2016北师大七年级上专题训练(六)角的有关计算(有答案)-(数学)
- 格式:doc
- 大小:146.00 KB
- 文档页数:3
北师大版数学七年级上册第四章4.3角同步练习一、选择题1.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.答案:D解析:解答:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.分析:根据方向角的定义,即可解答.2.如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B 两岛的视角∠ACB的度数是()A.70°B.20°C.35°D.110°答案:A解析:解答:如图,连接AB,∵两正北方向平行,∴∠ CAB+∠CBA=180°-45°-25°=110°,∴∠ ACB=180°-110°=70°.故选:A.分析:根据两直线平行,同旁内角相等求得∠C的度数即可.3.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.西偏北30°B.北偏西60°C.北偏东30°D.东偏北60°答案:B解析:解答:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°-30°=60°,故射线OB的方位角是北偏西60°,故选B.分析:根据垂直,可得∠AOB的度数,根据角的和差,可得答案.4.下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形答案:C解析:解答:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看做是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.故选C.分析:根据角的动态定义解答:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角.所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边.5.下列语句错误的有()①角的大小与角两边的长短无关;②过两点有且只有一条直线;③若线段AP=BP,则P一定是AB中点;④ A与B两点间的距离是指连接A、B两点间的线段.A.1个B.2个C.3个D.4个答案:B解析:解答:①角的大小与角两边的长短无关,正确;②过两点有且只有一条直线,正确;③若线段AP=BP,则P一定是AB中点;错误,点P可能不在AB上;④A与B两点间的距离是指连接A、B两点间的线段;错误,因为A与B两点间的距离是指连接A、B两点间的线段的长度.故选B分析:根据直线、线段以及射线的概念来解答本题即可.6.下图中,能用∠ABC,∠B,∠1三种方法表示同一个角的图形是()A.B.C.D.答案:D解析:解答:A.顶点B处有四个角,不能用∠B表示,错误;B.顶点B处有二个角,不能用∠B表示,错误;C.顶点B处有三个角,不能用∠B表示,错误;D.顶点B处有一个角,能同时用∠ABC,∠B,∠1表示,正确.故选D.分析:当角的顶点处只有一个角时,可以用一个大写字母表示这个角,也可以用三个大写字母表示这个角.7.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示答案:D解析:解答:A.∠1与∠AOB表示同一个角,正确,故本选项错误;B.∠β表示的是∠BOC,正确,故本选项错误;C.图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选项错误;D.∠AOC不能用∠O表示,错误,故本选项正确;故选D.分析:根据角的表示方法表示各个角,再判断即可.8.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是()A.60°B.70°C.75°D.85°答案:C解析:解答:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分分针与时针的夹角是2.5×30°=75°,故选C.分析:利用钟表表盘的特征解答即可.9.已知点A在点B的北偏东40°方向,则点B在点A的()A.北偏东50°方向B.南偏西50°方向C.南偏东40°方向D.南偏西40°方向答案:D解析:解答:如图,则点B在点A的南偏西40度,故选D.分析:此题是对方向角的考查,若点A在点B的北偏东40度,要求点B在点A的方向,则以点A为原点建立直角坐标系即可求解.10.轮船航行到B处观测小岛A的方向是北偏西32°,那么小岛A观测到轮船B的方向是()A.南偏西32°B.南偏东58°C.南偏西58°D.南偏东32°答案:D解析:解答:由图可知,AB方向相反,从小岛A同时观测轮船B的方向是南偏东32°,故选:D.分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.11.如图,点A位于点O的()A.南偏西25°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上答案:B解析:解答:∵OA和正西方向的夹角是25°,∴OA与正北方向的夹角为65°,∴位于点O的北偏西65°的方向上.故选B.分析:根据方位角的概念,结合上北下南左西右东的规定进行判断.12.下图中能用一个字母表示的角()A.三个B.四个C.五个D.没有答案:A解析:解答:∵只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.分析:只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角,据此判断出图中能用一个字母表示的角有几个即可.13.下列说法正确的是()A.角的边越长,角度就越大B.周角就是一条射线C.一条直线可以看成平角D.平角的两边可以构成一条直线答案:D解析:解答:A.角的大小与边长无关,故错误;B.周角的特点是两条边重合成射线,但不能说成周角是一条射线,故错误;C.平角的特点是两条边成一条直线,不能说直线是平角,故错误;D.平角的两边构成一条直线,正确,故选D.分析:利用角的定义分别判断后即可确定正确的选项.14.如图,下列表示角的方法,错误的是()A.∠1与∠AOB表示同一个角B.∠AOC不可用∠O来表示C.图中共有三个角:∠AOB、∠AOC、∠BOCD.∠β表示的是∠AOC答案:D解析:解答:∵∠1与∠AOB表示同一个角,∴选项A正确.∵只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,∴∠AOC不能∠O来表示,∴选项B正确.∵图中共有三个角:∠AOB、∠AOC、∠BOC,∴选项C正确.∵∠β表示的是∠BOC,∴选项D错误.故选:D.分析:A:根据角的表示方法判断即可.B:只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,所以∠AOC不能∠O来表示,据此判断即可.C:根据角的概念,判断出图中一共有多少个角即可.D:根据角的表示方法判断即可.15.在9点30分时,时针上的时针与分针之间的夹角为()A.85度B.90度C.70度D.60度答案:B解析:解答:9点30分,时针和分针中间相差3个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴9点30分分针与时针的夹角是3×30°=90°.故选:B.分析:根据钟表上12个数字,每相邻两个数字之间的夹角为30°计算得到答案.二、填空题16.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于______°.答案:135解析:解答:30°×(4+12)=30°×92=135°,故答案为:135.分析:根据钟面平均分成12份,可得每份30°,根据每份的度数乘以时针与分针相距的份数,可得答案.17.已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB 的度数等于______.答案:85°解析:解答:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.分析:根据方位角的概念,画图正确表示出A,B的方位,易得结果.18.从中午12时整到下午3时整,钟表时针所转过的角的度数是______.答案:90°解析:解答:时针经过3个小时,那么它转过的角度是30°×3=90°.故答案为:90°.分析:利用钟表表盘的特征解答.时针每小时走30°.19.C岛在B岛的北偏西48°方向,∠ACB等于95°,则C岛在A岛的______方向.答案:北偏东47°解析:解答:作CF∥AD,则AD∥CF∥BE.∵AD∥CF,∴∠ACF=∠DAC,同理∠BCF=∠CBE=48°,∴∠DAC=∠ACB-∠BCF=95°-48°=47°,则北偏东47°方向.故答案是:北偏东47°.分析:作CF∥AD,则AD∥CF∥BE,根据平行线的性质可得∠ACF=∠DAC,∠BCF=∠CBE,据此即可求得∠DAC的度数,从而求解.20.如图,一艘轮船在A处看见巡逻艇M在其北偏东65°的方向上,此时一艘客船在B处看见巡逻艇M在其北偏东15°的方向上,则此时从巡逻艇上看这两艘船的视角∠AMB=______.答案:50°解析:解答:从图中我们可以发现∠AMB=180°-(90°+15°)-(90°-65°)=50°,故答案为:50°.分析:将轮船航行的实际问题转化为方向角的问题解答.三、解答题21.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?答案:南偏西46°;解答:由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?答案:12千米.解答:∵∠ ABC=180°-∠ABG-∠EBC=180°-46°-44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.