二次函数与一元二次方程典案一教学设计(1)
- 格式:doc
- 大小:303.00 KB
- 文档页数:7
二次函数与一元二次方程、不等式教学设计课题名称二次函数与一元二次方程、不等式姓名学校年级教材版本人教版A版一、教学目标1.使学生能够运用一元二次方程以及二次函数图像、性质解决实际问题。
2.渗透数形结合思想,进一步培养学生综合解题能力。
经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法。
3.激发学生学习数学的热情,培养学生勇于探索的精神,同时体会事物之间普遍联系的辩证思想。
二、教学重难点重点:一元二次不等式的应用。
难点:一元二次方程的根的情况与二次函数图像与x轴的位置关系的联系,数形结合的运用。
三、教学方法讲授法、讨论法、练习法四、教学过程一、导入(复习导入)师生活动复习解一元二次不等式步骤:1、a变正,(二次项系数化为正数)2、判别式。
(利用一元二次方程,求出判别式的值)3、求根。
(根据判别式情况求出一元二次方程的根)4、画草图。
(利用二次函数绘制图像)5、求解集。
(根据数形结合的思想求不等式解集)复习上节课所学内容,检测学生学习情况。
二、新指探究利用一元二次不等式求解实际问题。
【例1】一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间有如下关系:y=−2y2+220y若这家工厂希望在一个星期内利用这条流水线创收6000元以上,则在一个星期内大约应该生产多少辆摩托车?解:设这家工厂在一个星期内大约应该利用整条流水线生产x辆摩托车,根据题意得:−2y2+220y>6000移项整理,得:y2−110y+3000<0对于方程y2−110y+3000=0,∆=100>0,方程有两个实数根y1=50,y2=60画出二次函数y=y2−110y+3000的图像(图2.3-6),结合图象得不等式y2−110y+3000<0的解集为{y|50<y<60},从而原不等式的解集为:{y|50<y<60}。
二次函数与一元二次方程教学设计二次函数与一元二次方程教学设计1教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课一、例题讲解投影片:(§2.8.1A)我们已经知道,竖直上抛物体的高度h(m)与运动时间t的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议投影片:(§2.8.1B)二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习随堂练习(P67)Ⅳ.课时小结本节课学了如下内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业习题2.9板书设计§2.8.1 二次函数与一元二次方程(一)一、1.例题讲解(投影片§2.8.1A)2.议一议(投影片§2.8.1B)3.想一想二、课堂练习随堂练习三、课时小结四、课后作业备课资料思考、探索、交流把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r= .∴S圆=πr2=π・2=π・= ≈796(m2).所以圆的面积最大.二次函数与一元二次方程教学设计2教学目标一、教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2、理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.3、理解一元二次方程的根就是二次函数与y =h 交点的横坐标.二、能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3、通过学生共同观察和讨论,培养合作交流意识.三、情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2、具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根、两个相等的实根和没有实根.3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标.教学难点1、探索方程与函数之间的联系的过程.2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法教学过程:1、设问题情境,引入新课我们已学过一元一次方程kx+b=0 (k0)和一次函数y =kx+b (k0)的关系,你还记得吗?它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.2、新课讲解例题讲解我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度.一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t的关系如下图所示,那么(1)h 与t 的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?