2009年高考四川数学试题及答案(理数)
- 格式:doc
- 大小:428.00 KB
- 文档页数:11
泸州市二○二二年初中学业水平考试数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分120分.考试时间共120分钟.注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号.考试结束,将试卷和答题卡一并交回.2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.=()A.2-B.12- C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:=-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.2.2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.67.5510⨯B.675.510⨯C.77.5510⨯ D.775.510⨯【答案】C 【解析】【分析】科学记数法表示较大的数形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,10的指数n 比原来的整数位数少1.【详解】75500000=77.5510⨯故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A. B.C. D.【答案】C 【解析】【分析】观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形即可判定.【详解】解:由俯视图的定义可知:从上往下观察发现∶故选C .【点睛】本题考查三视图,解题的关键是熟练掌握俯视图是从物体上面看所得到的图形.4.如图,直线a b ∥,直线c 分别交,a b 于点,A C ,点B 在直线b 上,AB AC ⊥,若1130∠=︒,则2∠的度数是()A.30°B.40︒C.50︒D.70︒【答案】B 【解析】【分析】根据平行线的性质可得∠CAD =∠1=130°,再根据AB ⊥AC ,可得∠BAC =90°,即可求解.【详解】解:因为a ∥b ,所以∠1=∠CAD =130°,因为AB ⊥AC ,所以∠BAC =90°,所以∠2=∠CAD -∠BAC =130°-90°=40°.故选:B .【点睛】本题考查的知识点是平行线与垂线的性质,解题关键是掌握两直线平行,内错角相等.5.下列运算正确的是()A.236a a a ⋅=B.321a a -=C.()32628a a -=- D.623a a a ÷=【答案】C 【解析】【分析】根据整式的加减乘除运算法则逐个判断即可.【详解】解:选项A :235a a a ⋅=,故选项A 错误;选项B :32a a a -=,故选项B 错误;选项C :()32628aa -=-,故选项C 正确;选项D :624a a a ÷=,故选项D 错误;故选:C .【点睛】本题考查了整式的加减乘除运算法则,属于基础题,熟练掌握运算法则即可求解.6.费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,34【答案】D 【解析】【分析】这组数据中出现次数最多的数是众数,把这组数据按从小到大的顺序排列最中间的两个数据的平均数是中位数.【详解】29,32,33,35,35,40,这组数据的众数:35,这组数据的中位数:33+35=342.故选:D .【点睛】本题考查了众数和中位数,解决问题的关键是熟练掌握众数和中位数的定义和确定方法.7.与2+)A.4B.5C.6D.7【答案】C 【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.54,∴5.5<6,∴最接近的整数是6,故选:C .【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.抛物线2112y x x =-++经平移后,不可能得到的抛物线是()A.212y x x =-+ B.2142=--y x C.21202120222=-+-y x x D.21y x x =-++【答案】D 【解析】【分析】通过了解平移过程,得到二次函数平移过程中不改变开口大小和开口方向,所以a 不变,选出答案即可.【详解】解:抛物线2112y x x =-++经平移后,不改变开口大小和开口方向,所以a 不变,而D 选项中a =-1,不可能是经过平移得到,故选:D .【点睛】本题考查了二次函数平移的知识点,上加下减,左加右减,熟练掌握方法是解题关键,还要掌握2(0)y ax bx c a =++≠通过平移不能改变开口大小和开口方向,即不改变a 的大小.9.已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为()A.3-B.1- C.3-或3D.1-或3【答案】A 【解析】【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可.【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤,∴3m =-,故选:A【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去).10.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A.1B.C.2D.4【答案】C 【解析】【分析】根据垂径定理求出OD 的长,再根据中位线求出BC =2OD 即可.【详解】设OD =x ,则OE =OA =DE -OD =4-x .∵AB 是O 的直径,OD 垂直于弦AC于点,AC =∴12AD DC AC ===∴OD 是△ABC 的中位线∴BC =2OD∵222OA OD AD =+∴222(4)x x -=+,解得1x =∴BC =2OD =2x =2故选:C【点睛】本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.11.如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE =43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为()A.3y x =B.31542y x =-+C.211y x =-+ D.212y x =-+【答案】D 【解析】【分析】过点E 作EG ⊥AB 于点G ,利用三角函数求得EG =8,BG =6,AG =4,再求得点E 的坐标为(4,12),根据题意,直线l 经过矩形OABC 的对角线的交点H 和菱形ABEF 的对角线的交点D ,根据中点坐标公式以及待定系数法即可求解.【详解】解:过点E 作EG ⊥AB 于点G ,∵矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,∴AB =BE =10,点D 的坐标为(0,4),点C 的坐标为(10,0),在Rt △BEG 中,tan ∠ABE =43,BE =10,∴sin ∠ABE =45,即45EG BE =,∴EG =8,BG 22BE EG -=6,∴AG =4,∴点E 的坐标为(4,12),根据题意,直线l 经过矩形OABC 的对角线的交点H 和菱形ABEF 的对角线的交点D ,点H 的坐标为(0102+,042+),点D 的坐标为(042+,4122+),∴点H 的坐标为(5,2),点D 的坐标为(2,8),设直线l 的解析式为y =kx +b ,把(5,2),(2,8)代入得5228k b k b +=⎧⎨+=⎩,解得:212k b =-⎧⎨=⎩,∴直线l 的解析式为y =-2x +12,故选:D .【点睛】本题考查了解直角三角形,待定系数法求函数的解析式,矩形和菱形的性质,解题的关键是灵活运用所学知识解决问题.12.如图,在边长为3的正方形ABCD 中,点E 是边AB 上的点,且2BE AE =,过点E 作DE 的垂线交正方形外角CBG ∠的平分线于点F ,交边BC 于点M ,连接DF 交边BC 于点N ,则MN 的长为()A.23B.56C.67D.1【答案】B 【解析】【分析】在AD 上截取,AG AE =连接GE ,延长BA 至H ,使,AH CN =连接EN ,可得出()EGD FBE ASA ≅ ,进而推出(),DCN DHA SAS ≅ (),NDE HDE SAS = 得出,EN EH =,设,CN x =则3,BN x =-用勾股定理求出EN ==由,EN EH =可列方程1x +=解出x ,即CN 的长,由正切函数,1,tan ADE ,3ADE BEM ∠=∠∠=求出BM 的长,由MN BC CN BM =--即可得出结果.【详解】解:如图所示:在AD 上截取,AG AE =连接GE ,延长BA 至H ,使,AH CN =连接EN ,,,AD AB AG AE == ,DG BE ∴=,DE EF ⊥ 90,DEF ∴∠=︒90,AED BEF ∴∠+∠=︒90,ADE AED ∠+∠=︒ ,ADE BEF ∴∠=∠,90,AG AE GAE ∴=∠=︒45,AGE AEG ∴∠=∠=︒135,EGD ∴∠=︒BF 为正方形外角CBG ∠的平分线,45,CBF ∴∠=︒9045135,EBF ∴∠=︒+︒=︒,EDG FBE ∴∠=∠在GDE △和BEF 中,,GDE BEF GD BE EGD FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩(),EGD FBE ASA ∴≅ ,ED FE ∴=45,EDF ∴∠=︒45,CDN ADE ∴∠+∠=︒在Rt EDC 和Rt HDA 中,,DC DA DCN DAH CN AH =⎧⎪∠=∠⎨⎪=⎩(),DCN DHA SAS ∴≅ ,,DN DH CDN ADH ∴=∠=∠45,HDE ∠=︒在NDE △和HDE V 中,,DN DH NDE HDE DE DE =⎧⎪∠=∠⎨⎪=⎩(),NDE HDE SAS ∴= ,EN EH ∴=3,BC AB == 2,BE AE =1,2,AE BE ∴==设,CN x =则3,BN x =-在Rt BEN中,EN ∴=1x ∴+=3,2x ∴=1,tan ADE ,3ADE BEM ∠=∠∠= 1tan ,23BM BM BEM BE ∴∠===3253,236MN BC CN BM ∴=--=--=故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,锐角三角函数,勾股定理等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.第Ⅱ卷(非选择题共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.二、填空题(本大题共4个小题,每小题3分,共12分).13.点()2,3-关于原点的对称点的坐标为________.【答案】()2,3-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】点()2,3-关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ).14.若2(a 2)b 30-++=,则ab =________.【答案】6-【解析】【分析】由2(2)30a b -++=可得20a -=,30b +=,进而可求出a 和b 的值.【详解】∵2(a 2)b 30-++=,∴20a -=,30b +=,∴a =2,3b =-,∴236ab =⨯-=-.故答案为-6.【点睛】本题考查了非负数的性质,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.15.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.【答案】1a <-【解析】【分析】先解分式方程得1x =,再把1x =代入不等式计算即可.【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.16.如图,在Rt ABC △中,90C ∠=︒,6AC =,BC =,半径为1的O 在Rt ABC △内平移(O 可以与该三角形的边相切),则点A 到O 上的点的距离的最大值为________.【答案】1+【解析】【分析】设直线AO 交O 于M 点(M 在O 点右边),当O 与AB 、BC 相切时,AM 即为点A 到O 上的点的最大距离.【详解】设直线AO 交O 于M 点(M 在O 点右边),则点A 到O 上的点的距离的最大值为AM 的长度当O 与AB 、BC 相切时,AM 最长设切点分别为D 、F ,连接OB ,如图∵90C ∠=︒,6AC =,23BC =∴tan 3AC B BC==2243AB AC BC =+=∴60B ∠=︒∵O 与AB 、BC 相切∴1302OBD B ∠=∠=︒∵O 的半径为1∴1OD OM ==∴33BD OD ==∴33AD AB DB =-=∴2222(33)127OA AD OD =+=+=∴271AM OA OM =+=+∴点A 到O 上的点的距离的最大值为271.【点睛】本题考查切线的性质、特殊角度三角函数值、勾股定理,解题的关键是确定点A 到O 上的点的最大距离的图形.三、本大题共3个小题,每小题6分,共18分.17.计算:011322452-+︒--.【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=12112222+-=2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.18.如图,已知点E、F分别在▱ABCD的边AB、CD上,且AE=CF.求证:DE=BF.【答案】证明详见解析.【解析】【分析】由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.考点:平行四边形的性质;全等三角形的判定与性质.四、本大题共2个小题,每小题7分,共14分.19.劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间t(单位:小时)频数t≤<120.51t≤<a1 1.51.52t ≤<2822.5t ≤<162.53t ≤≤4(1)m =________,=a ________;(2)若该校学生有640人,试估计劳动时间在23t ≤≤范围的学生有多少人?(3)劳动时间在2.53t ≤≤范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.【答案】(1)80,20(2)160人(3)23【解析】【分析】(1)先用0.51t ≤<的频数除以百分比求出抽取的人数m ,再用m 减去其他的人数求出a 的值;(2)用该校的总人数乘以23t ≤≤所占的百分比;(3)画出树状图,根据概率的计算公式即可得出答案.【小问1详解】m =1215%80÷=,a =80-12-28-16-4=20;故答案为:80,20;【小问2详解】16464016080+⨯=(人),∴劳动时间在23t ≤≤范围的学生有160人;【小问3详解】画树状图如图所示:总共有12种等可能结果,其中抽取的2名学生恰好是一名男生和一名女生的结果有8种,∴抽取的2名学生恰好是一名男生和一名女生概率:82123P ==.【点睛】本题考查了列表法或树状图法、用样本估计总体、频数分布表和扇形统计图,解决本题的关键是掌握概率公式.20.某经销商计划购进A ,B 两种农产品.已知购进A 种农产品2件,B 种农产品3件,共需690元;购进A 种农产品1件,B 种农产品4件,共需720元.(1)A ,B 两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A ,B 两种农产品共40件,且A 种农产品的件数不超过B 种农产品件数的3倍.如果该经销商将购进的农产品按照A 种每件160元,B 种每件200元的价格全部售出,那么购进A ,B 两种农产品各多少件时获利最多?【答案】(1)A 每件进价120元,B 每件进价150元;(2)A 农产品进20件,B 农产品进20件,最大利润是1800元.【解析】【分析】(1)根据“购进A 种农产品2件,B 种农产品3件,共需690元;购进A 种农产品1件,B 种农产品4件,共需720元”可以列出相应的方程组,从而可以求得A 、B 两种农产品每件的价格分别是多少元;(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.【小问1详解】设A 每件进价x 元,B 每件进价y 元,由题意得236904720x y x y +=⎧⎨+=⎩,解得:120150x y =⎧⎨=⎩,答:A 每件进价120元,B 每件进价150元;【小问2详解】设A 农产品进a 件,B 农产品(40-a )件,由题意得,120150(40)54003(40)a a a a +-≤⎧⎨≤-⎩解得2030a ≤≤,设利润为y 元,则 (160120)(200150)(40)102000y a a a =-+--=-+,∵y 随a 的增大而减小,∴当a =20时,y 最大,最大值y =2000-10×200=1800,答:A 农产品进20件,B 农产品进20件,最大利润是1800元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.五、本大题共2个小题,每小题8分,共16分.21.如图,直线32y x b =-+与反比例函数12y x =的图象相交于点A ,B ,已知点A 的纵坐标为6(1)求b 的值;(2)若点C 是x 轴上一点,且ABC 的面积为3,求点C 的坐标.【答案】(1)b =9(2)C (3,0),或C (9,0)【解析】【分析】(1)把y =6代入12y x =得到x =2,得到A (2,6),把A (2,6)代入32y x b =-+,得到b =9;(2)解方程组39212y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,得到x =2(舍去),或x =4,1234y ==,得到B (4,3),设C (x ,0),直线与x 轴交点为D ,过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,得到AE =6,BF =4,根据3902y x =-+=时,x =6,得到D (6,0),推出6CD x =-,根据ABC ACD BCD S S S =- 1122CD AE CD BF =⋅-⋅6x =-=3,求得x =3,或x =9,得到C (3,0),或C (9,0).