1.3不等式的解集同步练习2
- 格式:doc
- 大小:59.50 KB
- 文档页数:3
华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<54.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤15.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥16.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8 7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3 9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.210.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>211.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>412.不等式组的解表示在数轴上,正确的是()A.B.C.D.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=214.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣315.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥017.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0 18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.19.下列不等式中,解集为空集的是()A.B.C.D.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤327.不等式x≥2的解集在数轴上表示为()A.B.C.D.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.30.不等式组的解集在数轴上可表示为()A.B.C.D.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是.33.若不等式组有实数解,则实数m的取值范围是.34.已知关于x的不等式组无解,则a的取值范围是.35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.36.不等式组的解集是x>4,那么m的取值范围是.37.不等式6﹣12x<0的解集是.38.不等式组的解集是;不等式组的解集是.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥140.已知x=3是关于x的不等式的解,求a的取值范围.华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷参考答案与试题解析一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小【分析】由已知不等式的解集确定出a与b的大小即可.【解答】解:∵关于x的不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,即a<b,故选:B.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由﹣x≤﹣1解得x≥1,由x+1>0解得x>﹣1,不等式的解集是x≥1,在数轴上表示如图,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<5【分析】先把a看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【解答】解:由>1得,x>,由>0得,x>﹣,∵关于x的不等式>1的解都是不等式>0的解,∴≥﹣,解得a≤5.即a的取值范围是:a≤5.故选:C.【点评】本题考查了不等式的解集,解一元一次不等式,分别求出两个不等式的解集,再根据同大取大列出关于a的不等式是解题的关键.4.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤1【分析】根据不等式组有解的口诀解答即可.【解答】解:∵不等式组有解,∴m的取值范围为m>1.故选:A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥1【分析】根据已知不等式的解集,利用不等式的基本性质求出m的范围即可.【解答】解:∵(m﹣1)x>m﹣1的解集为x<1,∴m﹣1<0,解得:m<1,故选:C.【点评】本题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.6.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8【分析】首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【解答】解:,解①得:x≤m,解②得:x>﹣4,根据题意得:m>﹣4,解得:m>﹣8.故选:C.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.【分析】先移项、合并同类项、化系数为1即可求出x的取值范围,再把x的取值范围在数轴上表示出来即可.【解答】解:2x+1≥32x≥2x≥1,故选:A.【点评】本题考查的是解一元一次不等式及在数轴上表示不等式的解集,在解答此题时要注意实心圆点与空心圆点的区别.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.2【分析】首先解不等式组,求得其解集,又由,即可求得不等式组的解集,则可得到关于a的方程,解方程即可求得a的值.【解答】解:∵的解集为:﹣2≤x<a﹣1,又∵,∴﹣2≤x<1,∴a﹣1=1,∴a=2.故选:D.【点评】此题考查了在数轴上表示不等式的解集.注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>2【分析】根据不等式组的求解规律:大大取较大,小小取较小,大小小大中间找,大大小小无解,探究a的取值范围即可.【解答】解:由不等式组的解集是x>2,因此a的取值范围是a≤2.故选:A.【点评】本题考查了不等式组解集的求解方法.注意,这里的a可以等于2.11.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】利用不等式组取解集的方法判断即可得到m的范围.【解答】解:∵等式组的解集是x>4,∴m≤4,故选:A.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.12.不等式组的解表示在数轴上,正确的是()A.B.C.D.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选:D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【解答】解:解关于x的不等式ax+4<0,ax<﹣4,所以当a>0时,x<﹣;a<0时,x>﹣;a=0时,无解.由图可知,不等式的解集为x>2,故,a=﹣2.故选:C.【点评】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.14.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣3【分析】不等式两边同时除以a﹣3即可求解不等式,根据不等式的性质可以得到a﹣3一定小于0,据此即可求解.【解答】解:根据题意得:a﹣3<0,解得:a<3.故选:C.【点评】本题考查了不等式的解法,解答此题学生一定要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.15.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】首先由数轴上表示的不等式组的解集为:﹣1≤x≤2,然后解各不等式组,即可求得答案,注意排除法在解选择题中的应用.【解答】解:如图:数轴上表示的不等式组的解集为:﹣1≤x≤2,A、解得:此不等式组的解集为:﹣1≤x≤2,故本选项正确;B、解得:此不等式组的解集为:x≤﹣1,故本选项错误;C、解得:此不等式组的无解,故本选项错误;D、解得:此不等式组的解集为:x≥2,故本选项错误.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识.此题比较简单,注意掌握不等式组的解法是解此题的关键.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥0【分析】根据题意可得,不等式两边除以a后,不等式变号,从而可得出a的取值范围.【解答】解:∵ax>b的解集是,∴a<0.故选:B.【点评】此题考查了不等式的性质,注意掌握不等式两边同时除以一个负数,不等式变号.17.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0【分析】求不等式ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,因而a的范围即可确定.【解答】解:ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,则a<0.故选:A.【点评】本题主要考查了不等式的性质,不等式的左右两边同时除以同一个负数时,不等号的方向要改变.18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.【分析】利用解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1,进行解方程.【解答】解:移项得,x>4﹣2,合并同类项得,x>2,把解集画在数轴上,故选:B.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错19.下列不等式中,解集为空集的是()A.B.C.D.【分析】根据不等式组解集的确定方法:两大取大,两小取小,大小小大,中间找,大大小小无处找,即可确定.【解答】解:A、空集,故选项正确;B、解集是:x<﹣2,故选项错误;C、解集是:﹣3<x<7,故选项错误;D、解集是:x>3,故选项错误.【点评】本题考查了不等式组的解集的确定方法,正确理解法则是关键.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】根据数轴上表示不等式解集的方法进行解答即可.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】先根据数轴上表示不等式解集的方法求出此不等式组的解集,再分别求出四个选项中不等式组的解集,找出符合条件的不等式组即可.【解答】解:由数轴上不等式解集的表示方法可知,此不等式组的解集为:﹣1<x<3.A、,由①得,x>﹣1,由②得,x>3,所以此不等式组的解集为:x>3,故本选项错误;B、,由①得,x>﹣1,由②得,x<3,所以此不等式组的解集为:﹣1<x<3,故本选项正确;C、,由①得,x<﹣1,由②得,x>3,所以此不等式组无解,故本选项错误;D、,由①得,x<﹣1,由②得,x<3,所以此不等式组的解集为:x<﹣1,故本选项错误.故选:B.【点评】本题考查的是在数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=【分析】解第一个不等式得到x>3,由于不等式的解集是x>3,则对于mx<﹣1要得到x>﹣,即m为负数,再根据同大取大得3≥﹣,然后再解关于m的不等式即可.【解答】解:解x+8<4x﹣1得x>3,∵不等式组的解集是x>3,∴解mx<﹣1得x>﹣(m<0),∴3≥﹣,∴3m≤﹣1,∴m≤﹣.故选:A.【点评】本题考查了不等式组的解集:先解出各个不等式的解集,再根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【分析】先移项再系数化1,然后从数轴上找出.【解答】解:2x﹣4≤02x≤4x≤2故选:B.【点评】本题既考查了一元一次不等式的解法又考查了数轴的表示方法.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x+3≥5的解集是x≥1,大于应向右画,且包括1时,应用点表示,不能用空心的圆圈,表示1这一点,据此可求得不等式的解集以及解集在数轴上的表示.