小组交流,然后发表自己的看法.学生交流:(1)h 与t 的关系式是h =-5 t 2+v 0t +h 0,其中的v 0为40m/s,小球从地面抛起,所以h 0=0.把v 0,h 0带入上式即可求出h 与t 的关系式h =-5t 2+40t(2)小球落地时h为0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是-5t 2+40t=0t 2-8t=0t(t- 8)=0t=0或t=8t=0时是小球没抛时的时间,t=8是小球落地时的时间.也可以观察图像,从图像上可看到t =8时小球落地.议一议二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像如下图所示(1)每个图像与x 轴有几个交点?(2)一元二次方程x2+2x=0 , x2-2x+1=0有几个根?解方程验证一下, 一元二次方程x2-2x +2=0有根吗?(3)二次函数的图像y=ax2+bx+c 与x 轴交点的坐标与一元二次方程ax2+bx+c=0 的根有什么关系?学生讨论后,解答如下:(1)二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像与x 轴分别有两个交点、一个交点,没有交点.(2)一元二次方程x 2+2x=0有两个根0,-2 ;x2-2x+1=0有两个相等的实数根1或一个根1 ;方程x2-2x +2=0没有实数根(3)从图像和讨论知,二次函数y=x2+2x与x 轴有两个交点(0,0),(-2,0) ,方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图像与x 轴有一个交点(1,0),方程 x2-2x+1=0 有两个相等的实数根1或一个根1二次函数y=x2-2x +2 的图像与x 轴没有交点, 方程x2-2x +2=0没有实数根由此可知,二次函数y=ax2+bx+c 的图像与x 轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.小结:二次函数y=ax2+bx+c 的图像与x 轴交点有三种情况:有两个交点、一个交点、没有焦点.当二次函数y=ax2+bx+c 的图像与x 轴有交点时,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.基础练习1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标.(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+42、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是 .4、已知抛物线y=x2+px+q与x 轴的两个交点为(-2,0),(3,0),则p= ,q= .5. 已知抛物线 y=-2(x+1)2+8 ①求抛物线与y轴的交点坐标;②求抛物线与x 轴的两个交点间的距离.6、抛物线y=a x2+bx+c(a0)的图象全部在轴下方的条件是(A) a0 b2-4ac0(B)a0 b2-4ac0(B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0想一想在本节一开始的小球上抛问题中,何时小球离地面的.高度是60 m?你是怎样知道的?学生交流:在式子h =-5t 2+v 0t +h 0中v 0为40m/s, h 0=0,h=60 m,代入上式得-5t 2+40t=60t 28t+12=0t=2或t=6因此当小球离开地面2秒和6秒时,高度是6 0 m.课堂练习 72页小结:本节课学习了如下内容:1、若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c 与x轴的两个交点坐标分别是A(x1,0 ), B( x2,0 )2、一元二次方程ax2+bx+c=0与二次三项式ax2+bx+c及二次函数y=ax2+bx+c 这三个二次之间互相转化的关系.体现了数形结合的思想3、二次函数y=ax2+bx+c 何时为一元二次方程?二次函数与一元二次方程教学设计3一、教学目标:1。
初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。
因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。
情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。
四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。
2024北师大版数学九年级下册2.5.1《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版数学九年级下册第2.5.1节的内容。
本节内容是在学生已经掌握了二次函数的图像和性质的基础上,引出一元二次方程,并通过解决实际问题,让学生了解一元二次方程的解法及其应用。
