2019年秋九年级数学下册 第二十七章 相似 小专题16 相似三角形的性质与判定课件 新人教版PP
- 格式:ppt
- 大小:1.06 MB
- 文档页数:18
数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。
它是一门古老而崭新的科学,是整个科学技术的基础。
随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。
以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。
数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。
简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。
这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质基本性质:内项积等于外项积。
(比例=====等积)。
主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
九年级下册数学教案《相似三角形的性质》教材分析本节教学内容是本章的重要内容之一,本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。
从知识的前后联系来看,相似三角形可看作是全等三角形的拓展,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。
学情分析学生经过两年半的磨合,基本形成较自然的合作学习小组。
对于九年级学生,他们已经学习了相似三角形的判定,而对相似三角形的性质有了初步的认识,能够理解相似三角形对应边的比都相等,理解了相似比的意义,为探究相似三角形的周长与面积的关系夯实了理论基础。
本节课之前初步学习了相似三角形的判定及相似三角形的对应角相等,对应边成比例,发现学生的逻辑推理能力和灵活运用所学知识解决问题的能力有待提高。
教学目标1、经历观察、猜想、证明等数学活动,发展合情推理能力和初步演绎推理能力,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析解决问题的能力。
2、通过探讨证明,经历探索相似三角形性质的过程,体会如何探索研究问题。
3、掌握相似三角形的性质,能利用相似三角形的性质解决一些简单的计算问题。
教学重点相似三角形的性质及其应用。
教学难点促进学生有条理地思考及表达。
教学方法讲授法、演示法、讨论法、练习法教学过程 一、问题导入类似于判定三角形全等的SSS 方法,我们能不能通过三边来判定两个三角形相似呢?二、探究新知1、任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的角,它们分别相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。
证明:这两个三角形相似。
如图,在△ABC 和△A ’B ’C ’中,ABA′B′= BCB′C′ = ACA′C′ ,求证:△ABC ∽△A ’B ’C ’。
证明:在线段A ’B ’(或它的延长线)上截取A ’D = AB,过点D 作DE ∥B ’C ’,交A ’C ’于点E 。
人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。
本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。
这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。
但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。
此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。
2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.相似图形的定义和性质的理解。
2.相似三角形的性质和判定方法的掌握。
3.图形变换的熟练运用。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。
2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。
3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。
3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。
可以提供一些提示和指导,帮助学生解决问题。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。
教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。