【解答】解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选:D.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心圆点,没有等于号的画空心圆圈.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式x≥2的解集在数轴上表示为()A.B.C.D.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选:C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),如果数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.【解答】解:由于x<1,所以表示1的点应该是空心点,折线的方向应该是向左,由于x≥0,所以表示0的点应该是实心点,折线的方向应该是向右,如图:故选:C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.【分析】首先解不等式,把不等式的解集表示出来,再对照答案的表示法判定则可.【解答】解:去括号得:2x+2<3x移项,合并同类项得:﹣x<﹣2即x>2.故选:D.【点评】解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.30.不等式组的解集在数轴上可表示为()A.B.C.D.【分析】在表示数轴时,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.而它们相交的地方加上阴影即为不等式的解集在数轴上的表示.【解答】解:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选:D.【点评】注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.【解答】解:不等式组的解集是x>4,得m≤4,故答案为:m≤4.【点评】本题考查了不等式组解集,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.33.若不等式组有实数解,则实数m的取值范围是m≤2.【分析】根据大小小大中间找可得答案.【解答】解:由6﹣3x≥0,解得x≤2.由x﹣m≥0,解得x≥m,由不等式组有实数解,则实数m的取值范围是m≤2,故答案为:m≤2.【点评】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).34.已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15.【分析】表示出不等式的解集,由x=5是一个解,x=4不是它的解,确定出a的范围即可.【解答】解:不等式2x+5>a,解得:x>,由x=5是不等式的一个解,但x=4不是它的解,得到4≤<5,解得:13≤a<15,则a的取值范围是13≤a<15,故答案为:13≤a<15【点评】此题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.36.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】首先解不等式﹣x+2<x﹣6得x>4,而x>m,并且不等式组解集为x >4,由此即可确定m的取值范围.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.【点评】此题主要考查了如何确定不等式组的解集,首先确定已知不等式的解集,然后结合不等式组的解集和另一个不等式的形式就可以确定待定系数m的取值范围.37.不等式6﹣12x<0的解集是x>.【分析】先移项,然后将系数化为1即可.【解答】解:移项得,﹣12x<﹣6,解得x>.【点评】本题主要考查了不等式的解法,解不等式时要注意,不等式两边都乘以或除以一个负数,要改变不等号的方向.38.不等式组的解集是x>1;不等式组的解集是x<1.【分析】根据求不等式组解集的方法求解即可.【解答】解:∵不等式组,∴此不等式组的解集为x>1;∵不等式组,∴此不等式组的解集为x<1.故答案为:x>1;x<1.【点评】本题考查的是不等式组的解集,熟知“同大取较大,同小取较小”的原则是解答此题的关键.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥1【分析】(1)在﹣2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.【解答】解:(1)如图所示;;(2)如图所示..【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.40.已知x=3是关于x的不等式的解,求a的取值范围.【分析】先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.【解答】解:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a<4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去).综上得a的取值范围是a<4.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,注意分类讨论是解题的关键.。
1.3不等式的解集一、选择:1.下列各数中,不是不等式2(x-5)<x-8的解的是( )A .-4B .-5C .-3 D.52.下面有4种说法:① x=3是不等式2x-5>0的解;②x=23不是不等式3x-2>0的解; ③ x>23是不等式3x-2>0的解集; ④ x >1中的任何一个数都能使3x-2>0成立,所以x>1也是它的解集.其中正确的有( )个A .1B .2C .3D .43.用不等式表示如图所示的解集,正确的是( )A .x >2B .x ≥2C .x<2D .x ≤24.如图所示,在数轴上表示x >-2的解集,正确的是( )ABC D5.不等式-3≤x <1的整数解的个数是( )A .3个B .4个C .5个D .无数个6.如果关于x 的不等式(a+1)x >a+1的解集为x<1,则a 的取值范围是( )A .a<OB .a<-1C .a >1. D.a>-1二、填空题:1. 不等式-1<x<2的整数解为________;2.不等式83x ≤的非负整数解为______________; 3.当x_______时,代数式x-4是负数.4.不等式mx>nx 的解集为x >0,那么m 、n 的大小关系为m____n .5.x=-20_____________不等式2123x x +≤-的解.(填“是”或“不是”) 6.不等式3x+1<9的正整数解有_______个.三、计算题:1.在-4,-2,-1,0,1,3中,找出使不等式成立的x 值:(1)5-x ≥3;(2)2x+5>3;(3)3x+3≥6;(4)3x+5<2x+3.2.在数轴上表示下列不等式的解集:(1)x>2;(2)x<-3;(3)12x≤;(4)1x≥-.3.不等式x≤2004有多少个解?有多少个正整数解?四、已知方程2x+a=7+x的根是正数,求实数a的取值范围.五、试写出一个不等式,使它的解集满足下列条件:1.不等式的正整数解只有1,2,3; 2.不等式的解中不含O.3.不等式的整数解只有-2,-1,0,1; 4.-2,-1,0都是不等式的解.六、某种商品的进价为15O元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%,那么商店最多降多少元出售此商品?七、要使不等式-3x-a≤0的解集为x≥1,那么a应满足什么条件?答案:一、1.D, 2.C, 3.D, 4.B, 5.B, 6.B二、1.0,1; 2.0,1,2; 3.<4; 4.>; 5.是; 6.2. 三、1.(1)-4,-2,-1,0,1; (2)0,1,3; (3)1,3; (4)-42.(1)(2)2(3)(4)3.解;不等式x ≤2004有无数个解,有2O04个正整数解.四、解:解方程2x +a=7十x ,得x= 7-a由已知得:7-a >0所以a < 7五、答案不惟一:如1.x<4; 2.x>2; 3.-3<x ≤1; 4.x-3<0六、解:设商店最多降x 元出售此商品,由题意,得225-x-150≥150×10%即75-x ≥15两边都加上x-15,得60 ≥ x,即x ≤60答:要保证利润不低于10%,商店最多降60元出售此商品. 七、解:不等式-3x-a ≤0,两边都加上a ,得-3x ≤a两边都除以-3,得3ax ≥-因为不等式-3x-a ≤0的解集为x ≥1.所以13a-= ,所以a=-3答:要使不等式-3x-a ≤0的解集为x ≥1,a 应等于-3.。
3 不等式的解集一、选择题x-2<0成立的是( )1.下列各数中,能使不等式12A.6B.5C.4D.22.“不超过a的数”在数轴上表示正确的是( )3.已知关于x的不等式x+a≤1的解集如图2-3-2所示,则a的值为( )A.-1B.-2C.1D.24.若关于x的不等式x-m≥-1的解集在数轴上的表示如图所示 ,则m等于( )A.0B.1C.2D.35.如图,阴影部分表示x的取值范围,则下列表示中正确的是( )A.x>-3<2B.-3<x≤2C.-3≤x≤2D.-3<x<26.不等式3x-3≥0的解的情况是( )A.有无数个解B.有两个解C.只有一个解D.无解7.函数y=63+x 中自变量x 的取值范围在数轴上表示正确的是( )8.若实数3是关于x 的不等式2x-a-2<0的一个解,则a 可取的最小正整数为 ( )A.2B.3C.4D.5二、填空题9.在-1,23,2.5,4,5中,是不等式x+5<9的解的有 个,不等式x+5<9的解集为 .10.若关于x 的不等式x ≥m-1的解集如图所示,则m 等于 .11.方程51x=-2的解有 个,不等式51x>-2的解有 个,其中负整数解有 个.12.在数4,5,6,-1中,是不等式x-2<3的解的为 .13.若关于x 的不等式(1-a)x>2可化为x<a 12-,则a 的取值范围是 .三、解答题14.已知关于x的不等式(x-5)(ax-3a+4)≤0.(1)若x=2是该不等式的解,求a的取值范围;(2)在(1)的条件下,且x=1不是该不等式的解,求符合题意的一个无理数a.15.定义新运算“⊕”:对于任意实数a,b,都有a⊕b=ab+1,等式右边是通常的加法、减法及乘法运算.比如2⊕5=2×5+1=11.若3⊕x的值小于13,求x的取值范围,并写出满足条件的非负整数解.16.用A、B两种型号的钢丝各两根焊接成周长不小于2.4 m的长方形框架,已知每根A型钢丝的长度比每根B型钢丝长度的2倍少3 cm.(1)设每根B型钢丝长为x cm,按题意列出不等式并求出它的解集;(2)如果每根B型钢丝长度有以下四种选择:30 cm,40 cm,41 cm,45 cm,那么其中哪些钢丝合适?答案1.D2.B3.A4.D5.B6.A7.A8.D9. 3;x<410. 311. 1;无数;912. 4和-113. a>114.(1)把x=2代入(x-5)(ax-3a+4)≤0,得(2-5)(2a-3a+4)≤0,解得a≤4,所以a的取值范围是a≤4.(2)由(1)得,a≤4,取a=π,此时原不等式变为(x-5)(πx-3π+4)≤0,当x=1时,不等式的左边=(1-5)(π-3π+4)=-4(4-2π),∵4-2π<0,∴不等式的左边大于0,∴x=1不是该不等式的解,∴符合题意的无理数a可以是π.15.由已知得3⊕x=3x+1<13,解得x<4,∴所求的非负整数解为0,1,2,3.16.(1)∵每根B型钢丝的长度为x cm,∴每根A型钢丝的长度为(2x-3)cm,∴2x+2(2x-3)≥240,解得x≥41.(2)∵x≥41,∴只有长度为41 cm和45 cm的钢丝满足要求.。
不等式的概念及解集同步练习题5套(含答案)同步练习题(1)知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.用 连接的式子叫做不等式;2.当x = 3时,下列不等式成立的是 ( )A 、x +3>5B 、x +3>6C 、x +3>7D 、x +3>8 3.下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个4.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥-2 B 、x <1 C 、x ≠、x <05.下列说法中,正确的是 ( )A 、x=3是不等式2x>5的一个解B 、x=3是不等式2x>5的解集C 、x=3是不等式2x>5的唯一解D 、x=2是不等式2x>5的解6.x 与3的差的2倍小于x 的2倍与3倍的差,用不等式表示为 ( ) A 、2(x-3)<(x-3) B 、2x-3<2(x-3) C 、2(x-3)<2x-3 D 、2x-3<1/2(x-3)7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A 、13cm B 、6cm C 、5cm D 、4cm 9.1.1《不等式及其解集》同步练习题(1)答案: 1.符号“<、>、≥、≤、≠” 2-7 ABDACB0-1-2知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1、在下列式子中:①x-1>3x;②x+1>y;③1/3x - 1/2y;④4<7;⑤x ≠2;⑥x=0;⑦2x-1≥y;⑧x ≠y 是不等式的是 。