【小问1详解】解:∵直线32y x b =-+与反比例函数12y x =的图象相交于点A ,B ,点A 的纵坐标为6,∴126=x,x =2,∴A (2,6),∴3622b =-⨯+,b =9;【小问2详解】39212y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,即31292x x -+=,∴x =2(舍去),或x =4,∴1234y ==,∴B (4,3),设C (x ,0),直线与x 轴交点为D ,过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则AE =6,BF =4,3902y x =-+=时,x =6,∴D (6,0),∴6CD x =-,∴ABC ACD BCDS S S =- 1122CD AE CD BF =⋅-⋅()12CD AE BF =-()16642x =--6x =-,∵3ABC S =△,∴63x -=,63x -=±,∴x =3,或x =9,∴C (3,0),或C (9,0).【点睛】本题主要考查了一次函数和反比例函数,三角形面积,解决问题的关键是熟练掌握一次函数和反比例函数的性质,待定系数法求函数解析式,三角形面积计算公式.22.如图,海中有两小岛C ,D ,某渔船在海中的A 处测得小岛C 位于东北方向,小岛D 位于南偏东30°方向,且A ,D 相距10nmile .该渔船自西向东航行一段时间后到达点B ,此时测得小岛C 位于西北方向且与点B 相距nmile .求B ,D 间的距离(计算过程中的数据不取近似值).【答案】B ,D 间的距离为14nmile .【解析】【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10nmile,BC =8nmile .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10nmile ,BC nmile .在Rt △ABC 中,AC =BC∴AB BC =16(nmile),在Rt △ADE 中,AD =10nmile ,∠EAD =60°,∴DE =AD •sin60°=10×32=(nmile),AE =12AD =5(nmile),∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.六、本大题共2个小题,每小题12分,共24分.23.如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作O 的切线交CO 的延长线于点F .(1)求证:FD AB ∥;(2)若AC =BC =,求FD 的长.【答案】(1)见解析(2)158【解析】【分析】(1)连接OD ,由CD 平分∠ACB ,可知 AD BD=,得∠AOD =∠BOD =90°,由DF 是切线可知∠ODF =90°=∠AOD ,可证结论;(2)过C 作CM ⊥AB 于M ,已求出CM 、BM 、OM 的值,再证明△DOF ∽△MCO ,得CM OM OD FD=,代入可求.【小问1详解】证明:连接OD ,如图,∵CD 平分∠ACB ,∴ AD BD=,∴∠AOD =∠BOD =90°,∵DF 是⊙O 的切线,∴∠ODF =90°∴∠ODF =∠BOD ,∴DF ∥AB .【小问2详解】解:过C 作CM ⊥AB 于M ,如图,∵AB 是直径,∴∠ACB =90°,∴AB 2222(25)(5)5AC BC +=+=.∴1122AB CM AC BC = ,即11525522CM�创 ∴CM =2,∴2222(5)21BM BC CM =-=-=,∴OM =OB -BM =135122´-=,∵DF ∥AB ,∴∠OFD =∠COM ,又∵∠ODF =∠CMO =90°,∴△DOF ∽△MCO ,∴CM OM OD FD=,即32252FD =,∴FD =158.【点睛】本题考查了圆的圆心角、弦、弧关系定理、圆周角定理,切线的性质,相似三角形的判定与性质,勾股定理,解题的关键是熟练掌握这些定理,灵活运用相似三角形的性质求解.24.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C.(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)12a =-,4c =(2)23y x =-(3)存在点F ,F 的坐标为()2,0【解析】【分析】(1)将点A ,B 的坐标带入抛物线2y ax x c =++方程即可的到关于a 、c 的方程,即可计算出a 、c 的值;(2)设点E 的坐标为(),m n ,D 的坐标为(),p q ,直线DE 的解析式为y kx =,结合题意,根据一次函数、一元二次方程的性质分析,得到最终的答案;(3)设P 点存在且坐标为(),m n ,过点P 作PM BO ⊥,交BO 于点M ,延长MP 交直线3x =于点N ,根据二次函数、相似三角形的性质计算出m 、n 值,即可得到答案.【小问1详解】∵抛物线2y ax x c =++经过()2,0A -,()0,4B 两点∴0424a c c=-+⎧⎨=⎩∴4c =∴0424a =-+∴12a =-;【小问2详解】过点D 作⊥DM OB ,交OB 于点M ,过点D 作DN OA ⊥,交OA 于点N∵直线DE 经过点O∴设直线DE 为y kx=设点E 为(),m n ∵点E 为直线3x =和直线y kx =的交点∴3n kmm =⎧⎨=⎩∴3n k=∵点C 为()3,0,点E 为()33k ,∴033CE k k =-=-,303OC =-=∵12OEC S OC CE =⨯⨯V ∴193(3)22OEC S k k =⨯⨯-=-V 设点D 的坐标为(),p q ∵⊥DM OB ,DN OA⊥∴DM p =-,DN q=∵点B 的坐标为()0,4∴4OB =∵12DOB S OB DM =⨯⨯V∴14()22DOB S p p =⨯⨯-=-V ∵点A 的坐标为()2,0-∴2OA =∵12AOB S OA OB =⨯⨯△∴12442AOB S =⨯⨯=△∵12AOD S OA DN =⨯⨯V ∴122AOD S q q =⨯⨯=V ∵BDO △与OCE △的面积相等,BDO AOB AODS S S =-△△△∴92224k p p q⎧-=-⎪⎨⎪-=-⎩∵点D 在直线DE 上∴q kp=∴92224k pp q q kp ⎧-=-⎪⎪-=-⎨⎪=⎪⎩∴9424k p p kp=⎧⎨-=-⎩∴2918160k k --=∴()()32380k k +-=∴23k =-,或83k =∵直线DE 过二、四象限∴0k <∴23k =-∴直线DE 的解析式为23y x =-;【小问3详解】设P 存在且坐标为(),m n ,过点P 作PM BO ⊥,交BO 于点M ,延长MP 交直线3x =于点N∵点B 的坐标为()0,4,点P 的坐标为(),m n ∴OM n =,MP m=∵BM OM OB=-∴4BM n =-∵MN OM⊥∴3MN =∴3PN MN MP m=-=-∵四边形BFGP 为矩形∴90PBF BPG ︒∠=∠=∴90MBP OBF ︒∠+∠=∵90BOF ︒∠=∴90OBF BFO ︒∠+∠=∴MBP BFO∠=∠∵90BOF PMB ︒∠=∠=∴PMB BOF△∽△∴MP BM OB OF=∵四边形BFGP 为矩形∴PG BF =,90BPG ︒∠=∴90BPM NPG ︒∠+∠=∵PMB BOF△∽△∴PBM BFO∠=∠∴NPG BFO∠=∠∵NPG BFO PG BF PNG FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴PNG FOB△≌△∴PN OF=∵3PN m=-∴3OF m=-∵MP BM OB OF =∴443m n m-=-∴24316n m m =-++∵点(),P m n 在抛物线上,且抛物线为2142y x x =-++∴2142n m m =-++∴224316142n m m n m m ⎧=-++⎪⎨=-++⎪⎩∴04m n ==,,或912m n ==,∵当04m n ==,时,点P 与点B 重合∴04m n ==,舍去∴912m n ==,∵3OF m=-∴312OF =-=∵F在线段OC上2,0.∴点F的坐标为()【点睛】本题考查了矩形、一次函数、二次函数、一元二次方程、直角三角形、相似三角形的相关知识;解题的关键是熟练掌握矩形、一次函数、二次函数、相似三角形的性质,从而完成求解.。
2009年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•北京)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限.【解答】解:∵z=i(1+2i)=i+2i=﹣2+i,∴复数z所对应的点为(﹣2,1),故选B【点评】本题主要考查复数在坐标系数内复数与点的对应关系.属于基础知识的考查.2.(5分)(2009•北京)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向【考点】平面向量共线(平行)的坐标表示.【专题】计算题.【分析】根据所给的选项特点,检验k=1是否满足条件,再检验k=﹣1是否满足条件,从而选出应选的选项.【解答】解:∵=(1,0),=(0,1),若k=1,则=+=(1,1),=﹣=(1,﹣1),显然,与不平行,排除A、B.若k=﹣1,则=﹣+=(﹣1,1),=﹣=(1,﹣1),即∥且与反向,排除C,故选D.【点评】本题考查平行向量的坐标表示,当两个向量平行时,一个向量的坐标等于另一个向量坐标的若干倍.3.(5分)(2009•北京)为了得到函数的图象,只需把函数y=lgx的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【考点】对数函数的图像与性质.【分析】先根据对数函数的运算法则对函数进行化简,即可选出答案.【解答】解:∵,∴只需把函数y=lgx的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度故选C.【点评】本题主要考查函数图象的平移变换.属于基础知识、基本运算的考查.4.(5分)(2009•北京)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD 成60°角,则A1C1到底面ABCD的距离为()A. B.1 C. D.【考点】直线与平面平行的性质.【专题】计算题;作图题;压轴题.【分析】画出图象,利用线段的关系,角的三角函数,求解即可.【解答】解:依题意,BB1的长度即A1C1到上面ABCD的距离,∠B1AB=60°,BB1=1×tan60°=,故选:D.【点评】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念,属于基础知识、基本运算的考查.5.(5分)(2009•北京)“a=+2kπ(k∈Z)”是“cos2a=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;任意角的三角函数的定义;二倍角的余弦.【分析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断.属于基础知识、基本运算的考查.将a=+2kπ代入cos2a易得cos2a=成立,但cos2a=时,a=+2kπ(k∈Z)却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:当a=+2kπ(k∈Z)时,cos2a=cos(4kπ+)=cos=反之,当cos2a=时,有2a=2kπ+⇒a=kπ+(k∈Z),或2a=2kπ﹣⇒a=kπ﹣(k∈Z),故选A.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q 的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6.(5分)(2009•北京)若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.80【考点】二项式定理的应用.【专题】计算题.【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选C【点评】本题考查二项式定理求二项展开式、组合数公式求二项式系数.7.(5分)(2009•北京)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648【考点】计数原理的应用.【专题】计算题;压轴题.【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选B【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.8.(5分)(2009•北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点"C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点"【考点】两点间距离公式的应用.【专题】计算题;压轴题;创新题型.【分析】根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l 上的所有点都符合.【解答】解:设A(m,n),P(x,x﹣1)则,B(2m﹣x,2n﹣x+1)∵A,B在y=x2上∴n=m2,2n﹣x+1=(2m﹣x)2消去n,整理得关于x的方程x2﹣(4m﹣1 )x+2m2﹣1=0∵△=8m2﹣8m+5>0恒成立,∴方程恒有实数解,∴故选A.【点评】本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2009•北京)=.【考点】极限及其运算.【专题】计算题.【分析】通过因式分解把原式转化为=,消除零因子后得到,由此能够得到的值.【解答】解:===.故答案为:.【点评】本题考查函数的极限,解题时要注意消除零因子.10.(5分)(2009•北京)若实数x,y满足则s=y﹣x的最小值为﹣6.【考点】简单线性规划.【分析】①画可行域如图②目标函数s为该直线纵截距③平移目标函数可知直线过(4,﹣2)点时s有最小值.【解答】解:画可行域如图阴影部分,令s=0作直线l:y﹣x=0平移l过点A(4,﹣2)时s有最小值﹣6,故答案为﹣6.【点评】本题考查线性规划问题:可行域画法目标函数几何意义11.(5分)(2009•北京)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.【考点】偶函数;导数的几何意义.【分析】偶函数关于y轴对称,结合图象,根据对称性即可解决本题.【解答】解;取f(x)=x2﹣1,如图,易得该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.故应填﹣1.【点评】函数性质的综合应用是函数问题的常见题型,在解决这一类问题是要注意培养数形结合的思想方法.12.(5分)(2009•北京)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=2,∠F1PF2的大小为120°.【考点】椭圆的简单性质.【专题】计算题;压轴题.【分析】第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.【解答】解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°【点评】本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是对曲线的定义和性质考查的很到位.13.(5分)(2009•北京)若函数则不等式的解集为[﹣3,1].【考点】其他不等式的解法.【专题】计算题;压轴题;转化思想.【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].【点评】本题主要考查分段函数和简单绝对值不等式的解法.属于基础知识、基本运算.14.(5分)(2009•北京){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014=0.【考点】数列的概念及简单表示法.【专题】压轴题.【分析】由a4n﹣3=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,第2009项的2009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.【解答】解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,1007=252×4﹣1,∴a2014=0,故答案为:1,0.【点评】培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.三、解答题(共6小题,满分80分)15.(13分)(2009•北京)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.【考点】正弦定理;同角三角函数基本关系的运用.【专题】计算题.【分析】(Ⅰ)由cosA=得到A为锐角且利用同角三角函数间的基本关系求出sinA的值,根据三角形的内角和定理得到C=π﹣﹣A,然后将C的值代入sinC,利用两角差的正弦函数公式化简后,将sinA和cosA代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC和(Ⅰ)可知公式里边的a不知道,所以利用正弦定理求出a即可.【解答】解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,∴A为锐角,则sinA==∴∴sinC=sin(﹣A)=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC中,由正弦定理,得∴a==,∴△ABC的面积S=absinC=×××=.