相应的高低电平。
表中V O 为不加负载时的电压,即开路输出电压。
2.OC 门上拉电阻计算及逻辑功能测试 2.1 OC 门上拉电阻的计算OC 门输出端可以并联连接,即OC 门可以实现“线与”逻辑,但必须接一个合适的上拉电阻R L ,计算方法如下:式中:m — 负载门总输入端数 n — OC 门并联的个数 m ' — 负载门个数 I OH — OC 门输出管截止时的漏电流(对于74LS03按I OH =50μA 计算)I LM — OC 门输出管导通时允许的最大灌电流(按V OL ≤0.3V,I LM ≤7.8mA 估算)CC OHL(max)OH IHV V R nI mI -=+CC OL L(min)LM IL V V R I m I -='-I IH — 负载门每个输入端的高电平输入电流(对于74LS00按I IH =0.01 A) I IL — 每个负载门的低电平输入电流(对于74LS00按I IL =-0.25mA 估算) V CC — 电源电压(5V) V OH — 输出高电平(按3V 估算) V OL — 输出低电平(按0.3V 估算)图1.1-12.2 OC 门“线与”应用将各OC 门输入端A 、B 和C 分别接逻辑开关;Z 、Y 1和Y 2分别接LED 指示灯,连接电路图如图1.1-1所示。
《电工电子技术》实验指导书实验一 基本电工仪表的使用一、实验目的:1.熟悉实验台上仪表的使用及布局;2.熟悉恒压源与恒流源的使用及布局;3.掌握电压表与电流表内电阻的测量方法;4.掌握双踪示波器的使用;5.掌握信号发生器的使用。
二、实验原理1.在实际电路测量中,电压表在测量某两节点电压时应与该两节点并联连接,电流表在测量某一支路电流时应串接在该支路中,因此,就必须要求电压表内阻为无穷大,电流表内阻为零,但实际使用的电工仪表一般都不能满足上述要求,它们不可能为无穷大或者为零,因此当仪表接入电路时都会使电路原来状态产生变化,使被测的读数值与电路原来实际值之间产生误差,这种测量误差值的大小与仪表本身内阻值的大小密切相关。
2.测量方法a.本实验测量电流表的内阻采用“分流法”,如图1-1所示。
A 为被测内阻(RA)的直流电流表,测量前先断开开关S ,调节电流源的输出电流I 使A 表指针满偏转,然后合上开关S ,并保持I 值不变,调节电阻箱R 的阻值,使电流表A 的指针指在1/2满偏转位置,此时2II I S A ==∴==⋅+R R R R R R R A 1//11图1-1b.测量电压表的内阻采用分压法,如图1-2 所示。
V 为被测内阻(R V )的电压表,测量时先将开关S 闭合,调节直流稳压源的输出电压,使电压表V 的指针满偏转指示值为V 1,然后断开开关S ,调节R使电压表V的指示值减半,此时有R V=R+R1。
图1-2三、实验设备a)万用表500型或其他;b)EEL-06组件上的十进制可变电阻箱;c)EEL-06组件上的电阻8.2kΩ;10kΩ;d)下组件恒压源0~30V;e)下组件恒流源0~20mA;f)双踪示波器;g)信号源.四、实验内容1.根据“分流法”原理测定500型万用表直流电流1mA和10mA档量限的内阻,线路如1-1 所示。
其中R为EEL-06十进制可变电阻箱,R为EEL-06上10 kΩ/8W电阻。
电工电子技术实验指导书实验一日光灯电路及功率因数的改善一、实验目的1⒉⒊⒈数字万用表⒉交流电流表⒊ZH-12电学实验台⒋日光灯管、镇流器、电容器、起辉器⒈日光灯电路由灯管、启动器和镇流器组成,如图5-1①日光灯:灯管是内壁涂有荧光物质的细长玻璃管,管的两端装有灯丝电极,灯丝上涂有受热后易发射电子的氧化物,管内充有稀薄的惰性气体和少量的水银蒸汽。
它的起辉电压是400~500V,起辉后管压降只有80V左右。
因此,日光灯不能直接接在220V图5-1②启辉器:相当于一个自动开关,是由一个充有氖气的辉光管和一个小容量的电容器组成。
辉光管的两个金属电极离得相当近,当接通电源时,由于日光灯没有点亮,电源电压全部加在启动器辉光管的两个电极之间,使辉光管放电,放电产生的热量使到“U”形电极受热趋于伸直,两电极接触,这时日光灯的灯丝通过电极与镇流器及电源构成一个回路。
灯丝因有电流通过而发热,从而使氧化物发射电子。
同时,辉光管两个电极接通时,电极间的电压为零,辉光放电停止,倒“U”形双金属片因温度下降而复原,两电极分开,回路中的电流突然被切断,于是在镇流器两端产生一个瞬间高压。
这个高感应电压连同电源电压一起加在灯管的两端,使热灯丝之间产生弧光放电并辐射出紫外线,管内壁的荧光粉因受紫外线激发而③镇流器:它的作用一是在灯管起燃瞬间产生一高电压,帮助灯管起燃;二是在正常工作时,限制电⒉在电力系统中,当负载的有功功率一定,电源电压一定时,功率因数越小,线路中的电流就越大,使线路压降、功率损耗增大,从而降低了电能传输效率,也使电源设备得不到充分利在用户中,一般感性负载很多。
如电动机、变压器、电风扇、洗衣机等,都是感性负载其功率因数较低。
提高功率因数的方法是在负载两端并联电容器。
让电容器产生的无功功率来补偿感性负载消耗的无功功率以减少线路总的无功功率来达到提高功率因数的目的。
四、实验内⒈⒉按图5-2图5-2改善功率因数实验电路图注意:①此实验系强电,一定请指导教师检查无误后,方可通电实验。
