八年级数学下册 第一章 直角三角形 1.1 直角三角形的性质和判定(第1课时) 湘教版
- 格式:ppt
- 大小:1.13 MB
- 文档页数:12
湘教版数学八年级下册1.1《直角三角形的性质与判定(Ⅰ)》教学设计1一. 教材分析湘教版数学八年级下册1.1《直角三角形的性质与判定(Ⅰ)》是学生在掌握了三角形基本概念和性质的基础上,进一步研究直角三角形的特殊性质。
本节课主要让学生了解并证明直角三角形的性质,如勾股定理、直角三角形的边角关系等,并学会运用这些性质解决实际问题。
教材通过丰富的例题和习题,引导学生掌握直角三角形的性质,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在七年级已经学习了三角形的基本概念和性质,对三角形有一定的认识。
但直角三角形作为一种特殊的三角形,其性质和判定方法还需要进一步学习。
学生在学习过程中,需要通过观察、操作、思考、交流等活动,发现直角三角形的性质,并能够运用这些性质解决实际问题。
三. 教学目标1.了解直角三角形的性质,掌握勾股定理,并能运用性质解决实际问题。
2.培养学生的观察能力、操作能力、逻辑思维能力和解决问题的能力。
3.激发学生对数学的兴趣,培养合作意识,提高学生的数学素养。
四. 教学重难点1.重点:直角三角形的性质和勾股定理。
2.难点:勾股定理的证明和运用。
五. 教学方法1.采用问题驱动法,引导学生发现直角三角形的性质。
2.运用几何画板等软件,辅助证明勾股定理。
3.通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力。
4.运用例题和习题,巩固所学知识。
六. 教学准备1.准备相关课件和教学素材。
2.准备几何画板等软件,用于辅助证明勾股定理。
3.准备一些实际问题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习三角形的基本概念和性质,引出直角三角形作为一种特殊的三角形,其性质和判定方法值得研究。
2.呈现(10分钟)利用课件展示直角三角形的性质,引导学生发现并证明勾股定理。
在此过程中,注意引导学生运用已学的知识,如三角形的性质、 Pythagoreantheorem 等。
3.操练(10分钟)学生分组讨论,运用直角三角形的性质解决实际问题。
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》说课稿一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》这一课时,主要让学生了解直角三角形的性质与判定。
在学习了勾股定理和三角函数的基础上,本节课让学生通过观察、实验、推理等方法,探索并证明直角三角形的性质,从而加深对勾股定理的理解和应用。
二. 学情分析八年级的学生已经掌握了基本的代数知识和几何知识,对于观察、实验、推理等方法有一定的了解和运用能力。
但是,对于证明直角三角形的性质和判定,还需要老师在课堂上进行引导和讲解。
三. 说教学目标1.知识与技能:让学生掌握直角三角形的性质和判定方法。
2.过程与方法:培养学生通过观察、实验、推理等方法探索数学问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 说教学重难点1.教学重点:直角三角形的性质和判定方法。
2.教学难点:证明直角三角形的性质和判定。
五.说教学方法与手段1.教学方法:采用问题驱动法、实验探究法、小组合作法等。
2.教学手段:多媒体课件、黑板、几何模型等。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对直角三角形性质的思考。
2.自主学习:让学生通过观察、实验、推理等方法,探索直角三角形的性质。
3.合作交流:学生分组讨论,分享探索成果,互相提问,解决问题。
4.讲解与演示:老师对学生的探索成果进行点评,讲解直角三角形的性质和判定方法,并进行现场演示。
5.练习巩固:让学生进行一些有关直角三角形性质和判定的练习题,巩固所学知识。
6.课堂小结:让学生总结本节课所学内容,老师进行补充。
七. 说板书设计板书设计如下:直角三角形的性质与判定a.直角三角形的两个锐角互余b.直角三角形的斜边最长c.直角三角形的两条直角边互相垂直d.如果一个三角形有一个角是直角,那么它是直角三角形e.如果一个三角形的两边长满足a^2 + b^2 = c^2,那么这个三角形是直角三角形八. 说教学评价1.课堂参与度:观察学生在课堂上的发言、提问、练习等情况,了解学生的参与程度。
第1章直角三角形路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定【知识与技能】1.体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形.2.学会用符号和字母表示直角三角形.3.经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.4.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.5.理解和掌握直角三角形性质“斜边上的中线等于斜边的一半”.【过程与方法】通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法.【情感态度】体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力.【教学重点】直角三角形性质和判定的探索及应用.【教学难点】直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程.