【点评】考查学生灵活运用正弦定理、三角形的面积公式及同角三角函数间的基本关系化简求值.灵活运用两角和与差的正弦函数公式化简求值.16.(14分)(2009•北京)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.【考点】与二面角有关的立体几何综合题;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC 内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件; (2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE 中,求出AD与平面PAC所成角即可;(3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A﹣DE﹣P 的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A ﹣DE﹣P是直二面角.【解答】解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=AB,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠ABC=60°,∴BC=AB,∴在Rt△ADE中,sin∠DAE===,即AD与平面PAC所成角的正弦值为.(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PBC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°,故存在点E使得二面角A﹣DE﹣P是直二面角.【点评】考查线面所成角、线面垂直的判定定理以及二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.17.(13分)(2009•北京)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【考点】离散型随机变量及其分布列;相互独立事件的概率乘法公式.【专题】计算题.【分析】(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.【解答】解:(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,∵事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,∴事件A的概率为(Ⅱ)由题意可得ξ可能取的值为0,2,4,6,8(单位:min)事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),∴,∴即ξ的分布列是ξ0 2 4 6 8P∴ξ的期望是【点评】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.18.(13分)(2009•北京)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间即可;(III)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1时,函数f(x)(﹣1,1)内单调递增,由此即可求k的取值范围.【解答】解:(Ⅰ)f′(x)=(1+kx)e kx,f′(0)=1,f(0)=0,曲线y=f(x)在点(0,f(0))处的切线方程为y=x;(Ⅱ)由f′(x)=(1+kx)e kx=0,得x=﹣(k≠0),若k>0,则当x∈(﹣∞,﹣)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣,+∞,)时,f′(x)>0,函数f(x)单调递增,若k<0,则当x∈(﹣∞,﹣)时,f′(x)>0,函数f(x)单调递增,当x∈(﹣,+∞,)时,f′(x)<0,函数f(x)单调递减;(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1,即k≤1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1,即k≥﹣1时,函数f(x)(﹣1,1)内单调递增,综上可知,函数f(x)(﹣1,1)内单调递增时,k的取值范围是[﹣1,0)∪(0,1].【点评】本小题主要考查直线的斜率、利用导数研究函数的单调性、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力以及分类讨论思想.属于基础题.19.(14分)(2009•北京)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x= (I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.【考点】圆与圆锥曲线的综合.【专题】计算题;综合题;压轴题;转化思想.【分析】( I)先利用条件列出关于a,c的方程解方程求出a,c,b;即可求出双曲线方程.(II)先求出圆的切线方程,再把切线与双曲线方程联立求出关于点A,B坐标之间的方程,再代入求出∠AOB的余弦值即可证明∠AOB的大小为定值.【解答】解:(Ⅰ)由题意,,解得a=1,c=,b2=c2﹣a2=2,∴所求双曲C的方程.(Ⅱ)设P(m,n)(mn≠0)在x2+y2=2上,圆在点P(m,n)处的切线方程为y﹣n=﹣(x﹣m),化简得mx+ny=2.以及m2+n2=2得(3m2﹣4)x2﹣4mx+8﹣2m2=0,∵切L与双曲线C交于不同的两点A、B,且0<m2<2,3m2﹣4≠0,且△=16m2﹣4(3m2﹣4)(8﹣2m2)>0,设A、B两点的坐标分别(x1,y1),(x2,y2),x1+x2=,x1x2=.∵,且=x1x2+[4﹣2m(x1+x2)+m2x1x2]=+[4﹣+]=﹣=0.∴∠AOB的大小为900.【点评】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.20.(13分)(2009•北京)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.【考点】数列的应用.【专题】证明题;综合题;压轴题;新定义;分类讨论.【分析】(I)根据性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A,验证给的集合集{1,3,4}与{1,2,3,6}中的任何两个元素的积商是否为该集合中的元素;(Ⅱ)由性质P,知a n a n>a n,故a n a n∉A,从而1=∈A,a1=1.再验证又∵<<…<<,,,…,,从而++…++=a1+a2+…+a n,命题得证;(Ⅲ)跟据(Ⅱ),只要证明即可.【解答】解:(Ⅰ)由于3×与均不属于数集{1,3,4,∴该数集不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6,∴该数集具有性质P.(Ⅱ)∵A={a1,a2,…,a n}具有性质P,∴a n a n与中至少有一个属于A,由于1≤a1<a2<…<a n,∴a n a n>a n故a n a n∉A.从而1=∈A,a1=1.∵1=a1<a2<…a n,n≥2,∴a k a n>a n(k=2,3,4,…,n),故a k a n∉A(k=2,3,4,…,n).由A具有性质P可知∈A(k=2,3,4,…,n).又∵<<…<<,∴,,…,,从而++…++=a1+a2+…+a n,∴且;(Ⅲ)由(Ⅱ)知,当n=5时,有,,即a5=a2•a4=a32,∵1=a1<a2<…<a5,∴a3a4>a2a4=a5,∴a3a4∉A,由A具有性质P可知∈A.由a2•a4=a32,得∈A,且1<,∴,∴,即a1,a2,a3,a4,a5是首项为1,公比为a2等比数列.【点评】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法.此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属于较难层次题.。
2018年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
历年高考抛物线真题详解理科1.【2017 课标 1,理 10】已知 F 为抛物线21C : y =4x 的焦点,过 F 作两条相互垂直的直线l ,l ,直线 l与 C 交于 A 、 B 两点,直线l与 C 交于 D 、 E 两点,则 | AB|+| DE| 的最小值为212A . 16B . 14C .12D . 102.【2016 年高考四川理数】设 O 为坐标原点, P 是以 F 为焦点的抛物线上随意一点, M 是线段 PF 上的点,且=2,则直线 OM 的斜率的最大值为 ( )( A ) (B ) (C ) ( D )13.【2016 年高考四川理数】设 O 为坐标原点, P 是以 F 为焦点的抛物线y 2 2px(p 0)上随意一点, M 是线段 PF 上的点,且 PM =2 MF ,则直线 OM 的斜率的最大值为 ()3 ( A )3(B ) 2(C )2 (D )1324【. 2016 高考新课标 1 卷】以抛物线 C 的极点为圆心的圆交 C 于 A 、B 两点 ,交 C 的准线于 D 、 E 两点 .已知 | AB|= 4 2 ,| DE|= 2 5 ,则 C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)85.【 2015高考四川,理10 】设直线l 与抛物线 y 24x 订交于 A , B 两点,与圆x 2y 2 r 2r 0 相切于点 M ,且 M 为线段 AB 的中点 .若这样的直线 l 恰有 4 条,5则 r 的取值范围是()(A ) 1,3 ( B ) 1,4 ( C ) 2,3 ( D ) 2,46. 【 2015 高考浙江,理 5】如图,设抛物线 y 24 x 的焦点为 F ,不经过焦点的直线上有三个不一样的点C,此中点 A ,B 在抛物线上,点 C 在 y 轴上,则BCF 与ACFA ,B ,的面积之比是()BF 12 1 BF 1 BF 2 B.BF1A.12C.AFD.AF2AFAF 111【 2017 课标 II ,理 16】已知 F 是抛物线 C: y 28 x 的焦点, M 是 C 上一点, FM 的7.延伸线交 y 轴于点 N 。
2009年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟。
祝考试顺利注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1、已知{|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R==+∈==+-∈是两个向量集合,则P Q=A.{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}2.设a为非零实数,函数11(,)1axy x R xax a-=∈≠-+且的反函数是A 、11(,)1ax y x R x ax a -=∈≠-+且B 、11(,)1ax y x R x ax a +=∈≠--且 C 、1(,1)(1)x y x R x a x +=∈≠-且 D 、1(,1)(1)xy x R x a x -=∈≠-+且3、投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni )(n-mi)为实数的概率为A 、13B 、14C 、16D 、1124.函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π5.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.18A .24B .30C .36D 6.设222212012122) (2)n n n n n x a a x a x a x a x --+=+++++(,则22024213521lim[(...)(...)]n n n a a a a a a a a -→∞++++-++++=.1A - .0B .1C 22D 7.已知双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是A. 11,22K ⎡⎤∈-⎢⎥⎣⎦B. 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C.22,K⎡⎤∈-⎢⎥⎣⎦D.22,,K⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎪⎝⎦⎣⎭8.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用。
2024年四川省遂宁市中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列各数中,无理数是()A.﹣2B.C.D.0【分析】分别根据无理数的定义即可判定选择项.【解答】解:﹣2,,0是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用.如图是某个部件“榫”的实物图,它的主视图是()A.B.C.D.【分析】从正面看到的平面图形是主视图,根据主视图的含义可得答案.【解答】解:如图所示的几何体的主视图如下:.故选:A.【点评】此题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.(4分)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为()A.0.62×106B.6.2×106C.6.2×105D.62×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:62万=620000=6.2×105.故选:C.【点评】本题主要考查了科学记数法—表示较大的数,熟练掌握科学记数法的表示方法是解题的关键.4.(4分)下列运算结果正确的是()A.3a﹣2a=1B.a2•a3=a6C.(﹣a)4=﹣a4D.(a+3)(a﹣3)=a2﹣9【分析】根据公式化简代数式即可.【解答】解:3a﹣2a=a,故A选项错误;a2•a3=a5,故B选项错误;(﹣a)4=a4,故C选项错误;(a+3)(a﹣3)=a2﹣9,故D选项正确;故选:D.【点评】本题考查了代数式的化简,关键是要掌握平方差公式,同底数幂的乘法.5.(4分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣2<2x+1,得x<3,所以不等式组的解集在数轴上表示为:.故选:B.【点评】本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.(4分)佩佩在“黄娥古镇”研学时学习扎染技术,得到一个内角和为1080°的正多边形图案,这个正多边形的每个外角为()A.36°B.40°C.45°D.60°【分析】设这个正多边形的边数为n,利用多边形的内角和公式求得n的值,再利用多边形的外角和列式计算即可.【解答】解:设这个正多边形的边数为n,由题意得:(n﹣2)•180°=1080°,解得:n=8,则360°÷8=45°,即这个正多边形的每个外角为45°,故选:C.【点评】本题考查多边形的内角和及外角和,结合已知条件求得正多边形的边数是解题的关键.7.(4分)分式方程=1﹣的解为正数,则m的取值范围()A.m>﹣3B.m>﹣3且m≠﹣2C.m<3D.m<3且m≠﹣2【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.【解答】解:去分母得:2=x﹣1﹣m,解得:x=m+3,由方程的解为正数,得到m+3>0,且m+3≠1,则m的范围为m>﹣3且m≠﹣2.故选:B.【点评】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键.8.(4分)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积()A .B .C .D .【分析】证明△OAB 是等边三角形,根据S 阴=S 扇形OAB ﹣S △OAB ,求解即可.【解答】解:如图,由题意OA =OB =1,AB =1,∴OA =OB =AB ,∴△OAB 是等边三角形,∴S 阴=S 扇形OAB ﹣S △OAB =﹣×12=﹣.故选:A .【点评】本题考查扇形的面积,等边三角形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.(4分)如图1,△ABC 与△A 1B 1C 1满足∠A =∠A 1,AC =A 1C 1,BC =B 1C 1,∠C ≠∠C 1,我们称这样的两个三角形为“伪全等三角形”如图2,在△ABC 中,AB =AC ,点D ,E 在线段BC 上,且BE =CD ,则图中共有“伪全等三角形”()A .1对B .2对C .3对D .4对【分析】根据所给“伪全等三角形”的定义,找出图2中的“伪全等三角形”即可.【解答】解:∵AB=AC,∴∠B=∠C.在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE.∵AB=AB,∠B=∠B,AD=AE,∠BAD≠∠BAE,∴△ABD和△ABE是一对“伪全等三角形”.同理可得,△ABD和△ACD是一对“伪全等三角形”.△ACD和△ACE是一对“伪全等三角形”.△ABE和△ACE是一对“伪全等三角形”.所以图中的“伪全等三角形”共有4对.故选:D.【点评】本题考查全等三角形的判定、全等三角形的性质及等腰三角形的性质,熟知三角形全等的判定与性质及理解“伪全等三角形”的定义是解题的关键.10.