解析:分析:根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.22.如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的西北方向,求∠ABC及∠BCA的度数.答案: 45°|50°.解答:∵∠DBA=40°,∠DBC=85°,DB∥CE,∴∠ECB=180°-85°=95°,∠ABC=85°-40°=45°,∵∠ECA=45°,∴∠BCA=95°-45°=50°.解析:分析:根据方位角的概念,图中给出的信息,结合平行线的性质求解即可.23.在AB两地之间要修一条笔直的公路,从A地测得公路的走向是南偏西56°,此工程由甲乙丙三支施工队伍共同建设.已知甲单独做要10天完成,乙单独做要12天完成,丙单独做要15天完成.甲、丙先合做了3天后,甲因事离去,由乙和丙完成剩下工作,那么还需要几天才能完成?并画出这条公路的简单示意图.答案:103x 天;如图,设由乙和丙完成剩下工作,那么还需要x天才能完成,根据题意得:111131 10151215x⎛⎫⎛⎫+⨯++⎪ ⎪⎝⎭⎝⎭=,解得:103x=.∴由乙和丙完成剩下工作,那么还需要103x=天才能完成.解析:分析:先建立方位图,再设由乙和丙完成剩下工作,那么还需要x天才能完成,根据题意列出方程,即可解答.24.如图所示,从一点O出发引射线OA、OB、OC、OD,请你数一数图中有多少个角,并把它们表示出来.答案:共6个角,有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,共6个角.解析:分析:根据角的概念(有公共端点的两条射线组成的图形叫角)写出即可,注意不要漏角啊.25.如图所示,从一点O出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n(n为大于等于2的整数)条射线,则会得到多少个角?如果n=8时,检验你所得的结论是否正确.答案:当n=2时,角的个数为1;当n=3时,角的个数为1+2=3;当n=4时,角的个数为1+2+3=6;当n=5时,角的个数为1+2+3+4=10;当射线的条数为n时,角的个数为1+2+3+4+…+(n-2)+(n-1)=12(n-1)n,当n=8时,12×(8-1)×8=28.所以n条射线可组成12(n-1)•n个角,这个结论也是正确的.解析:分析:根据图形分别n的值与角的个数的关系,进而得出规律求出即可.。
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
专题训练(六) 角的有关计算类型1直接计算角的度数1.如图,已知∠1=65°15′,∠2=78°30′,求∠3的度数.2.如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.3.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.类型2运用方程思想求角的度数4.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠B OC的度数.5.如图,已知∠1=12∠BOC,∠2=∠AOD=3∠1,求∠1和∠2的度数.类型3 运用分类讨论思想求角的度数6.下面是小明做的一道题目以及他的解题过程: 题目:在同一平面上,若∠BOA=75°,∠BOC =22°,求∠AOC 的度数.解:根据题意可画图,如图所示,AOC =∠BOA-∠BOC=75°-22°=53°.如果你是老师,能判小明满分吗?若能,请说明理由,若不能,请将错误指出来,并给出你认为正确的解法.7.已知OC 平分∠AOB,OD 是∠BOC 内的一条三等分线,试问∠AOB 是∠COD 的几倍?类型4 运用整体思想求角的度数8.如图所示,∠AOB=90°,ON是∠AOC的平分线,OM是∠BOC的平分线,求∠MON的大小.参考答案1.因为∠1=65°15′,∠2=78°30′,所以∠1+∠2=65°15′+78°30′=143°45′.所以∠3=180°-(∠1+∠2)=180°-143°45′=36°15′.2.因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.3.因为∠AOB=90°,OC 平分∠AOB,所以∠BOC=12∠AOB=45°.因为∠BOD=∠COD-∠BOC=90°-45°=45°,∠BOD =3∠DOE,所以∠DOE=15°.所以∠COE=∠COD-∠DOE=90°-15°=75°.4.设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.5.设∠1=x °,则∠2=∠AOD=3∠1=3x °.因为∠1=12∠BOC,所以∠BOC=2x °.因为∠BOC+∠2+∠AOD+∠1=360°,所以2x +3x +3x +x =360.解得x =40.所以∠1=40°,∠2=120°.6.小明不会得满分,他忽略了一种情况,正确解法:①如图1,∠AOC =∠BOA-∠BOC =75°-22°=53°;②如图2,∠AOC =∠BOA+∠BOC=75°+22°=97°.综上所述:∠AOC 的度数为53°或97°.7.如图1,∠COD =13∠BOC,设∠COD=x ,则∠BOC=3x.因为OC 平分∠AOB,所以∠AOB=2∠BOC=6x.即∠AOB=6∠COD;如图2,∠BOD =13∠BOC,则∠COD=23∠BOC,设∠COD=2x ,则∠BOC =3x.同样∠AOB=6x ,即∠AOB=3·2x=3∠COD.故∠AOB 是∠COD 的6倍或3倍.8.因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC=12∠AOC,∠MOC =12∠BOC.所以∠MON=∠NOC-∠MOC =12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12×90°=45°.。
4.3 《角》习题1一、填空题1.图书馆在餐厅的北偏东40°方向,那么餐厅在图书馆的________方向.2.若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____.3.过点O 引三条射线OA 、OB 、OC ,使2AOC AOB ∠=∠,如果32AOB ∠=︒,那么BOC ∠的度数是_______.二、选择题1.如图,能用∠1、∠ABC 、∠B 三种方法表示同一个角的是( )A .B .C .D .2.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°3.将一个直角分成1:2:3的三个角,那么这三个角中,最大的角与最小的角相差( )A .10°B .20°C .30°D .40°4.如图,射线OB 和OD 分别为AOC ∠和COE ∠的角平分线,45,20AOB DOE ∠=︒∠=︒,则AOE ∠=( )A .110°B .120°C .130°D .140°5.2019年4月12日我军在南海举行了建国以来海上最大的军事演习,位于点O 处的军演指挥部观测到军舰A 位于点O 的北偏东70°方向(如图),同时观测到军舰B 位于点O 处的南偏西15°方向,那么∠AOB 的大小是( )A .85°B .105°C .115°D .125°6.已知180αβ∠+∠=︒,且αβ∠>∠,那么β∠的余角一定是( )A .αβ∠-∠B .90α︒-∠C .90α∠-︒D .90β∠-︒7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式中正确的是( )A .23AOD AOB ∠=∠ B .13BOD AOB =∠∠ C .23BOC AOB ∠=∠ D .12∠=∠COD BOC 8.一个角的余角比它的补角的一半少30,则这个角的度数为( )A .20︒B .40︒C .60︒D .80︒9.如图,已知CO ⊥AB 于点O ,∠AOD =5∠DOB +6°,则∠COD 的度数( )A.58°B.59°C.60°D.61°10.下列语句中,正确的个数是( )①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个11.将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )A.B.C.D.12.如图,∠AOC和∠BOC互补,∠AOB=α,OM是∠AOC的平分线,ON是∠BOC的平分线,∠MON的度数是( )A.1802α-B.12a C.1902a+D.1902a-13.在同一平面内,已知∠AOB=70°,∠BOC=20°,如果OP是∠AOC的平分线,则∠BOP的度数为( )A.25°B.25°或35°C.35°D.25°或45°14.如图,已知点A,O,B在同一直线上,∠2是锐角,则∠2的余角是( )A .1122∠-∠B .()1123∠+∠C .()1122∠-∠ D .131222∠-∠三、解答题1.用一副三角尺画角. (1)135AOB ∠=︒. (2)150BOC ∠=︒.2.计算:(1)2027'3554'︒+︒; (2)90431836"'︒-°.3.完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34°( )∴∠EOF = °又∵OF 是∠AOE 的角平分线( )∴∠AOF = =56°( )∴∠AOC =∠ —∠ = °∴∠BOD=∠AOC=°( )4.如图,已知直线AB和CD相交于点O,∠COE= 90︒, OF平分∠AOE, ∠COF=28︒.求∠AOC 的度数.5.请仔细观察如图所示的折纸过程,然后回答下列问题:(1)2∠的度数为__________;∠有何数量关系:______;(2)1∠与3∠有何数量关系:__________;(3)1∠与AEC6.