教材通过生活中的实例,引导学生探究一元二次方程的解法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识和图像,对于一元二次方程也有了一定的了解。
但是,学生在解决实际问题时,往往会因为对概念理解不深而产生困惑。
因此,在教学过程中,教师需要帮助学生深化对二次函数和一元二次方程的理解,提高他们解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的解法,并能应用于实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:一元二次方程的解法及其应用。
2.难点:如何将实际问题转化为数学模型,并运用一元二次方程解决。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生自主探究,合作解决实际问题,从而提高学生的数学素养。
六. 教学准备1.教材、教案、课件。
2.相关实际问题素材。
3.投影仪、白板等教学设备。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,例如:“某商品打8折后的售价为120元,请问原价是多少?”让学生思考并尝试解决。
2.呈现(10分钟)教师引导学生将实际问题转化为数学模型,呈现出一元二次方程的形式。
例如,设商品原价为x元,则打8折后的售价为0.8x,根据题意可得方程0.8x = 120。
3.操练(10分钟)教师引导学生运用一元二次方程的解法求解问题。
首先,让学生回忆二次函数的图像和性质,然后引导学生利用“开平方法”求解方程。
沪科版数学九年级上册《二次函数与一元二次方程的关系》教学设计1一. 教材分析《二次函数与一元二次方程的关系》是沪科版数学九年级上册的一章内容。
本章主要介绍了二次函数与一元二次方程之间的关系,通过研究二次函数的图象和性质,引导学生理解一元二次方程的解与二次函数的零点之间的关系。
本章内容对于学生来说是比较抽象和难以理解的,需要教师通过生动有趣的教学方法,帮助学生理解和掌握。
二. 学情分析学生在学习本章内容前,已经学习了二次函数的相关知识,对于二次函数的图象和性质有一定的了解。
但是,对于一元二次方程的解与二次函数的零点之间的关系,可能还存在一定的困惑。
因此,教师需要通过教学设计,帮助学生建立起二次函数与一元二次方程之间的联系,引导学生理解和掌握。
三. 教学目标1.理解二次函数与一元二次方程之间的关系。
2.能够运用二次函数的图象和性质,解决一元二次方程的问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.二次函数与一元二次方程之间的关系。
2.如何运用二次函数的图象和性质,解决一元二次方程的问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和探究,理解二次函数与一元二次方程之间的关系。
2.利用多媒体教学手段,展示二次函数的图象和性质,帮助学生直观地理解一元二次方程的解与二次函数的零点之间的关系。
3.通过例题讲解和练习,巩固学生对知识的理解和运用。
六. 教学准备1.多媒体教学设备。
2.教学课件和教案。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考二次函数与一元二次方程之间的关系。
2.呈现(15分钟)利用多媒体教学手段,展示二次函数的图象和性质,引导学生理解一元二次方程的解与二次函数的零点之间的关系。
3.操练(20分钟)通过一些例题和练习题,让学生运用二次函数的图象和性质,解决一元二次方程的问题。
4.巩固(10分钟)让学生通过自主学习和合作学习,巩固对二次函数与一元二次方程之间关系的理解。
21.3二次函数与一元二次方程
第1课时
一、教学目标
1.理解二次函数图象与X轴交点的横坐标与一元二次方程的根之间的联系.
2 .经历探索二次函数与一元二次方程的关系的过程,渗透数形结合的思想方法.
3 .通过共同探究的方式,培养学生的合作交流意识,以及观察问题和解决问题的能力.
4 .在探索二次函数与一元二次方程的关系的过程中,让学生感受数学知识之间的内在联系,认识到事物之间的联系与转化.
二、教学重难点
重点:理解二次函数图象与X轴交点的横坐标就是一元二次方程的根难点:探索二次函数与一元二次方程之间的关系.
三、教学用具
多媒体课件
四、教学过程设计
函数值等于O时自变量X的一个值,即二次函数的图象与X轴一个交点的横坐标.
即:
二次函败「必7丫,2, 二一元二次方程>J3x+20,
:)。
时,图象与簿!有两个交点11Δ^40c>0,有两个不相等的实败根」
2 .如果函数值y等于-5又会怎样呢?
首先,在图象上画出直线产-5此时这条直线与二次函数的图象有一个交点(-T,-》;再求解其对应的一元二次方程f+3x+2=-;,得到方程的解是M=X2=
结合上边的分析及其图象,我们得到:
:二痴由y⅛r÷2,U -元二次方程H=/
:图粼与直线r4只有一个交点::A='*=C,有两个相等的实数《1:
3 .如果函数值y等于-2,又会怎样呢?