(4分)如图,已知抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)的对称轴为直线x=﹣1,且该抛物线与x轴交于点A(1,0),与y轴的交点B在(0,﹣2),(0,﹣3)之间(不含端点),则下列结论正确的有多少个()①abc>0;②9a﹣3b+c>0;③<a<1;④若方程ax2+bx+c=x+1两根为m,n(m<n),则﹣3<m<1<n.A.1B.2C.3D.4【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标、根与系数的关系等知识,逐个判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴为直线x=﹣1<0,a、b同号,∴b>0,∵与y轴的交点B在(0,﹣2)和(0,﹣3)之间,∴﹣3<c<﹣2<0,∴abc<0,故①不正确;∵对称轴为直线x=﹣1,且该抛物线与x轴交于点A(1,0),∴与x轴交于另一点(﹣3,0),∵x=﹣3,y=9a﹣3b+c=0,故②不正确;由题意可得,方程ax2+bx+c=0的两个根为x1=1,x2=﹣3,又∵x1•x2=,即c=﹣3a,∵﹣3<c<﹣2,∴﹣3<﹣3a<﹣2,因此<a<1,故③正确;若方程ax2+bx+c=x+1两根为m,n(m<n),则直线y=x+1与抛物线的交点的横坐标为m,n,∵直线y=x+1过一、二、三象限,且过点(﹣1,0),∴直线y=x+1与抛物线的交点在第一、第三象限,由图象可知﹣3<m<1<n.故④正确;综上所述,正确的结论有③④,故选:B.【点评】本题考查二次函数的图象与系数的关系,根与系数的关系,抛物线与x轴的交点,掌握二次函数与一元二次方程的关系,是正确判断的前提.二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)分解因式:ab+4a=a(b+4).【分析】提取a进行化简.【解答】解:ab+4a=a(b+4),故答案为:a(b+4).【点评】本题考查了因式分解,重要的是找到公因式.12.(4分)反比例函数y=的图象在第一、三象限,则点(k,﹣3)在第四象限.【分析】根据所给反比例函数图象在第一、三象限,得出k的取值范围,进而可解决问题.【解答】解:因为反比例函数y=的图象在第一、三象限,所以k﹣1>0,解得k>1,所以点(k,﹣3)在第四象限.故答案为:四.【点评】本题考查反比例函数的性质及反比例函数的图象,熟知反比例函数的图象和性质及每个象限内点的坐标特征是解题的关键.13.(4分)体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选甲参加比赛.甲88798乙69799【分析】根据平均数的计算公式算出甲和乙的平均数,再根据方差公式算出甲和乙的方差,然后根据方差的意义即可得出答案.【解答】解:甲的平均数是:=8,甲的方差是:S2=×[3×(8﹣8)2+(7﹣8)2+(9﹣8)2]=0.4,乙的平均数是:=8,乙的方差是:S2=×[3×(9﹣8)2+(7﹣8)2+(6﹣8)2]=1.6,∵S甲2<S乙2,∴老师应该选甲.故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(4分)在等边△ABC三边上分别取点D、E、F,使得AD=BE=CF,连结三点得到△DEF,易得△ADF≌△BED≌△CFE,设S△ABC=1,则S△DEF=1﹣3S△ADF.如图①当=时,S△DEF=1﹣3×=;如图②当=时,S△DEF=1﹣3×=;如图③当=时,S△DEF=1﹣3×=;…直接写出,当=时,S△DEF=.【分析】探究规律,利用规律解决问题.【解答】解:如图①当=时,S△DEF=1﹣3×=1﹣3×=;=1﹣3×=1﹣3×=;如图②当=时,S△DEF=1﹣3×=1﹣3×=;如图③当=时,S△DEF…=1﹣3×;当=时,S△DEF=1﹣3×=.故当=时,S△DEF【点评】本题考查全等三角形的判定和性质,等边三角形的性质,规律型﹣图形变化等知识,解题的关键是学会探究规律,利用规律解决问题.15.(4分)如图,在正方形纸片ABCD中,E是AB边的中点,将正方形纸片沿EC折叠,点B落在点P 处,延长CP交AD于点Q,连结AP并延长交CD于点F.给出以下结论:①△AEP为等腰三角形;②F为CD的中点;②AP:PF=2:3;④cos∠DCQ=.其中正确结论是①②③(填序号).【分析】利用翻折的性质,证明EA=EP,即可判断①;利用AAS证明△BEC≌△DFA,即可判断②;过点P作PM⊥BC于点M,过点E作EN⊥AF于点N,设AE=BE=EP=DF=CF=a,然后求出AP,PF,再计算即可判断③;证明出AQ=PQ,再在Rt△CDQ中,利用勾股定理求出AQ,DQ,根据三角函数定义即可判断④.【解答】解:∵E是AB边的中点,∴EA=EB,∵将正方形纸片沿EC折叠,点B落在点P处,∴EB=EP,∴EA=EP,即△AEP为等腰三角形,故①正确;∵EA=EP,∴∠EAP=∠EPA,∵将正方形纸片沿EC折叠,点B落在点P处,∴∠BEC=∠PEC,∵∠BEP=∠EAP+∠EPA,∴∠BEC=∠EAP,∵四边形ABCD是正方形,∴∠CBE=∠ADF,AB∥CD,BC=AD,∴∠EAP=∠DFA,∴∠BEC=∠DFA,∴△BEC≌△DFA(AAS),∴DF=BE,∴DF=AB=CD,即F为CD的中点,故②正确;过点P作PM⊥BC于点M,过点E作EN⊥AF于点N,∵∠BEC=∠EAP,∴EC∥AF,∴EN=PM,设AE=BE=EP=DF=CF=a,则BC=AD=PC=2a,∴EC=AF==a,=EC•PM=PE•PC,∵S△PEC∴PM===,∴EN=,∴PN===,∴AP=2PN=,PF=AF﹣AP==,∴AP:PF=:=2:3,故③正确;∵∠EAP=∠EPA,∠EAD=∠EPQ=90°,∴∠QAP=∠QPA,∴AQ=PQ,∵正方形的边长为2a,∴AD=CD=CP=2a,QD=2a﹣AQ,CQ=2a+PQ=2a+AQ,在Rt△CDQ中,由勾股定理,得CD2+QD2=CQ2,即(2a)2+(2a﹣AQ)2=(2a+AQ)2,解得AQ=a,∴DQ=2a﹣a=a,∴CQ=2a+a=a,∴cos∠DCQ===.故④不正确.故答案为:①②③.【点评】本题考查翻折变换,轴对称的性质,正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,三角函数,能够熟练运用相关图形的判定和性质是解题的关键.三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:sin45°+|﹣1|++()﹣1.【分析】根据实数的运算、负整数指数幂法则、特殊角的三角函数值进行解题即可.【解答】解:原式=+1﹣+2+2021=2024.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,熟练掌握运算法则是解题的关键.17.(7分)先化简:(1﹣)÷,再从1,2,3中选择一个合适的数作为x的值代入求值.【分析】先化简分式,再将x=3代入求出结果.【解答】解:(1﹣)÷===x﹣1,∵x﹣1≠0,x﹣2≠0,∴x≠1,x≠2,当x=3时,原式=2.【点评】本题考查了分式的化简,要注意分母不为0.18.(8分)康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O;②以点O为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA、OB、OC、OD;③顺次连结所得的四点得到四边形ABCD.于是可以直接判定四边形ABCD是平行四边形,则该则定定理是:对角线互相平分的四边形是平行四边形.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD是平行四边形,AC=BD.求证:四边形ABCD是矩形.【分析】(1)由题意可知,OA=OC,OB=OD,故根据“对角线互相平分的四边形是平行四边形”可以判定四边形ABCD是平行四边形;(2)由平行四边形的性质,根据SSS证明△BAD≌△ABC,从而证明∠BAD=∠ABC,根据平行线的性质可以证明∠BAD=∠ABC=90°,进而根据“有一个角是直角的平行四边形是矩形”证明四边形ABCD是矩形.【解答】(1)解:∵OA=OC,OB=OD,∴四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).故答案为:对角线互相平分的四边形是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,∴在△BAD和△ABC中,,∴△BAD≌△ABC(SSS),∴∠BAD=∠ABC,∵AD∥BC,∴∠BAD+∠ABC=180°,∴∠BAD=∠ABC=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).【点评】本题考查平行四边形及矩形的判定,熟练掌握并灵活运用其判定定理是解题的关键.19.(8分)小明的书桌上有一个L型台灯,灯柱AB高40cm,他发现当灯带BC与水平线BM夹角为9°时(图1),灯带的直射宽DE(BD⊥BC,CE⊥BC)为35cm,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30°时(图2),直射宽度刚好合适,求此时台灯最高点C到桌面的距离.(结果保留1位小数)(sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)【分析】如图2中,过点C作CK⊥AE′于点K,交BM于点J.解直角三角形求出CJ,可得结论.【解答】解:如图2中,过点C作CK⊥AE′于点K,交BM于点J.如图1中,∵DB⊥BC,EC⊥BC,∴BD∥EC,∵BM∥DE,∴四边形BDEM是平行四边形,∴BM=DE=35cm,∴BC=BM•cos9°=35×0.99≈34.65(cm),如图2中,∵BM∥AE′,CK⊥AE′,∴CJ⊥BM,∴CJ=BC•sin30°≈17.32(cm),∵AB⊥AE′,∴BA=JK=40cm,∴CK=CJ+JK=17.32+40≈67.3(cm).答:台灯最高点C到桌面的距离约为67.3cm.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20.(9分)某酒店有A、B两种客房,其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【分析】(1)依据题意,设A种客房每间定价是x元,B种客房每间定价是y元,进而建立方程组,计算即可得解;(2)依据题意,设A种客房每间定价为m元,从而可得W=m(24﹣)=﹣(m﹣220)2+4840,再结合二次函数的性质即可判断得解.【解答】解:(1)设A种客房每间定价是x元,B种客房每间定价是y元,∴.∴.答:A、B两种客房每间定价分别是200元、120元.(2)由题意,设A种客房每间定价为m元,∴W=m(24﹣)=﹣(m﹣220)2+4840.∵﹣<0,∴当m=220时,W取最大值,最大值为4840.答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【点评】本题主要考查了二次函数的应用和二元一次方程组的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.21.(9分)已知关于x的一元二次方程x2﹣(m+2)x+m﹣1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且+﹣x1x2=9,求m的值.【分析】(1)先确定a、b、c,再计算根的判别式,利用根的判别式得结论;(2)先利用根与系数的关系求出两根的和与积,再代入已知中得关于m的方程,求解即可.【解答】解:(1)x2﹣(m+2)x+m﹣1=0,这里a=1,b=﹣(m+2),c=m﹣1,Δ=b2﹣4ac=[﹣(m+2)]2﹣4×1×(m﹣1)=m2+4m+4﹣4m+4=m2+8.∵m2≥0,∴△>0.∴无论m取何值,方程都有两个不相等的实数根;(2)设方程x2﹣(m+2)x+m﹣1=0的两个实数根为x1,x2,则x1+x2=m+2,x1x2=m﹣1.∵+﹣x1x2=9,即(x1+x2)2﹣3x1x2=9,∴(m+2)2﹣3(m﹣1)=9.整理,得m2+m﹣2=0.∴(m+2)(m﹣1)=0.解得m1=﹣2,m2=1.∴m的值为﹣2或1.【点评】本题考查了一元二次方程,掌握根的判别式、根与系数的关系及完全平方公式的变形等知识点是解决本题的关键.22.(10分)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分呢,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙风古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为100,扇形统计图中,m=10,“B:龙风古镇”对应圆心角的度数是72°;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A、B、C、D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【分析】(1)将出游景点F的人数除以其所占百分比,即可得到本次被抽样调查的学生总人数;求出出游景点C的人数,再除以总人数,乘以100,即可求出m的值;将出游景点B的人数除以总人数,再乘以360°,即可得到“B:龙风古镇”对应圆心角的度数;(2)求出出游景点C的人数,再补全条形统计图即可;(3)将未出游的人数出游总人数,再乘以1800,即可估计该学校学生“五一”假期未出游的人数;(4)用树状图或列表的方法即可求出他们选择同一景点的概率.【解答】解:(1)∵30÷30%=100(人),∴本次被抽样调查的学生总人数为100人;∵出游C景点的人数为:100﹣(12+20+20+8+30)=10(人),∴m=×100=10;∵×360°=72°,∴“B:龙风古镇”对应圆心角的度数是72°,故答案为:100,10,72°;(2)由(1)知:出游景点C的人数为10人,补全条形统计图如下:(3)×1800=144(人),答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如下:一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果,∴P(选择同一景点)==.【点评】本题考查条形统计图,扇形统计图,用样本估计总体,用列表法和树状图法求等可能事件的概率,能从统计图种获取数据,掌握用列表法和树状图法求等可能事件的概率的方法是解题的关键.23.(10分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于A(1,3),B(n,﹣1)两点.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出y1>y2时,x的取值范围;(3)过点B作直线OB,交反比例函数图象于点C,连结AC,求△ABC的面积.【分析】(1)先将点A坐标代入反比例函数解析式,求出m,再求出点B坐标,最后用待定系数法求出一次函数解析式即可.(2)利用数形结合的数学思想即可解决问题.(3)连接AO,根据反比例函数与正比例函数的对称性,将△ABC的面积转化为△AOB面积的2倍即可解决问题.【解答】解:(1)将点A坐标代入反比例函数解析式得,m=1×3=3,所以反比例函数解析式为y=.将点B坐标代入反比例函数解析式得,n=﹣3,所以点B的坐标为(﹣3,﹣1).将A,B两点坐标代入一次函数解析式得,,解得,所以一次函数解析式为y=x+2.(2)由函数图象可知,当﹣3<x<0或x>1时,一次函数的图象在反比例函数图象的上方,即y1>y2,所以当y1>y2,x的取值范围是:﹣3<x<0或x>1.(3)连接AO,令直线AB与x轴的交点为M,将y=0代入y=x+2得,x=﹣2,所以点M的坐标为(﹣2,0),=S△AOM+S△BOM=.所以S△AOB因为正比例函数图象与反比例函数图象都是中心对称图形,且坐标原点是对称中心,所以点B和点C关于点O成中心对称,所以BO=CO,=2S△AOB=8.所以S△ABC【点评】本题考查反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象和性质是解题的关键.24.(10分)如图,AB是⊙O的直径,AC是一条弦,点D是的中点,DN⊥AB于点E,交AC于点F,连结DB交AC于点G.(1)求证:AF=DF;(2)延长GD至点M,使DM=DG,连结AM.①求证:AM是⊙O的切线;②若DG=6,DF=5,求⊙O的半径.【分析】(1)连接AD,设OD交AC于点I,由OD=OA,得∠ODA=∠OAD,由点D是的中点,得OD⊥AC于点I,可证明∠ODF=∠OAF=90°﹣∠AOD,进而推导出∠FDA=∠FAD,则AF=DF;(2)①先证明AD垂直平分GM,则AM=AG,所以∠MAD=∠CAD=∠B,则∠OAM=∠BAD+∠MAD=∠BAD+∠B=90°,即可证明AM是⊙O的切线;②可证明∠FDG=∠FGD,则GF=DF=AF=5,所以AG=2AF=10,求得AD==8,==cos∠DAG,求得AI==,则DI=,由勾股定理得(OA﹣)2+()2=OA2,求得OA=,则⊙O的半径长为.【解答】(1)证明:连接AD,设OD交AC于点I,∵OD=OA,∴∠ODA=∠OAD,∵点D是的中点,∴OD⊥AC于点I,∵DN⊥AB于点E,∴∠OED=∠OIA=90°,∴∠ODF=∠OAF=90°﹣∠AOD,∴∠ODA﹣∠ODF=∠OAD﹣∠OAF,∴∠FDA=∠FAD,∴AF=DF.(2)①证明:∵AB是⊙O的直径,DM=DG,∴∠ADB=90°,∴AD垂直平分GM,∴AM=AG,∴∠MAD=∠CAD,∵=,∴∠B=∠CAD,∴∠MAD=∠B,∴∠OAM=∠BAD+∠MAD=∠BAD+∠B=90°,∵OA是⊙O的半径,且AM⊥OA,∴AM是⊙O的切线.②解:∵∠FDG+∠FDA=90°,∠FGD+∠FAD=90°,且∠FDA=∠FAD,∴∠FDG=∠FGD,∴GF=DF=AF=5,∴AG=2AF=10,∵DG=6,∴AD===8,∵∠AID=∠ADG=90°,∴==cos∠DAG,∴AI===,∴DI===,∵∠OIA=90°,OI=OD﹣=OA﹣,∴OI2+AI2=OA2,∴(OA﹣)2+()2=OA2,解得OA=,∴⊙O的半径长为.【点评】此题重点考查等腰三角形的性质、垂径定理、圆周角定理、切线的判定定理、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.(12分)二次函数y=ax2+bx+c(a≠0)的图象与x轴分别交于点A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3),P、Q为抛物线上的两点.(1)求二次函数的表达式;(2)当P、C两点关于抛物线对称轴对称,△OPQ是以点P为直角顶点的直角三角形时,求点Q的坐标;(3)设P的横坐标为m,Q的横坐标为m+1,试探究:△OPQ的面积S是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.【分析】(1)由待定系数法即可求解;(2)△OPQ是以点P为直角顶点的直角三角形时,则点P、C关于抛物线对称轴对称,设Q(m,m2﹣2m﹣3),运用勾股定理代入可列式子,解出即可求解;﹣S△OHQ=OH×(y Q﹣y P),即可求解.(3)由S=S△OHP【解答】解:(1)由题意得:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),则﹣3a=﹣3,则抛物线的表达式为:y=x2﹣2x﹣3;(2)△OPQ是以点P为直角顶点的直角三角形时,抛物线的对称轴为直线x=1,则点P、C关于抛物线对称轴对称,则点P(2,﹣3),设Q(m,m2﹣2m﹣3),∵∠OPQ=90°,∴OP2+PQ2=OQ2,∴[(0﹣2)2+(0+3)2]+[(2﹣m)2+(﹣3﹣m2+2m+3)2]=[m2+(m2﹣2m﹣3)2]整理得:3m2﹣8m+4=0,解得:m1=,m2=2(舍去),∴m=,∴Q(,﹣);(3)存在,理由:设点P(m,m2﹣2m﹣3),则点Q(m+1,(m+1)2﹣2(m+1)﹣3),设直线PQ交x轴于点H,由点P、Q的坐标得,直线PQ的表达式为:y=(2m﹣1)(x﹣m)+m2﹣2m﹣3,令y=0,则x=+m,则OH=+m,﹣S△OHQ=OH×(y Q﹣y P)=×(+m)[(m+1)2﹣2(m+1)﹣3﹣m2+2m+3]则S=S△OHP=(m2+m+3)=(m+)2+≥,即S存在最小值为.。