一、创设情境,导入新课问题什么叫直角三角形?从定义可以知道直角三角形具有一个角是直角的性质,要判断一个三角形是直角三角形需要判断这个三角形中有一个角是直角.直角三角形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节课我们来探究这些问题.【教学说明】引导学生回忆,并巩固所学知识.从实际问题入手,激发学生的兴趣,注意新知识的连贯性.二、思考探究,获取新知问题1直角三角形两锐角互余思考如图,在Rt△ABC中,两锐角的和∠A+∠B=______.为什么?【教学说明】通过学生思考,总结归纳得出结果,培养学生分析问题和理解问题的能力.试试看:(1)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠A=40°,则∠BCD=______..(2)在△ABC中,∠B=50°,高AD、CE交于H,则∠AHC=______..【教学说明】巩固所学内容,加强对直角三角形两角之间互余的理解.问题2利用两锐角互余判断三角形是直角三角形思考如图,在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形吗?为什么?【教学说明】让学生明白两锐角互余的三角形是直角三角形,从而得到直角三角形一种判定方法.结论有两个锐角互余的三角形是直角三角形.试试看:如图,AB∥CD,∠A和∠C的平分线相交于H点,那么△AHC是直角三角形吗?为什么?【教学说明】让学生利用所学知识解决数学问题,逐步掌握解题技巧,培养学生的应用意识和能力.问题3直角三角形斜边上的中线等于斜边的一半的探索过程思考(1)按要求作图:画一个直角三角形,并作出斜边上的中线.(2)量一量各线段的长度.(3)猜想:你能猜想出什么结论?【教学说明】经历上面的探索过程,学生很容易得出结论,并能对所学知识行提炼和归纳.问题4教材第4页例题【教学说明】让学生明确直角三角形斜边上的中线等于斜边的一半这一定理的题设及结论可以相互变换,加深它们之间的区别与联系.三、运用新知,深化理解1.如果三角形的三个内角的比是4∶5∶9,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形2.在△ABC中,若∠A=∠B+∠C,则△ABC是_______.3.图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ACD沿AC边折叠,使点D落在点E处.求证:E∥AB.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况,有困难的学生教师要及时指导,并及时纠正错误,给予矫正深化.答案:1.B2.直角三角形3.证明:∵△ACD沿AC边折叠,∴△ADC≌AEC,∴∠ACE=∠ACD,∵CDAB边上的中线,∠AB=90°,∴CD=AD,∴∠CAD=∠ACD,∴∠CAD=∠ACE,∴EC∥AB.四、师生互动,课堂小结通过今天的学习,你掌握了直角三角形的哪些性质和判定方法?还有什么值得与大家共同分享的?【教学说明】梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系,同学之间互相取长补短,达到共同提高.1.布置作业:习题1.1中的第1、2题2.完成练习册中本课时的练习.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中让学生不断强化提高这一点.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
湘教版初中数学八年级下册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第1章直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
1.2 直角三角形的性质和判定(Ⅱ)
1.3 直角三角形全等的判定
1.4 角平分线的性质
小结与复习
第2章四边形
2.1 多边形
2.2 平行四边形
2.2.1 平行四边形的性质
2.2.2 平行四边形的判定
2.3 中心对称和中心对称图形
2.4 三角形的中位线
2.5 矩形
2.5.1 矩形的性质
2.5.2 矩形的判定
2.6 菱形
2.6.1 菱形的性质
2.6.2 菱形的判定
2.7 正方形
小结与复习
第3章图形与坐标
3.1 平面直角坐标系
3.2 简单图形的坐标表示
3.3 轴对称和平移的坐标表示
小结与复习
第4章一次函数
4.1 函数和它的表示法
4.2 一次函数
4.3 一次函数的图象
4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用
小结与复习
第5章数据的频数分布
5.1 频数与频率
5.2 频数直方图
小结与复习
总复习。