九年级数学下册第二十七章相似知识点总结归纳单选题1、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是( )A.17.5m B.17m C.16.5m D.18m答案:A分析:先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.解:∵AB=1.2m,BC=12.8m∴AC=1.2m+12.8m=14m∵标杆BE和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴ABBE =ACCD,即1.21.5=14CD,解得CD=17.5m.故答案为A.小提示:本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.2、如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ADE与△ABC相似的是()A.B=∠D B.∠C=∠AED C.ABAD =DEBCD.ABAD=ACAE答案:C分析:△ADE≌△ABC根据题意可得∠EAD=∠CAB,然后根据相似三角形的判定定理逐项判断,即可求解.解:∵∠BAD=∠CAE,∴∠EAD=∠CAB,A.若添加∠B=∠D,可用两角对应相等的两个三角形相似,证明△ADE≌△ABC,故本选项不符合题意;B.若添加∠C=∠AED,可用两角对应相等的两个三角形相似,证明△ADE≌△ABC,故本选项不符合题意;C.若添加ABAD =DEBC,不能证明△ADE≌△ABC,故本选项符合题意;D.若添加ABAD =ACAE,可用两边对应成比例,且夹角相等的两个三角形相似,证明△ADE≌△ABC,故本选项不符合题意;故选:C.小提示:本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.3、如图,将ΔABC沿BC边上的中线AD平移到ΔA′B′C′的位置.已知ΔABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.32答案:B分析:由S△ABC=16、S△A′EF=9且AD为BC边的中线知SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,根据△DA′E∽△DAB知(A′DAD )2=SΔA′DESΔABD,据此求解可得.∵SΔABC=16、SΔA′EF=9,且AD为BC边的中线,∴SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,∵将ΔABC沿BC边上的中线AD平移得到ΔA′B′C′,∴A′E//AB,∴ΔDA′E∼ΔDAB,则(A′DAD )2=SΔA′DESΔABD,即(A′DA′D+1)2=298=916,解得A′D=3或A′D=−37(舍),故选B.小提示:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.4、如图,在等腰△ABC中,∠ABC=∠ACB=α,BC=12,点D是边AB上一点,且BD=4,点P是边BC上一动点,作∠DPE=α,射线PE交边AC于点E,当CE=9时,则满足条件的P点的个数是()A.1B.2C.3D.以上都有可能答案:A分析:由已知得∠ABC=∠ACB=α,再证明∠EPC=∠PDB,则可判断△PDB∽△EPC,利用相似比得到BD:PC =PB:CE,设PB=x,则PC=10﹣x,CE=9时,所以x2﹣12x+36=0,根据判别式的意义得到Δ=0,即原方程只有一个实数根即可选出答案.解:∵△ABC为等腰三角形,∴∠ABC=∠ACB=α,∵∠DPC=∠B+∠PDB,即∠DPE+∠EPC=∠B+∠PDB,而∠DPE=α,∴∠EPC=∠PDB,而∠ABC=∠ACB,∴△PDB∽△EPC,∴BDPC =PBCE,设PB=x,则PC=12﹣x,当CE=9时,∴412−x =x9,∴x2﹣12x+36=0,∵Δ=(﹣12)2﹣4×36=0,原方程只有一个实数根,∴点P有且只有一个,故选A.小提示:本题主要考查了三角形外角的性质,等腰三角形的性质,相似三角形的性质与判定,一元二次方程根的判别式,解题的关键在于能够熟练掌握相关知识进行求解.5、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①DEBC =12;②SΔDOESΔCOB=12;③ADAB=OEOB;④SΔODESΔADC =13,其中正确的个数有()A.1个B.2个C.3个D.4个答案:C分析:由BE、CD是△ABC的中线,可得DE=12BC,即DEBC=12,从而可判断①;由DE是△ABC的中位线,可得△DOE∽△COB,从而可判断②;由△ADE∽△ABC与△DOE∽△COB,利用相似三角形的性质可判断③;由△ABC的中线BE与CD交于点O.可得点O是△ABC的重心,根据重心性质,BO=2OE,△ABC中BC上的高=△BOC中BC上的高的3倍,且△ABC与△BOC同底(BC),可得S△ABC=3S△BOC,由②和③知,S△ODE=1 4S△COB,S△ADE=34S△BOC,从而可判断④.解:①∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=12BC,即DEBC=12,故①正确;②∵DE是△ABC的中位线,∴DE∥BC,∴△DOE∽△COB,∴S△DOES△COB =(DEBC)2=(12)2=14,故②错误;③∵DE∥BC,∴△ADE∽△ABC,∴ADAB =DEBC,∵△DOE∽△COB,∴OEOB =DEBC,∴ADAB =OEOB,故③正确;④∵△ABC的中线BE与CD交于点O,∴点O是△ABC的重心,根据重心性质,BO=2OE,△ABC中BC上的高=3△BOC中BC上的高,且△ABC与△BOC同底(BC),∴S△ABC=3S△BOC,由②和③知,S△ODE=14S△COB,ADAB=DEBC=12,∴S△DAES△BAC =(ADAB)2=(12)2=14,∴S△ADE=34S△BOC,∴S△ODES△ADE =13,∵E是AC的中点,∴S△ADC=2S△ADE∴SΔODESΔADC =16.