人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。
初一上册数学有理数的乘法试题及答案一、选择题(共14小题)1.计算:2×(﹣3)的结果是()A.6B.﹣6C.﹣1D.5【考点】有理数的乘法.【专题】计算题.【分析】根据有理数乘法法则进行计算即可.【解答】解:2×(﹣3)=﹣6;故选B.【点评】此题考查了有理数的乘法,掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘是解题的关键.2.计算:(﹣2)×3的结果是()A.﹣6B.﹣1C.1D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣2)×3=﹣2×3=﹣6.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.3.计算:2×(﹣3)=()A.﹣6B.﹣5C.﹣1D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:2×(﹣3)=﹣6.故选A.【点评】本题考查了有理数的乘法,熟记运算法则是解题的关键.4.(﹣2)×3的结果是()A.﹣5B.1C.﹣6D.6【考点】有理数的乘法.【专题】计算题.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.5.计算(﹣6)×(﹣1)的结果等于()A.6B.﹣6C.1D.﹣1【考点】有理数的乘法.【专题】计算题.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选:A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.6.(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣6【考点】有理数的乘法.【分析】根据两数相乘,异号得负,可得答案.【解答】解:原式=﹣3×3=﹣9,故选:A.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.7.计算﹣4×(﹣2)的结果是()A.8B.﹣8C.6D.﹣2【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:﹣4×(﹣2),=4×2,=8.故选:A.【点评】本题考查了有理数的乘法,是基础题,熟记运算法则是解题的关键.8.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是()A.100B.80C.50D.120【考点】有理数的乘法.【分析】从一楼到五楼共经过四层楼,所以用20乘以4,再根据有理数的乘法运算法则进行计算即可得解,【解答】解:从一楼到五楼要经过的台阶数为:20×(5﹣1)=80.故选B.【点评】本题考查了有理数的乘法,要注意经过的楼层数为所在楼层减1.9.计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.3【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣1)×3=﹣1×3=﹣3.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.10.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.【考点】有理数的乘法.【分析】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.故选:D.【点评】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.11.下列运算结果正确的是()A.﹣87×(﹣83)=7221B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66D.【考点】有理数的乘法;有理数大小比较;有理数的减法.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A【点评】此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.12.若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2D.﹣【考点】有理数的乘法.【专题】计算题.【分析】根据乘积是1的两个数互为倒数解答.【解答】解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选:D.【点评】本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.13.算式743×369﹣741×370之值为何?()A.﹣3B.﹣2C.2D.3【考点】有理数的乘法.【分析】根据乘法分配律,可简便运算,根据有理数的减法,可得答案.【解答】解:原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3,故选:A.【点评】本题考查了有理数的乘法,乘法分配律是解题关键.14.若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24B.48C.72D.240【考点】有理数的乘法.【分析】根据有理数的乘法,求出所有因子的最小公倍数,然后求出与720的最大公因数,即为最大公因子.【解答】解:1、2、3、4、6、8、12、16、24最小公倍数是48,48与720的最大公因数是48,所以,a与720的最大公因子是48.故选B.【点评】本题考查了有理数的乘法,确定出所有因子的最小公倍数是解题的关键.三年级数学上册《乘数末尾有0的乘法》教学设计三年级数学上册《乘数末尾有0的乘法》教学设计范文(通用3篇)教学目标:1.进一步掌握三位数乘两位数的笔算方法,提高计算的正确率和速度。
2024年四川省眉山市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.1. 下列四个数中,无理数是( )A 3.14- B. 2- C.12D.2. 下列交通标志中,属于轴对称图形的是( )A. B. C. D.3. 下列运算中正确的是( )A. 2a a a -= B. 23a a a ⋅=C. ()325aa= D. ()323626aba b =4. 为落实阳光体育活动,学校鼓励学生积极参加体育锻炼.已知某天五位同学体育锻炼的时间分别为(单位:小时):1,1.5,1.4,2,1.5,这组数据的中位数和众数分别是( )A. 1.5,1.5B. 1.4,1.5C. 1.48,1.5D. 1,25. 如图,在ABCD Y 中,点O 是BD 中点,EF 过点O ,下列结论:①AB DC ∥;②EO ED =;③A C ∠=∠;④ABOE CDOF S S =四边形四边形,其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个6. 不等式组212321x x x x +>+⎧⎨+≥-⎩的解集是( )A. 1x > B. 4x ≤ C. 1x >或4x ≤ D..的14x <≤7. 如图,在ABC 中,6AB AC ==,4BC =,分别以点A ,点B 为圆心,大于12AB 的长为半径作弧,两弧交于点E ,F ,过点E ,F 作直线交AC 于点D ,连结BD ,则BCD △的周长为( )A. 7B. 8C. 10D. 128. 眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( )A. ()67012780x ⨯+= B. ()26701780x ⨯+=C. ()26701780x⨯+= D. ()6701780x ⨯+=9. 如图,在矩形ABCD 中,6AB =,8BC =,点E 在DC 上,把ADE V 沿AE 折叠,点D 恰好落在BC 边上的点F 处,则cos CEF ∠的值为( )A.B.C.34D.5410. 定义运算:()()2a b a b a b ⊗=+-,例如()()4342343⊗=+⨯-,则函数()21y x =+⊗的最小值为( )A. 21- B. 9- C. 7- D. 5-11. 如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为( )A. 24B. 36C. 40D. 4412. 如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x=,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c -<<-,则8433a b c -<++<-,其中正确结论的个数为( )A 1个B. 2个C. 3个D. 4二、填空题:本大题共6个小题,每小题4分,共24分。
1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
泸州市二〇二四年初中学业水平考试数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分120分.考试时间共120分钟.注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号.考试结束,将试卷和答题卡一并交回.2.选择题每小题选出的答案须用2B 铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.下列各数中,无理数是()A.13-B. 3.14C.0D.π【答案】D 【解析】【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,③虽有规律但却是无限不循环的小数,如0.1010010001⋯(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.【详解】解:根据无理数的定义可知,四个数中,只有D 选项中的数π是无理数,故选:D .2.第二十届中国国际酒业博览会于2024年3月21-24日在泸州市国际会展中心举办,各种活动带动消费2.6亿元,将数据260000000用科学记数法表示为()A.72.610⨯B.82.610⨯ C.92.610⨯ D.102.610⨯【答案】B 【解析】【分析】本题考查科学记数法的表示方法,一般形式为10n a ⨯,其中110a ≤<,确定n 的值时,要看原数变成a 时,小数点移动了多少位,n 的值与小数点移动位数相同,确定a 与n 的值是解题关键.【详解】解:8260000000 2.610=⨯,故选:B .3.下列几何体中,其三视图的主视图和左视图都为矩形的是()A. B.C. D.【答案】C【解析】【分析】本题考查三视图.主视图、左视图是分别从物体正面、左面所看到的图形.依此即可求解.【详解】解:A、主视图为三角形,左视图为三角形,故本选项不符合题意;B、主视图为三角形,左视图为三角形,故本选项不符合题意;C、主视图为矩形,左视图为矩形,故本选项符合题意;D、主视图为矩形,左视图为三角形,故本选项不符合题意.故选:C.∠=︒,则2∠=()4.把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145A.10︒B.15︒C.20︒D.30︒【答案】B【解析】【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,直角三角板位于两条平行线间且145∠=︒,∴∠=︒,3135又 直角三角板含30︒角,1802330∴︒-∠-∠=︒,215∴∠=︒,故选:B .5.下列运算正确的是()A.34325a a a +=B.236326a a a ⋅=C.()23624a a -= D.62344a a a ÷=【答案】C 【解析】【分析】本题主要考查了积的乘方,单项式除以单项式,单项式乘以单项式和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A 、3a 与32a 不是同类项,不能合并,原式计算错误,不符合题意;B 、235326a a a ⋅=,原式计算错误,不符合题意;C 、()23624a a -=,原式计算正确,符合题意;D 、62444a a a ÷=,原式计算错误,不符合题意;故选:C .6.已知四边形ABCD 是平行四边形,下列条件中,不能..判定ABCD Y 为矩形的是()A.90A ∠=︒B.B C ∠=∠C.AC BD =D.AC BD⊥【答案】D 【解析】【分析】本题考查了矩形的判定.根据有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有一个角是直角的平行四边形是矩形判断即可.【详解】解:如图,A 、90BAD ∠=︒,能判定ABCD Y 为矩形,本选项不符合题意;B 、∵ABC BCD ∠=∠,180ABC BCD ∠+∠=︒,∴90ABC BCD ∠=∠=︒,能判定ABCD Y 为矩形,本选项不符合题意;C 、AC BD =,能判定ABCD Y 为矩形,本选项不符合题意;D 、AC BD ⊥,能判定ABCD Y 为菱形,不能判定ABCD Y 为矩形,本选项符合题意;故选:D .7.分式方程12322x x-=--的解是()A.73x =-B.=1x - C.53x =D.3x =【答案】D 【解析】【分析】本题考查解分式方程,根据解分式方程方法和步骤(去分母,去括号,移项,合并同类项,系数化为1,检验)求解,即可解题.【详解】解:12322x x-=--,12322x x -=---,()1322x --=-,1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .8.已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为()A.0B.1C.2D.3【答案】A 【解析】【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程2210x x k ++-=无实数根,∴()Δ4410k =--<,解得:0k <,则函数y kx =的图象过二,四象限,而函数2y x=的图象过一,三象限,∴函数y kx =与函数2y x=的图象不会相交,则交点个数为0,故选:A .9.如图,EA ,ED 是O 的切线,切点为A ,D ,点B ,C 在O 上,若236BAE BCD ∠+∠=︒,则E ∠=()A.56︒B.60︒C.68︒D.70︒【答案】C 【解析】【分析】本题考查了圆的内接四边形的性质,切线长定理,等腰三角形的性质等知识点,正确作辅助线是解题关键.根据圆的内接四边形的性质得180BAD BCD ∠+∠=︒,由236BAE BCD ∠+∠=︒得56EAD ∠=︒,由切线长定理得EA ED =,即可求得结果.【详解】解:如图,连接AD ,∵四边形ABCD 是O 的内接四边形,∴180BAD BCD ∠+∠=︒,∵236BAE BCD ∠+∠=︒,∴()236180BAE BCD BAD BCD ∠+∠-∠+∠=︒-︒,即56BAE BAD ∠-∠=︒,∴56EAD ∠=︒,∵EA ,ED 是O 的切线,根据切线长定理得,∴EA ED =,∴56EAD EDA ∠=∠=︒,∴180180565668E EAD EDA ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .10.的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A.B.12C.35D.【答案】A 【解析】【分析】本题考查了折叠的性质,矩形的性质,勾股定理,全等三角形的判定和性质,三角函数等知识点,利用黄金比例表示各线段的长是解题的关键.设宽,根据比例表示长,证明ADE CB E '△≌△,在Rt ADE △中,利用勾股定理即可求得结果.