如图,已知直线和直线外三点A,B,C,按下列要求画图:(1)画线段AB(2)画出射线BC(3)以A 为顶点画出表示东西南北的十字线,再画出表示北偏西30的射线AD (注:D 为射线与直线l 的焦点,标注字母D 与30角)7.如图,OM ,ON 分别是BOC ∠和AOC ∠的平分线,且84AOB ∠=︒.(1)当OC 静止时,求MON ∠的度数;(2)当OC 在AOB ∠内转动时,MON ∠的大小是否会发生变化,简单说明理由.8.已知:AOB ∠和COD ∠是直角.(1)如图,当射线OB 在COD ∠内部时,请探究AOD ∠和BOC ∠之间的关系;(2)如图2,当射线,OA 射线OB 都在COD ∠外部时,过点О作射线OE ,射线OF ,满足13BOE BOC ∠=∠,23DOF AOD ∠=∠,求EOF ∠的度数.(3)如图3,在(2)的条件下,在平面内是否存在射线OG ,使得:2:3GOF GOE ∠∠=,若不存在,请说明理由,若存在,求出GOF ∠的度数.答案一、填空题1.南偏西40°(或西偏南50°).2.38°.3.32︒或96︒二、选择题1.A . 2.C .3.C .4.C .5.D.6.C .7.D .8.C .9.D.10.C .11.C .12.B .13.D .14.C .三、解答题1.(1)如图,∠AOB 为所求;(2)如图,∠BOC 为所求;2.(1)2027'3554'5581'5621'+=︒=°°°(2)904318'36"8959'60"4318'36"464124"︒-︒=︒-︒=︒′3.解:∵∠EOC=90°∠COF=34° (已知)∴∠EOF=90°-34°=56°,∵OF 是∠AOE 的角平分线∴∠AOF =∠EOF =56°(角平分线定义)∴∠AOC=∠AOF-∠COF=22°,∴∠BOD=∠AOC=22° (同角的余角相等),4.解:∵∠EOF=∠COE-∠COF=90°-28°=62°.又∵OF平分∠AOE,∴∠AOF=∠EOF=62°,∴∠AOC=∠AOF-∠COF=62°-28°=34°.5.解:(1)根据折叠的过程可知:∠2=∠1+∠3,∵∠1+∠2+∠3=∠BEC,B、E、C三点共线∴∠2=180°÷2=90°.故答案是:90°.(2)∵∠1+∠3=∠2,∴∠1+∠3=90°.故答案是:∠1+∠3=90°.(3)∵B、E、C三点共线,∴∠1+∠AEC=180°,故答案是:∠1+∠AEC=180°.6.解:(1)线段AB作图如下,(2)射线BC作图如下,(3)方向角作图如下,7.解:(1) OM ,ON 分别是BOC ∠和AOC ∠的平分线,11,,22MOC BOC NOC AOC ∴∠=∠∠=∠ ()11,22MON MOC NOC BOC AOC AOB ∴∠=∠+∠=∠+∠=∠ 84AOB ∠=︒,18442.2MON ∴∠=⨯︒=︒ (2)MON ∠的大小不会发生变化,理由如下:OM ,ON 分别是BOC ∠和AOC ∠的平分线,11,,22MOC BOC NOC AOC ∴∠=∠∠=∠()11,22MON MOC NOC BOC AOC AOB ∴∠=∠+∠=∠+∠=∠ 84AOB ∠=︒,18442.2MON ∴∠=⨯︒=︒ 所以只要∠AOB 的大小不变,无论OC 在∠AOB 内怎样转动,∠MON 的值都不会变.8.解:(1)180AOD BOC ∠+∠=︒ ,证明:AOB ∠和COD ∠是直角,90AOB COD ∴∠=∠=︒,BOD BOC COD ∠+∠=∠,90BOD BOC ∴∠=︒-∠,同理:90AOC BOC ∠=︒-∠,9090180AOD AOB BOD BOC BOC ∴∠=∠+∠=︒+︒-∠=-∠,180AOD BOC ∴∠+∠=︒;(2)解:设BOE α∠=,则3BOC α∠=,BOE EOC BOC ∠+∠=∠,2EOC BOC BOE α∴∠=∠-∠=,360AOD COD BOC AOB ∠+∠+∠+∠=︒,360AOD COD BOC AOB ∴∠=︒-∠-∠-∠360903901803a α=︒-︒--︒=︒-,23DOF AOD ∠=∠, 21803103(22DOF a a ∴∠=︒-=︒-), (1118036033AOF AOD a a ∴∠=∠=-=︒-), 9060150EOF BOE AOB AOF a α∴∠=∠+∠+∠=+︒+︒-=︒,答:EOF ∠的度数是150;(3)①如图,当射线OG 在EOF ∠内部时,:2:3GOF GOE ∠∠=,222150602355GOF EOF EOF ∴∠=∠=∠=⨯︒=︒+,②如图,当射线OG 在EOF ∠外部时,:2:3GOF GOE ∠∠=,()()222352360360150210845GOF EOF ︒∴∠=∠=+-︒-︒=⨯︒=︒,综上所述,GOF ∠的度数是60︒或84︒.。
《角》过关练习一、填空题1.______度______分______秒______度______度______分______秒______度2.小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时与到家时时针与分针的夹角分别为______、3.______度______分______秒______度4.______直角______平角______周角。
5.,且,则______,______、6.如图,锐角的个数共有______个7.的度数与时钟4:00整时时针与分针所成的角度相同,那么______,______,____________8.如图所示,能用一个字母表示的角有______个,以A为顶点的角有______个,图中所有角有______个9.如图,把一根小棒OC一端钉在点O,旋转小木棒,使它落在不同的位置上形成不同的角,其中为______,为______,为______,木棒转到OB时形成的角为______回答钝角、锐角、直角、平角10.时间为三点半时,钟表时针与分针所成的角为______度,由2点到7点半,时针转过的角度为______度11.如图,,则______度12.已知五角星的五个顶点在同一圆上,且均分布,五角星的中心是这个圆的圆心,则圆心与两个相邻顶点的连线,构成的角度为______度13.如图,AOB为一直线,OC,OD,OE是射线,则图中大于小于的角有______个ﻫ14.假如一个角的度数为n,则它的补角为______,余角为______、15.的补角为,的余角为,则,的大小关系为______选填“”、“”、“”、二、选择题16.下列各角中是钝角的为A。
周角ﻩB。
平角ﻩC。
直角D、直角17.假如角与角互为余角,角与角互为补角,角与角的与等于周角的,那么此三个角分别为A、,,ﻩB、,,ﻫC、,,ﻩD、,,18.船的航向从正北按顺时针方向转到东南方向,它转了A、B、ﻩC。
与角度有关的计算问题(解答题35题)(基础题&提升题&压轴题)题型一基础题1.(2023秋•同安区期末)如图,点O在直线AB上,∠BOC=20°,∠COD=90°,OE是∠BOD的角平分线,求∠COE的度数.2.(2023秋•吉安期末)如图,已知∠1:∠3:∠4=1:2:4,∠2=80°,求∠1、∠3、∠4的度数.3.(2023秋•西峡县期末)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE 的度数.4.(2023秋•天心区期末)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=60°,∠BOD=3∠DOE,求∠DOE的度数.5.(2023秋•泉港区期末)如图,∠COD=45°,∠BOD=13∠COD,OC是∠AOB的平分线,求∠AOD的度数.6.(2023秋•泸县校级期末)如图,OE是∠COA的平分线,∠AOB=∠COD.(1)若∠AOE=50°,∠COD=18°,求∠BOC的度数;(2)比较∠AOC和∠BOD7.(2023秋•南沙区期末)如图,将一副三角尺叠放在一起.三角尺ABC的三个角是45°,45°,90°,三角尺ADE的三个角是30°,60°,90°.(1)若∠CAE=58°,求∠BAE的度数;(2)若∠CAE=2∠BAD,求∠CAD的度数.8.(2023秋•大荔县期末)将一副直角三角板ABC和BDE的一个顶点B重合在一起,按如图所示方式摆放,其中∠ACB=∠DBE=90°,∠ABC=30°,三角板ABC在∠DBE内可任意转动.(1)以点B为顶点的所有锐角有 个.(2)求以点B9.(2023秋•九龙坡区校级期末)如图,∠AOB:∠BOC=1:4,OM平分∠AOB,∠BON:∠NOC=3:1,若∠MON=91°.(1)∠AOB ∠NOC(填“>”或“<”或“=”)(2)求∠AOC的度数.10.(2023秋•娄底期末)如图,点O在直线AB上,∠COD=60°,∠AOE=2∠DOE.(1)若∠BOD=60°,求∠COE的度数;(2)试猜想∠BOD和∠COE的数量关系,并说明理由.11.(2023秋•瑶海区校级期末)已知点O为直线AB上一点,∠MON=90°,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.12.(2023秋•高安市期末)如图,已知∠AOB=80°,OC是∠AOB的平分线,OD是∠BOC的平分线.(1)求∠AOD的度数;(2)若∠COE=14∠COB,求∠的度数.题型二提升题13.(2023秋•福田区校级期末)如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数;(3)如果∠COD:∠COE=3:2,求∠AOE的度数.14.(2023秋•慈溪市期末)如图,直角三角板DOE的直角顶点O在直线AB上,OD平分∠AOF.(1)比较∠EOF和∠EOB的大小,并说明理由;(2)若OF平分∠AOE,求∠的度数.15.(2023秋•武昌区期末)已知∠AOB=50°,∠COD=20°.(1)如图1,若∠AOD=80°,∠COD在OB的左侧,则∠BOC= ;(2)如图2,OP平分∠AOD,OQ平分∠BOC,求∠POQ.16.