故④错误.综上,①③正确.故选B.小提示:本题考查的三角形的中线与三角形的中位线的性质,三角形的重心的性质,相似三角形的判定与性质,掌握利用以上知识解决三角形的面积问题是解题的关键.6、神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割答案:D分析:根据黄金分割的定义即可求解.解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D小提示:本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为√5−12,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.熟知黄金分割的定义是解题关键.7、若ab =cd=−2,则a−cb−d=()A.−2B.2C.−12D.12答案:A分析:根据ab =cd=−2,可知a=﹣2b,c=﹣2d,将a和c的值代入求值的代数式化简即可.解:∵ab =cd=−2,∴a=﹣2b,c=﹣2d,∴a−cb−d =−2b+2db−d=−2(b−d)(b−d)=−2.故选:A.小提示:本题考查了比例的性质,解题的关键是根据已知将a和c用b和d正确表示.8、在比例尺为1:50的图纸上,长度为10cm的线段实际长为()A.50cmB.500cmC.150cm D.1500cm答案:B分析:根据成比例线段的性质求解即可.解:∵1:50=10:500,∴长度为10cm的线段实际长为500cm,故选B.小提示:本题考查了成比例线段,掌握比例的性质是解题的关键.9、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF答案:D分析:根据EG∥BD,可得△AEG∽△ABD,根据FG∥AC,可得△DGF∽△DAC,再根据相似三角形的性质即可求解.解:∵GE∥BD,∴AEBE =AGDG,△AEG∽△ABD,∴ABAE =ADAG,故选项A错误;∵GF∥AC,∴DFCF =DGAG,△DGF∽△DAC,故选项B错误;∵DFCF =DGAG∴AGDG =CFDF∴AEBE =CFDF故选项D正确;∵△AEG∽△ABD,△DGF∽△DAC,∴FGAC =DGDA,EGBD=AGAD故选项C错误;故选:D.小提示:本题考查了平行线分线段成比例定理及相似三角形的性质及判定,利用平行线分线段成比例,找出比例式是解题的关键.10、如图,在△ABC中,P、Q分别为AB、AC边上的点,且满足APAC =AQAB.根据以上信息,嘉嘉和淇淇给出了下列结论:嘉嘉说:连接PQ,则PQ//BC.淇淇说:△AQP∽△ABC.对于嘉嘉和淇淇的结论,下列判断正确的是()A.嘉嘉正确,淇淇错误B.嘉嘉错误,淇淇正确C.两人都正确D.两人都错误答案:B分析:根据APAC =AQAB,∠PAQ=∠CAB可以判定△AQP∽△ABC,APAB与AQAC不一定相等,不能判定PQ//BC.解:∵APAC =AQAB,∠PAQ=∠CAB,∴△AQP∽△ABC,即淇淇的结论正确;∴∠AQP=∠ABC,∠APQ=∠ACB,∵不能得出∠AQP=∠ACB或∠APQ=∠ABC,∴不能得出PQ//BC,即嘉嘉的结论不正确.故选B.小提示:本题考查相似三角形和平行线的判定,熟练掌握相似三角形和平行线的判定方法是解题的关键.填空题11、已知a2=b3=c5,则a+bc的值为_____.答案:1分析:由比例的性质,设a2=b3=c5=k,则a=2k,b=3k,c=5k,然后代入计算,即可得到答案.解:根据题意,设a2=b3=c5=k,∴a=2k,b=3k,c=5k,∴a+bc =2k+3k5k=1,所以答案是:1.小提示:本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.12、如图,在△ABC中,点D,E分别在边AB,AC上,且ADDB =32,AEEC=12,射线ED和CB的延长线交于点F,则FBFC的值为________.答案:13分析:过B作BG∥AC交EF于G,得到△DBG∽△ADE,由相似三角形的性质得到BGAE =BDAD=23,推出BG:CE=13,根据相似三角形的性质即可得到结论.解:过B作BG∥AC交EF于G,∴△DBG∽△DAE,∴BGAE =BDAD=23,∵AEEC =12,∴BGCE =13,∵BG∥AC,∴△BFG∽△CFE,∴BFFC =BGCE=13.故答案是:13.小提示:本题考查了平行线分线段成比例定理,相似三角形的判定和性质,正确的作出辅助线构造相似三角形是解题的关键.13、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG∶GF的值是_______.答案:6:5分析:作FN∥AD,交AB与N,设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.作FN∥AD,交AB与N,∵四边形ABCD是正方形,∴AB∥CD,∴FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形.设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴AGGF =AEFM=3a52a=65.