【详解】解:设宽为x ,,∴长为:512512x =,由折叠的性质可知,AD BC B C x '===,在ADE V 和CB E ' 中,AED AEB D B AD B C ∠=∠⎧⎪∠=∠'='⎨'⎪⎩,∴()AAS ADE CB E ' ≌,∴AE CE =,∴512AE DE DC x ++==,设DE y =,在Rt ADE △中,222512x y x y ⎛⎫+=- ⎪ ⎪⎝⎭,变形得:12y x =,2AD y =,AE ==,∴5sin5DE DAE AE ∠===,故选A .11.已知二次函数()2231y ax a x a =+-+-(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为()A.918a ≤<B.302a <<C.908a <<D.312a ≤<【答案】A 【解析】【分析】本题考查了二次函数图象与性质.利用二次函数的性质,抛物线与x 轴有2个交点,开口向上,而且与y 轴的交点不在负半轴上,然后解不等式组即可.【详解】解: 二次函数()2231y ax a x a =+-+-图象经过第一、二、四象限,()()2Δ23410a a a ∴=--->且10a -≥,0a >,解得918a ≤<.故选:A .12.如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB BC ,上的动点,且满足AE BF =,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,2AG GB =,则12OM FG +的最小值是()A.4B.5C.8D.10【答案】B 【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,直角三角形的性质,勾股定理等等,先证明()SAS ADE BAF ≌得到ADE BAE ∠=∠,进而得到90DOF ∠=︒,则由直角三角形的性质可得12OM DF =,如图所示,在AB 延长线上截取BH BG =,连接FH ,易证明()SAS FBG FBH ≌,则FH FG =,可得当H 、D 、F 三点共线时,DF HF +有最小值,即此时12OM FG +有最小值,最小值即为DH 的长的一半,求出8AH =,在Rt ADH 中,由勾股定理得10DH ==,责任12OM FG +的最小值为5.【详解】解:∵四边形ABCD 是正方形,∴90AD AB DAB ABC ===︒,∠∠,又∵AE BF =,∴()SAS ADE BAF ≌,∴ADE BAF ∠=∠,∴90DOF ADO DAO BAF DAO DAB ∠=∠+∠=∠+∠=∠=︒,∵点M 是DF 的中点,∴12OM DF =;如图所示,在AB 延长线上截取BH BG =,连接FH ,∵90FBG FBH FB FB BG BH ==︒==∠∠,,,∴()SAS FBG FBH ≌,∴FH FG =,∴()11112222OM FG DF HF DF HF +=+=+,∴当H 、D 、F 三点共线时,DF HF +有最小值,即此时12OM FG +有最小值,最小值即为DH 的长的一半,∵2AG GB =,6AB =,∴2BH BG ==,∴8AH =,在Rt ADH 中,由勾股定理得10DH ==,∴12OM FG +的最小值为5,故选:B .第Ⅱ卷(非选择题共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.二、填空题(本大题共4小题,每小题3分,共12分).13.函数y =中,自变量x 的取值范围是_____.【答案】2x ≥-【解析】∴20x +≥,∴2x ≥-,故答案为2x ≥-.14.在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是23,则黄球的个数为______.【答案】3【解析】【分析】此题考查了分式方程的应用,以及概率公式的应用.设黄球的个数为x 个,然后根据概率公式列方程,解此分式方程即可求得答案.【详解】解:设黄球的个数为x 个,根据题意得:6263x =+,解得:3x =,经检验,3x =是原分式方程的解,∴黄球的个数为3个.故答案为:3.15.已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是______.【答案】14【解析】【分析】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形求值.对于一元二次方程,若该方程的两个实数根为1x ,2x ,则12b x x a+=-,12cx x a =.先根据根与系数的关系得到123x x +=,125x x =-,再根据完全平方公式的变形()22212112229x x x x x x +=++=,求出()21229x x -=,由此即可得到答案.【详解】解: 1x ,2x 是一元二次方程2350x x --=的两个实数根,123x x ∴+=,125x x =-,()22212112229x x x x x x ∴+=++=,∴()2221211221229492029x x x x x x x x -=-+=-=+=,∴()()212123293514x x x x -+=+⨯-=.故答案为:14.16.定义:在平面直角坐标系中,将一个图形先向上平移()0a a >个单位,再绕原点按逆时针方向旋转θ角度,这样的图形运动叫做图形的(),a ρθ变换.如:点()2,0A 按照()1,90ρ︒变换后得到点A '的坐标为()1,2-,则点)1B -按照()2,105ρ︒变换后得到点B '的坐标为______.【答案】(【解析】【分析】本题考查了解直角三角形,坐标与图形.根据题意,点)1B-向上平移2个单位,得到点)C,再根据题意将点)C绕原点按逆时针方向旋转105︒,得到2OB OC '==,45B OD '∠=︒,据此求解即可.【详解】解:根据题意,点)1B-向上平移2个单位,得到点)C,∴1CE =,OE =∴2OC ==,1sin 2CE COE OC ∠==,∴30COE ∠=︒,根据题意,将点)C绕原点按逆时针方向旋转105︒,∴10530135B OE '∠=︒+︒=︒,作B D x '⊥轴于点D ,∴2OB OC '==,18013545B OD '∠=︒-︒=︒,∴sin 45B D OD OB ''==⋅︒=∴点B '的坐标为(,故答案为:(.三、本大题共3个小题,每小题6分,共18分.17.计算:()11π20242sin 602-⎛⎫+--︒+ ⎪⎝⎭.【答案】3【解析】【分析】本题考查了实数的运算,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值,二次根式的加减运算,准确熟练地进行计算是解题的关键.先化简各式,然后再进行加减计算即可解答.【详解】解:原式1222-⨯+,3+,=3.18.如图,在ABCD Y 中,E ,F 是对角线BD 上的点,且DE BF =.求证:12∠=∠.【答案】证明见解析【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的性质与判定,先由平行四边形的性质得到AD CB AD CB =,∥,则ADE CBF ∠=∠,再证明()SAS ADE CBF ≌△△,即可证明12∠=∠.【详解】证明:∵四边形ABCD 是平行四边形,∴AD CB AD CB =,∥,∴ADE CBF ∠=∠,又∵DE BF =,∴()SAS ADE CBF ≌△△,∴12∠=∠.19.化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.【答案】x y x y-+【解析】【分析】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.先将括号里的通分,再将除法转化为乘法,然后根据完全平方公式和平方差公式整理,最后约分即可得出答案.【详解】解:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭22222y x xy xx x y +-=⋅-()()()2x y xx x y x y -=⋅+-x y x y-=+四、本大题共2个小题,每小题7分,共14分.20.某地两块试验田中分别栽种了甲、乙两种小麦,为了考察这两种小麦的长势,分别从中随机抽取16株麦苗,测得苗高(单位:cm)如下表.甲781011111213131414141415161618乙7101311181213131013131415161117将数据整理分析,并绘制成以下不完整的统计表格和频数分布直方图.苗高分组甲种小麦的频数710x≤<a1013x≤<b1316x≤<71619x≤<3小麦种类统计量甲乙平均数12.87512.875众数14d中位数c13方差8.657.85根据所给出的信息,解决下列问题:(1)=a______,b=______,并补全乙种小麦的频数分布直方图;(2)c=______,d=______;(3)甲、乙两种小麦的苗高长势比较整齐的是______(填甲或乙);若从栽种乙种小麦的试验田中随机抽取1200株,试估计苗高在1013x ≤<(单位:cm )的株数.【答案】(1)2,4,乙种小麦的频数分布直方图见解析;(2)13,13.5;(3)乙,375.【解析】【分析】本题考查的是数据的整理,画频数分布直方图,众数和中位数的定义,根据方差作决策,用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据题中数据和频数分布直方图的,即可直接得到a 、b ,以及乙种小麦1316x ≤<的株数,再画出频数分布直方图,即可解题;(2)根据众数和中位数的概念,即可解题;(3)可根据方差的意义作出判断,根据统计表和统计图得到乙种小麦苗高在1013x ≤<的所占比,再利用总数乘以其所占比,即可解题.【小问1详解】解:由表可知:甲种小麦苗高在710x ≤<的有7、8,故2a =;甲种小麦苗高在1013x ≤<的有10、11、11、12,故4b =,161537---=(株),补全后的乙种小麦的频数分布直方图如下:故答案为:2,4;【小问2详解】解:由表可知:乙种小麦苗高13cm 最多,为5次,故13d =;将甲种小麦苗高从小到大排列得7、8、10、11、11、12、13、13、14、14、14、14、15、16、16、18,故中位数为131413.52+=,即13.5c =;故答案为:13.513,;【小问3详解】解: 乙种小麦方差7.85<甲种小麦方差8.65,∴甲、乙两种小麦的苗高长势比较整齐的是乙,由题可知:乙种小麦随机抽取16株麦苗中苗高在1013x ≤<有5株,∴若从栽种乙种小麦的试验田中随机抽取1200株,苗高在1013x ≤<的株数为:5120037516⨯=(株).21.某商场购进A ,B 两种商品,已知购进3件A 商品比购进4件B 商品费用多60元;购进5件A 商品和2件B 商品总费用为620元.(1)求A ,B 两种商品每件进价各为多少元?(2)该商场计划购进A ,B 两种商品共60件,且购进B 商品的件数不少于A 商品件数的2倍.若A 商品按每件150元销售,B 商品按每件80元销售,为满足销售完A ,B 两种商品后获得的总利润不低于1770元,则购进A 商品的件数最多为多少?【答案】(1)A ,B 两种商品每件进价各为100元,60元;(2)购进A 商品的件数最多为20件【解析】【分析】本题主要考查了二元一次方程组的实际应用,一元一次不等式组的实际应用:(1)设A ,B 两种商品每件进价各为x 元,y 元,根据购进3件A 商品比购进4件B 商品费用多60元;购进5件A 商品和2件B 商品总费用为620元列出方程组求解即可;(2)设购进A 商品的件数为m 件,则购进B 商品的件数为()60m -件,根据利润不低于1770元且购进B 商品的件数不少于A 商品件数的2倍列出不等式组求解即可.【小问1详解】解:设A ,B 两种商品每件进价各为x 元,y 元,由题意得,346052620x y x y -=⎧⎨+=⎩,解得10060x y =⎧⎨=⎩,答:A ,B 两种商品每件进价各为100元,60元;【小问2详解】解:设购进A 商品的件数为m 件,则购进B 商品的件数为()60m -件,由题意得,()()()1501008060601770602m m m m ⎧-+--≥⎨-≥⎩,解得1920m ≤≤,∵m 为整数,∴m 的最大值为20,答:购进A 商品的件数最多为20件.五、本大题共2小题,每小题8分,共16分.22.如图,海中有一个小岛C ,某渔船在海中的A 点测得小岛C 位于东北方向上,该渔船由西向东航行一段时间后到达B 点,测得小岛C 位于北偏西30︒方向上,再沿北偏东60︒方向继续航行一段时间后到达D 点,这时测得小岛C 位于北偏西60︒方向上.已知A ,C 相距30n mile .求C ,D 间的距离(计算过程中的数据不取近似值).【答案】C ,D 间的距离为.【解析】【分析】本题考查了解直角三角形的应用.作CE AB ⊥于点E ,利用方向角的定义求得45CAE ∠=︒,30ECB ∠=︒,60ECD ∠=︒,证明CAE V 是等腰直角三角形,在Rt BCE 中,求得BC 的长,再证明90CBD ∠=︒,30DCB ∠=︒,在Rt BCD 中,利用三角函数的定义即可求解.【详解】解:作CE AB ⊥于点E ,由题意得904545CAE ∠=︒-︒=︒,30ECB ∠=︒,60ECD ∠=︒,∴CAE V 是等腰直角三角形,∵30AC =,∴cos 45AE CE AC ==⋅︒=,在Rt BCE 中,cos30CEBC ==︒,在BCD △中,306090CBD ∠=︒+︒=︒,30DCB ECD ECB ∠=∠-∠=︒,在Rt BCD中,)n mile cos30BCCD ==︒,答:C ,D间的距离为.23.如图,在平面直角坐标系xOy 中,一次函数y kx b =+与x 轴相交于点()2,0A -,与反比例函数ay x=的图象相交于点()2,3B.(1)求一次函数和反比例函数的解析式;(2)直线()2x m m =>与反比例函数()0a y x x =>和()20y x x=->的图象分别交于点C ,D ,且2OBC OCD S S =△△,求点C 的坐标.【答案】(1)一次函数解析式为33y x 42=+,反比例函数解析式为6y x=(2)()61C ,【解析】【分析】本题主要考查了一次函数与反比例函数综合,反比例函数与几何综合:(1)利用待定系数法求解即可;(2)先利用反比例函数比例系数的几何意义得到31COF ODF S S ==△△,,进而得到28OBC OCD S S ==△△;再证明3OBE COF S S ==△△,推出8BOC BEFC S S ==△梯形,设6C m m ⎛⎫ ⎪⎝⎭,,则6OF m CF m==,,求出2OF m =-,可得()63282m m +⋅-=,解方程即可得到答案.【小问1详解】解:把()2,3B 代入a y x=中得:32a=,解得6a =,∴反比例函数解析式为6y x=;把()2,0A -,()2,3B 代入y kx b =+中得:2023k b k b -+=⎧⎨+=⎩,∴3432k b ⎧=⎪⎪⎨⎪=⎪⎩,∴一次函数解析式为33y x 42=+;【小问2详解】解:如图所示,过点B 作BE x ⊥轴于E ,设CD 与x 轴交于F ,∵直线()2x m m =>与反比例函数()60y x x =>和()20y x x=->的图象分别交于点C ,D ,∴11632122COF ODF S S =⨯==⨯-= ,,∴4COD COF DOF S S S =+=△△△,∴28OBC OCD S S ==△△;∵BE x ⊥轴,点B 在反比例函数()60y x x=>的图象上,∵3OBE COF S S ==△△,∵BOC COF BOE OBCF BEFC S S S S S =+=+△△△四边形梯形,∴8BOC BEFC S S ==△梯形,设6C m m ⎛⎫ ⎪⎝⎭,,则6OF m CF m==,,∵()23B ,,∴23OE BE ==,,∴2OF m =-,∴()63282m m +⋅-=,解得6m =或23m =-(舍去),经检验6m =是原方程的解,且符合题意,∴()61C ,.六、本大题共2个小题,每小题12分,共24分.24.如图,ABC 是O 的内接三角形,AB 是O 的直径,过点B 作O 的切线与AC 的延长线交于点D ,点E 在O 上,AC CE =,CE 交AB 于点F .(1)求证:CAE D ∠=∠;(2)过点C 作CG AB ⊥于点G ,若3OA =,BD =FG 的长.【答案】(1)证明见解析(2)45【解析】【分析】(1)由直径所对的圆周角是直角得到90BCD ∠=︒,则90D CBD ∠+∠=︒,由切线的性质推出90ABC CBD Ð+Ð=°,则ABC D ∠=∠,再由同弧所对的圆周角相等和等边对等角得到E ABC ∠=∠,CAE E ∠=∠,据此即可证明CAE D ∠=∠;(2)由勾股定理得AD =,利用等面积法求出BC =,则AC =,同理可得CG =,则4AG =,进而得到2BG =;如图所示,过点C 作CH AE ⊥于H ,则2AE AH =,证明ACB CHA △∽△,求出AH =,则AE =FG x =,则4AF x =+,证明AEF CBF ∽△△,推出4CF +=,在Rt CGF △中,由勾股定理得(2224664x ⎛⎫=+ ⎪ ⎪⎝⎭,解方程即可得到答案.【小问1详解】证明:∵AB 是O 的直径,∴90ACB ∠=︒,∴90BCD ∠=︒,∴90D CBD ∠+∠=︒;∵BD 是O 的切线,∴90ABD Ð=°,∴90ABC CBD Ð+Ð=°,∴ABC D ∠=∠,∵ AC AC=,∴E ABC ∠=∠,∵AC CE =,∴CAE E ∠=∠,∴CAE D ∠=∠;【小问2详解】解:∵3OA =,∴26AB OA ==,在Rt △ABD 中,由勾股定理得AD ==,∵1122ABD S AB BD AD BC =⋅=⋅△,∴AB BD BC AD ⋅==,∴AC ==,同理可得CG =,∴4AG ==,∴2BG =;如图所示,过点C 作CH AE ⊥于H ,则2AE AH =,由(1)可得90ABC CAH ACB CHA ∠=∠∠=∠=︒,,∴ACB CHA △∽△,∴AH ACBC AB =,即266=,∴AH =,∴AE =设FG x =,则4AF x =+,∵E CBF EAF BCF ==∠∠,∠∠,∴AEF CBF ∽△△,∴CF BC AF AE =,即4CF x =+,∴4664CF +=,在Rt CGF △中,由勾股定理得222CF CG FG =+,∴(2224x ⎛⎫=+ ⎪ ⎪⎝⎭,解得45x =或4x =(舍去),∴45FG =.