1.3 不等式的解集A卷:基础题一、选择题1.下面说法正确的是()A.x=3是不等式2x>3的一个解B.x=3是不等式2x>3的解集C.x=3是不等式2x>3的唯一解D.x=3不是不等式2x>3的解2.在数轴上表示x<-3的解集,下图中表示正确的是()3.如图,数轴上表示的数的范围是()A.-2<x<4 B.-2<x≤4C.-2≤x<4 D.-2≤x≤44.如图,在数轴上表示不等式2x-6≥0的解集,正确的是()A B C D二、填空题5.a≥1的最小值是m,b≤8的最大值是n,则m+n=_____.6.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,•已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔_____支.7.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是______.8.不等式2x+3>9的解集是_____.三、解答题9.在数轴上表示下列不等式的解集:(1)x>12;(2)x≤-110.三个连续奇数之和不大于70,那么这三个奇数中最大奇数可能取的最大值是多少?11.如果方程组523,52m n am n a+=+⎧⎨+=-⎩的解满足m+n≤6,求a的取值范围.12.已知不等式3(x+5)-6>5与不等式5x+6a>4的解集相同,求a的值.B 卷:提高题一、七彩题1.(一题多解)当x 取哪些整数时,不等式x+2<12(x+5)与不等式3(x -2)+9>2x 同时成立?2.(一题多变题)已知│2x -24│+(3x -y -k )2=0,若y<0,求k 的取值范围.(1)一变:y>0,求k 的取值范围;(2)二变:k>0,求y 的取值范围;(3)三变:k<0,求y 的取值范围.二、知识交叉题3.(科内交叉题)已知x=3是方程x=2x a -1的解,求不等式(10-a )x<53的解集.三、实际应用题4.朱妞家计划用40000元装修新房,新房的使用面积为100平方米,卫生间和厨房共10平方米,厨房和卫生间装修的工料费为每平方米200元,•卫生间和厨房配套的卫生洁具和厨房厨具还要用去2000元,这种情况下,居室和客厅装修工料费x(元/•平方米)应满足什么样的条件,才不会超过预算.四、经典中考题5.(2007,青海,2分)不等式8-3x≥0的最大整数解是______.6.(2008,上海,4分)不等式x-3<0的解集是____.C卷:课标新型题1.(结论开放题)写出四个满足不等式3x-2≤5x+8的负整数解.2.(说理题)在一次“人与自然”知识竞赛中,竞赛试题共有25道,•每道题都给出4个选项,其中只有一个选项是对的,要求学生把正确选项写出来,每题选对得4分,不选或错选扣2分,如果一个学生在本次竞赛中,得分不低于60分,•那么他至少选对多少道题?3.请同学们讨论下列各题的说法对不对?如果不对,请说明理由.(1)x=3是不等式3x<11的一个解;(2)x=3是不等式3x<11的一个解集;(3)不等式3x<11的解集是x<3;(4)不等式3x<11的解集是x<11 3.参考答案A卷一、1.A 2.B 3.B4.B 点拨:不等式两边都加上6,得2x≥6,不等式两边都除以2,得x≥3.二、5.9 点拨:因为a≥1的最小值是m,所以m=1,因为b≤8的最大值是n,所以n=8,所以m+n=1+8=9.6.13 点拨:设能买钢笔x支,则买笔记本(30-x)本,依题意5x+2(30-x)≤100,解得x≤403,故最多可买钢笔13支.7.15 点拨:第三边的取值范围是4<x<10,所以第三边长的最小整数值为5,故这样的三角形的周长最小值是3+7+5=15.8.x>3 点拨:不等式2x+3>9的两边都减去3,得2x>6,不等式两边都除以2,得x>3.三、9.解:(1)如图1所示,(2)如图2所示.图1 图2点拨:在数轴上表示不等式的解集时应牢记:边界点含于解集用实心圆点,•不含于解集用空心圆圈;方向遵循“大于向右走,小于向左走”的原则.10.解:设这三个连续奇数分别为n-2,n,n+2,依题意,得n-2+n+n+2≤70,3n≤70,n≤2313,n的最大值为23,当n=23时,n+2=23+2=25.这三个奇数中最大奇数可能取的最大值是25.点拨:根据题意列出关于n的不等式,求出n的解集,当n取最大值时,求最大奇数的值.11.解:523(1)52(2)m n am n a+=+⎧⎨+=-⎩(1)+(2)得6(m+n)=4+2a,所以m+n=426a +=23a +,因为m+n≤6,所以23a +≤6,a≤16. 12.解:由3(x+5)-6>5得x>-43,由5x+6a>4得x>465a -, 由题意知-43=465a -,a=169. 点拨:本题是不等式与方程的综合综合,先解两个不等式,•根据两个不等式的解集相同得到方程,解这个方程求出a 的值.B 卷一、1.解法一:解不等式x+2<12(x+5)得2x+4<x+5,2x -x<5-4, 所以x<1.解不等式3(x -2)+9>2x 得3x -6+9>2x ,3x -2x>-3,所以x>-3.用数轴表示以上两个不等式的解集如图所示.所以x 取-2,-1,0时,两个不等式同时成立.解法二:解不等式x+2<12(x+5)得x+2<12x+52,x -12x<52-2,12x<12,x<1.解不等式3(x -2)+9>2x 得x>-3.用数轴表示以上两个不等式的解集如图所示,所以x 取-2,-1,0时,两个不等式同时成立.2.解:由非负数的性质,得2240,30,x x y k -=⎧⎨--=⎩,所以12,36.x y k =⎧⎨=-⎩, 因为y<0,所以36-k<0,所以k>36.(1)当y>0时,36-k>0,所以k<36.(2)由y=36-k 得k=36-y ,若k>0,则36-y>0,所以y<36.(3)若k<0,则36-y<0,所以y>36.点拨:本题考查非负数的性质及解简单的不等式.二、3.解:由x=2x a --1得2x=x -a -2,因为x=3,所以a=-x -2=-3-2=-5,所以不等式(10-•a)x<53为(10+5)x<53,15x<53,x<19.点拨:本题是方程与不等式的综合运用,通过解方程求出a的值,把a•的值代入到不等式,然后求不等式的解集.三、4.解:由题意得(100-10x)+10×200+2000≤40000,所以x≤400,即每平方米最多用400元才不会超过预算.四、5.2 点拨:解这个不等式,得x≤223,所以不等式8-3x≥0的最大整数解是2.6.x<3C卷1.解:-1,-2,-3,-4.点拨:解不等式3x-2≤5x+8,得x≥-5,•所有满足题意的负整数解有-1,-2,-3,-4,-5.此题答案不唯一,任意写出四个即可.2.解:设该学生选对了x道题,则不选或错选(25-x)道题,由题意,得4x-2(25-x) ≥60,解得x≥1813,所以,该生至少选对19道题.点拨:此类题目必须算清得分与失分两层意思,并用含未知数的式子表示出来方能利用不等式的邻界点和题目实际求得结果.x不能取18,理由是18不在x≥1813的范围内.3.解:(1)这句话是正确的;(2)不正确,•因为不等式的解集是所有符合条件的解的集合,3只是其中之一;(3)不等式的解集是所有符合条件的解的集合,而x<3却丢掉了其中的一部分,所以说法(3)不正确,而(4)正确.。
不等式全章同步练习(1)不等式及其解集(满分:100分,考试时间:90分钟)一、选择题:(本大题7个小题,每小题5分,共35分)1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x ;⑤a ≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.“数x 不小于2”是指( )A.x ≤2B.x ≥2C.x <2D.x >23.不等式的解集中,不包括-3的是( )A .x<-3B .x>-7C .x<-1D .x<04.不等式x <2在数轴上表示正确的是( )5. a 与-x 2的和的一半是负数,用不等式表示为( )A .12a-x 2>0B .12a-x 2<0C .12(a-x 2)<0D .12(a-x 2)>0 6. 四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是()A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>7. 下列说法中,错误的是( )A.x=1是不等式x <2的解B.-2是不等式2x-1<0的一个解C.不等式-3x >9的解集是x=-3D.不等式x <10的整数解有无数个二、填空题:(本大题5个小题,每小题4分,共20分)8. 数学表达式中:①a 2≥0 ②5p-6q<0 ③x-6=1 ④7x+8y ⑤-1<0 ⑥x≠3.不等式是________(填序号)B .D .A .C .9.比较下面两个算式结果的大小(在横线上填“>”“<”或“=”):32+42__________2×3×4, 22+22__________2×2×2,12+(34)2_________2×1×34,(-2)2+52__________2×(-2)×5, (12)2+(23)2__________2×12×23. 10.某工地实施爆破,操作人员点燃导火线后,必须在炸药爆炸前跑到m 400外安全区域,若导火线燃烧的速度为cm 1.1/秒,人跑步的速度为m 5/秒,则导火线的长x 应满足的不等式是: .11. 某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为__________.12.一个不等式的解集如图所示,则这个不等式的正整数解是________________.二、综合题:(本大题4个小题,共45分)13. (12分) 用不等式表示(1)a 的5倍加上a 的55%小于2; (2)3与x 的和的一半不小于3;(3)2131的与的n m 的和是非负数; (4)x 的2倍减去x 的41小于11.14.(10分)下列数值中哪些是不等式3x-1≥5的解?哪些不是?100,98,51,12,2,0,-1,-3,-5.15.(10分)直接写出下列各不等式的解集,并表示在数轴上:(1)x+1>0; (2)3x <6; (3)x-1≥5.16.(13分)阅读下列材料,并完成填空.你能比较2 0132 014和2 0142 013的大小吗?为了解决这个问题,先把问题一般化,比较n n+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①12__________21;②23__________32;③34__________43;④45__________54;⑤56__________65;⑥67__________76;⑦78__________87;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出2 0132 014和2 0142 013的大小关系.参考答案一、选择题1. D【解析】①②⑤⑥是不等式,③有“=”不是,④只是式子.故选D.2. B【解析】不小于即大于等于,即x≥2,故选:B.3. A【解析】在4个选项里,只有-3<-3不成立,故选A.4. A【解析】B表示x≤2,C表示x>2,D表示x≥2,故选A.5. C6. D【解析】由图可得:S>P,R<P,PR>QS,故选D.7. C【解析】解集是一个范围,不是一个数值.故选C.二、 填空题8. ①②⑤⑥.【解析】③是等式,④是式子.9. > = > > >10. 54001.1 x 11. x ≤18.12. x<3.三、 综合题13、(1)2x-5≤1.(2)13x+12x ≥0. (3)a+3≥5.(4)20%a+a>3a.14、100,98,51,12,2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解.15、(1)x >-1;(2)x <2;(3)x ≥6.16、(1)< < > > > > >(2)当n=1或2时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n .(3)2 0132 014>2 0142 013.