第1章直角三角形1.2 直角三角形的性质和判定(Ⅱ)第1课时勾股定理【知识与技能】1.让学生体验勾股定理的探索过程.2.掌握勾股定理.3.学会用勾股定理解决简单的几何问题.【过程与方法】经历操作、归纳和猜想,用面积法推导作出肯定结论的过程,来了解勾股定理.【情感态度】了解我国古代数学家发现、推导和应用勾股定理中的贡献与成就,增进爱国主义情感,体验探索发现的过程和知识运用,增强学习数学的自信.【教学重点】勾股定理【教学难点】勾股定理的应用一、创设情境,导入新课问题向学生展示国际数学大会(ICM——2002)的会标图徽,并简要介绍其设计思路.可以首次提出勾股定理.【教学说明】激发学生爱好数学的情感和学习勾股定理的兴趣,调动他们的积极性.教师讲课前,先让学生完成预习.二、思考探究,获取新知勾股定理的验证做一做:教材第9页“做一做”【教学说明】通过测量,学生自主探究,对于直角三角形这一性质有个初步了解.议一议:教材第9页“议一议”【教学说明】引导学生计算,让学生进一步体会探索勾股定理的过程,并对勾股定理拓展应用,进一步体会数形结合的思想.想一想:教材第10页“探究”【教学说明】通过拼图活动,充分调动学生的思维,进一步激发学生的求知欲望,同时加深了学生对新知识的理解.例:教材第11页例1【教学说明】学生初步运用勾股定理解决问题,能够学以致用.三、运用新知,深化理解1.若Rt△ABC中,∠C=90°,且c=37,a=12,则b的值为()A.50B.35C.34D.262.一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.123.如图,在△ABC中,∠ACB=90°,AB=5cm,BC=3cm,CD⊥AB 于D,求CD的长.4.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.【教学说明】由学生独立完成,加深对所学知识的理解和运用,对于有困难的学生教师给予点拨,及时调整教学中的缺漏并加以强化,在完成上述题目后,学生自主完成练习册中本课时的对应训练部分.答案:1.B 2.C3.解:∵△ABC中,∠ACB=90°,∴由勾股定理有AC2=AB2-BC2=52-32=16,∴AC=4.又∵S△ABC=1/2AB·CD=1/2AC·BC,∴CD=AC·BC/AB=12/5(cm)4.证明:连接AC,∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴AB=BC.四、师生互动,课堂小结本节课你学到了什么知识?同学们还存在哪些困惑?【教学说明】让学生畅所欲言,使学生概括能力、语言表达能力进一步得到提高,完善了学生对知识的梳理.1.布置作业:习题1.2中的第1、4题.2.完成练习册中本课时练习的作业部分.1.2 直角三角形的性质和判定(Ⅱ)第2课时勾股定理的实际应用【知识与技能】1.勾股定理从边的方面进一步刻画直角三角形的特征,学生将在原有的基础上对直角三角形有更深刻的认识和理解.2.掌握直角三角形三边关系——勾股定理及直角三角形的判别条件——勾股定理的逆定理.【过程与方法】1.放手学生从多角度地了解勾股定理.2.提高学生亲自动手的能力.【情感态度】1.学会运用勾股定理来解决一些实际问题,体会数学的应用价值.2.尽可能的给学生提供有关勾股定理的材料,给予交流的机会,并在与他人交流的过程中,敢于发表不同的见解,在交流活动中获得成功的体验.【教学重点】应用勾股定理有关知识解决有关问题.【教学难点】灵活应用勾股定理有关知识解决有关问题.一、创设情境,导入新课问题勾股定理的内容是什么?它揭示了直角三角形三边之间的关系,今后我们来看看这个定理的应用.【教学说明】教师创设问题,有针对性地复习了勾股定理,对本节课的应用勾股定理解决实际的问题打下了坚实的基础.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的应用思考教材第12页“动脑筋”【教学说明】提出问题,提供学生参与数学活动的时间与空间,调动学生的观察能动性,引导学生建立数学模型,提高学生分析问题、解决问题的能力.例:教材第12页例2【教学说明】以古代的数学问题为背景,一方面及时巩固勾股定理的运用,另一方面让学生感受到数学文化.三、运用新知,深化理解1.直角三角形中已知其中的两条边长是4和5,则第三条边等于()A.3B.41C.3或41D.无法确定2.在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.①已知a=5,b=12,求c;②已知a=20,c=29,求b.3.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所能走的最短路线的长度.【教学说明】由学生独立完成,以加深对知识的理解和运用,便于了解学生掌握情况,给有困难的学生给予指导,及时纠正他们出现的错误,并改正强化,在完成上述题目后,教师引导学生完成练习册中本课时的对应训练部分.答案:1.C3.解:将曲面沿AB展开,如图,过C作CE⊥AB于E,在Rt△ECF 中,∠E=90°,EF=18-1-1=16(cm),CE=1/2×60=30(cm),由勾股定理,得CF=223016+=34(cm)+=22CE EF四、师生互动,课堂小结通过本节课的学习,给同学们谈谈你的收获是什么?你认为自己还在哪些问题上存在疑问?与大家共同交流.【教学说明】学生自已总结归纳加深印象.引导学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.1.布置作业:习题1.2中的第5、9题.2.完成练习册中本课时练习的作业部分.1.2 直角三角形的性质和判定(Ⅱ)第3课时勾股定理的逆定理【知识与技能】1.探索并掌握直角三角形判别的方法——勾股定理逆定理.2.会应用勾股逆定理判别一个三角形是否是直角三角形.3.通过三角形三边的数量关系来判断它是否为直角三角形,培养学生数形结合的思想.【过程与方法】通过“创设情境——实验验证——理论释意——应用”的探索过程,让学生感受知识的乐趣.【情感态度】1.通过合作交流学习的发展体验获取数学知识的感受.2.通过对勾股定理逆定理的探究,激发学生学习数学的兴趣和创新精神.【教学重点】理解和应用直角三角形的判定方法.【教学难点】理解勾股定理的逆定理.一、创设情境,导入新课问题据说,古埃及人曾用下面的方法画直角:他们用13个等距离的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.