【点睛】本题主要考查了切线的性质,相似三角形的性质与判定,勾股定理,同弧所对的圆周角相等,直径所对的圆周角是直角,等腰三角形的性质等等,正确作出辅助线构造直角三角形和相似三角形是解题的关键.25.如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D ,在y 轴上是否存在点E ,使得以B ,C ,D ,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.【答案】(1)223y x x =-++(2)52t =(3)存在点以B ,C ,D ,E为顶点的四边形是菱形,边长为2-或2【解析】【分析】本题考查二次函数的综合应用,菱形的性质,正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.(1)待定系数法求出函数解析式即可;(2)分1t ≤和1t >,两种情况,结合二次函数的增减性进行求解即可.(3)分BD 为菱形的边和菱形的对角线两种情况进行讨论求解即可.【小问1详解】解:∵抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称,∴129330b a a b ⎧-=⎪⎨⎪++=⎩,解得:12a b =-⎧⎨=⎩,∴223y x x =-++;【小问2详解】∵抛物线的开口向下,对称轴为直线1x =,∴抛物线上点到对称轴上的距离越远,函数值越小,∵1x t -≤≤时,021y t ≤≤-,①当1t ≤时,则:当x t =时,函数有最大值,即:22123t t t -=-++,解得:2t =-或2t =,均不符合题意,舍去;②当1t >时,则:当1x =时,函数有最大值,即:2211234t -=-++=,解得:52t =;故52t =;【小问3详解】存在;当2230y x x =-++=时,解得:123,1x x ==-,当0x =时,3y =,∴()3,0A ,()0,3B ,设直线AB 的解析式为3y kx =+,把()3,0A 代入,得:1k =-,∴3y x =-+,设()()2,2303C m m m m -++<<,则:(),3D m m -+,∴222333CD m m m m m =-+++-=-+,BD ==,()22222BC m m m =+-+,当B ,C ,D ,E 为顶点的四边形是菱形时,分两种情况:①当BD 为边时,则:BD CD =,即23m m -+=,解得:0m =(舍去)或3m =此时菱形的边长为2=;②当BD 为对角线时,则:BC CD =,即:()()2222223m m mm m +-+=-+,解得:2m =或0m =(舍去)此时菱形的边长为:22322-+⨯=;综上:存在以B ,C ,D ,E 为顶点的四边形是菱形,边长为2或2.。
2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2=()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.13.已知点A 1,5【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x-3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2 ,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-= ,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
2009年中考数学试题分类汇编2无理数及二次根式一、选择题.(2009年绵阳市)已知n −12是正整数,则实数n 的最大值为()A .12B .11C .8D .3【答案】B.(2009年黄石市)下列根式中,不是..最简二次根式的是()A B C D 【答案】C.(2009年邵阳市)3最接近的整数是()A .0B .2C .4D .5【答案】B .(2009年广东省)4的算术平方根是()A .2±B .2C .D 【答案】B.(2009贺州)下列根式中不是最简二次根式的是().A .2B .6C .8D .10【答案】C.(2009年贵州黔东南州)下列运算正确的是(C )A、39±=B、33−=−C、39−=−D、932=−【答案】B.(2009年淄博市)计算D)A .B −CD ..(2009年湖北省荆门市)若2()x y =+,则x -y 的值为()A .-1B .1C .2D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =−,∴x -y =2,故选C .【答案】C .(2009年湖北省荆门市)|-9|的平方根是()A .81B .±3C .3D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B .【答案】B.(2009年内蒙古包头)函数y =x 的取值范围是()A .2x >−B .2x −≥C .2x ≠−D .2x −≤【答案】B【解析】a 的范围是0a ≥;∴y =中x 的范围由20x +≥得2x ≥−。
.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是()A.0a b +>B.0a b −>C.0a b > D.0ab>01【答案】A.(2009威海)的绝对值是()A.3B.3−C.13D.13−【答案】A.(2009年安顺)下列计算正确的是:A −=B 1=C =D .=【答案】A.(2009年武汉)二次根式)A.3−B.3或3−C.9D.3【答案】D.(2009年武汉)函数y =x 的取值范围是()A.12x −≥B.12x ≥C.12x −≤D.12x ≤【答案】B.(2009年眉山)估算2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.(2009年常德市)28−的结果是()A .6B .22C .2D .2【答案】C.(2009年肇庆市)实数2−,0.3,17,,π−中,无理数的个数是()A .2B .3C .4D .5【答案】A .(2009黑龙江大兴安岭)下列运算正确的是()A .623a a a =⋅B .1)14.3(0=−πC .2)21(1−=−D .39±=【答案】B.(2009年黄石市)下列根式中,不是..最简二次根式的是()A B C D 【答案】C.(2009年邵阳市)3最接近的整数是()A .0B .2C .4D .5【答案】B .(2009年广东省)4的算术平方根是()A .2±B .2C .D 【答案】B.(2009化简的结果是()A.2B.C .−D .±【答案】B .(2009年湖北十堰市)下列运算正确的是().A .523=+B .623=×C .13)13(2−=−D .353522−=−.(2009年茂名市)下列四个数中,其中最小..的数是()A .0B .4−C .π−D 【答案】.(2009湖南邵阳))A .0B .2C .4D .5【答案】B .(2009年河北)在实数范围内,x 有意义,则x 的取值范围是()A .x ≥0B .x ≤0C .x >0D .x <0【答案】A.(2009年株洲市)若使二次根式在实数范围内有意义...,则x 的取值范围是A .2x ≥B .2x >C .2x <D .2x ≤【答案】A .(2009年台湾)若a =1.071×106,则a 是下列哪一数的倍数?(A)48(B)64(C)72(D)81。
第一章第二节夏商西周的更替和制度1、建立:约公元前2070年,禹建立夏朝。
2、制度:夏启以“王位世袭制”代替了“禅让制”;国家机构初具规模,是我国第一个奴隶制的国家。
3、区域:今河南西部和山西南部;相传都城在阳城(今河南登封)。
4、灭亡:约公元前1600年,桀暴虐无道,商汤起兵打败夏桀。
二、商朝兴衰1、建立:商汤灭夏建立商朝,以亳(今河南郑州)为都城。
2、迁都:商朝中期,商王盘庚迁都殷,故商朝又称殷朝,是当时世界上的大国。
3、奴隶制:实行残酷的“人殉”和“人祭”。
4、衰亡:暴君商纣残酷统治,社会矛盾尖锐,周武王灭纣,商亡。
三、西周1、武王伐纣:公元前1046年,牧野之战,周武王打败商纣,商亡。
周朝建立,都城在镐京(今陕西西安),史称西周。
2、制度(1)井田制:①是奴隶社会的国有土地制度,是奴隶社会的经济基础。
②规定:土地属于周王所有,周王将土地分赐给诸侯臣下,受田者只能世代享用,不得转让与买卖,并向周王交纳贡赋。
③奴隶在井田上集体劳动。
(2)分封制:①内容:周王将一定的土地和人民分封给王族、功臣和先代贵族,建立诸侯国;诸侯要服从周王,向周王贡献财物,随从作战。
②诸侯国:重要的诸侯国有齐、鲁、燕、卫、晋、宋等。
③它使周朝巩固了统治,扩大了疆域。
3、灭亡:(1)国人暴动:公元前841年,爆发“国人暴动”反抗周厉王的残酷剥削。
(2)公元前771年,犬戎族攻破镐京,西周灭亡;第二年,周平王迁都洛邑,史称东周。
作者:深冬之寒2007-2-13 21:24 回复此发言________________________________________2回复:【历史】高三中国古代史复习提纲第三节夏商西周的社会经济一、农业和畜牧业1、农作物:品种多,“五谷”在商周时期都已种植。
2、耕作技术:集体耕作;农具主要是木、石和骨器,少量使用青铜工具;已懂施肥。
3、畜牧业:占有重要地位,家畜多,除食用外还用于拉车和祭祀。
二、手工业1、青铜器:①主要手工部门,称为“青铜时代”,商周达到繁盛。
2009年高考上海数学试题答案(理数) 一、(第一题至第14题)1. i2. 1a ≤3. 83x > 4. 2,12,1x x y x x ⎧≤=⎨->⎩5 47=9. 3 10.3411. 1k ≤ 12. 14 13.()3,3 14. 2arctan 3二.(第15题至第18题)三. (第19题至第23题) 19.解:如图,建立空间直角坐标系。
则 A ()2,0,0,C ()0,2,0,A 1()2,0,2,B 1()0,0,2,C 1()0,2,2, …… 2分设AC 的中点为M , BM ⊥AC ,BM ⊥CC 1,∴ BM ⊥平面11AC C ,即BM=(1,1,0)是平面11AC C 的一个法向量。
……5分设平面A 1B 1C 的一个法向量是n=(),,x y z ,1AC =()2,2,2--,11A B =()2,0,0-, …… 7分∴n ⋅11A B=2x -=0,∴n ⋅1AC =2220x y z -+-=,令1z =,解得0,1x y ==。
∴n=()0,1,1, …… 10分设法向量n 与BM的夹角为ϕ,二面角111B AC C --θθ的大小为,显然为锐角。
1cos cos 2|n BM n BM θ⋅=ϕ==⋅ ,解得3πθ=∴二面角111B AC C --的大小为3π…… 14分20. 证明:(1)当≥x7时,0.4(1)()(3)(4)f x f x x x +-=--而当≥x 7时,函数(3)(4)x x --y=单调递增,且(3)(4)0x x --> ……3分故(1)()f x f x +-单调递减。
所以,当≥x 7,掌握程度的增长量(1)()f x f x +-总是下降 ……6分解:(2)由题意可知0.115ln0.856aa +=- ……9分 整理得0.056ae a =- ……13分 解得(]0.050.05620.506123.0,123.0121,1271e a e =⋅≈⨯=∈- ……14分 由此可知,该学科是乙学科 21.解:(1)双曲线C的渐近线0m y =,即0x = …… 2分 ∴直线l的方程0x += …… 6分∴直线l 与m的距离d =…… 8分 (2)证法一:设过原点且平行于l 的直线:0,b kx y -=则直线l 与b 的距离d =,当2k >时,d >。
2009年全国高考陕西数学试题答案(理数)一、填空题(共8小题,每小题3分,满分24分)1.不等式3x﹣a≤0的正整数解是1,2,3,则a的取值范围是_________.2.不等式x≤的正整数解是_________.3.不等式﹣9+3x≤0的非负整数解的和为_________.4.不等式x﹣2≤5的正整数解是_________.5.不等式9﹣3x>0的非负整数解是_________.6.不等式﹣4(x+1)≤16的负整数解是_________.7.请写出解集为x<3的不等式:_________.(写出一个即可)8.不等式组的整数解为_________.二、选择题(共4小题,每小题3分,满分12分)9.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.10.已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6 B.3x>3y C.﹣2x<﹣2y D.﹣3x+6>﹣3y+611.给出四个命题:①若a>b,c=d,则ac>bd;②若ac>bc,则a>b;③若a>b,则ac2>bc2;④若ac2>bc2,则a >b.正确的有()A.1个B.2个C.3个D.4个12.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是()A.3x≤1 B.3x≤﹣1 C.3x≥1 D.3x≥﹣1三、填空题(共11小题,每小题3分,满分33分)13.使二次根式有意义的x的取值范围是_________.14.如果2﹣3a<﹣4a,则a的取值范围是_________.15.已知不等式(a﹣1)x>a﹣1的解集是x<1,求a的取值范围_________.16.当m_________时,不等式(2﹣m)x<8的解集为x>.17.已知不等式组无解,则m的取值范围是_________.18.如果不等式组有解,求m的取值范围_________.19.若不等式组无解,则m的取值范围是_________.20.不等式组的解集是_________.21.已知x和y满足方程组,则9x2﹣4y2=_________.22.已知点P(m﹣3,m+1)在第一象限,则m的取值范围是_________.23.已知点A(2﹣a,a+1)在第一象限,则a的取值范围是_________.四、选择题(共2小题,每小题3分,满分6分)24.(2003•滨州)函数y=kx+b(k、b为常数)的图象如图所示,则关于x的不等式kx+b>0的解集是()A.x>0 B.x<0 C.x<2 D.x>225.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<2五、填空题(共5小题,每小题3分,满分15分)26.(2010•龙岩)已知一次函数y=kx+b的图象如图,当x<0时,y的取值范围是_________.27.若的值是非负数,则x的取值范围是_________.28.代数式的值不大于的值,那么a的取值范围是_________.29.若代数式的值不小于代数式的值,则x的取值范围是_________.30.关于x的方程的解为x=1,则a=_________.六、解答题(共18小题,满分0分)31.解不等式组:,并找出非负整数解.32.解不等式(组),并把解集分别表示在数轴上(1)﹣2(x﹣3)>1 (2).33.如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有_________个儿童,分了_________个橘子?34.某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x 人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?35.小婷和小丽去商店买东西,与售货员对话如下:小婷:阿姨,我想买一盒饼干,一袋牛奶,给你十元钱.售货员:小朋友,10元钱买一盒饼干是有余的,再加一袋牛奶本来是不够;但今天是感恩节,饼干给你打9折,10元钱够了,还可以找你0.8元.小丽:原来的饼干是整数元,问:一盒饼干原价是多少元?36.(2001•陕西)某城市的一种出租车起步价为10元(即行驶5千米以内都需付款10元车费),达到或超过5千米后,每增加1千米加价1.2元(不足1千米按1千米计算),现某人乘这种出租车有甲地到乙地,支付车费17.2元.求甲、乙两地的路程.37.对于函数y=3x+6 (1)当x为什么值时,y>0?(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.38.(2005•呼和浩特)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润不低于5%,则最多可以打几折?39.甲、乙两家旅行社为了吸引更多的顾客,分别推出了赶某地旅游的团体优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的优惠.已知这两家旅行社的原价均为每人100元,那么随着团体人数的变化,哪家旅行社的收费更优惠?40.(2006•河南)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)试比较顾客到哪家超市购物更优惠?说明你的理由.41.(2000•嘉兴)国家为了鼓励居民合理用电,采用分段计费的方法计算电费:每月用电不超过100千瓦•时,按每千瓦•时0.57元计费;每月用电超过100千瓦•时,其中100千瓦•时按原标准收费,超过部分按每千瓦•时0.50元计费.(1)设月用电x千瓦•时,应交电费y元,当x≤100和x>100时,分别写出y关于x的函数解析式;42.(2009•德城区)甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.(3)在什么时间段内乙比甲离A地更近?43.一艘轮船以每小时20千米的速度从甲港驶往160千米远的乙港,2小时后,一艘快艇以每小时40千米的速度也从甲港驶往乙港.分别列出轮船和快艇行驶的路程y(千米)与时间x(小时)的函数关系式,在图中的直角坐标系中画出函数图象,观察图象回答下列问题:(1)何时轮船行驶在快艇的前面?(2)何时快艇行驶在轮船的前面?(3)哪一艘船先驶过60千米?哪一艘船先驶过100千米?44.已知A、B两个海港相距180海里.如图表示一艘轮船和一艘快艇沿相同路线从A港出发到B港航行过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数表达式(不要求写出自变量的取值范围);(2)快艇出发多长时间后能超过轮船?