(2)不等式的性质(满分:100分,考试时间:90分钟)一、选择题:(本大题7个小题,每小题5分,共35分)1、若x >y ,则下列式子错误的是( )A 、x ﹣3>y ﹣3B 、﹣3x >﹣3yC 、 x+3>y+3D 、 >2、已知a <b ,下列式子中,错误的是( )A 、4a <4bB 、-4a <-4b C.、a +4<b +4 D 、a -4<b -43、已知a>b ,则下列不等式中不一定成立的是( )A. a-2>b-2B. 14a>14b C. -5a<-5b D. a2>ab4、若a<b<0,有下列不等式:①a+1<b+2;②ab>1;③a+b<ab;④1a<1b.其中正确的有()A. 1个B. 2个C. 3个D. 4个5、若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27 B.18 C.15 D.126、5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.B.C.D.以上都不对7、下列命题正确的是()A、若a>b,b<c,则a>cB、若a>b,则ac>bcC、若a>b,则ac2>bc2D、若ac2>bc2,则a>b二、填空题:(本大题5个小题,每小题4分,共20分)8.如果a<b.那么3﹣2a3﹣2b.(用不等号连接)9.设a>b,则:(1)2a2b;(2)(x2+1)a(x2+1)b;(3)3.5b+1 3.5a+1.10.下边的框图表示解不等式的流程,其中“系数化为”这一步骤的依据是.11. 如果且是负数,那么的取值范围是.12.若x<﹣y,且x<0,y>0,则|x|﹣|y| 0.二、综合题:(本大题4个小题,共45分)13. (12分)把下列不等式化成“”或“”或“”或“”的形式:Ⅰ;Ⅱ;Ⅲ;Ⅳ.14.(10分)已知a ,b ,c 是三角形的三边,求证:a b +c +b c +a +c a +b<2.15.(10分)已知a ,b ,c 在数轴上的位置如图所示.(1)求|ab|a +|b|-bc |bc|的值; (2)比较a +b ,b +c ,c -b 的大小,用“>”号将它们连接起来.16.(13分) 阅读下列材料:解答 “已知 ,且 ,,试确定 的取值范围”有如下解法:解 ,又 ,. .又 ,同理得:由得,的取值范围是.请按照上述方法,完成下列问题:Ⅰ已知,且,,则的取值范围是.Ⅱ已知,,若成立,求的取值范围(结果用含的式子表示).参考答案四、选择题13.B14.B15.D16.C【解析】①∵a<b,∴a+1<b+1,b+1<b+2,∴a+1<b+2.②∵a<b<0,∴ab>bb,即a b>1.③∵a<b<0,∴a+b<0,ab>0,∴a+b<ab.④∵a<b<0,∴ab>0,∴aab<bab,∴1b<1a.17.A【解析】解:∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2①∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;又(a﹣b)2+(b﹣c)2+(c﹣a)2=3a2+3b2+3c2﹣(a+b+c)2=3(a2+b2+c2)﹣(a+b+c)2②①代入②,得3(a2+b2+c2)﹣(a+b+c)2=3×9﹣(a+b+c)2=27﹣(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选A.18.B【解析】解:∵3a+2b=2c+3d,∵a>d,∴2a+2b<2c+2d,∴a+b<c+d,∴<,即>,故选:B.由图可得:S>P,R<P,PR>QS,故选D.19.D五、填空题20.>.【解析】解:∵a<b,两边同乘﹣2得:﹣2a>﹣2b,不等式两边同加3得:3﹣2a>3﹣2b,故答案为:>.21.(1)2a>2b;(2)(x2+1)a>(x2+1)b;(3)3.5b+1<3.5a+1.【解答】(1)根据不等式的基本性质2,不等式两边乘同一个正数2,不等号的方向不变,即2a>2b;(2)根据不等式的基本性质1,不等式两边加同一个式子(x2+1),不等号的方向不变,所以(x2+1)a>(x2+1)b;(3)a>b即b>a,不等式两边乘同一个正数3.5,不等号的方向不变,不等式两边加同一个数1,不等号的方向不变,所以3.5b+1<3.5a+1.22.不等式的两边同时乘以或除以一个负数,不等式方向改变;(或不等式的基本性质)23.24.>【解答】∵x<﹣y,且x<0,y>0,∴|x |>|y |,∴不等式的两边同时减去|y |,不等式仍成立,∴|x |﹣|y |>0.故答案是:>六、 综合题13、 (1)(2)(3)(4)14、【解】 由“三角形两边之和大于第三边”可知,a b +c ,b c +a ,c a +b 均是真分数,再利用分数与不等式的性质,得a b +c <a +a b +c +a =2a b +c +a, 同理,b c +a <2b c +a +b ,c a +b <2c a +b +c . ∴a b +c +b c +a +c a +b <2a b +c +a +2b c +a +b +2c a +b +c =2(a +b +c )a +b +c=2. 15、【解】 (1)由图知,a <0,b <0,c >0,a<b<c.∴|ab|a +|b|-bc |bc|=ab a -b -bc -bc=1. (2)c -b>b +c>a +b.(1)x >-1;(2)x <2;(3)x ≥6.16、 (1)(2) ,,,,,,同理得由得 , 的取值范围是.(3)一元一次不等式课时练习一、选择题(共15小题)1.(2015·南充)若m >n ,下列不等式不一定成立的是( )A . m +2>n +2B . 2m >2nC .2m >2n D . m 2>n 2 2.(2015·嘉定区二模)如果a >b ,那么下列不等式一定成立的是( )A . a ﹣b <0B . ﹣a >﹣bC . 21a <21b D . 2a >2b 3.(2015·广东模拟)若a >b ,则下列式子正确的是( )A . ﹣4a >﹣4bB .21a <21b C . 4﹣a >4﹣b D . a ﹣4>b ﹣4 4.(2015·浙江模拟)若x >y ,则下列式子中错误的是( ) A . x ﹣3>y ﹣3 B . x +3>y +3 C . ﹣3x >﹣3y D .3x >3y 5.(2015·西安模拟)如果a <b ,那么下列不等式中一定正确的是( )A . a ﹣2b <﹣bB . a 2<abC . ab <b 2D . a 2<b 26.(2015·绵阳模拟)下列各式中正确的是( )A . 若a >b ,则a ﹣1<b ﹣1B . 若a >b ,则a 2>b 2C . 若a >b ,且c ≠0,则ac >bcD . 若c a >c b ,则a >b7.(2015·杭州模拟)已知ab =8,若﹣2≤b ≤﹣1,则a 的取值范围是( )A . a ≥﹣4B . a ≥﹣8C . ﹣8≤a ≤﹣4D . ﹣4≤a ≤﹣28.(2015·庐阳区二模)关于x 的不等式233a x x +>-的解集在数轴上表示如图所示,则a 的值是( )A . ﹣6B . ﹣12C . 6D . 12 9.(2015·福州模拟)一元一次不等式组⎪⎩⎪⎨⎧≤->+0131112x x 的解集在数轴上表示为( ) A .B .C .D .10.(2015·河南模拟)不等式组⎩⎨⎧≥+<-01123x x 的解集在数轴上表示正确的是( )A .B .C .D .11.如图,将某不等式解集在数轴上表示,则该不等式可能是( )A . 21≤≤-xB .21<≤-xC .21≤<-xD .21<<-x12.(2015·洛阳一模)不等式组⎪⎩⎪⎨⎧≥->+020131x 的解集在数轴上可表示为( )A .B .C .D .13.(2015·台州一模)不等式组的解集在数轴上表示如图,则该不等式组是( )A .⎩⎨⎧≤-≥21x xB .⎩⎨⎧≥-≤21x xC .⎩⎨⎧<->21x xD .⎩⎨⎧≤->21x x 14.(2015·邵阳县一模)不等式x ﹣1≤1的解集在数轴上表示正确的是( )A .B .C .D . 15.关于x 的一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集是( )A . x <﹣3B . x ≤﹣3C . x <﹣1D . x ≤﹣1二、填空题(共5小题)16.(2015·杭州模拟)已知﹣2<x +y <3且1<x ﹣y <4,则z =2x ﹣3y 的取值范围是17.若关于x 的不等式(1﹣a )x >2可化为x >a-12,则a 的取值范围是 . 18.若关于x 的不等式组⎩⎨⎧〉〉m x x 2的解集是x >2,则m 的取值范围是 . 19.当m 时,不等式mx <7的解集为x >m 7 20.若a >b ,则a ﹣3 b ﹣3(填>或<)三.解答题(共5小题)21.能不能找到这样的a 值,使关于x 的不等式(1﹣a )x >a ﹣5的解集是x <2.22.若不等式(2k +1)x <2k +1的解集是x >1,求k 的取值范围.23.已知a <b ,试比较21﹣3a 与21﹣3b 的大小.24.已知不等式32x ﹣1>x 与x ﹣2>﹣mx 的解集相同,求m 的值. 25.已知不等式组⎩⎨⎧〉〉m x x 3的解集是x >3,求m 的取值范围.(3)参考答案一、选择题1.答案:D2.答案:D3.答案:D4.答案:C5.答案:A6.答案:D7.答案:C8.答案:B 9.答案:D 10.答案:D 11.答案:B 12.答案:A 13.答案:D 14.答案:C 15答案:A二、填空题答案:﹣4<z <16答案:a <1答案:m ≤2答案:<0答案:>答案:a =37答案:k <﹣21. 三、答案:∵a <b ,∴﹣3a >﹣3b ,∴21﹣3a >21﹣3b . 答案:32x ﹣1>x ,得x <﹣3,答案:由不等式组⎩⎨⎧〉〉mx x 3的解集是x >3,得m ≤3.(4)一元一次不等式组课时练习一、选择题(共15小题)1.(2015•福州)不等式组12x x ≥-⎧⎨<⎩解集在数轴上表示正确的是( ) A .B .C .D .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+>-+x t x x x 235352恰有5个整数解,则t 的取值范围是( ) A . ﹣6<t <211- B ﹣6≤t <211-C . ﹣6<t ≤211-D . ﹣6≤t ≤211- 3.不等式组⎩⎨⎧>≥-6202x x 的解集为( )A . x ≥2B . x >3C . 2≤x <3D . x >24.不等式组⎩⎨⎧+〈+≥-742513x x x 的解集为( )A . x ≥2B . x <3C . 2≤x <3D . x >35.(2015•宛城区模拟)若不等式组⎩⎨⎧<->+0421x a x 有解,则a 的取值范围是( ) A . a ≤3 B . a <3 C . a <2 D . a ≤26.不等式组⎩⎨⎧-≥<-123x x 的解集是( )A . x ≥﹣1B . x <5C . ﹣1≤x <5D . x ≤﹣1或x >57.若关于x 的不等式组⎩⎨⎧≤-<-1270x m x 的整数解共有5个,则m 的取值范围是( )A . 7≤m ≤8B . 7≤m <8C . 7<m ≤8D . 7<m <88.关于x 的不等式组⎩⎨⎧>-≥-125x a x 只有五个正整数解,则实数a 的取值范围是( )A . ﹣4<a <﹣3B . ﹣4≤a ≤﹣3C . ﹣4≤a <﹣3D . ﹣4<a ≤﹣39.不等式组⎩⎨⎧<=≥+0201x x 的整数解是( )A . ﹣1B . ﹣1,1,2C . ﹣1,0,1D . 0,1,210.(2015春•阳谷县期中)若关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 无解,则m 的取值范围为()A . m >﹣B . m ≤C . m <﹣D . m ≥﹣11.把不等式组⎩⎨⎧>-≥-3642x x 的解集表示在数轴上,正确的是( )A .B .C .D .12.若不等式组⎩⎨⎧>-<+mx x x 346的解集是x >3,则m 的取值范围是( )A . m >3B . m =3C . m ≤3D . m <313.不等式组⎩⎨⎧≥-<0162x x 的解集为( )A . 1≤x <3B . ﹣1≤x <3C . 1<x ≤3D . ﹣3≤x <114.不等式组⎩⎨⎧-≥->-201x x 的解集正确的是( )A . 1<x ≤2B . x ≥2C . x <1D . 无.15定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.如果[a ]=﹣3,则a 的取值范围为( )A . ﹣4<a ≤﹣3B . ﹣4≤a <﹣3C . ﹣3<a ≤﹣2D . ﹣3≤a <﹣2二.填空题(共5小题)16.不等式组⎩⎨⎧<-<+4232x x 的解集为 . 17.不等式组⎩⎨⎧>-+≥+xx x 33)3(211的解集是 .18.(2015•惠安县一模)不等式组⎩⎨⎧<->+0201x x 的解集是 . 19.不等式组⎩⎨⎧->>-42301x x x 的非负整数解是 .20.若关于x 的不等式组⎩⎨⎧>-≤-052a x x 无解,则a 的取值范围是 .三.解答题(共5小题)21.解不等式组:⎩⎨⎧>-+-≤-0)3()1(202x x x ,并把它的解集在数轴上表示出来.22.解不等式组:⎩⎨⎧->+>+)2(41512x x x .23.解不等式组⎪⎩⎪⎨⎧-<--+≥+-xx x x 8)1(311323,并把解集在数轴上表示出来.24.(2015•北京校级模拟)解不等式组⎪⎩⎪⎨⎧<-+≤+x x x x 321)2(542,并求它的整数解.25.解不等式组:⎪⎩⎪⎨⎧+<-->-425)1(312x x x x .(4)参考答案一、选择题(共15小题)1.答案:A 2.答案:C 3.答案:B 4.答案:C 5.答案:B 6.答案:C7.答案:C 8.答案:D 9.答案:C 10.答案:Bs 11.答案:A 12.答案:C13.答案:A 14.答案:A 15答案:D二.填空题(共5小题)16. 答案:﹣2<x <1 17.答案:0≤x <3 18.答案:﹣1≤x ≤2 19.答案:0 20.答案:a ≥7三.解答题(共5小题)21.答案:解集为:﹣1<x ≤2. 22.解不等式组:⎩⎨⎧->+>+)2(41512x x x . 答案:不等式组的解集是2<x <323.答案:不等式组的解集为:﹣2<x ≤1.在数轴上表示不等式组的解集为:24. 答案:原不等式组的整数解为﹣2,﹣1,0,1,2.25.答案:不等式组的解集为﹣1<x <2。