(2023秋•无为市期末)利用折纸可以作出角平分线,如图1折叠,则OC为∠AOB的平分线,如图2、图3,折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A',点B落在点B',连接OA′.(1)如图2,若点B'恰好落在OA′上,且∠AOC=32°,则∠BOD= ;(2)如图3,当点B'在∠COA'的内部时,连接OB′,若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.17.(2023秋•彭水县期末)已知∠AOB内部有三条射线OD,OC,OE且在同一个平面内,∠AOC=2∠BOC,射线OD始终在射线OE的上方,∠AOB=108°,∠DOE=36°.(1)如图1,当OE平分∠BOC时,求∠AOD的度数;(2)如图2,若∠AOD=5∠COE时,求∠BOE的度数.18.(2023秋•沙坪坝区校级期末)如图1,已知∠AOC=160°,OB是∠AOC内的射线,且∠AOB=3 5∠BOC,射线OD、OE将∠AOC分割,使得∠AOD:∠BOD:∠COE=1:2:3.(1)求∠DOE.(2)如图2,作∠BOD,∠EOC的平分线OM,ON.求∠MON的值.19.(2023秋•渝北区期末)OC ,OD ,OE 在∠AOB 内,∠AOC =2∠BOC ,∠AOB =108°,∠DOE =66°.(1)如图1,当OE 为∠BOC 的角平分线时,求∠AOD 的度数;(2)如图2,当∠AOD =53∠COE ,求∠BOE 的度数.20.(2023秋•汉中期末)如图,已知∠AOB =120°,从∠AOB 的顶点O 引出一条射线OC ,射线OC 在∠AOB 的内部,将射线OC 绕点O 逆时针旋转到OD ,且∠COD =60°.(1)如图①,若∠AOD =90°,试判断∠AOC 与∠BOD 之间的大小关系并说明理由;(2)如图②,作射线OE ,射线OE 为∠AOD 的平分线,设∠AOC =α,当0°<α<60°时,若射线OC 恰好平分∠AOE ,求∠BOD 的度数.21.(2023秋•宿豫区期末)已知,将一副三角板的直角顶点O按如图所式叠放在一起.(1)若∠BOD=55°,则∠BOC= ,∠BOC ∠AOD(填>、<、=);(2)①若∠BOD=50°,则∠AOC= ;若∠AOC=120°,则∠BOD= ;②猜想∠BOD与∠AOC之间的数量关系,并说明理由.22.(2023秋•庄河市期末)如图,点O为直线上AB一点,∠COD=90°,∠BOD=18°,若OE是∠BOC 的平分线,(1)求∠BOE的度数;(2)若点F是平面内一点,连接射线OF,且∠AOF=13∠AOC,求∠COF的度数.23.(2023秋•黄陂区校级期末)将三角板COD的直角顶点O放置在直线AB上.(1)如图,且∠AOC=40°射线OE平分∠BOC,则∠BOE的大小为 ;(2)在(1)的条件下,射线OE平分∠BOC,射线OF平分∠BOD,求∠EOF的度数;(3)若将三角板COD绕点O旋转,射线OE平分∠BOC,射线OF平分∠BOD.请写出∠COD与∠EOF 度数的等量关系: .题型二压轴题24.(2023秋•斗门区期末)如图①,OC是∠AOE内部的一条射线,OB、OD分别平分∠AOC,∠EOC.(1)若∠AOE=140°,∠COD=30°,求∠BOC= ;(2)∠AOE与∠BOD的大小有什么关系,写出你的结论并说明理由.(3)如图②,如果OC是∠AOE外部的一条射线,OB、OD分别平分∠AOC,∠EOC.那么(2)中∠AOE与∠BOD的大小关系还成立吗?请说明理由.25.(2023秋•海陵区校级期末)已知∠AOB=2∠COD=140°,OE平分∠AOD.(1)如图①,若∠COE=10°,求∠AOC的度数;(2)将∠COD绕顶点O按逆时针方向旋转至如图②的位置,∠BOD和∠COE有怎样的数量关系?请说明理由;(3)将∠COD绕顶点O按逆时针方向旋转至如图③的位置,(2)中的关系是否成立?请说明理由.26.(2023秋•思明区校级期末)如图,点M,O,N在同一条直线上,将一直角三角板的60°锐角顶点放在点O处,一边OA在射线OM上,另一边OB在直线MN的上方.OC平分∠BON,OD平分∠CON.(1)求∠BOD的度数;(2)把三角板绕点O沿逆时针方向旋转,当OB转到射线OM上时停止,若在旋转过程中,∠AOM=(x﹣120)°,同时在∠BOC内部有一条射线OE,使得∠BOE=(34x―90)°,试探究在旋转过程中,射线OE始终是哪个角的平分线?27.(2023秋•宝安区期末)将一副三角板如图1放置(∠AOB=90°,∠A=45°,∠OCD=90°,∠COD =30°),在∠BOD、∠AOC(∠BOD≤180°、∠AOC≤180°)内作射线OM、ON,且∠MOB=2∠DOM,∠NOA=2∠NOC,将三角板OCD绕着点O顺时针旋转.(1)如图1,当点O、A、C在一条直线上时,∠MON= ;(2)如图2,若旋转角为α(0°<α<90°),∠MON的度数是否会发生改变?若不变,求其值;若变化,说明理由.(3)如图3,当三角板OCD旋转到∠AOB内部时,求∠MON的值.28.(2024•两江新区校级开学)将一副三角板的两个锐角顶点重合,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD(1)如图①所示,当OB与OC重合时,则∠MON的大小为 ;(2)当∠COD绕着点O旋转至如图②所示,当∠BOC=14°,则∠MON的大小为多少?(3)当∠COD绕着点O旋转至如图③所示,当∠BOC=α时,求∠MON的大小.29.(2023秋•于洪区期末)【提出问题】已知点O是直线AB上一点,∠COD=90°,射线OE是∠AOD的平分线.(1)如图1,若∠BOD=110°,求∠COE的度数.请补充完成下列解答过程:解:∵∠AOB=180°,∠BOD=110°,∴∠AOD= °.∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD= °.∵OE是∠AOD的平分线,∴∠AOE= ∠AOD= °.∴∠COE=∠AOC+ = °.【类比分析】(2)如图2,设∠COE=α,求∠BOD的度数(用含α的代数式表示).【变式探索】(3)如图3,若3∠COE﹣2∠BOD=78°,求∠COE的度数.30.(2023秋•渑池县期末)如图.已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB.(1)在图①中.若∠AOC=40°,则∠BOC= °.∠NOB= °;(2)在图①中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在图①中,当∠AOB绕着点O顺时针转动到如图②的位置时,(2)中α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.31.(2023秋•青岛期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系.(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?直接写出结论即可.32.(2024春•高青县期末)【实践活动】如图1,将一副三角板的直角顶点重合摆放.(1)∠ACE与∠BCD的大小关系是∠ACE ∠BCD.(填“>”“=”或“<”)(2)∠ACB与∠DCE之间的数量关系是 .【拓展探究】(3)如图2,若∠ACD≠∠BCE,且∠ACD+∠BCE=180°,探索∠ACB与∠DCE之间的数量关系,并说明理由.33.(2023秋•和平区校级期末)已知∠AOB=120°,从∠AOB的顶点O引出一条射线OC,射线OC在∠AOB的内部,将射线OC绕点O逆时针旋转60°形成∠COD.(1)如图1,若∠AOD=90°,比较∠AOC和∠BOD的大小,并说明理由;(2)作射线OE,射线OE为∠AOD的平分线,设∠AOC=α.①如图2,当0°<α<60°,若射线OC恰好平分∠AOE,求∠BOD的度数;②当α≠60°时,请探究∠EOC与∠BOD之间的数量关系.34.(2023秋•山西期末)综合与探究特例感知:(1)如图1.线段AB=16cm,C为线段AB上的一个动点,点D,E分别是AC,BC的中点.①若AC=4cm,则线段DE的长为 cm.②设AC=a cm,则线段DE的长为 cm.知识迁移:(2)我们发现角的很多规律和线段一样,如图2,若∠AOB=120°,OC是∠AOB内部的一条射线,射线OM平分∠AOC,射线ON平分∠BOC,求∠MON的度数.拓展探究:(3)已知∠COD在∠AOB内的位置如图3所示,∠AOB=α,∠COD=30°,且∠DOM=2∠AOM,∠CON=2∠BON,求∠MON的度数.(用含α的代数式表示)35.(2023秋•青羊区校级期末)如图所示,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数.(2)在图1中,若∠AOC=α,直接写出∠DOE的度数: (用含α的代数式表示).(3)将图1中的∠COD绕顶点O顺时针开始旋转.①当∠COD旋转至如图2的位置时,请探究∠AOD与∠BOE的度数之间的关系,写出你的结论,并说明理由;②过点O的一条射线OF,使得OC恰好平分∠BOF,在图1和图2中分别探究∠AOF与∠DOE的度数之间的关系,请直接写出结论.。