同样,先在图象上画出直线产-2,此时这条直线与二次函数的图象无交点;再求解其对应的一元二次方程f+3x+2=-2,此方程无解.。
沪科版数学九年级上册21.3《二次函数与一元二次方程》教学设计1一. 教材分析《二次函数与一元二次方程》是沪科版数学九年级上册第21.3节的内容。
本节内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生了解一元二次方程的解法以及二次函数与一元二次方程之间的关系。
教材通过例题和练习题的形式,帮助学生巩固所学知识,并能够运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的图像和性质已经有了一定的了解。
但是,对于一元二次方程的解法和二次函数与一元二次方程之间的关系可能还不够清晰。
因此,在教学过程中,需要引导学生通过观察、分析和归纳,自主探索出一元二次方程的解法和二次函数与一元二次方程之间的关系。
三. 说教学目标1.知识与技能目标:使学生掌握一元二次方程的解法,能够运用二次函数的性质解决实际问题。
2.过程与方法目标:通过观察、分析和归纳,培养学生自主探索和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:一元二次方程的解法,二次函数与一元二次方程之间的关系。
2.教学难点:一元二次方程的解法,二次函数与一元二次方程之间的关系的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生自主探索和解决问题。
2.教学手段:利用多媒体课件和数学软件,进行直观演示和练习。
六. 说教学过程1.导入新课:通过一个实际问题,引入二次函数与一元二次方程的概念。
2.讲解与演示:利用多媒体课件和数学软件,讲解一元二次方程的解法,并展示二次函数与一元二次方程之间的关系。
3.练习与讨论:学生进行练习题,小组内讨论解题方法,互相交流心得。
4.总结与拓展:教师引导学生总结一元二次方程的解法和二次函数与一元二次方程之间的关系,并进行拓展讲解。
5.布置作业:布置一些相关的练习题,巩固所学知识。
二次函数与一元二次方程--教学设计教学设计主题:二次函数与一元二次方程教学目标:1.理解二次函数的定义和性质;2.掌握一元二次方程的求解方法;3.能够将实际问题转化为二次函数或一元二次方程进行求解。
教学重点:1.二次函数的定义和性质;2.一元二次方程的求解。
教学难点:1.实际问题的建模;2.一元二次方程的求解。
教学准备:1.教师准备:教师课件、教学演示;2.学生准备:学生课本、笔记本。
教学过程:一、导入(5分钟)1.教师通过课件展示一张图,引导学生思考二次函数的图像特点;2.教师提问:你们在高中学过哪些与二次函数相关的知识?请举例说明。
二、概念讲解(20分钟)1.教师通过课件讲解二次函数的定义,并给出例题让学生进行分析和讨论;2.教师引导学生总结二次函数的性质,并进行讨论交流。
三、习题练习(15分钟)1.教师布置若干练习题,要求学生互相讨论解题方法和结果。
练习题可以涉及二次函数的图像、顶点坐标、对称轴等内容。
四、实际问题建模(15分钟)1.教师通过课件呈现一些实际问题,并提问学生如何将这些问题转化为二次函数或一元二次方程;2.学生进行小组讨论,寻找问题的解决方法和步骤。
五、一元二次方程的求解(20分钟)1.教师通过课件讲解一元二次方程的定义、一般形式和求解方法,引导学生理解方程解的含义;2.教师给出一些例题,引导学生进行求解过程,并解释每个步骤的含义和思路。
六、总结归纳(10分钟)1.教师带领学生总结二次函数与一元二次方程的相关知识点和求解方法;2.学生进行讨论和补充。
七、拓展与应用(15分钟)1.教师设计一些拓展题目,要求学生运用所学知识解决实际问题;2.学生进行小组讨论和解答,教师给予指导和点评。
八、课堂总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生复习和预习下节课的内容。
教学反思:通过本节课的教学,学生可以对二次函数与一元二次方程的定义、性质和求解方法有更深入的理解。
通过实际问题的建模和解答,学生可以将所学知识应用到实际生活中,提高问题解决能力。
学生在小学和初中阶段已经学习了一元一次不等式的解法,在知识上已经具备了一定的知识经验和基础,在能力上初步具备了一定的解决问题的能力,同时这部分知识之前学过的二次函数也有密切的联系,因此学生对一元二次不等式的解法有一定的兴趣和积极性,但是学生能力有限,真正掌握还有一定的难度。
教学时,可以利用具体的一元二次不等式,让学生观察二次函数的图象,获得对解一元二次不等式方法的认识,培养学生直观想象的核心素养。
