222222高中数学_3.1.2空间向量的基本定理课件_新人教B版选修2-1
- 格式:ppt
- 大小:527.50 KB
- 文档页数:21
第三章空间向量与立体几何3.1.2空间向量的基本定理高中数学选修2-1·精品课件引入课题平面向量中包含哪些基本定理形式?能否将平面向量的定理推广到空间向量?其形式又会有怎样的变化?知识点一:共线向量定理规定:零向量与任意向量共线.1.共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量叫做共线向量(或平行向量),记作 a ∥b .2.共线向量定理:对空间任意两个向量 a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使 a =λb .推论:如果l 为经过已知点A 且平行已知非零向量 a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP =OA +t a ,其中 a 叫做直线l 的方向向量.探究点:三点共线如何利用共线向量定理判定三点共线?AC BOAC=λABOC−OA=λ(OB−OA) OC=(1−λ)OA+λOBA、B、C三点共线⇔OC=xOA+yOB(其中O为空间中任意一点,且x+y=1)特别有:当B为线段AC的中点时OB=12(OA+OC)例1 如图所示,已知空间四边形ABCD,E、H分别是边AB、AD的中点,F、G分别是CB、CD上的点,且CF=23CB,CG=23CD.利用向量法证明四边形EFGH是梯形.[思路探索]只需证EH∥FG,且EH≠FG即证EH∥FG,且|EH|≠|FG|利用BD构建EH与FG的关系∵E、H分别是边AB、AD的中点,∴AE=12AB,AH=12AD,EH=AH−AE=12AD−12AB=12(AD−AB)=12BD=12(CD−CB)=12(32CG−32CF)=34(CG−CF)=34FG,∴EH∥FG,且|EH|≠|FG|,又F不在EH上,∴四边形EFGH是梯形.证明:跟踪训练1.设两非零向量e1、e2不共线,AB=e1+e2,BC=2e1+8e2,CD=3(e1-e2).试问:A、B、D是否共线,请说明理由.解:∵BD=BC+CD=(2e1+8e2)+3(e1-e2)=5(e1+e2),∴BD=5AB又∵B为两向量的公共点,∴A、B、D三点共线.知识点二:共面向量共面向量:平行于同一平面的向量,叫做共面向量.想一想,为什么?说明:空间任意两个向量都是共面向量,但空间任意三个向量既可能是共面的,也可能是不共面的.探究点:共面向量定理1.若 a 与b 为不共线的两个向量, p 、 a 、b 共面,p 能被 a 、b 唯一表示吗?想一想,为什么?存在唯一有序实数对(x , y ) p =x a +y b2.若存在唯一有序实数对(x , y ),使 p =x a +yb ,则 p 、 a 、b 共面吗?ab xayb p 平行四边形的对角线三个向量共面共面向量定理如果两个向量a 、b 不共线,则向量p 与a 、b共面的充要条件是:存在唯一的有序实数对(x , y )使p =x a +y b .知识点四:四点共面类似于共线向量定理可以判定三点共线,利用共面向量定理怎样判定四点共面?AP =mAB +nAC系数和等于1APCBOOP −OA =m(OB −OA)+n(OC −OA )OP =1−m −n OA +mOB +nOCP 、A 、B 、C 四点共面⇔OP =xOA +yOB +zOC (其中O 为空间中任意一点,且x +y +z =1)例2 如图所示,P是平面四边形ABCD所在平面外一点,连结PA,PB,PC,PD,点E,F,G,H分别是△PAB,△PBC,△PCD,△PDA的重心,分别延长PE,PF,PG,PH,交对边于M,N,Q,R,并顺次连结MN,NQ,QR,RM.应用向量共面定理证明:E、F、G、H四点共面.[思路探索]只需找到EF,EG,EH的线性关系证明:∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结M、N、Q、R,所得四边形为平行四边形,且有PE=23PM,PF=23PN,PG=23PQ,PH=23PR.∵MNQR为平行四边形,∴EG=PG−PE=23PQ-23PM=23MQ=23(MN+MR)=23(PN−PM)+23(PR−PM)=23(32PF−32PE)+23(32PH−32PE)=EF+EH.∴由共面向量定理得E、F、G、H四点共面.2.已知平行四边形ABCD,从平面AC外一点O引向量OE=k OA,OF=k OB,OG=k OC,OH=k OD=k,求证:(1)四点E、F、G、H共面;(2)平面EG∥平面AC.