《不等式的性质》同步练习题(1)知识点:1 、不等式的性质 1:不等式的两边加上 ( 或减去 ) 同一个数 ( 或式子 ) ,不等号的方向不变,用式子表示:假如 a>b,那么 a±c>b±c.2 、不等式的性质 2:不等式的两边乘以 ( 或除以 ) 同一正数,不等号的方向不变,a b>c.用式子表示:假如 a > b , c>0,那么 ac > bc或 c3 、不等式的性质 3:不等式两边乘以 ( 或除以 ) 同一个负数,不等号的方向改变,a b用式子表示: a>b,c<0,那么, ac < bc或c<c.。
二、知识观点1. 用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的全部解,构成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,而且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,对于同一未知数的几个一元一次不等式合在一同,就构成6.了一个一元一次不等式组。
7.定理与性质不等式的性质:不等式的基天性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基天性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基天性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要修业生经历成立一元一次不等式(组)这样的数学模型并应用它解决实质问题的过程,领会不等式(组)的特色和作用,掌握运用它们解决问题的一般方法,提升剖析问题、解决问题的能力,加强创新精神和应用数学的意识。
同步练习:1. 用 a >b ,用“<”或“>”填空:⑴ a + 2 b +2⑵ 3a 3b⑶ - 2a - 2b ⑷ a -b 0 ⑸ -a -4-b -4 ⑹ a -2b - 2;2. 用“<”或“>”填空:⑴若 a - b <c -b ,则 a c⑵若 3a > 3b ,则 a b ⑶若- a <- b ,则 a b ⑷若 2a + 1< 2b +1,则 a b3. 已知 a > b ,若 a <0 则2a ,若 a > 则2a ;a b 0 ab4. 用“<”或“>”填空:⑴ 若 a -b >a 则 b 0 ⑵ 若 ac 2 > bc 2 则 a b ⑶ 若 a<- b 则a- b⑷ 若 a <b 则 a - b 0⑸ 若 a <0,b 0时 ab ≥ 05. 若 a <a,则 a 必定知足( )32A 、 a >0B 、 a < 0C 、 a ≥0D 、 a ≤06. 若 x >- y ,则以下不等式中成立的有( )A 、 x + y < 0B 、 x - y > 0C 、2x >2yD 、>a a 3x+3y 7. 若 0<x <1,则以下不等式成立的是()A 、 x 2> 1> xB、 1> x 2 > xxxC 、 x > 1> x 2D、 1> x > x 2xx8. 若方程组 3x yk 1的解为 x ,y ,且 x+y >0,则 k 的范围是( )x 3y 3A 、k >4B 、 k >- 4C 、k <4D 、k <- 49. 用不等式表示以下各式,并利用不等式性质解不等式。
《1.3 集合的基本运算》分层同步练习(一)基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.44.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或36.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是_________,若A∩B=∅,则a的范围为_________.能力提升9.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)等于( )A. {x|1<x<2}B.{x|x≥1}C.{x|x≤2}D.{x|x≤1或x≥2}10.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.11.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案解析】基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【答案】B【解析】因为U={1,2,3,4,5},A={1,2},所以∁U A={3,4,5}.2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】图中阴影部分表示的集合是(∁UA)∩B={2,4}.故选D.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.4【答案】D【解析】因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}【答案】A【解析】在数轴上分别表示集合M和N,如图所示,则M∪N={x|x<-5,或x>-3}.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或3【答案】B【解析】因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)【答案】C【解析】由题意易得B A,画出如图所示的示意图,显然U=A∪(∁U B),故选C.7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.【答案】{a|a≥6}【解析】由图示可知a≥6.所以a的取值范围为{a|a≥6}8.已知集合A={x|1≤x ≤2},B={x|x<a},若A ∩B=A,则实数a 的取值范围是_________,若A ∩B=∅,则a 的范围为_________.【答案】{a|a>2} {a|a ≤1}【解析】根据题意,集合A={x|1≤x ≤2},若A ∩B=A,则有A ⊆B,必有a>2,若A ∩B=,必有a ≤1.能力提升9.已知全集U=R,M={x|x ≤1},P={x|x ≥2},则∁U(M ∪P)等于( )A. {x|1<x<2}B.{x|x ≥1}C.{x|x ≤2}D.{x|x ≤1或x ≥2}【答案】A【解析】因为M ∪P={x|x ≤1或x ≥2},所以∁U(M ∪P)={x|1<x<2}.故选A.10.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b=________.【答案】-4【解析】如图所示,可知a=1,b=6,2a-b=-4.11.已知全集U=R,集合A={x|-2≤x ≤5},B={x|a+1≤x ≤2a-1}且A ⊆∁U B,求实数a 的取值范围.【答案】见解析【解析】若B=∅,则a+1>2a-1,则a<2,此时∁U B=R,所以A ⊆∁U B;若B ≠∅,则a+1≤2a-1,即a ≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A ⊆∁U B,如图,则a+1>5,所以a>4,所以实数a 的取值范围为{a|a<2,或a>4}.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案】见解析【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.《1.3 集合的基本运算》分层同步练习(二)(第1课时)巩固基础1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|1≤x≤2} 3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是( )A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A4.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( ) A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M∪N={1,2,3,4}的集合N的个数是( ) A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( )A.t<-3 B.t≤-3 C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________. 9.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.综合应用11.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B =A,则( )A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0.0或3 C.1.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。
第01讲不等关系、不等式的基本性质、不等式的解集(5类热点题型讲练)1.了解不等式的概念;将自然语言转化为符号语言.2.经历不等式基本性质的探索过程,初步体会不等式与等式的异同.3.掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式.4.理解不等式的解与解集的意义.知识点01不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.特别说明:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等于”即“不小于”,表示左边的量不小于右边的量(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.知识点02不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c ).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c ).特别说明:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.知识点03不等式的解与解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.注意:不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立;②能够使不等式成立的所有数值都在解集中题型01不等式的定义【例题】(2023下·辽宁抚顺·七年级统考期末)下列数学式子:①30 ;②230x y ;③1x ;④222x xy y ;⑤13x ;其中是不等式的有()A .5个B .4个C .3个D .2个【答案】C【分析】根据不等式的定义:用不等号连接的式子是不等式,逐个进行判断即可.