通过定义辨析,引导学生熟练掌握一元二次不等式特征,提高学生数学抽象的核心素养.】(1)二次函数的零点不是点,是二次函数与x轴交点的横坐标.(2)一元二次方程的根是相应一元二次函数的零点.当x <2 或x >10时,图像在x 轴上方,y >0,即x 2-12x+20>0;当2<x <10时,y <0,即x 2-12x+20<0;故一元二次不等式x 2-12x +20<0的解集是{x|2<x <10}.求解一元二次不等式x 2-12x +20<0解集的方法,是否可以推广到一般的一元二次不等式?一元二次方程、一元二次不等式与二次函数的关系:注意:(1)对于一元二次不等式的二次项系数为正且存在两个根的情况下,其解集的常用口诀是:大于取两边,小于取中间.(2)对于二次项系数是负数(即a <0)的不等式,可以先把二次项系数化为正数,再对照上述情况求解.一元二次不等式的解法】先求出对应一元二次方程的解,再结合对应的二次函数的图象写出不等式的解集.21225600.2 3.56x x x x y x x -+=∆>===-+解:对于方程,因为,所以它有两个实数根解得,画出二次函数的图象,如下图,256{|}023.x x x x x -+><>结合图象得不等式的解集为,或2122961001.3961x x x x y x x -+=∆====-+解:对于方程,因为,所以它有两个相等的实数根,解得画出二次函数的图象,如下图,29610{|}1.3x x x x -+>≠结合图象得不等式的解集为22230.80230.x x x x -+<∆=-<∴-+=解:不等式可化为,方程无实数根223y x x =-+∅画出二次函数因此,原不等式的解集为。
2.3第1课时二次函数与一元二次方程、不等式(一)教学知识总结[教学引导问题]观察下列不等式:(1)x2>0;(2)-x2-2x≤0;(3)x2-5x+6>0.问题1:以上给出的三个不等式,它们含有几个未知数?未知数的最高次数是多少?提示:它们只含有一个未知数,未知数的最高次数都是2.问题2:上述三个不等式在表达形式上有何共同特点?提示:形如ax2+bx+c>0(或≤0),其中a,b,c为常数,且a≠0.[导入新知]1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.[化解疑难]1.定义的简单应用:判断一个不等式是否为一元二次不等式,应严格按照定义去判断,即未知数只有1个,未知数的最高次数是2,且最高次的系数不能为0.2.解集是解的集合,故一元二次不等式的解集一定要写成集合或区间的形式.[教学引导问题]已知:一元二次函数y=x2-2x,一元二次方程x2-2x=0,一元二次不等式x2-2x>0.问题1:试求二次函数与x轴交点坐标.提示:(0,0),(2,0).问题2:一元二次方程的根是什么?提示:x1=0,x2=2.问题3:问题1中的坐标与问题2中的根有何内在联系?提示:交点的横坐标为方程的根.问题4:观察二次函数图象,x满足什么条件,图象在x轴上方?提示:x>2或x<0.问题5:能否利用问题4得出不等式x2-2x>0,x2-2x<0的解集?提示:能,不等式的解集为{x |x >2或x <0},{x |0<x <2}. [教学引导问题]一元二次不等式与相应的二次函数及一元二次方程的关系如表一元二次方程的根对应于二次函数图象与x 轴的交点,一元二次不等式的解对应于二次函数图象在x 轴上方(下方),或在x 轴上的点,由此得出二次函数图象的开口方向及与x 轴的交点情况确定的一元二次不等式的图象解法,这样就形成了二次函数与一元二次方程相结合的解一元二次不等式的方法.教学案例[例1] (1)2x 2+7x +3>0; (2)x 2-4x -5≤0; (3)-4x 2+18x -814≥0;(4)-2x 2+3x -2<0.解:(1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上, 所以原不等式的解集为⎩⎨⎧⎭⎬⎫xx >-12,或x <-3.(2)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}. (3)原不等式可化为⎝⎛⎭⎫2x -922≤0, 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x =94.(4)原不等式可化为2x 2-3x +2>0, 因为Δ=9-4×2×2=-7<0, 所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上, 所以原不等式的解集为R . [类题通法]解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集. [活学活用]解下列不等式:(1)x 2-5x -6>0;(2)-x 2+7x >6;(3)(2-x )(x +3)<0;(4)4(2x 2-2x +1)>x (4-x ). 