40︒60︒南北(4)北西南东CA B 4.3 角一、填空题:(每小题5分,共25分)1.如图1,角的顶点是______,边是______,用三种不同的方法表示该角为______________.α(1)OAB(2)CADBβ(3)1OCAB2.如图2,共有_____个角,分别是_____.3.10°20′24″=_____°,47.43°=_____°____′_____″.4.5点钟时,时针与分针所成的角度是______.5.时钟的分针,1分钟转了_____度的角,1小时转了_____度的角. 二、选择题:(每小题5分,共15分)6.角是指( )A.由两条线段组成的图形;B.由两条射线组成的图形C.由两条直线组成的图形;D.有公共端点的两条射线组成的图形 7.如图3,下列表示角的方法,错误的是( )A.∠1与∠AOB 表示同一个角;B.∠AOC 也可用∠O 来表示C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;D.∠β表示的是∠BOC8.如图4,在A 、B 两处观测到的C 处的方位角分别是( ) A.北偏东60°,北偏西40° B.北偏东60°,北偏西50° C.北偏东30°,北偏西40° D.北偏东30°,北偏西50° 三、作图题:(每小题5分,共10分) 9.画∠MON,并过O 点在∠MON 的 内部画射线OP 、OQ, 数一数, 图形中共有多少个角,并用三 个字母的记法写出这些角. 10.用三角板画出150°的角.321ECFAD B四、解答题:(10分)11.如图,(1)图中的∠1表示成∠A.(2)图中的∠2表示成∠D. (3)图中的∠3表示成∠C,这样的表示方法对不对, 如果错了,应该怎样改正? 答案:一、1.O;BO;AO ∠O;∠AOB;∠α2.6;∠AOD,∠AOC,∠AOB,∠DOC,∠DOB,∠COB3.10.34 47°25′48″4.150°5.6° 360° 二、6.D7.B8.B三、9.如答图,图中一共有6个角,分别是∠MOP,∠MOQ,∠MON,∠POQ,∠PON, ∠QON.O M PQN90︒60︒OCAB10.解:如答图所示,∠AOC=150°. 四、11.解:(1)错了,∠1应表示成∠CAD. (2)错了,∠2应表示成∠ADC. (3)错了,∠3应表示成∠ECF.成功名言警句:2、对我来说,不学习,毋宁死。
学生做题前请先回答以下问题问题1:(请书写过程)已知:如图,直线AB,CD被直线EF所截,AB∥CD,∥1=120°,求∥2的度数.问题2:(请书写过程)已知:如图,点D是∥ABC的边AB上的一点,∥B=55°,∥BCD=30°,求∥ADC的度数.问题3:(请书写过程)已知:如图,AD与BF相交于点C.若∥D=∥A+∥B,求证:BF∥DE.(利用外角证明)角的相关计算和证明过程训练(一)(北师版)一、单选题(共6道,每道16分)1.已知:如图,在∥ABC中,AD平分∥BAC,E为AD上一点,且EF∥BC于F.若∥B=30°,∥C=70°,求∥DEF的度数.横线处应填写的过程最恰当的是( )A.B.C.D.答案:D解题思路:第一步:读题标注,如图,第二步:走通思路,要求∥DEF的度数,怎么想?要求∥DEF的度数,可以将∥DEF放在Rt∥DEF中,利用直角三角形两锐角互余,得到∥DEF+∥EDF=90°,因此只需求出∥EDF,即∥ADF的度数即可;∥ADF可以看成∥ABD的一个外角,利用三角形的一个外角等于和它不相邻的两个内角的和,得∥ADF=∥BAD+∥B,已知∥B=30°,因此下一步的目标是求∥BAD的度数;结合已知条件∥B=30°,∥C=70°,在∥ABC中利用三角形的内角和等于180°,求出∥BAC=80°,又因为AD平分∥BAC,利用角平分线的定义,得∥BAD=40°;那么∥ADF=∥BAD+∥B=70°,∥DEF=90°-∥ADF=20°.第三步:规划过程;根据分析,过程主要分为四个书写模块:①在∥BAC中,利用三角形内角和定理求出∥BAC的度数;②利用角平分线的定义求出∥BAD的度数;③利用三角形外角定理,求出∥ADF的度数;④最后利用直角三角形两锐角互余,求出∥DEF的度数.故选D.试题难度:三颗星知识点:三角形的外角2.已知:如图,将三角尺的直角顶点放在直尺的一边上,DF∥EG,∥1=30°,∥2=50°,求∥3的度数.解:如图,∥DF∥EG(已知)∥∥AMD=∥2(两直线平行,同位角相等)∥∥2=50°(已知)∥∥AMD=50°(等量代换)___________________________________横线处应填写的过程最恰当的是( )A.B.C.D.答案:A解题思路:第一步:读题标注,如图,第二步:走通思路,从条件出发,看到平行怎么想?从条件出发,看到平行想同位角,内错角和同旁内角.先由DF∥EG,得∥2=∥AMD,已知∥2=50°,则∥AMD=50°,再根据∥AMD是∥AMB的一个外角,利用三角形的一个外角等于和它不相邻的两个内角的和,得到∥AMD=∥1+∥3,结合∥AMD=50°,∥1=30°,则求出∥3=20°.第三步:规划过程;根据分析,过程主要分为两个书写模块:①利用两直线平行,同位角相等,得到∥AMD=∥2=50°;②利用三角形外角定理求出∥3的度数.故选A.试题难度:三颗星知识点:三角形的外角3.已知:如图,AB∥CD,∥A=∥D.求证:AC∥DE.证明:如图,∥AB∥CD(已知)∥∥A=∥ACD(两直线平行,内错角相等)∥∥A=∥D(已知)___________________________________横线处应填写的过程最恰当的是( )A.B.C.D.答案:B解题思路:第一步:读题标注,如图,第二步:走通思路,从条件出发,看到平行怎么想?从条件出发,看到平行想同位角、内错角和同旁内角.由AB∥CD,利用两直线平行,内错角相等,得∥A=∥ACD;又因为∥A=∥D,等量代换,得∥ACD=∥D;利用内错角相等,两直线平行,得AC∥DE.第三步:规划过程;根据分析,过程主要分为三个书写模块:①利用两直线平行,内错角相等,得到∥A=∥ACD;②结合已知∥A=∥D,等量代换得∥ACD=∥D;③最后利用内错角相等,两直线平行,得到AC∥DE.故选B.试题难度:三颗星知识点:平行线的性质4.如图,AB∥CD,EF交AB于点G,交CD于点H,HP平分∥GHD,交AB于点P,∥AGE=50°,求∥PHD的度数.横线处应填写的过程最恰当的是( ) A.B.C.D.答案:D解题思路:第一步:读题标注,如图,第二步:走通思路,从条件出发,看到平行怎么想?从条件出发,看到平行想同位角、内错角和同旁内角.由AB∥CD,利用两直线平行,同位角相等,得∥GHC=∥AGE,又因为∥AGE=50°,等量代换,得∥GHC=50°;利用平角的定义,得∥GHD=130°,因为HP平分∥GHD,利用角平分线的定义,得∥PHD=∥GHD=65°.第三步:规划过程;根据分析,过程主要分为三个书写模块:①由AB∥CD,利用两直线平行,同位角相等,得到∥GHC=∥AGE=50°;②利用平角的定义,得到∥GHD=130°;③最后利用角平分线的定义得到∥PHD的度数.故选D.试题难度:三颗星知识点:平行线的性质5.如图,在∥ABC中,BD∥AC于点D,CE∥AB于点E,且BD,CE交于点O.若∥ABC=55°,∥ACB=75°,求∥BOC度数.横线处应填写的过程最恰当的是( ) A.B.C.D.答案:A解题思路:第一步:读题标注,如图,第二步:走通思路,要求∥BOC的度数,怎么想?要求∥BOC的度数,可以将∥BOC放在∥BOC中,利用三角形的内角和等于180°,得∥BOC=180°-∥1-∥2,因此只需求出∥1,∥2的度数即可.结合条件中有垂直,看到垂直想互余,由CE∥AB,得∥BEC=90°,利用直角三角形两锐角互余,得∥1+∥ABC=90°,结合已知∥ABC=55°,得∥1=35°;同理,由BD∥AC,得∥BDC=90°,结合已知∥ACB=75°,得∥2=15°;那么∥BOC=180°-35°-15°=130°.第三步:规划过程;根据分析,过程主要分为三个书写模块:①在Rt∥BCE中利用直角三角形两锐角互余求∥1;②在Rt∥BCD中利用直角三角形两锐角互余求∥2;③在∥BOC中利用三角形的内角和等于180°求∥BOC.故选A.试题难度:三颗星知识点:垂直的定义6.如图,在∥ABC中,∥B=∥C,D为CA延长线上一点,DF∥BC于点F,交AB于点E.求证:∥D=∥AED.证明:如图,___________________________∥∥1=∥2(对顶角相等)∥∥1=∥D(等量代换)即∥D=∥AED横线处应填写的过程最恰当的是( ) A.B.C.D.答案:A解题思路:第一步:读题标注(见证明过程中图形);第二步:走通思路,从条件出发,看到垂直怎么想?从条件出发,看到垂直想互余.由DF∥BC,利用垂直的定义,得∥EFB=∥DFC=90°,根据直角三角形两锐角互余,得到∥D+∥C=90°,∥2+∥B=90°;又结合已知∥B=∥C,利用等角的余角相等,得∥2=∥D,又因为∥1=∥2,等量代换,得∥1=∥D.第三步:规划过程;根据分析,过程主要分为三个书写模块:①利用直角三角形两锐角互余,得到∥D+∥C=90°,∥2+∥B=90°;②结合已知∥B=∥C,利用等角的余角相等,得到∥2=∥D;③最后利用对顶角相等∥1=∥2,等量代换,得∥D=∥AED.故选A.试题难度:三颗星知识点:垂直的定义。
北师大版数学七年级上册解答题专题训练50题含答案1.如果2,a b =与3-是相反数,c 是绝对值最小的有理数,a c <,求,,a b c 的值. 【答案】a =−2,b =3,c =0【分析】利用绝对值的性质,以及互为相反数的定义,进而分析得出即可. 【详解】∵|a|=2, ∵a =±2,∵b 与−3互为相反数, ∵b =3,∵c 是绝对值最小的有理数, ∵c =0, ∵a <c , ∵a =−2.综上所述:a =−2,b =3,c =0.【点睛】此题主要考查了绝对值和相反数,正确把握相关定义是解题关键.2.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题: (1)本次调查的学生人数为___________人;(2)样本中,女生身高E 组所占的圆心角的度数为 度;(3)已知该校共有男生400人,女生380人,请估计身高在160≤<170之间的学生约有多少人?【答案】(1)80;(2)18;(3)332.【详解】试题分析:(1)∵抽取的样本中,男生、女生的人数相同,∵算出男生人数,再乘以2即可;(2)用圆周角360度乘以E 所占的百分比即是;(3)观察分组表得知,身高在160≤<170之间的是C 组和D 组,求出男生400人中C ,D 组人数,再加上女生380人中C ,D 组的人数即可.