【详解】解:①30 ,是不等式,符合题意;②230x y ,是不等式,符合题意;③1x ,是等式,不符合题意;④222x xy y ,是多项式,不符合题意;⑤13x ,是不等式,符合题意;综上:是不等式的有①②⑤,共3个,故选:C .【点睛】本题主要考查了不等式的定义,解题的关键是掌握用不等号连接的式子是不等式.【变式训练】1.(2023下·全国·八年级假期作业)有下列式子:①30 ;②350 x ;③26x ;④2x ;⑤0y ;⑥220x .其中不等式的个数是()A .2B .3C .4D .5【答案】C【解析】略2.(2023下·河北保定·八年级统考阶段练习)下列各式:①8x ;②523x ;③3x ;④3210x x ,不等式的个数是()A .1B .2C .3D .4【答案】B【分析】运用不等式的定义进行判断.【详解】解:①8x 没有不等号,不是不等式;②523x 是不等式;③3x 是不等式;④3210x x 是等式;∴不等式的个数是2个,故选:B .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号: 、 、 、 、 .题型02列不等式【变式训练】题型03不等式的基本性质【例题】(2023上·湖南永州·八年级校考阶段练习)下列判断不正确的是()A .若a b ,则44a bB .若23a a ,则0aC .若a b ,则22ac bc D .若22ac bc ,则a b【答案】C 【分析】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质即可得到答案.【详解】解:若a b ,则44a b ,故选项A 正确;若23a a ,则0a ,故选项B 正确;若a b ,则22(0)ac bc c ≠,故选项C 不正确;若22ac bc ,则a b ,故选项D 正确.故选C .【变式训练】题型04利用不等式的基本性质解不等式【例题】(2023下·湖南衡阳·七年级校考期中)下列说法中,正确的是()A .不等式28x 的解集是4x B .5x 是不等式28x 的一个解C .不等式28x 的整数解有无数个D .不等式28x 的正整数解有4个【答案】C【分析】先求出不等式的解集,再依次判断解的情况.【详解】解:A 、该不等式的解集为4x ,故错误,不符合题意;B 、∵258 ,故错误,不符合题意;C 、正确,符合题意;D 、因为该不等式的解集为4x ,所以无正整数解,故错误,不符合题意;故选:C .【点睛】本题考查了不等式的性质和不等式的解集的理解,解题关键是根据解集正确判断解的情况.【变式训练】1.(2023下·八年级课时练习)下列说法错误的是()A .5是不等式26 x 的解B .2是不等式350x 的解C .284x 的解集是6x D .3x 的解集就是1、2、3【答案】D【分析】根据不等式的性质即可求解.【详解】解:A 选项,5是不等式26 x 的解,把5x 代入不等式,不等式成立,故正确;B 选项,2是不等式350x 的解,把2x 代入不等式,不等式成立,故正确;C 选项,284x 的解集是6x ,解不等式284x 得6x ,故正确;D 选项,3x 的解集就是1、2、3,3x 不是不等式的解,故错误.故选:D .【点睛】本题主要考查不等式的性质解一元一次不等式,掌握不等式的性质是解题的关键.2.(2023下·七年级课时练习)下列说法错误的是()A .不等式5100x 的解是3B .3是不等式5100x 的解C .不等式5100x 的解集是2x D .2x 是不等式5100x 的解集【答案】A【分析】使不等式成立的未知数的值叫做不等式的解,能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集,结合各选项进行判断即可.【详解】解∶A 、3是不等式5100x 的解,但是不等式5100x 的解集不是3,故本选项错误,符合题意;B 、3是不等式5100x 的解,说法正确,故本选项不符合题意;C 、不等式5100x 的解集是2x ,说法正确,故本选项不符合题意;D 、2x 是不等式5100x 的解集,说法正确,故本选项不符合题意.故选∶A .【点睛】本题考查了不等式的解及解集,注意区分不等式的解与解集是解题的关键.题型05不等式的解集【例题】(2023下·河南周口·八年级校联考阶段练习)将下列不等式化成“x a ”或“x a ”的形式:(1)541x x ;(2)27x .【答案】(1)1x (2)9x 【分析】(1)利用不等式的性质求解即可;(2)利用不等式的性质求解即可.【详解】(1)解:两边同时减去4x ,,即1x ;(2)解:两边同时加上2,得9x ,两边同时乘1 ,得9x .【点睛】本题考查不等式的性质,解答关键是熟知不等式的基本性质:不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.【变式训练】一、单选题1.(2023下·山东淄博·七年级统考期末)在下列数学表达式中,不等式的个数是()①30 ;②430x y ;③3x ;④5x ;⑤23x y .A .2个B .3个C .4个D .5个【答案】C【分析】由不等号( , , , , )连接的式子叫不等式,据此进行判断.【详解】不等式有:①30 ;②430x y ;④5x ;⑤23x y .所以共有4个故选择:C .【点睛】本题考查来了不等式的定义,熟练掌握不等式的定义是解题的关键.A .由a b ,得ac bcB .由ac bc ,得a bC .由a b ,得22ac bc D .由22ac bc ,得a b【答案】D 【分析】本题主要考查了不等式的性质,解题的关键是熟练掌握不等式的基本性质,“不等式的性质1:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式的性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变”.【详解】解:A .当0c 时,a b ∵,ac bc ,故选项错误,不符合题意;B .当0c ,ac bc ∵,a b ,故选项错误,不符合题意;C .当20c ,由a b ,得22ac bc ,故选项错误,不符合题意;D .由22ac bc ,得a b ,故选项正确,符合题意.故选:D .二、填空题,三、解答题9.(2023下·全国·七年级假期作业)下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.13.(2023下·七年级课时练习)阅读下面解题过程,再解题.已知a b ,试比较20171a 与20171b 的大小.解:因为a b ,①所以2017>2017a b ,②所以20171>20171a b .③问:(1)上述解题过程中,从第________步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.【答案】(1)②;(2)错误地运用了不等式的基本性质3(3)见解析【分析】(1)由不等式的性质可得第②步开始出现错误;(2)由不等式的两边都乘以同一个负数,不等号的方向要改变可得错误原因;(3)正确的运用不等式的性质解题即可得到答案.【详解】(1)解:上述解题过程中,从第②步开始出现错误;(2)错误地运用了不等式的基本性质3,即不等式两边都乘以同一个负数,不等号的方向没有改变;(3)∵a b ,∴20172017a b ,∴2017120171a b ;【点睛】本题考查的是不等式的基本性质的应用,熟记不等式的基本性质是解本题的关键.14.(2023上·黑龙江哈尔滨·八年级哈尔滨市第十七中学校校考开学考试)(1)如果0a b ,那么a ______b ;如果0a b ,那么a ______b ;如果0a b ,那么a ______b .(填“ ”、“ ”或“ ”)(2)试用(1)提供的方法比较2327x x 与2427x x 的大小.【答案】(1) , , (2)22327427x x x x【分析】(1)分别将b 移项,即可求解;(2)作差:22327427x x x x ,判断结果,即可求解.【详解】解:(1)∵0a b , a b ,∵0a b , a b ,∵0a b , a b ,故答案: , , ;(2)由题意得22327427x x x x 22327427x x x x 2x ,20x Q ,20x ,223274270x x x x ,22327427x x x x .【点睛】本题考查了作差法比较大小,整式加减,掌握比较方法是解题的关键.。
1.3 不等式的解集一、课前练习:解下列不等式或方程组(1)3(x -1)<4x +2 (2)2132->+x x (3)⎩⎨⎧=+=+42634y x y x (4)1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩二、教学新课:例1.已知方程3(x -2a )+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。
解:解方程得x =215-a ,代入不等式2(x -5)≥8a 中有5a -1-10≥8a ,所以a ≤-311。
例2.如果方程组,⎩⎨⎧-=++=+m y x m y x 13313的解满足x +y >0,求m 的取值范围,并把m 的值表示在数轴上.解法1:解得:m >-1解法2:解原方程组得解为⎪⎪⎩⎪⎪⎨⎧-=+=431415my m x ∵方程组的解满足x +y >0 ∴431415m m -++>0 即5m +1+1-3m >0,解得:m >-1例3.某校校长带领该校市级“三好学生”去北京旅游,甲旅行社说:如果买一张全票则其余学生可享受半价优惠.乙旅行社说:包括校长在内全部按票价的6折优惠(即按全价的60%收费).已知全票价为240元.(1)设学生人数为x ,甲、乙旅行社收费分别用y 甲、y 乙表示,分别写出y 甲、y 乙与x 的函数关系式.(2)当学生是多少时,两家旅行社收费相同? (3)当x >4时,选择哪家旅行社较合算?解:(1)y 甲=240+240x ·50%,即y 甲=240+120x y 乙=240(x +1)·60%,即y 乙=144x +144(2)若y 甲=y 乙,则240+120x =144x +144 解得:x =4(3)y 甲-y 乙=240+120x -(144x +144)=-24x +96 当x >4时,-24x +96<0, 即y 甲<y 乙这时选择甲旅行社较合算.三、课堂练习:一、选择题:1.使不等式x -5>4x -1成立的最大整数是( ) A.-1 B.-2 C.2 D.02.若方程组⎩⎨⎧-=-=+323a y x y x 的解是正数,那么( )A.a >3B.a ≥6C.-3<a <6D.-5<a <33.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个4.不等式ax +b >0(a <0)的解集是( ) A.x >-ab B.x <-ab C.x >ab D.x <ab5.如果不等式(m -2)x >2-m 的解集是x <-1,则有( )A.m >2B.m <2C.m =2D.m ≠2 6.若关于x 的方程3x +2m =2的解是正数,则m 的取值范围是( ) A.m >1 B.m <1 C.m ≥1 D.m ≤1 7.已知(y -3)2+|2y -4x -a |=0,若x 为负数,则a 的取值范围是( ) A.a >3 B.a >4 C.a >5 D.a >6二、填空题:1.当132<<m 时,点P (1,23--m m )在第 象限.2.(1)若0<<b a ,则)(21a b - 0;(2)22+-a a 1+-a (用“<”或“>”填空)3.若12+>+b b a ,则a b (用“<”、“=”或“>”填空)4.若不等式03>+-n x 的解集是2<x ,则不等式03<+-n x 的解集是 .5.如果关于x 的不等式()51+<-a x a 和42<x 的解集相同,则a 的值为 .6.不等式3(x +2)≥4+2x 的负整数解为________.7.若代数式2)52(3+k 的值不大于代数式5k -1的值,则k 的取值范围是________.8.如果三角形的三边长分别是3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________. 三、解答题:1.如果不等式4x -3a >-1与不等式2(x -1)+3>5的解集相同,请确定a 的值2.已知方程012=+ax 的解是3=x ,求不等式()62-<+x a 的解集。