《电子技术基础》实验指导书电子技术课组编信息与通信工程学院实验一常用电子仪器的使用一、实验类型-操作型二、实验目的1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。
2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。
三、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图1-1 模拟电子电路中常用电子仪器布局图1、示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。
现着重指出下列几点:1)、寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。
②触发方式开关置“自动”。
③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。
(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。
)2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。
“交替”显示一般适宜于输入信号频率较高时使用。
“断续”显示一般适宜于输入信号频率较低时使用。
3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。
试验一单相半波可控整流电路试验一、试验目旳(1) 加深理解锯齿波同步移相触发电路旳工作原理及各元件旳作用。
(2) 掌握锯齿波同步移相触发电路旳调试措施。
(2) 掌握单相半波可控整流电路在电阻负载及电阻电感性负载时旳工作。
(3) 理解续流二极管旳作用。
二、试验所需设备(1) DJDK-1型电力电子技术及电机控制试验装置。
其所需挂件如下:① DJK01 电源控制屏② DJK02 晶闸管主电路③ DJK03 晶闸管触发电路④ DJK06 给定及试验器件⑤ D42三相可调电阻(2) 双踪示波器三、试验内容(1) 锯齿波同步移相触发电路各点波形旳观测和分析。
(2) 单相半波整流电路带电阻性负载时U d/U2=f(α)特性旳测定。
(3) 单相半波整流电路带电阻电感性负载时U d/U2=f(α)特性旳测定。
(4) 续流二极管作用旳观测。
四、预习规定(1) 阅读本教材电力电子技术教材中有关锯齿波同步移相触发电路旳内容,弄清锯齿波同步移相触发电路旳工作原理。
(2) 复习单相半波可控整流电路旳有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时旳工作波形。
(3) 掌握单相半波可控整流电路接不一样负载时U d、I d旳计算措施。
五、思索题(1) 锯齿波同步移相触发电路有哪些特点?(2) 锯齿波同步移相触发电路旳移相范围与哪些参数有关?(3) 单相半波可控整流电路接电感性负载时会出现什么现象?怎样处理?六、试验措施1. 锯齿波同步移相触发电路调试(1)将DJK01上旳钥匙式三相“电源总开关”置于“开”旳位置,操作控制屏左上角切换开关观测输入旳三相电网电压与否平衡。
(2) 将DJK01上旳电源选择开关打到“直流调速”侧(不能打到“交流调速”侧)。
用两根导线将DJK01旳A、B(200V)交流电压接到DJK03旳“外接220V”端,按下“启动”按钮。
(3) 打开DJK03电源开关,用双踪示波器观测锯齿波同步触发电路各观测孔旳电压波形。
《数字电子技术》实验指导书实验一 TTL集成逻辑门的参数测试实验二译码器及其应用实验三触发器实验四时序电路测试与研究实验五555时基电路实验一一、实验名称: TTL集成逻辑门的参数测试二、所需设备:(1)示波器(2)四输入双与非门74LS20芯片(实际使用74HC20芯片,管脚功能与74LS20一致)(3)万用表(4)导线若干三、实验要求:①熟悉TTL与非门逻辑功能的测试方法。
②熟悉TTL与非门特性参数的意义以及传输特性的测试方法。
③进一步掌握TTL门电路的使用方法。
四、实验步骤:1.掌握芯片74LS20管脚功能74LS20管脚图2.准备所需的实验器材,按照电路原理图连接硬件实物,需仔细查看电路中的器件连接到的引脚,防止连接错误,注意芯片的插入方向。
3.观察结果,记录数据。
4.分析验证得到的结果,总结并得出心得。
五、报告模板:1.验证TTL集成与非门74LS20的逻辑功能取任一个与非门按图1—1连接实验电路,用逻辑开关改变输入端A、B、C、D逻辑电平,输出端接电平指标器及数字电压表。
逐个测试集成块中两个门,测试结果记入表1—1中。
图1—1输入输出A nB nC nD n Y1 1 1 10 1 1 11 0 1 11 1 0 11 1 1 0表1-12.74LS20主要参数的测试(1)导通电源电流I CDL按图1—2(a)接线,测试结果记入表1—2中。
图1-2(2)截止电源电流I CDH按图1—2(b)接线,此时应将两个与非门的所有输入端都接地,测试结果记入表1—2中。