【教学说明】利用古埃及人画直角的方法,让学生体验从实际问题中发现数学,同时明确了本节课所研究的问题,既进行了数学史的教育,又锻炼了学生观察探究的能力,激发了他们渴求知识的欲望,教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的逆定理的证明探究教材第14页“探究”【教学说明】让学生有充分的探究、讨论的空间,体会逆定理的发生、发展、形成的过程,让学生亲身体验成功的喜悦,再次感受到数形结合的思想方法的应用.勾股定理的应用例:教材第15页例3、例4 【教学说明】加深对勾股定理逆定理的理解,并能初步的应用逆定理.三、运用新知,深化理解1.下列命题中是假命题的是()A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为__________,此三角形的形状为________.3.若a、b、c是△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判定这个三角形的形状.4.探险队里的A组由驻地出发,以12km/h的速度前进,同时,B 组也由驻地出发,以9km/h的速度向另一个方向前进,2小时后同时停下来,这时A、B两组相距30km,那么A、B两组行驶的方向成直角吗?说明理由.【教学说明】由学生自主完成,考验学生学习过程中存在的问题,适时给予引导、点拨,并有针对性地加强训练.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.答案:1. C 2. 6,8,10;直角三角形3.∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),当a2-b2=0时,即(a+b)(a-b)=0,因为a>0,b>0,所以a+b≠0,a-b=0,即a=b,此时为等腰三角形,当a2-b2≠0时,则有c2=a2+b2,根据勾股定理的逆定理此时为直角三角形.综上可得这个三角形的形状为等腰三角形或直角三角形.4.∵(12×2)2+(9×2)2=30∴A,B两组行驶方向成直角.四、师生互动,课堂小结通过学习,你能判断一个三角形是否为直角三角形吗?还有哪些困惑?请与同学们共同操作.1.布置作业:习题1.2中的第2、8题.2.完成练习册中本课时练习的作业部分.。
八年级数学下教案陈敏第一章直角三角形§1.1直角三角形的性质和判定(Ⅰ)(第1课时)教学目标:1、掌握“直角三角形的两个锐角互余”定理。
2、掌握“有两个锐角互余的三角形是直角三角形”定理。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
教学过程:一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理2归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习5:已知:∠ABC=∠ADC=90O,E是AC中点。
求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高,M是BC的中点。
如果连接DE,取DE的中点O,那么MO与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?1、2、3、五、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第2课时)一、教学目标:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教学设计一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教材,主要介绍了直角三角形的性质与判定方法。
内容包括:直角三角形的定义、性质以及直角三角形的判定方法。
通过本节课的学习,使学生掌握直角三角形的性质与判定,为后续学习勾股定理和相似三角形打下基础。
二. 学情分析学生在七年级已经学习了三角形的性质和分类,对三角形有了一定的认识。
但直角三角形的性质和判定较为抽象,需要通过实例和动手操作来加深理解。
此外,学生可能对数学证明过程感到困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:掌握直角三角形的性质与判定方法。
2.过程与方法:通过观察、操作、探究、归纳等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作意识,体验成功的喜悦。
四. 教学重难点1.重点:直角三角形的性质与判定方法的运用。
2.难点:对直角三角形性质与判定方法的理解和应用。
五. 教学方法采用启发式教学法、小组合作学习法、直观演示法、实践操作法等,引导学生主动探究、积极思考,提高学生的几何思维能力。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备几何画图工具,如直尺、圆规、三角板等。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的直角三角形的实例,如建筑工人使用的勾股尺、三角板等,引导学生回顾直角三角形的定义,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示直角三角形的性质与判定方法,引导学生观察、思考,并通过几何画图工具进行实际操作,让学生感受直角三角形的性质与判定方法。
3.操练(10分钟)教师提出一些有关直角三角形性质与判定的问题,学生进行小组讨论,引导学生运用所学知识解决问题。
在此过程中,教师应及时给予指导和鼓励,提高学生的问题解决能力。