第二章一元一次不等式和一元一次不等式组2.3不等式的解集一、单选题1.(2022春·安徽亳州·七年级统考阶段练习)下列解集中,包括2的是()A .2xB .3x C .3x D .2x 【答案】C【分析】根据不等式表示的解集范围进行判断即可.【详解】解:A .2x 表示比2小的数,不包含2,故A 不符合题意;B .3x 表示比3大或与3相等的数,不包含2,故B 不符合题意;C .3x 表示比3小或与3相等的数,包含2,故C 符合题意;D .2x 表示比2大的数,不包含2,故D 不符合题意.故选:C .【点睛】本题主要考查了不等式的解集,解题的关键是熟练掌握不等式解集的定义.2.(2022春·甘肃兰州·八年级校考期中)如果关于x 的不等式 11a x a 的解集为1x ,则a 的取值范围是()A .a<0B .1a C .1a D .1a 【答案】B【分析】根据不等式的性质,可得答案.【详解】解:∵关于x 的不等式 11a x a 的解集为1x ,∴10a ,解得1a ,故选:B .【点睛】本题主要考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,解题关键是熟记不等式的性质,正确应用.3.(2022春·四川眉山·七年级统考期末)下列各数中,满足不等式0x 的是()A .4B .0C .1D .3【答案】A【分析】根据各项数据的大小,判断其是否满足不等式的解集即可.【详解】∵-4<0,0<1<3,x <0,∴满足条件的只有-4,故选:A .【点睛】本题考查了不等式解集的知识,关键是明白不等式解的取值范围.4.(2022春·贵州贵阳·八年级统考期中)解集在数轴上表示为如图所示的不等式的是()A .2xB .2xC .2xD .2x 【答案】C【分析】根据数轴可以得到不等式的解集.【详解】解:根据不等式的解集在数轴上的表示,向右画表示>或⩾,空心圆圈表示>,故该不等式的解集为x >2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键5.(2022秋·八年级单元测试)某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,根据题意得()A .10x ﹣5(20﹣x )≥120B .10x ﹣5(20﹣x )≤120C .10x ﹣5(20﹣x )<120D .10x ﹣5(20﹣x )>120【答案】D【分析】根据小明得分要超过120分,列出不等式即可解答;【详解】解:根据题意:小明答对x 道,打错20-x 道,∴10x+(﹣5)(20-x )>120,∴10x ﹣5(20-x )>120,故选:D ;【点睛】本题考查了一元一次不等式的应用,根据题意准确判断不等式符号是解题关键.6.(2022秋·浙江金华·八年级校考阶段练习)A 疫苗冷库储藏温度要求为06℃~℃,B 疫苗冷库储藏温度要求为28℃~℃,若需要将A ,B 两种疫苗储藏在一起,则冷库储藏温度要求为()A .02℃~℃B .08℃~℃C .26℃~℃D .68℃~℃【答案】C【分析】将A ,B 两种疫苗储藏在一起,冷库储藏温度正好是A 疫苗冷库储藏温度的最低度数和B 疫苗冷库储藏温度的最高度数.【详解】解:∵A 疫苗冷库储藏温度要求为06℃~℃,B 疫苗冷库储藏温度要求为28℃~℃,∴A ,B 两种疫苗储藏在一起,冷库储藏温度要求为26℃~℃.故选:C .【点睛】此题考查了不等式,一般地,用不等号表示不相等关系的式子叫做不等式,解题的关键是读懂题意,搞懂A 疫苗冷库储藏温度和B 疫苗冷库储藏温度的要求.二、填空题7.(2023春·七年级课时练习)写出一个解集为3x 的一元一次不等式___________.【答案】30x (答案不唯一)【分析】根据题意写出符合要求的不等式即可.【详解】解:解集为3x 的一元一次不等式可以是30x ,故答案为:30x (答案不唯一).【点睛】本题主要考查了一元一次不等式的定义及解集,解题的关键是理解一元一次不等式解集的定义.8.(2021春·八年级课时练习)在0,4 ,3,3 ,15,5 ,4,10 中,_______是方程40x 的解;_____是不等式40x 的解;_____是不等式40x 的解.9.(2020春·八年级统考课时练习)一个数x 的3与-4的差不小于这个数的2倍加上5所得的和,则可列不等式为________.10.(2021春·八年级课时练习)有下列说法:①x=4是不等式4x-5>0的解;②x=2是不等式4x-5>0的一个解;③x>54是不等式4x-5>0的解集;④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集.其中正确的是__.(填序号)三、解答题11.(2021春·八年级课时练习)将下列不等式的解集分别表示在数轴上:(1)0x ;(2) 2.5x ;(3)23 x ;(4)4x .【答案】画图见解析.【分析】根据在数轴上表示不等式的解集的方法分别画出所求范围即可.【详解】解:(1)如图所示:;(2)如图所示:;(3)如图所示:;(4)如图所示:.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.12.(2021春·八年级课时练习)某弹簧测力计的测量范围是0至50N ,小明未注意弹簧测力计的测量范围,用弹簧测力计测量了一个物体,取下物体后,发现弹簧没有恢复原状.你知道这个物体的重力在什么范围吗?【答案】这个物体的重力大于50N .【分析】根据已知得出弹簧测力计的测量范围是0至50N ,再根据已知用弹簧测力计测量一个物体,取下物体后,发现弹簧没有恢复原状得出答案即可.【详解】解:∵弹簧测力计的测量范围是0至50N ,用弹簧测力计测量一个物体,取下物体后,发现弹簧没有恢复原状,∴这个物体的重力大于50N .【点睛】本题考查了不等式的定义,能根据题意得出不等式是解此题的关键.一、填空题1.(2023春·八年级课时练习)若关于x ,y 的二元一次方程组428321x y a y x的解满足2x +y >5,则a 的取值范围是_______.【答案】4a 【分析】将两根方程相加可得29x y a ,根据25x y 得出关于a 的不等式,解之可得答案.【详解】解:将两个方程相加可得29x y a ,∵25x y ,∴95a ,解得4a ,故答案为:4a .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数时,不等号方向要改变.2.(2023春·七年级课时练习)若关于x的不等式32的正整数解是1,2,3,4,则x a整数a的最小值是______.k ________(填“是”或“不是”)不等式2211的解.x x∴k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,∵-2>-9,∴k +1不是不等式221x x 的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.4.(2021秋·江西景德镇·七年级景德镇一中校考期中)以下说法正确的是:_______.①由ab bc ,得a c ;②由22ab cb ,得a c ③由b a b c ,得a c ;④由20212021a c ,得a c ⑤n a 和()n a 互为相反数;⑥3x 是不等式21x 的解【答案】②③④【分析】根据不等式的基本性质得出结论即可.【详解】解:①由ab bc ,当0b <时,得a c <,故结论①错误;②由22ab cb ,得a c ,故结论②正确;③由b a b c ,得a c ;故结论③正确;④由20212021a c ,得a c ;故结论④正确;⑤n a 和()n a 互为相反数,当n 为奇数时,()n n a a ,故结论⑤错误;⑥1x 是不等式21x 的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.5.(2023春·八年级课时练习)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是______.【答案】8【分析】已知从甲地到乙地共需支付车费15.5元,从甲地到乙地经过的路程为x 千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【详解】解:设他乘此出租车从甲地到乙地行驶的路程是x 千米,依题意,可得:8 1.5315.5x (),解得:8x .即:他乘此出租车从甲地到乙地行驶路程不超过8千米.故答案为:8.【点睛】此题主要考查了一元一次不等式的应用,根据题意明确其收费标准分两部分是解本题的关键.二、解答题6.(2023春·八年级课时练习)解不等式并在数轴上表示它们的解集:(1)2110x x (2)225232x x 【答案】(1)3x ,图见解析(2)1x ,图见解析【分析】(1)根据一元一次不等式的解法:移项、合并同类项、系数化为1即可得到答案,再结合不等式解集在数轴上的表示作出图形即可;(2)根据一元一次不等式的解法:去分母、去括号、移项、合并同类项、系数化为1即可得到答案,再结合不等式解集在数轴上的表示作出图形即可.【详解】(1)解:2110x x ,移项:2101x x ,合并同类项:39x ,系数化为1:3x ,不等式的解集为3x ,在数轴上表示不等式的解集:;(2)解:去分母: 2221235x x ,去括号:4412315x x ,移项:4312154x x ,合并同类项:77x ,系数化为1:1x ,不等式的解集为1x ,在数轴上表示不等式的解集:.【点睛】本题考查一元一次不等式的解法和在数轴上表示不等式的解集,掌握一元一次不等式的解法步骤是解决问题的关键,注意:在数轴上表示不等式解集时,①分清实心点与空心点;②解集作图的方向.7.(2023春·八年级课时练习)已知关于x 的方程23x a ,(1)若该方程的解满足1x ,求a 的取值范围;(2)若该方程的解是不等式 32541x x 的最小整数解,求a 的值.【答案】(1)1a (2)5a 【分析】(1)先求出方程的解,再根据方程的解满足1x ,得到关于x 的不等式,即可求解;的最小整数解,可A和3台B花费1650元;购进1台A和2台B花费1000元.(1)求A和B两种型号的压力锅每台进价分别是多少元.(2)为了满足市场需求,超市决定用不超过19150元采购A、B两种型号的压力锅共60台,且B型号压力锅的数量的2倍不低于A型号压力锅,该商场有几种进货方式.(3)在(2)的条件下A型号压力锅促销期间售价是389元,B型号压力锅促销期间售价是469元,该超市选择哪种进货方式利润最大.【答案】(1)A型号压力锅的进价为300元/台,B型号压力锅的进价为350元/台(2)有4种进货方式(3)购进37台A 型号压力锅、23台B 型号压力锅时,全部销售完后获得的利润最大【分析】(1)设A 型号压力锅的进价为x 元/台,B 型号压力锅的进价为y 元/台,根据“购进2台A 和3台B 花费1650元;购进1台A 和2台B 花费1000元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进m 台B 型号压力锅,则购进(60-m )台A 型号压力锅,根据“购进B 型号压力锅的数量的2倍不低于A 型号压力锅,且采购60台压力锅时总费用不超过19150元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数,即可得出进货方案的种数;(3)设该商场将两种压力锅全部售出后获得的利润为w 元,根据总利润=每台的销售利润×销售数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】(1)设A 型号压力锅的进价为x 元/台,B 型号压力锅的进价为y 元/台,依题意得:23165021000x y x y,解得:300350x y.答:A 型号压力锅的进价为300元/台,B 型号压力锅的进价为350元/台.(2)设购进m 台B 型号压力锅,则购进(60)m 台A 型号压力锅,依题意得:260300(60)3501915m m m m ,解得:2023m .又∵m 为整数,∴m 可以取20,21,22,23,∴该商场有4种进货方式.(3)设该商场将两种压力锅全部售出后获得的利润为w 元,则(389300)(60)(469350)305340w m m m ,∵300k ,∴w 随m 的增大而增大,∴当23m 时,w 取得最大值,此时6037m ,∴该超市购进37台A 型号压力锅、23台B 型号压力锅时,全部销售完后获得的利润最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出不等量关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w 关于m 的函数关系式.。
不等式的解集练习题一、选择题1. 解不等式 \( x^2 - 5x + 6 \geq 0 \) 的解集是:A. \( x \leq 2 \) 或 \( x \geq 3 \)B. \( x \geq 2 \) 或 \( x \leq 3 \)C. \( x \in \mathbb{R} \)D. \( x \leq 1 \) 或 \( x \geq 4 \)2. 已知 \( x + 2y \geq 1 \) 和 \( 3x - y \leq 5 \),求 \( x + y \) 的取值范围:A. \( x + y \geq 2 \)B. \( x + y \leq 6 \)C. \( x + y \leq 3 \)D. \( x + y \geq 1 \)3. 若 \( 2x - 3 \leq 1 \),求 \( x \) 的取值范围:A. \( x \geq 1 \)B. \( x \leq 2 \)C. \( x \geq 2 \)D. \( x \leq 1 \)二、填空题4. 解不等式 \( |x - 4| < 3 \),解集为 \_\_\_\_\_\_\_\_\_\_。