(3)低电平输入电流I iL按图1—2(c)接线,测试结果记入表1—2中。
I CDL(mA)I CDH(mA)I iL( A)表1—2(4)电压传输特性按图1—3接线,调节电位器R W,使U i从0V向高电平变化,逐点测量U i 和U o的对应值,记入表1—5中。
图1-3U i(V)0 0.2 0.4 0.6 0.8 0.9 1.0 1.2 1.6 2.0 2.4 3.0U o(V)表1—5结果要求:1..整理实验数据,分析实验结果与理论计算结果的差异,并进行分析讨论。
《电子技术基础》实验指导书电子技术课组编信息与通信工程学院实验一常用电子仪器的使用一、实验类型-操作型二、实验目的1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。
2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。
三、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图1-1 模拟电子电路中常用电子仪器布局图1、示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。
现着重指出下列几点:1)、寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。
②触发方式开关置“自动”。
③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。
(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。
)2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。
“交替”显示一般适宜于输入信号频率较高时使用。
“断续”显示一般适宜于输入信号频率较低时使用。
3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。
4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。
有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。
5)、适当调节“扫描速率”开关及“Y轴灵敏度”开关使屏幕上显示一~二个周期的被测信号波形。
在测量幅值时,应注意将“Y轴灵敏度微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。
在测量周期时,应注意将“X轴扫速微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。
还要注意“扩展”旋钮的位置。
根据被测波形在屏幕坐标刻度上垂直方向所占的格数(div或cm)与“Y 轴灵敏度”开关指示值(v/div)的乘积,即可算得信号幅值的实测值。
根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或cm)与“扫速”开关指示值(t/div)的乘积,即可算得信号频率的实测值。
2、函数信号发生器函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。
输出电压最大可达20V P-P。
通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。
函数信号发生器的输出信号频率可以通过频率分档开关进行调节。
函数信号发生器作为信号源,它的输出端不允许短路。
3、交流毫伏表交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。
为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。
四、实验设备与器件1、函数信号发生器2、双踪示波器3、交流毫伏表五、实验内容1、用机内校正信号对示波器进行自检。
1) 扫描基线调节将示波器的显示方式开关置于“单踪”显示(Y1或Y2),输入耦合方式开关置“GND”,触发方式开关置于“自动”。
开启电源开关后,调节“辉度”、“聚焦”、“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。
然后调节“X轴位移”()和“Y轴位移”( )旋钮,使扫描线位于屏幕中央,并且能上下左右移动自如。
2)测试“校正信号”波形的幅度、频率将示波器的“校正信号”通过专用电缆线引入选定的Y通道(Y1或Y2),将Y轴输入耦合方式开关置于“AC”或“DC”,触发源选择开关置“内”,内触发源选择开关置“Y1”或“Y2”。
调节X轴“扫描速率”开关(t/div)和Y轴“输入灵敏度”开关(V/div),使示波器显示屏上显示出一个或数个周期稳定的方波波形。
a. 校准“校正信号”幅度将“y轴灵敏度微调”旋钮置“校准”位置,“y轴灵敏度”开关置适当位置,观查校正信号幅度。
b. 校准“校正信号”频率将“扫速微调”旋钮置“校准”位置,“扫速”开关置适当位置,读取校正信号周期。