(3)快艇和轮船哪一艘先到达B港?45.(2004•河北)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.46.(2006•贵阳)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?47.扬州火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A、B两种型号的车厢将这批货物运至北京、已知每节A型货厢的运费是0.5万元,每节B型货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少,最少运费是多少?七、选择题(共2小题,每小题3分,满分6分)48.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>849.要使函数y=(2m﹣3)x+(3n+1)的图象经过x、y轴的正半轴,则m与n的取值应为()A.m>,n>﹣B.m>3,n>﹣3 C.m<,n<﹣D.m<,n>﹣八、解答题(共1小题,满分0分)50.如图所示,根据图中信息.(1)你能写出m、n的值吗?(2)你能写出P点的坐标吗?(3)当x为何值时,y1>y2?九、选择题(共1小题,每小题3分,满分3分)51.(2005•荆州)平面直角坐标系中的点P(2﹣m,m)关于x轴的对称点在第四象限,则m的取值范围在数轴上可表示为()A.B.C.D.十、填空题(共6小题,每小题3分,满分18分)52.若不等式组的解集是x<2,则a的取值范围是_________.53.如果不等式组的解集是x>4,则n的取值范围是_________.54.一元一次不等式组的解集是x>a,则a与b的关系为_________.55.若不等式组的解集是﹣1<x<2,则m=_________,n=_________.56.某校校长暑假将带领该校“市级三好学生”去北京旅游.甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠,若全票价为240元.(1)设学生数为x人,甲旅行社收费y1元,乙旅行社收费y2元,分别写出y1,y2与x的关系式_________;(2)就学生数讨论哪家旅行社更优惠_________.57.不等式2x+1<8的最大整数解是_________.十一、解答题(共1小题,满分0分)58.(2007•青岛)某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y 与x之间的关系式,并说明x取何值会使成本总额最低?十二、填空题(共1小题,每小题3分,满分3分)59.若不等式组的解集是﹣1<x<1,则(a+b)2006=_________.十三、选择题(共1小题,每小题3分,满分3分)60.下列不等式组中,是一元一次不等式组的是()A.B.C.D.十四、填空题(共2小题,每小题3分,满分6分)61.不等式组的最小整数解是_________.62.在直角坐标系中,点P(2x﹣6,x﹣5)在第四象限,则x的取值范围是_________.。
2009年10月管理类专业学位联考综合能力(数学)真题试卷(题后含答案及解析)题型有:1. 问题求解 2. 条件充分性判断问题求解本大题共15小题,每小题3分,共45分。
下列每题给出的五个选项中,只有一项是符合试题要求的。
1.已知某车间的男工人数比女工人数多80%,若在该车间一次技术考核中全体工人的平均成绩为75分,而女工平均成绩比男工平均成绩高20%,则女工的平均成绩为( )分。
A.88B.86C.84D.82E.80正确答案:C解析:设女工人数为a,平均成绩为b,则男工人数为1.8a,平均成绩为c,b=1.2c,从而选C2.某人在市场上买猪肉,小贩称得肉重为4斤,但此人不放心,拿出一个自备的100克重的砝码,将肉和砝码放在一起让小贩用原秤复称,结果重量为4.25斤。
由此可知顾客应要求小贩补猪肉( )两。
A.3B.6C.4D.7E.8正确答案:E解析:4斤=2000克,4.25斤=2125克,设此人买到的猪肉实际重x克,则有因此2000一1600=400(克)=8(两)。
3.甲、乙两商店某种商品的进货价格都是200元,甲店以高于进货价格20%的价格出售,乙店以高于进货价格15%的价格出售,结果乙店的售出件数是甲店的2倍。
扣除营业税后乙店的利润比甲店多5400元。
若设营业税率是营业额的5%,那么甲、乙两店售出该商品各为( )件。
A.450,900B.500,1000C.550,1100D.600,1200E.650,1300正确答案:D解析:由已知甲店每件商品的售价为240元,乙店每件售价为230元,设甲店售出件数为a,则乙店售出件数为2a,从而(230一200)×2a一(230×2a×0.05)=(240—200)×a一(240a×0.05)+5 400,整理得a=600,2a=1200(件)。
选D4.甲、乙两人在环形跑道上跑步,他们同时从起点出发,当方向相反时每隔48秒相遇一次,当方向相同时每隔10分钟相遇一次。
2009年包头市高中招生考试试卷数 学注意事项:1.本试卷1~8页,满分为120分,考试时间为120分钟. 2.考生必须用蓝、黑钢笔或圆珠笔直接答在试卷上. 3.答卷前务必将装订线内的项目填写清楚.一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内. 1.27的立方根是( ) A .3 B .3- C .9 D .9- 2.下列运算中,正确的是( ) A .2a a a += B .22a a a =C .22(2)4a a =D .325()a a =3.函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤4.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米5.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .346.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个7.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( ) A .0.1 B .0.17C .0.33D .0.48.将一个正方体沿某些棱展开后,能够得到的平面图形是( )9.化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x -C .82x -+ D .82x + 10.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A .13B .16C .518D .5611.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个D .4个12.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25二、填空题:本大题共有8小题,每小题3分,共24分.请把答案填在题中的横线上.13.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .14.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.15.线段CD 是由线段AB 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 .16.如图,在ABC △中,120AB AC A BC =∠==,°,,A⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).17.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.A . B. C. D .18.如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号). 19.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.三、解答题:本大题共有6小题,共60分.解答时要求写出必要的文字说明、计算过程或推理过程. 21.(本小题满分8分)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测(1(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.A EC (F ) B图(1)EA GBC (F ) D图(2)如图,线段AB DC 、分别表示甲、乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米. (1)求乙建筑物的高DC ;(2)求甲、乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)23.(本小题满分10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.αβD乙 CB A 甲如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:12BC AB =; (3)点M 是 AB 的中点,CM 交AB 于点N ,若4AB =,求MN MC 的值.25.(本小题满分12分)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?O N B P CAM26.(本小题满分12分)已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D . (1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.参考答案及评分标准二、填空题:共8小题,每小题3分,共24分.13.1x≤14.515.(12),16π317.252或12.518.19.220.4三、解答题:共6小题,共60分.21.(8分)解:(1)甲的平均成绩为:(857064)373++÷=,乙的平均成绩为:(737172)372++÷=,丙的平均成绩为:(736584)374++÷=,∴候选人丙将被录用. ···················································································(4分)(2)甲的测试成绩为:(855703642)(532)76.3⨯+⨯+⨯÷++=,乙的测试成绩为:(735713722)(532)72.2⨯+⨯+⨯÷++=,丙的测试成绩为:(735653842)(532)72.8⨯+⨯+⨯÷++=,∴候选人甲将被录用. ·······················································································(8分)22.(8分)解:(1)过点A作AE CD⊥于点E,根据题意,得6030DBC DAEαβ∠=∠=∠=∠=°,°,36AE BC EC AB===,米, ····································(2分)设DE x=,则36DC DE EC x=+=+,在Rt AED△中,tan tan30DEDAEAE∠==°,AE BC AE∴∴==,,在Rt DCB△中,tan tan60DCDBCBC∠===°,,3361854x x x DC∴=+=∴=,,(米). ·································································(6分)(2)BC AE==,18x=,αβD乙BA甲E1818 1.73231.18BC ∴=⨯≈(米). ···························································· (8分) 23.(10分) 解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,.所求一次函数的表达式为120y x =-+. ···································································· (2分)(2)(60)(120)W x x =--+21807200x x =-+-2(90)900x =--+, ······················································································· (4分)抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ················· (6分) (3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. ··································· (7分) 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.···································· (10分) 24.(10分)解:(1)OA OC A ACO =∴∠=∠ ,, 又22COB A COB PCB ∠=∠∠=∠ ,, A ACO PCB ∴∠=∠=∠.又AB 是O ⊙的直径,90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥,而OC 是O ⊙的半径,∴PC 是O ⊙的切线. ··································································································· (3分) (2)AC PC A P =∴∠=∠ ,, A ACO PCB P ∴∠=∠=∠=∠,又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠ ,,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. ····················································· (6分) (3)连接MA MB ,,点M 是AB 的中点, AM BM ∴=,ACM BCM ∴∠=∠, O N B P CAM而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM∴=,2BM MN MC ∴= , 又AB 是O ⊙的直径, AM BM=, 90AMB AM BM ∴∠==°,.4AB BM =∴= ,28MN MC BM ∴== . ·············································· (10分)25.(12分) 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒.···················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. ···················································· (12分)26.(12分)解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,解得132a b c =-==-,,. 232y x x ∴=-+-. ·································· (2分) (2)当EDB AOC △∽△时,得AO CO ED BD =或AO CO BD ED=, ∵122AO CO BD m ===-,,, 当AO CO ED BD =时,得122ED m =-, ∴22m ED -=,∵点E 在第四象限,∴122m E m -⎛⎫⎪⎝⎭,. ······································································ (4分) 当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,. ······································································ (6分) (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则 1EF AB ==,点F 的横坐标为1m -, 当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,, ∵点1F 在抛物线的图象上, ∴22(1)3(1)22mm m -=--+--, ∴2211140m m -+=, ∴(27)(2)0m m --=, ∴722m m ==,(舍去), ∴15324F ⎛⎫-⎪⎝⎭,, ∴33144ABEF S =⨯= . ································································································· (9分) 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,, 港中数学网 - 11 - ∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--,∴27100m m -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =, ∴2(46)F -,,∴166ABEF S =⨯= . ································································································· (12分) 注:各题的其它解法或证法可参照该评分标准给分.2009年包头市高中招生考试试卷。