试题解析:(1)抽取的男生人数为4+12+10+8+6=40,40×2=80(人),∵本次调查的学生人数为80人;(2)先求E 占的百分比:1-37.5%-17.5%-15%-25%=5%,再求圆心角:360°×5%=18°,∵女生身高E 组所占的圆心角的度数为18°;(3)身高在160≤<170之间的是C 组和D 组,男生400人中C ,D 组人数为:400×10840+人,女生380人中C ,D 组的人数为:380×(25%+15%)人,∵400×+380×(25%+15%)=332(人).3.已知,,a b c 在数轴上的位置如图所示,化简:(1)||||a c c -+ (2)||||a b c b +--4.计算:(1)()()33.122.910.5--+-; (2)()()()()815912---+---;(3)1241()()()2352+---+-;(4)101157()()()34612+---+-5.已知2324A x x y xy =-+-,223B x x y xy =--+. (1)化简23A B -. (2)当57x y +=,2xy =-时,求23A B -的值.键.6.计算:(1)111()(12) 624-+⨯-;(2)(﹣2)3÷4﹣(﹣1)2022+|﹣6|.111121212624=﹣2+6﹣3=17.合肥某110巡警骑摩托车在南北方向的徽州大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向北方向为正.当天行驶记录如下(单位:千米):+9,﹣8,+6,﹣10,+7,﹣12,+3,﹣2.(1)该巡警巡逻时离岗亭最远是多少千米?(2)A处在岗亭何方,距岗亭多远?(3)若摩托车每行1千米耗油0.03升,那么该摩托车这天巡逻共耗油多少升?【答案】(1)离岗亭的位置分别是9千米,1千米,7千米,3千米,4千米,8千米,5千米,7千米,所以最远是9米;(2)A在岗亭南方7千米处;(3)该摩托车这天巡逻共耗油1.71升.【分析】(1)依次计算相邻两个数据之和,选和为最大者;(2)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(3)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.03升,那么乘以0.03就是一天共耗油的量. 【详解】根据题意,得(1)离岗亭的位置分别是9千米,1千米,7千米,3千米,4千米,8千米,5千米,7千米,所以最远是9米;(2)根据题意,可得:9﹣8+6﹣10+7﹣12+3﹣2=﹣7, 即A 在岗亭南方7千米处;(3)该巡警巡逻时,共走了9+8+6+10+7+12+3+2=57(km ), 那么该摩托车这天巡逻共耗油:57×0.03=1.71升.【点睛】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.8.画一条数轴,在数轴上分别表示3.5,0,2.5,1-,3-,12-,并用“<”把这些数连接起来.19.化简:(1)3x +2y ﹣5x ﹣y ;(2)2(x 2+xy ﹣5)﹣(x 2﹣2xy ). 【答案】(1)2x y -+;(2)2104x xy -+ 【分析】(1)根据整式加减运算,求解即可; (2)去括号,然后根据整式加减运算求解即可. 【详解】解:(1)3252x y x y x y +--=-+; (2)222(5)(2)x xy x xy --+-22=+--+22102x xy x xy21+40=-x xy【点睛】此题考查了整式的加减运算,解题的关键是掌握整式加减运算法则.10.作为一项惠农强农应对国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已取得成效,在气温较低的季节,电冰箱也有一定的销量.我市某家电公司营销点对自去年10月份至今年3月份销售两种不同品牌冰箱的数量做出统计,数据如图所示:根据图提供的信息解答下列问题:(1)请你从平均数角度对这6个月甲、乙两品牌冰箱的销售量作出评价;(2)请你从方差角度对这6个月甲、乙两品牌冰箱的销售情况作出评价;(3)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.11.某路公交车从起点A出发,依次经过B、C、D三站到达终点E,到达终点站时乘客全部下车.该车某趟出车途中上下乘客如下表所示.(1)上述表中,=a;(2)当公交车行驶在站和站(相邻两站)之间时,车上的乘客最多;(3)若该路公交车的票价为2元/人次,请问该路公交车此趟出车的营业额为多少钱?【答案】(1)5;(2)C,D;(3)60【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及中点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价2元,然后计算即可得解.【详解】解:(1)由题意有:12+7-3+6-4+a-6=17解得a=5(2)在A-B站之间有:12人;在B-C之间有:12+7-3=16(人);在C-D之间有:16+6-4=18(人);在D-E之间有:18+5-6=17(人);故行驶在C站和D站之间时,车上乘客最多;(3)2×(12+7+6+5)=2×30=60(元)【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.12.计算:﹣14﹣16÷(﹣2)3+|﹣32|×(﹣1).13.化简求值:3223242(32)x x x x x x +--+-其中2x =- 【答案】32435x x x +-,58-【分析】先去括号,再合并同类项,然后代值计算即可. 【详解】3223242(32)x x x x x x +--+- 322324232x x x x x x =+---+,32435x x x =+-;当2x =-时,原式()()()324232523262058=⨯-+⨯--⨯-=---=-.【点睛】本题考查整式加减中的化简求值.熟练掌握合并同类项进行化简是解题的关键.14.计算:()2215130.34130.343737-⨯-⨯+⨯--⨯15.如图,C 为线段AB 的中点,D 是线段CB 的中点,CB=2cm ,请你求出图中以A 为端点的所有线段长度的和.【答案】9【分析】先找到以A 为端点的所有线段有:AC 、AD 、AB ,再根据中点性质求出各线段的长,即可得到答案.【详解】解:∵C 为线段AB 的中点,CB=2 ,16.(1)如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中分别只画出一种符合题意的图形即可)、,求(2)拿起圆规和直尺,耐心做一做,不写作法,保留作图痕迹.已知线段a b作线段AB,使2=-.AB a b【答案】(1)见解析;(2)见解析【分析】(1)和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图,据此补全图形可得;(2)先作AD=2a,再在AD上截取BD=b,AB即为所求.【详解】解:(1)如图1、图2所示:(图1、图2中分别画出任意一种符合题意的图形即可)图1:图2:(2)如图所示,线段AB 即为所求.【点睛】本题考查了作图-应用与设计作图,解题的关键是掌握正方体共有11种表面展开图及线段和差的作法.17.先化简,再求值:()()23232a a b b a --+-,其中2a =-,1b .【答案】59a b -+,1【分析】先去括号,再算加减,最后代入计算即可. 【详解】解:原式2364a a b b a =-++- 59a b =-+;当2a =-,1b 时,595(2)9(1)1091a b -+=-⨯-+⨯-=-=.【点睛】本题考查了整式的加减及化简求值,熟练掌握知识点是解题的关键. 18.如图,A 、B 、C 、D 是在同一平面内不在同一直线上的四个点,请按要求完成下列问题.(1)∵作射线AC ;∵作直线BD 与射线AC 相交与点O ;∵分别连接AB 、AD ; (2)如作图所示,从点B 到点D 的路线有 条;若选最近路线走,你的选择为走线段 ,理由为 . 【答案】(1)见解析(2)4;BD ;两点之间,线段最短【分析】(1)根据题意作图即可;(2)根据(1)所作图形找到从点B 到点D 的所有路线即可;再根据两点之间线段最短选择路线即可. (1)解:如图所示,即为所求;(2)解:从B到D可以有如下路线:B—A—D,B—O—D,B—A—O—D,B—O—A—D,一共4条路线,选择走线段BD最近,理由是两点之间,线段最短.【点睛】本题主要考查了作直线,射线,线段,两点之间,线段最短等等,熟知相关知识是解题的关键.19.如图,O为直线AB上一点,∵AOC=13∵BOC,OC是∵AOD的平分线.判断OD与AB的位置关系,并说明理由.20.(随着双减政策的落实,同学们的家庭作业减少了.为了解同学们完成家庭作业需要的时间,某校数学兴趣小组随机调查了部分学生(问卷调查的内容如图1所示),并根据调查结果绘制了如图2所示的尚不完整的统计图.图1(1)本次接受调查的学生共有______人;(2)请补全条形统计图;(3)求被调查的学生中,完成家庭作业时间不超过40分钟的学生人数占总调查人数的百分比.【答案】(1)50(2)见解析(3)82%【分析】(1)用A组的人数除以A组所占比例即可求出调查人数;(2)用总人数分别减去其它四组人数,可得出B组人数,即可补全条形统计图;(3)用1分别减去C、D两组的比例即可.(1)解:本次接受调查的学生共有:20÷40%=50(人),故答案为:50.(2)解:B组人数为:50-20-9-5-4=12(人),补全条形统计图如下:(3)解:1-10%-8%=82%,答:完成家庭作业时间不超过40分钟的学生人数占总调查人数的百分比为82%.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,利用数形结合的思想解答是解答本题的关键.21.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:km):189********,,,,,,,,问:+-+--+--(1)B地在A地何方,相距多少千米?