2、用示波器和交流毫伏表测量信号参数调节函数信号发生器有关旋钮,使输出频率分别为100Hz、1KHz、10KHz、100KHz,有效值均为1V(交流毫伏表测量值)的正弦波信号。
改变示波器“扫速”开关及“Y轴灵敏度”开关等位置,•测量信号源输出电压频率及峰峰值,记入表1-1。
表1-13、测量两波形间相位差1) 观察双踪显示波形“交替”与“断续”两种显示方式的特点Y1、Y2均不加输入信号,输入耦合方式置“GND”,扫速开关置扫速较低挡位(如0.5s/div挡)和扫速较高挡位(如5μS/div挡),把显示方式开关分别置“交替”和“断续”位置,观察两条扫描基线的显示特点,记录之。
2) 用双踪显示测量两波形间相位差①按图1-2连接实验电路,将函数信号发生器的输出电压调至频率为1KHz,幅值为1V的正弦波,经RC移相网络获得频率相同但相位不同的两路信号u i和u R,分别加到双踪示波器的Y1和Y2输入端。
为便于稳定波形,比较两波形相位差,应使内触发信号取自被设定作为测量基准的一路信号。
图1-2 两波形间相位差测量电路②把显示方式开关置“交替”挡位,将Y1和Y2输入耦合方式开关置“⊥”挡位,调节Y1、Y2的()移位旋钮,使两条扫描基线重合。
③将Y1、Y2输入耦合方式开关置“AC”挡位,调节触发电平、扫速开关及Y1、Y2灵敏度开关位置,使在荧屏上显示出易于观察的两个相位不同的正弦波形u i及u R,如图1-3所示。
根据两波形在水平方向差距X,及信号周期X T,则可求得两波形相位差。
图 1-3 双踪示波器显示两相位不同的正弦波0T 360(div)X X(div)⨯=θ 式中: X T —— 一周期所占格数X —— 两波形在X 轴方向差距格数记录两波形相位差于表1-2。
表1-2为数读和计算方便,可适当调节扫速开关及微调旋钮,使波形一周期占整数格。
六、实验总结1、 整理实验数据,并进行分析。
2、 问题讨论1)如何操纵示波器有关旋钮,以便从示波器显示屏上观察到稳定、清晰的波形?2) 用双踪显示波形,并要求比较相位时,为在显示屏上得到稳定波形,应怎样选择下列开关的位置?a) 显示方式选择(Y1;Y2;Y1+Y2;交替;断续)b) 触发方式(常态;自动)c) 触发源选择(内;外)d)内触发源选择(Y1、Y2、交替)3、函数信号发生器有哪几种输出波形?它的输出端能否短接,如用屏蔽线作为输出引线,则屏蔽层一端应该接在哪个接线柱上?4、交流毫伏表是用来测量正弦波电压还是非正弦波电压?它的表头指示值是被测信号的什么数值?它是否可以用来测量直流电压的大小?七、预习要求1、阅读实验附录中有关示波器部分内容。
2、已知C=0.01μf、R=10K,计算图1-2 RC移相网络的阻抗角θ。
实验二集成运算放大器的基本应用(I)一、实验类型-验证型二、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
三、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽f BW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。
即U+≈U-,称为“虚短”。
(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路 1) 反相比例运算电路电路如图1所示。
对于理想运放, 该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。
图1 反相比例运算电路 图2 反相加法运算电路2) 反相加法电路电路如图8-2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路图3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO U R R U -=i 1FO )U R R (1U += R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图3(b)所示的电压跟随器。
图中R 2=R F ,用以减小漂移和起保护作用。
一般R F 取10K Ω, R F 太小起不到保护作用,太大则影响跟随性。
(a) 同相比例运算电路 (b) 电压跟随器图3 同相比例运算电路4) 差动放大电路(减法器)对于图4所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 )U (U R R U i1i21FO -=图4 减法运算电路图四、实验设备与器件1、±12V直流电源2、函数信号发生器3、交流毫伏表4、直流电压表5、集成运算放大器μA741×1电阻器、电容器若干。
五、实验内容实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。
1、反相比例运算电路1) 按图1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。
2) 输入f=100Hz,U i=0.5V的正弦交流信号,测量相应的U O,并用示波器观察u O和u i的相位关系,记入表1。