人教版八年级数学 全等三角形的五种判定方法同步练习(无答案)
- 格式:doc
- 大小:271.00 KB
- 文档页数:8
全等三角形的判定(SSS)
1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )
A.120°
B.125°
C.127°
D.104°
2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )
A.△ABC≌△BAD
B.∠CAB=∠DBA
C.OB=OC
D.∠C=∠D
3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.
4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,
再用“SSS”证明______≌_______得到结论.
5、如图,AB=AC,BD=CD,求证:∠1=∠2.
6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.
7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;
⑵AE∥CF.
8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.
⑴请你添加一个条件,使△DEC≌△BFA;
⑵在⑴的基础上,求证:DE∥BF.
全等三角形的判定(SAS)
1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )
A.3
B.4
C.5
D.6
2、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )
A.∠1=∠2
B.∠B=∠C
C.∠D=∠E
D.∠BAE=∠CAD
3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )
A.AB∥CD
B.AD∥BC
C.∠A=∠C
D.∠ABC=∠CDA
D C
B
A 4、如图4,A
B 与CD 交于点O ,OA=O
C ,OD=OB ,∠AOD=________,•根据_________可得到△AO
D ≌△COB ,从而可以得到AD=_________.
5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,
∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.
7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?
8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.
①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.
9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .
⑴试判断AC 与CE 的位置关系,并说明理由.
⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)
全等三角形(三)AAS 和ASA
【知识要点】
1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.
2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】
例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD
A
D
C
F
O
例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.
例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.
例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.
例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?
【经典练习】
1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,'
,C C '∠=∠则△ABC 与△C B A ''' .
2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .
A
A
B
D C E
O
1
2 3
A
F
D
O
B
E
C
3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个
4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )
A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠
B =∠
C ,AE =AF ,给出下列结论:
①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN
其中正确的结论是_________ _________。(注:将你认为正确的结论填上)
A
B
C D
O
图2 图3
6.如图3所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为合适的条件).
7. 如图,已知∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.
B
A
E
21
F C
D
8.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。
B
A E
F
C
D
9.如图,AB ,CD 相交于点O ,且AO=BO ,试添加一个条件,使△AOC ≌△BOD ,并说明添加的条件是正确的。(不少于
两种方法)
M N
C
B
O