证明:(1)因为四边形ABCD是平行四边形,所以AC=AB+AD,EG=OG−OE=k OC-k OA=k AC=k(AB+AD)=k(OB−OA+OD−OA)=OF−OE+OH−OE=EF+EH.所以E、F、G、H共面.(2)EF=OF−OE=k(OB−OA)=k AB,且由第(1)问的证明中知EG=k AC,于是EF∥AB,EG∥AC.且EF∩EG=E,AB∩AC=A,所以平面EG∥平面AC.知识点五:空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在唯一有序实数组{x,y,z},使得p=x a+y b+z c.{a, b, c}为空间中的一个基底a, b, c叫做基向量.cabx ay bz c p(1)任意不共面的三个向量都可做为空间的一个基底.(2)基底不同,对于向量的分解形式不同.典例分析解:例3 若{a ,b , c }是空间的一个基底,判断{a +b ,b + c , c +a }能否作为该空间的一个基底.假设a +b ,b + c , c +a 共面,则存在实数λ,μ使得a +b =λ(b + c )+μ( c +a ),∴a +b =μa +λb +(λ+μ) c .∵{a ,b ,c }为基底,∴a ,b ,c 不共面,∴a +b ,b + c , c +a 不共面.∴{a +b ,b + c , c +a }可以作为空间一个基底.∴λ=1,μ=1,λ+μ=0,此方程组无解.是否共面3.以下四个命题中正确的是________.①空间的任何一个向量都可用三个给定向量表示;②若{a,b,c}为空间的一个基底,则a,b,c全不是零向量;③如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线;④任何三个不共线的向量都可构成空间的一个基底.【解析】因为空间中的任何一个向量都可用其他三个不共面的向量来表示,故①不正确;②正确;由空间向量基本定理可知只有不共线的两向量才可以做基底,故③正确;空间向量基底是由三个不共面的向量组成的,故④不正确.【答案】②③例4空间四边形OABC 中,M ,N 是△ABC ,△OBC 的重心,设OA =a ,OB =b ,OC = c ,用向量a ,b , c 表示向量OM ,ON ,MN .AC BO PNMac b如图,取BC 中点P ,则A 、M 、P ,O 、N 、P 分别共线,连结AP ,OP .AM =OA +AM =a +23AP=a +23×12(AB +AC ),解:利用线性运算,结合图形,对向量进行分解=a+13(OB-OA)+13(OC-OA)=a+13b-13a+13c-13a=13a+13b+13c.ON=23OP=23×12(OB+OC)=13b+13c.MN=ON-OM=13b+13c-13b-13c-13a=-13a.A CBOPNMa cb4.如图,四棱锥P-OABC的底面为一矩形,PO⊥平面OABC,设OA=a,OC=b,OP=c,E,F分别是PC和PB的中点,试用a,b,c表示BF,BE,AE,EF.解:连结BO,则BF=12BP=12(BO+OP)=12(c-b-a)=-12a-12b+12c.BE=BC+CE=-a+12CP=-a+12(CO+OP)=-a-12b+12c.AE=AP+PE=AO+OP+(PO+OC)=-a+c+12(-c+b)=-a+12b+12c.EF=12CB=12OA=12a.归纳小结1.用好已有的定理及推论:如共线向量定理、共面向量定理及推论等,并能运用它们证明空间向量的共线和共面的问题. 2.在解决空间向量问题时,结合图形,以图形为指导不但事半功倍,更是迅速解题的关键!D1.下列命题中正确的个数是()①若a与b共线,b与c共线,则a与c共线②向量a、b、c共面即它们所在的直线共面③若a∥b,则存在惟一的实数λ,使a=λb A.1B.2 C.3 D.02.已知三角形ABC中,AB|AB|+AC|AC|=AD|AD|则D点位于( )A.BC边的中线上B.BC边的高线上C.BC边的中垂线上D.∠BAC的平分线上D3.已知{a,b,c}是空间向量的一个基底,则可以与向量p=a+b,q=a-b构成基底的向量是()DA.a B.b C.a+2b D.a+2c4.设OABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若OG=x OA+y OB+z OC,则(x,y,z)为()A.(14,14,14) B.(34,34,34)C.(13,13,13) D.(23,23,23)A再见。