(2)若汽车行驶每千米耗油1.2升,求该天共耗油多少升?意义是解题的关键.22.温度的变化与高度有关:高度每增加1km ,气温大约下降5.8∵.(1)已知地表温度是12∵,则此时高度为3km 的山顶温度是多少?(2)如果山顶温度是﹣6.1∵,此时地表温度是20∵,那么这座山的高度是多少? 【答案】(1)山顶温度为 5.4-℃;(2)这座山的高度为4.5千米【分析】(1)根据题意,列出算式进行计算即可;(2)根据题意先求温度差,利用温度差除以5.8,即可得出高度.【详解】解:(1)由题意,得123 5.81217.4 5.4()-⨯=-=-℃.答:山顶温度为 5.4-℃.(2)[20( 6.1)] 5.8--÷26.1 5.8=÷4.5=(千米)答:这座山的高度为4.5千米.【点睛】本题考查有理数的混合运算.解题的关键是根据题意列出算式进行计算. 23.计算(1)()()()()3.1 4.5 4.4 1.3---++-+;(2)()()324112345⎡⎤--⨯-----⎣⎦.乘方的有理数的混合运算的运算顺序”是解本题的关键,运算顺序为:先乘方,再乘除,最后算加减,同级运算按照从左至右的顺序进行,有括号先计算括号内的运算.24.小王上周买进某种股票1000股,每股27元.(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小王在本周五的收盘价将股票全部卖出,你认为他会获利吗?【答案】(1)28元;(2)最高29.5元,最低25.5元;(3)不会获利【分析】(1)看懂统计表,正确列出算式,按照正负数相加的问题即可解决;(2)由表格列出算式每天的价格即可;(3)利用正负数加法求出周五的收盘价,与上周购进价格进行比较就能得出结论.【详解】解:(1)27+1+1.5-1.5=28(元),则星期三收盘时,每股是28元;(2)由表格可知,周一:27+1=28(元);周二:28+1.5=29.5(元);周三:29.5-1.5=28(元);周四:28-2.5=25.5(元);周五:25.5+0.5=26(元),所用周二最高是:29.5(元),周四最低是:25.5(元);(3)本周五的收盘价为26(元),则26<27,所以若小王按本周五的收盘价将股票全部卖出,不会获利.【点睛】本题考查的是学生读表和计算正负数加法的问题,看清数据读懂表格就可以解决该题了,本题的关键是列对算式.25.如图是正方体的展开图,如果将它叠成一个正方体后相对的面上的数相等,试求xy的值.【答案】xy的值是±3.【分析】根据正方体后相对的面上的数相等,求出x、y的值,再求xy即可.【详解】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“x2”相对的是1,与“y”相对的是3,所以x=±1,y=3,所以xy的值是±3.【点睛】本题考查正方体表面展开图,将展开图还原是解决本题的关键.26.先化简,再求值:()222233a ab b ab ⎛⎫--- ⎪⎝⎭,其中3,2a b ==-.27.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如下图,线段()011AB =--=;线段202BC =-=;线段()213AC =--=则:(1)数轴上点M 、N 代表的数分别为9-和1,则线段MN =______;(2)数轴上点E 、F 代表的数分别为6-和3-,则线段EF =______;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为______.【答案】(1)10(2)3(3)7或3-【分析】(1)根据数轴上两点间的距离解答;(2)根据数轴上两点间的距离解答;(3)根据题意、结合数轴、方程解答.【详解】(1)解:∵点M N 、代表的数分别为9-和1,∵线段1(9)10MN =--=;故答案为:10;(2)∵点E F 、代表的数分别为6-和3-,28.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来. 132-,()1--,2.5,5--.29.先化简,再求值.2(ab-5ab 2)-(2ab 2-ab),其中a=﹣1,b=2【答案】42【详解】试题分析:本题考查了整式的化简求值,整式的化简就是去括号合并同类项,化简后再把a =﹣1,b =2代入求值.解:原式=2ab-10a-2a+ab=3ab-12a当 a=﹣1,b=2时,原式=3ab-12a=3×(-1)×2-12×(-1)×=-6+48=4230.化简求值:22212()3()22xy x x xy y xy ⎡⎤----++⎣⎦,其中x=2,y=12-31.观察下列等式:第1个等式:11111212a ==-⨯ 第2个等式:21112323a ==-⨯ 第3个等式:31113434a ==-⨯ 第4个等式:41114545a ==-⨯ 第5个等式:51115656a ==-⨯ 解答下列问题:(1)按以上规律写出第6个等式: ;(2)求a 1+a 2+…+a 2020的值;(3)求1111366991220192022++++⨯⨯⨯⨯ 的值.1++-201932.某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如图两幅不完整的统计图,请你根据以上信息解答下列问题:(1)本次调查活动的样本容量是.(2)图2中E的圆心角度数为度,并补全图1的频数分布直方图.(3)该校有800名学生,估计该校学生平均每天的课外阅读时间不少于70min的人数.16+233.化简求值()()2222+-+--,其中()22212a b ab ab a b-+-=.b a21|3|034.先化简,再求值:7ab ﹣3(a 2﹣2ab )﹣5(4ab ﹣a 2),其中a =3,b =﹣2.【答案】2a 2﹣7ab ,60.【分析】先根据整式加减的方法步骤进行化简,再代数计算即可.【详解】解:原式=7ab ﹣3a 2+6ab ﹣20ab +5a 2=2a 2﹣7ab ,当a =3,b =﹣2时,原式=2×32﹣7×3×(﹣2)=18+42=60.【点睛】本题以代数求值的方式考查整式加减与有理数运算,熟练掌握有关知识点是解答关键.35.已知:21m =,求代数式2(1)(2)(3)m m m +--+的值.【答案】8或6 .【详解】试题分析:由21m =求出m=±1,分别代入化简后的代数式求值即可. 原式=222167m m m m m ++--+=+ .∵21m =,∵m="±1" .当m=1时,原式=8;当m=-1时,原式=6.∵原式的值为8或6 .考点:1.代数式求值;2.分类思想的应用.36.先化简,再求值:()()2237547a ab ab a -+--+,其中21(1)0a b -++=.【详解】解:1(a b -+10b +=,,1b , 754ab ab +-+1b 时, (61-⨯⨯-【点睛】本题考查了非负数的性质,以及整式的化简求值,熟练掌握非负数的性质和37.(-12)+18-23-(-17)【答案】0【分析】先去括号,再将18和17结合、-12和-23结合,最后计算减法即可.【详解】解:原式12182317=-+-+()18171223=+-+3535=-0=.【点睛】本题考查了有理数的加减混合运算,熟练掌握运算法则是解题的关键. 38.计算.(1)()321244312⎛⎫-+-⨯- ⎪⎝⎭.(2)()(()20092135-⨯--.()()()2122=-⨯---24=-2=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.39.某厂三个车间共有140人,第二车间人数是第一车间人数的2倍还多1人,第三车间人数是第一车间人数的一半还少一人,三个车间各有多少人?40.解方程:(1)7x+2=3x﹣2(2)253164x x---=.【答案】(1)x=﹣1;(2)x=13【分析】(1)此题可项移、合并同类项,系数化1,可求出x的值.(2)此题的两个分母一个为6一个为4,因此可让方程两边同乘4,6的最小公倍数12,然后对方程进行化简即可.【详解】解:(1)移项、合并同类项,得4x=﹣4系数化1,得x=﹣1.(2)去分母,得12﹣2(2x﹣5)=3(3﹣x)去括号,得12﹣4x+10=9﹣3x移项、合并同类项,得﹣x=﹣13系数化1,得x=13.【点睛】本题容易在去分母,移项上出错,将方程移项要注意符号的改变.学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.41.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠,而乙旅行社是免去一位带队老师的费用,其余老师八折优惠.(1)如果设参加旅游的老师共有()10x x >人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含x 的代数式表示,并化简)(2)假如某校组织17名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由;(3)如果计划在11月份内外出旅游五天,假如这五天的日期之和为30的倍数,则他们可能于11月多少号出发?【答案】(1)300x ,320x -320;(2)甲旅行社比较优惠,理由见解析;(3)4号或10号或16号或22号【分析】(1)甲旅行社的费用为:总价×0.75,乙旅行社的费用为(x -1)个人的总价×0.8;(2)把x =17代入(1)中,求得值进行比较;(3)相邻日期相隔1,中间一天的日期为a .由此我们可以用含一个字母的代数式表示其他四天日期,五天的日期之和为5a .从而求得11月出发日期.【详解】解:(1)甲旅行社的费用为:400x ×0.75=300x ,乙旅行社的费用为(x -1)×400×0.8=320x -320;(2)x =17时,需付甲:300×17=5100元,需付乙320×17-320=5120元;5100<5120,∵选甲旅行社;(3)中间一天的日期为a ,那么其他日期为a -2、a -1、a +1、a +2,五天的日期之和为5a .