解:(1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为x 2-7x +6<0. 解方程x 2-7x +6=0,得x 1=1,x 2=6.结合二次函数y =x 2-7x +6的图象知,原不等式的解集为{x |1<x <6}. (3)原不等式可化为(x -2)(x +3)>0. 方程(x -2)(x +3)=0的两根为2和-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. (4)由原不等式得8x 2-8x +4>4x -x 2, ∴原不等式等价于9x 2-12x +4>0. 解方程9x 2-12x +4=0,得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图象知,原不等式的解集为⎩⎨⎧⎭⎬⎫x|x ≠23.[例2] 解关于解:方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式的解集为{x |a <x <-1}; 当a =-1时,原不等式的解集为∅;当a >-1时,原不等式的解集为{x |-1<x <a }. [类题通法]解含参数的一元二次不等式时(1)若二次项系数含有参数,则需对二次项系数大于0与小于0进行讨论; (2)若求对应一元二次方程的根的情况,则应对判别式Δ进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论. [活学活用]设m ∈R ,解关于x 的不等式m 2x 2+2mx -3<0. 解:①m =0时,-3<0恒成立,所以x ∈R . ②当m >0时,不等式变为(mx +3)(mx -1)<0, 即⎝⎛⎭⎫x +3m ⎝⎛⎭⎫x -1m <0,解得-3m <x <1m. ③当m <0时,原不等式变为⎝⎛⎭⎫x +3m ⎝⎛⎭⎫x -1m <0, 解得1m <x <-3m.综上,m =0时,解集为R ; m >0时,解集为⎩⎨⎧⎭⎬⎫x|-3m <x <1m ;m <0时,解集为⎩⎨⎧⎭⎬⎫x|1m <x <-3m .[例2+ax +1>0的解集.解:∵x 2+ax +b <0的解集为{x |1<x <2}, ∴1,2是x 2+ax +b =0的两根.由根与系数的关系得⎩⎪⎨⎪⎧ -a =1+2,b =1×2,得⎩⎪⎨⎪⎧a =-3,b =2,代入所求不等式,得2x 2-3x +1>0.由2x 2-3x +1>0⇔(2x -1)(x -1)>0⇔x <12或x >1.∴bx 2+ax +1>0的解集为⎝⎛⎭⎫-∞,12∪(1,+∞).[类题通法]1.一元二次不等式ax 2+bx +c >0(a ≠0)的解集的端点值是一元二次方程ax 2+bx +c =0的根,也是函数y =ax 2+bx +c 与x 轴交点的横坐标.2.二次函数y =ax 2+bx +c 的图象在x 轴上方的部分,是由不等式ax 2+bx +c >0的x 的值构成的;图象在x 轴下方的部分,是由不等式ax 2+bx +c <0的x 的值构成的,三者之间相互依存、相互转化. [活学活用]已知方程ax 2+bx +2=0的两根为-12和2.(1)求a ,b 的值;(2)解不等式ax 2+bx -1>0.解:(1)∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系,得⎩⎨⎧-12+2=-b a,-12×2=2a ,解得a =-2,b =3.(2)由(1)知,ax 2+bx -1>0可变为-2x 2+3x -1>0, 即2x 2-3x +1<0,解得12<x <1.∴不等式ax 2+bx -1>0的解集为⎩⎨⎧⎭⎬⎫x|12<x <1.有关三个“二次”关系的不等式的解法[典例] 已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x|x <-2或x >-12,求ax 2-bx +c >0的解集.[解题流程][规范解答]由题意知,-2,-12是方程ax 2+bx +c =0的两个根,且a <0,故⎩⎨⎧-2+⎝⎛⎭⎫-12=-b a,(-2)×⎝⎛⎭⎫-12=c a.[名师批注]不注意判断a 的符号,误认为a >0. 解得a =c ,b =52c .所以不等式ax 2-bx +c >0即2x 2-5x +2<0, 解得12<x <2.