故答案为6∶5.小提示:本题考查了正方形的性质、平行线分线段成比例定理、三角形中位线等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.14、如图,D是ΔABC边AB延长线上一点,请添加一个条件_______,使ΔACD∽ΔABC.答案:AC=AB•AD(答案不唯一)分析:根据相似三角形的判定添加适当的条件即可.解:添加:AC=AB•AD∵AC=AB•AD∴ACAB =ADAC∵∠A=∠A∴ΔACD∽ΔABC.所以答案是:AC=AB•AD(答案不唯一).小提示:本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.15、如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB的长为_________.答案:2√3.分析:过O 作OE ⊥AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD =2√33,在Rt △AOD 中,由勾股定理AD =4√33,可证△OAC ∽△DAO ,由相似三角形性质可求AC =√3即可.解:过O 作OE ⊥AB 于C ,∵AB 为弦,∴AC =BC =12AB ,∵直线y =√33x +2√33与⊙O 相交于A ,B 两点, ∴当y =0时,√33x +2√33=0,解得x =-2, ∴OA =2,∴当x =0时,y =2√33, ∴OD =2√33, 在Rt △AOD 中,由勾股定理AD =√AO 2+OD 2=√22+(2√33)2=4√33, ∵∠ACO =∠AOD =90°,∠CAO =∠OAD ,∴△OAC ∽△DAO ,AC AO =AO AD 即AC =AO 2AD =4√33=√3, ∴AB =2AC =2√3,故答案为2√3.小提示:本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.解答题16、问题背景:如图1,在矩形ABCD 中,AB =2√3,∠ABD =30°,点E 是边AB 的中点,过点E 作EF ⊥AB 交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF 绕点B 按逆时针方向旋转90°,如图2所示,得到结论:①AE DF =_____;②直线AE 与DF 所夹锐角的度数为______.(2)小王同学继续将△BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF 旋转至D 、E 、F 三点共线时,则△ADE 的面积为______.答案:(1)√32,30°;(2)成立,理由见解析;拓展延伸:13√3+√398或13√3−√398 分析:(1)通过证明ΔFBD ∽ΔEBA ,可得AE DF =BE BF =√32,∠BDF =∠BAE ,即可求解; (2)通过证明ΔABE ∽ΔDBF ,可得AE DF =BE BF =√32,∠BDF =∠BAE ,即可求解;拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA,∴cos∠ABD=BEBF =ABDB=√32,如图2,设AB与DF交于点O,AE与DF交于点H,∵ΔBEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴ΔFBD∽ΔEBA,∴AEDF =BEBF=√32,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,所以答案是:√32,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将ΔBEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,又∵BEBF =ABDB=√32,∴ΔABE∽ΔDBF,∴AEDF =BEBF=√32,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2√3,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE=√3,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE=√BD2−BE2=√16−3=√13,∵∠DEA=30°,∴DG=12DE=√132,由(2)可得:AEDF =BEBF=√32,√13+1=√32,∴AE=√39+√32,∴ΔADE的面积=12×AE×DG=12×√39+√32×√132=13√3+√398;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:ΔADE 的面积=12×AE ×DG =12×√39−√32×√132=13√3−√398; 所以答案是:13√3+√398或13√3−√398. 小提示:本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.17、已知△OAB 在平面直角坐标系中的位置如图所示.(1)将△ABO 绕原点O 顺时针旋转90°得△OA 1B 1;(2)以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2.