∵五天的日期之和为30的倍数,∵5a =30k ,a =6k ,当k =1时,a =6,第一天为4,当k =2时,a =12,第一天为10,当k =3时,a =18,第一天为16,当k =4时,a =24,第一天为22,当k =5时,a =30,后面的天数就到了12月.∵他们可能于11月出发的日期是4号或10号或16号或22号.【点睛】本题考查列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.注意(3)中出发日期的变化.42.几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:∵111;∵111;∵111;∵.显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.【答案】222是这四个数中的最大的数【详解】试题解析:按照题目中的数字的排列方法即可得到3个2所有的摆法,然后找到最大的即可.试题解析:∵222;∵222;∵222;∵222.显然,222是这四个数中的最大的数.【点睛】此题主要考查了有理数的乘方,综合性较强,做题的关键是:根据要求把几种形式分别表示出来.43.求下列各式的值(1)已知:22y a b 与233a b 是同类项,且()250x m -+=,求:()()2222339x xy m x xy y --+的值.(2)已知6,4x y xy +==-,求:()3445x y xy x y xy +--++的值.44.解方程:(1)23(5)4x x +-=(2)314112x x -+-=45.已知a =﹣(﹣2)2×3,b =|﹣9|+(﹣7),c =(1153-)÷115. (1)求2[a ﹣(b+c)]﹣[b ﹣(a ﹣2c)]的值.(2)若A =(﹣13)2÷(﹣127)+(1﹣12)2×(1﹣3)2,B =|a|﹣5b+2c ,试比较A 和B 的大小. (3)如图,已知点D 是线段AC 的中点,点B 是线段DC 上的一点,且CB :BD =2:3,若AB═12ab ccm ,求BC 的长.46.(8分)我市中学组篮球比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少? 【答案】胜负场数应分别是18和4.【详解】试题分析:设胜了x 场,那么负了(22-x )场,根据得分为40分可列方程求解.试题解析:设胜了x 场,那么负了(22﹣x )场,根据题意得:2x+1•(22﹣x )=40解得x=1822﹣18=4.那么这个队的胜负场数应分别是18和4.点睛:本题考查一元一次方程的应用.主要考查学生理解题意的能力,关键是设出胜的场数,以总分作为等量关系列方程求解.47.因式分解:26. (1)(2)2(2)(4)3'(2)(2)(2)6'm n m n n =-----=-+---解:原式 27.(3) 【答案】222225)2102143'10254'(6'x y x xy y y x xy y -=-++----=-+----=----解:原式 2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 【详解】(1) (2)222225)2102143'10254'(6'x y x xy y y x xy y -=-++----=-+----=----解:原式2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 (3)2)22(3'(2)(2)6'a b a b a b -=-----=-+------解:原式 48.化简:(1)()22214632x y xy xy x y ⎛⎫--+ ⎪⎝⎭; (2)()()()4335x y y x x y x ⎡⎤----+--⎣⎦49.观察下面三行数:2,﹣4,8,﹣16,32,﹣64,…4,﹣2,10,﹣14,34,﹣62,…﹣1,2,﹣4,8,﹣16,32,…在上面三行数的第n 列中,从上往下的三个数分别记为a ,b ,c ,观察这些数的特点,根据你所得到的规律,解答下列为问题.(1)用含n 的式子分别表示出a ,b ,c ;(2)根据(1)的结论,若a ,b ,c 三个数的和为770,求n 的值.【答案】(1)a =﹣(﹣2)n ,b =﹣(﹣2)n +2,c =﹣(﹣2)n -1;(2)9.【分析】(1)由题意可知,第一行数中的各数可变形为:()()()()12342,2,2,2--------,由此即可得出第一行数的规律,第二行每个数是第一行数对应列的数加2,第三行每个数是第一行数对应列的数除以(﹣2),据此即可表示出a ,b ,c ;(2)根据(1)题的结果即可得出关于n 的方程,解方程即可求出n 的值.【详解】解:(1)由题意可知,第一行数的规律为﹣(﹣2)n ,第二行每个数是第一行数对应列的数加2,即第二行数的规律为﹣(﹣2)n +2,第三行每个数是第一行数对应列的数除以(﹣2),即第三行数的规律为﹣(﹣2)n -1; 所以a =﹣(﹣2)n ,b =﹣(﹣2)n +2,c =﹣(﹣2)n -1;(2)∵a ,b ,c 三个数的和为770,∵﹣(﹣2)n ﹣(﹣2)n +2﹣(﹣2)n -1=770,设(﹣2)n -1=x ,则上式变形为:222770x x x ++-=,解得:x =256,即(﹣2)n -1=256,解得:n =9.【点睛】本题考查了数字的变化类规律、有理数乘方的意义和一元一次方程的应用,解题的关键是正确表示出第一行中各数的规律,第(2)小题中的关于n 的方程求解时有一定的难度,需要灵活应用乘方的意义进行变形.50.解方程:x 12x 1123+--=. 【答案】x 1=-.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:()()3x 122x 16+--=,去括号得:3x 34x 26+-+=,移项得:3x-4x=6-3-2,合并同类项得:x 1-=,系数化为1得:x 1=-.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.。
专题训练(六) 角的有关计算
类型1 直接计算角的度数
1.如图,已知∠1=65°15′,∠2=78°30′,求∠3的度数.
2.如图,点A 、O 、E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE ,求∠COB 的度数.
3.如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE ,试求∠COE 的度数.
类型2 运用方程思想求角的度数
4.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC ,且∠COD ∶∠BOC =2∶3,求∠B OC 的度数.
5.如图,已知∠1=12∠BOC ,∠2=∠AOD =3∠1,求∠1和∠2的度数.
类型3运用分类讨论思想求角的度数
6.下面是小明做的一道题目以及他的解题过程:
题目:在同一平面上,若∠BOA=75°,∠BOC=22°,求∠AOC的度数.
解:根据题意可画图,如图所示,AOC=∠BOA-∠BOC=75°-22°=53°.
如果你是老师,能判小明满分吗?若能,请说明理由,若不能,请将错误指出来,并给出你认为正确的解法.
7.已知OC平分∠AOB,OD是∠BOC内的一条三等分线,试问∠AOB是∠COD的几倍?
类型4运用整体思想求角的度数
8.如图所示,∠AOB=90°,ON是∠AOC的平分线,OM是∠BOC的平分线,求∠MON的大小.
参考答案
1.因为∠1=65°15′,∠2=78°30′,所以∠1+∠2=65°15′+78°30′=143°45′.所以∠3=180°-(∠1+∠2)=180°-143°45′=36°15′.
2.因为∠EOD =28°46′,OD 平分∠COE ,所以∠COE =2∠EOD =2×28°46′=57°32′.因为∠AOB =40°,所以∠COB =180°-∠AOB -∠COE =180°-40°-57°32′=82°28′.
3.因为∠AOB =90°,OC 平分∠AOB ,所以∠BOC =12
∠AOB =45°.因为∠BOD =∠COD -∠BOC =90°-45°=45°,∠BOD =3∠DOE ,所以∠DOE =15°.所以∠COE =∠COD -∠DOE =90°-15°=75°.
4.设∠COD =2x °,则∠BOC =3x °.因为OB 平分∠AOC ,所以∠AOB =3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC =3×20°=60°.
5.设∠1=x °,则∠2=∠AOD =3∠1=3x °.因为∠1=12
∠BOC ,所以∠BOC =2x °.因为∠BOC +∠2+∠AOD +∠1=360°,所以2x +3x +3x +x =360.解得x =40.所以∠1=40°,∠2=120°.
6.小明不会得满分,他忽略了一种情况,正确解法:①如图1,∠AOC =∠BOA -∠BOC =75°-22°=53°;②如图2,∠AOC =∠BOA +∠BOC =75°+22°=97°.综上所述:∠AOC 的度数为53°或97°.
7.如图1,∠COD =13
∠BOC ,设∠COD =x ,则∠BOC =3x.因为OC 平分∠AOB ,所以∠AOB =2∠BOC =6x.即∠AOB =6∠COD ;如图2,∠BOD =13∠BOC ,则∠COD =23
∠BOC ,设∠COD =2x ,则∠BOC =3x.同样∠AOB =6x ,即∠AOB =3·2x =3∠COD.故∠AOB 是∠COD 的6倍或3倍.
8.因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12
∠BOC.所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12×90°=45°.。