5. 若 \( x^2 - 4x + 3 \leq 0 \),解集为 \_\_\_\_\_\_\_\_\_\_。
6. 已知 \( 2x + 5 > 3x - 1 \),求 \( x \) 的取值范围为\_\_\_\_\_\_\_\_\_\_。
三、解答题7. 解不等式组:\[\begin{cases}x - 3 > 2x - 5 \\x + 1 \geq 3 - 2x\end{cases}\]并求出其解集。
8. 已知 \( 3x + 2 < 5x - 6 \),求 \( x \) 的取值范围,并说明其解集。
9. 解不等式 \( |3x + 1| \geq 4 \),并写出其解集。
四、综合题10. 某工厂需要生产一批零件,每个零件的重量必须在 \( 10 \pm 0.5 \) 克之间。
课时素养评价十四不等式的解集(15分钟·30分)1.(2020·贵阳高一检测)不等式组的解集是( )A.(-∞,5]B.(-3,5]C.(3,5]D.(-∞,-3)【解析】选B.解x-8<4x+1可得3x>-9,即x>-3,则不等式组的解集为-3<x≤5.【补偿训练】不等式组的整数解有( )A.3个B.4个C.5个D.6个【解析】选C.解不等式x-3≥2,得x≤2,解不等式4x-2<5x+1,得x>-3,所以原不等式组的解集为.又因为x为整数,所以x=-2,-1,0,1,2.2.不等式1<|x+1|<3的解集为 ( )A.(0,2)B.(-2,0)∪(2,4)C.(-4,0)D.(-4,-2)∪(0,2)【解析】选D.由1<|x+1|<3,得1<x+1<3或-3<x+1<-1,所以0<x<2或-4<x<-2,所以不等式的解集为(-4,-2)∪(0,2).3.若不等式|ax+2|<6的解集为(-1,2),则实数a的取值为( )A.8B.2C.-4D.-8【解析】选C.原不等式化为-6<ax+2<6,即-8<ax<4.又因为-1<x<2,所以验证选项易知a=-4适合.4.数轴上点A(-2),B(4),C(x),则线段AB的中点D的坐标为________,若点D到C的距离大于2,则x的取值范围为________.【解析】点D的坐标为=1,DC=|x-1|>2,所以x>3或x<-1.答案:D(1)∪(3,+∞)5.不等式≥1的实数解为________.【解析】≥1⇔|x+1|≥|x+2|,且x+2≠0.所以x≤-且x≠-2.答案:6.(2020·大庆高一检测)解下列不等式(组).(1)1≤≤3.(2)【解析】(1)原不等式等价于-3≤2x-1≤-1或1≤2x-1≤3,解得-1≤x ≤0或1≤x≤2;所以原不等式的解集为∪.(2)原不等式组等价于解得-2<x<1.所以原不等式组的解集是.(30分钟·60分)一、单选题(每小题5分,共20分)1.不等式组的整数解为( )A.0,1B.0,1,2C.0,1,2,3D.0,1,2,3,4【解析】选D.因为所以即则-1<x≤4,则对应的整数解为0,1,2,3,4.2.(2020·汉中高一检测)不等式1<<4所有整数解的和为( )A.2B.4C.6D.8【解析】选D.由1<<4,得-2<x<1或3<x<6.因为x∈Z,所以x=-1,0,4,5.故不等式所有整数解的和为8.3.若不等式|2x-a|≤x+3对任意x∈[0,2]恒成立,则实数a的取值范围是( )A.(-1,3)B.[-1,3]C.(1,3)D.[1,3]【解析】选B.不等式|2x-a|≤x+3去掉绝对值符号得-x-3≤2x-a≤x+3,即对任意的x∈[0,2]恒成立,变量分离得恒成立,只需要即所以所求实数a的取值范围是[-1,3].【补偿训练】关于x的不等式|2x-a|>x-2在[0,2]上恒成立,则a的取值范围是________.【解析】结合自变量的取值范围,若0≤x<2,可得x-2<0,不等式明显成立;若x=2,由不等式可得|a-4|>0,解得a≠4.综上,a的取值范围是a≠4.答案:a≠44.我们把称作二阶行列式,规定它的运算法则为=ad-bc,例如=1×4-2×3=-2.如果>0,则其解集是( )A. B.C. D.【解析】选A.根据题意得2x->0,整理得3x>3,解得x>1.【误区警示】本题易错之处在于读不懂题意,所以列不出相应的不等式,从而难以求解,需把握住的关键地方就是告知的“运算法则”,看清是交叉相乘后作差,作差时看清先后顺序即可.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.不等式|x|·(1-2x)>0的解集是( )A. B.(-∞,0)∪C. D.【解析】选BD.原不等式等价于解得x<且x≠0,即x∈(-∞,0)∪.6.若不等式<1成立的充分不必要条件是<x<,则实数a的取值可以是( )A.-B.C.D.0【解析】选BCD.由<1可得a-1<x<a+1,它的充分不必要条件是<x<,即是{x|a-1<x<a+1}的真子集,则且等号不同时成立,解得-≤a≤.【点评】明确充分不必要条件的意义是解决本题的关键,确定好已知x的取值范围是绝对值所得范围的真子集即可,这是解决此题的突破口亦是快速得解之法.三、填空题(每小题5分,共10分)7.不等式|x-3|-|x+2|>0的解集为________.【解析】方法一:因为->0,所以>.平方得x2-6x+9>x2+4x+4,即10x<5,故所求解集为.答案:8.关于x的一元一次不等式组中,两个不等式的解集在同一数轴上的表示如图所示,则该不等式组的解集是________,m的值为______.【解析】解2-x>1得x<1,解≤m得x≤2m-5,由题图知这个不等式组的解集是(-∞,-1]且2m-5=-1,所以m=2.答案:(-∞,-1] 2四、解答题(每小题10分,共20分)9.已知关于x的不等式组(1)当m=-11时,求不等式组的解集.(2)当m取何值时,该不等式组的解集是∅?【解析】(1)当m=-11时,解该不等式组的解集为.(2)解不等式m-2x<x-1得x>.因为不等式组的解集为∅,所以≥-,所以m≥-.10.设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R},若A⊆B,则实数a,b应满足什么关系?【解析】由|x-a|<1,得a-1<x<a+1.由|x-b|>2,得x<b-2或x>b+2.因为A⊆B,所以a-1≥b+2或a+1≤b-2,即a-b≥3或a-b≤-3,所以|a-b|≥3.1.若不等式|x+1|+|x-2|≥a的解集为R,则实数a的取值范围是( )A.a≥3B.a≤3C.a>3D.a<3【解析】选B.令t=|x+1|+|x-2|,由题意知只要t min≥a即可,由绝对值的几何意义得t min=3,所以a≤3.即实数a的取值范围是(-∞,3].2.若关于x的不等式|x+2|+|x-1|<a的解集为∅,求a的取值范围. 【解析】方法一:由|x+2|+|x-1|=|x+2|+|1-x|≥|x+2+1-x|=3,知a≤3时,原不等式无解.方法二:数轴上任一点到-2与1的距离之和最小值为3.所以当a≤3时,原不等式的解集为∅.关闭Word文档返回原板块。
解不等式小练习(二)姓名___________班级__________学号__________分数___________一、选择题1.(8192-点津)若53x x ->,则( )A .x >0;B .x <0;C .x ≥0;D .x ≤0;2.(14370-2011湖南益阳)不等式312->+x 的解集在数轴上表示正确的是( )0 -2 0A .B .C .D .3.(14962-2011辽宁抚顺)不等式2x -6≥0的解集在数轴上表示正确的是( )0 3A .; -3 0B .; 0 3C .; 0 3D .;4.(14261-2011湖南张家界)不等式x x +<-353的解集是( )A .4x ≤B .4x ≥C .4<xD .4>x5.(12862-2011广东清远)不等式x -1>2的解集是( )A .x >1B .x >2C .x >3D .x <36.(13407-2011江苏淮安)不等式322x x +<的解集是( ) A .x <-2 B .x <-1 C .x <0 D .x >2二、填空题7.(10099)不等式3 +2x ≤-1的解集是____________.8.(13382-2011江苏泰州)不等式215x +>-的解集是 .9.(14315-2011湖南株洲)不等式10x ->的解集是____________.10.(15020-2011辽宁沈阳)不等式2-x ≤1的解集为____________.三、计算题11.(8197-点津)根据不等式的性质,把下列不等式化为x >a 或x <a 的形式. ⑴3x +2>5; ⑵13x >223x --; ⑶3223x x -+<+; ⑷11(6)22x x -≤;12.(13478-2011江苏苏州)解不等式:()3211x --<.13.(13825-2011浙江衢州)解不等式113x x +-≤,并把解在数轴上表示出来.4 0 -1 -2 3 1 2 -3 -414.(14482-2011湖南长沙)解不等式2(2)63x x --≤,并写出它的正整数解.15.(15078-2011重庆)解不等式2x -3<13x +,并把解集在数轴上表示出来.4 0 -1 -2 3 1 2 -3 -4。
1.3 不等式的解集 同步练习
(总分:100分 时间45分钟)
一、耐心选一选,你会开心(每题4分,共32分)
1、-3x ≤6的解集是 ( )
0-1-2 0-1-2A 、 B 、 C 、 D 、
2、用不等式表示图中的解集,其中正确的是( )
A. x ≥-2
B. x >-2
C. x <-2
D. x ≤-2
3、下列说法中,错误的是( )
A.不等式x <5的整数解有无数多个
B.不等式x >-5的负数解集有有限个
C.不等式-2x <8的解集是x <-4
D.-40是不等式2x <-8的一个解
4、下列说法正确的是( )
A.x =1是不等式-2x <1的解集
B.x =3是不等式-x <1的解集
C.x >-2是不等式-2x <1的解集
D.不等式-x <1的解集是x <-1
5、不等式x -3>1的解集是( )
A.x >2
B. x >4
C.x -2>
D. x >-4
6、不等式2x <6的非负整数解为( )
A.0,1,2
B.1,2
C.0,-1,-2
D.无数个
7、下列4种说法:① x =
45是不等式4x -5>0的解;② x =25是不等式4x -5>0的一个解;③ x >4
5是不等式4x -5>0的解集;④ x >2中任何一个数都可以使不等式4x -5>0成立,所以x >2也是它的解集,其中正确的有( )
A 、1个
B 、2个
C 、3个
D 、4个
8、若(1)1a x a -<-的解集为x >1,那么a 的取值范围是( )
A、a>0
B、a<0
C、a<1
D、a>1
二、精心填一填,你会轻松(每题4分,共32分)
9、不等式的解集在数轴上表示如图所示,则该不等式可能是_____________.
10、当x_______时,代数式2x-5的值为0,当x_______时,代数式2x-5的值不大于0.
11、不等式-5x≥-13的解集中,最大的整数解是__________.
12、不等式x+3≤6的正整数解为___________________.
13、不等式-2x<8的负整数解的和是______.
14、直接想出不等式的解集:
(1) x+3>6的解集 ;(2)2x<12的解集 ;
(3)x-5>0的解集 ;(4)0.5x>5的解集;
15、一个不等式的解集如图所示,则这个不等式的正整数解是___.
-1
1
3
4
2
16、恩格尔系数n是指家庭日常饮食开支占家庭收入的比例,它反映了居民家庭的实际生
活水平,各种类型家庭的n值如下所示:
如用含n的不等式表示,则贫困家庭为;小康家庭为;最富裕国家为;当某一家庭n=0.6时,表明该家庭的实际生活水平是 .
三、细心做一做,你会成功(每题9分,共36分)
17、在数轴上表示下列不等式的解集:
(1)x≥-3.5 (2)x<-1.5
-2
-11
-43
-3
-11
2
-2
-3
-432
(3)x≥2 (4)-1≤x<2
2
-11
-2
-3
-432
-11
-2
-3
-43
18、已知x的1
2
与3的差小于x的-
1
2
与-6的和,根据这个条件列出不等式.你能估计
出它的解集吗?
19、种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?
20、求不等式1+x>x-1成立的x取值范围.。