答案:(1)见解析(2)见解析分析:(1)先找到A 、B 的对应点A 1、B 1,然后顺次连接O 、A 1、B 1即可;(2)先找到A 1、B 1的对应点A 2、B 2,然后顺次连接O 、A 2、B 2即可;.(1)解:如图所示,△OA 1B 1即为所求;(2)解:如图所示,△OA2B2即为所求.小提示:本题主要考查了再坐标系中画旋转图形,画位似图形,熟知画旋转图形和画位似图形的方法是解题的关键.18、已知AB是圆O直径,点C为圆上一点,OD⊥BC于D,过C作切线,交OD延长线于E.(1)求证:BE为圆O切线;(2)连接AD并延长交BE于F,若C为弧AB中点,OB=10,求BF.答案:(1)见详解;(2)203分析:(1)连接OC,先证明△COE≌△BOE,可得∠OBE=∠OCE=90°,即可求证;(2)过点D作DH⊥AB于点H,根据AB是圆O直径,OB=10,可得∠ACB=90°,AB=2OB=20,又由C为弧AB中OB=5,再证明△ADH~点,可得到△ABC是等腰直角三角形,进而△DOB是等腰直角三角形,从而DH=OH=12△AFB,利用相似三角形的性质,即可求解.(1)证明:如图1,连接OC,∵CE是圆O切线,∴∠OCE=90°,∵OC=OB,OD⊥BC,∴∠COE=∠BOE,∵OE=OE,∴△COE≌△BOE,∴∠OBE=∠OCE=90°,∴BE为圆O切线;(2)如图,过点D作DH⊥AB于点H,∵AB是圆O直径,OB=10,∴∠ACB=90°,AB=2OB=20,∵C为弧AB中点,∴AC=BC,∴△ABC是等腰直角三角形,∴∠ABC=45°,∵OD⊥BC,∴△DOB是等腰直角三角形,∵DH⊥AB,∴DH=OH=12OB=5,∴AH=AO+OH=15,∵BE⊥AB,∴DH∥BF,∴△ADH~△AFB,∴AHAB =DHBF,即1520=5BF,解得:BF=203.小提示:本题考查了相似三角形的判定与性质、切线的判定与性质、圆周角定理、等腰直角三角形的判定与性质、全等三角形的判定与性质、平行线的判定等知识,熟练掌握切线的判定与性质,证明△COE≌△BOE,△ADH~△AFB是解题的关键.。
《相似三角形》本章知识结构框图一、相似三角形与全等三角形全等三角形相似三角形定义能够完全重合的两个三角形对应角相等,对应边成比例的两个三角形图形性质形状、大小完全一样形状一样、大小未必一样表示方法△ABC ≌△A ,B ,C ,△ABC ∽△A ,B ,C ,性质对应角相等,对应边相等 对应角相等,对应边的比相等相似比1ABBCACA B B C A C ==='''''' ()ABBCACk k A B B C A C===''''''为正实数区别与联系(1) 找对应元素的方法一样(2) 全等三角形是相似比为1的相似三角形,但相似三角形不一定全等相似三角形是最为简单的相似多边形.解题时应注意以下问题:(1) 探求两个三角形相似时,通常把表示对应顶点的字母写在对应的位置上.这样可以比较容易地找出相似三角形的对应角和对应边.(2) 相似比是有序的,如△ABC 与△A′B′C′的相似比为k ,则△A′B′C′与△ABC 的相似比为(3) 在研究相似多边形性质时,常将多边形分成若干个三角形.由相似三角形的有关性质推得相似多边形也有同样的性质.(4)相似三角形对应角相等,对应边成比例,比值称为相似比,全等的三角形相似比为1.(5) 相似三角形的本质特征是这两个三角形具有相同的形状,但大小不一定相等. (6)相似三角形的传递性由△ABC ∽△A′B′C′,△A′B′C′∽△A″B″C″,可得△ABC ∽△A″B″C″..一、相似三角形的判定方法判定方法1∵___________∴△ABC∽△ADE判定方法2∵________________∴△ABC∽△A,B,C,判定方法3∵_____________,∠B=∠B,∴△ABC∽△A,B,C,判定方法4∵___________,__________ ∴△ABC∽△A,B,C,三、3个基本图形∵_______________∴△APC∽△DPB则PA•PB=PC•PD∵_________________∴△APD∽△CPB则PA•PB=PC•PD△ACD∽△CBD∽△ABC2 2 2_________ _________ _________AC CD BC = = =定义:对应角相等,对应边成比例的三角形,叫做相似三角形符号“∽”,读作:“相似于”,记作:∽,如图所示.∴∽反之亦然.即相似三角形对应角相等,对应边成比例(性质).∵∽,∴注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.2.相似比的概念相似三角形对应边的比K,叫做相似比(或相似系数).注:①两个相似三角形的相似比具有顺序性.如果与的相似比是K,那么与的相似比是 .②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. ∽,如图所示.知识结构(1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况.(2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定.(3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似;②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件.(4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似。