即不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2. [名师批注]学生常出现解集不用集合表示的失误. [活学活用]已知一元二次不等式x 2+px +q <0的解集为⎩⎨⎧⎭⎬⎫x|-12<x <13,求不等式qx 2+px +1>0的解集.解:因为x 2+px +q <0的解集为⎩⎨⎧⎭⎬⎫x|-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎨⎧13-12=-p ,13×⎝⎛⎭⎫-12=q ,解得⎩⎨⎧p =16,q =-16 .所以不等式qx 2+px +1>0, 即-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.[随堂即时演练]1.不等式x (2-x )>0的解集为( )A .{x |x >0}B .{x |x <2}C .{x |x >2或x <0}D .{x |0<x <2}【解析】选D 原不等式化为x (x -2)<0,故0<x <2.2.已知集合M ={x |x 2-3x -28≤0},N ={x |x 2-x -6>0},则M ∩N 为( )A .{x |-4≤x <-2或3<x ≤7}B .{x |-4<x ≤-2或3≤x <7}C .{x |x ≤-2或x >3}D .{x |x <-2或x ≥3}【解析】选A ∵M ={x |x 2-3x -28≤0}={x |-4≤x ≤7}, N ={x |x 2-x -6>0}={x |x <-2或x >3}, ∴M ∩N ={x |-4≤x <-2或3<x ≤7}.3.二次函数y =x 2-4x +3在y <0时x 的取值范围是________.【解析】由y <0得x 2-4x +3<0,∴1<x <3. 【答案】(1,3)4.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.【解析】由x 2-2ax -8a 2<0(a >0) 得(x +2a )(x -4a )<0(a >0),即-2a <x <4a ,故原不等式的解集为(-2a,4a ). 由x 2-x 1=15得4a -(-2a )=15, 即6a =15,所以a =52.【答案】525.解下列不等式:(1)x (7-x )≥12; (2)x 2>2(x -1); (3)x 2-4ax -5a 2<0(a <0).解:(1)原不等式可化为x 2-7x +12≤0,因为方程x 2-7x +12=0的两根为x 1=3,x 2=4, 所以原不等式的解集为{x |3≤x ≤4}. (2)原不等式可以化为x 2-2x +2>0,因为判别式Δ=4-8=-4<0,方程x 2-2x +2=0无实根,而抛物线y =x 2-2x +2的图象开口向上,所以原不等式的解集为R .(3)方程x 2-4ax -5a 2=0的两个根为x 1=-a ,x 2=5a , ∵a <0,x 1>x 2,∴原不等式的解集为{x |5a <x <-a }.。
人教版九年级数学上册22.2.1《二次函数与一元二次方程》教学设计一. 教材分析人教版九年级数学上册第22.2.1节《二次函数与一元二次方程》是整个初中数学的重要内容,也是难点内容。
本节主要介绍二次函数的性质,以及如何从二次函数图像上找到一元二次方程的根。
教材通过实例引导学生探究二次函数与一元二次方程之间的关系,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了函数和方程的基础知识,具备一定的逻辑思维能力和探究能力。
但是对于二次函数与一元二次方程之间的联系,还需要通过实例和操作来进一步理解和掌握。
学生在学习过程中可能对一些概念和性质的理解存在困难,需要教师耐心引导和讲解。
三. 教学目标1.理解二次函数的性质,掌握二次函数与一元二次方程之间的关系。
2.能够从二次函数图像上找到一元二次方程的根。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.二次函数的性质和图像。
2.二次函数与一元二次方程之间的关系。
3.如何从二次函数图像上找到一元二次方程的根。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数与一元二次方程之间的关系。
2.利用多媒体课件和实物模型,直观展示二次函数的图像和性质。
3.采用小组合作学习的方式,让学生在讨论和操作中掌握知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和答案。
3.小组合作学习的指导方案。
七. 教学过程1.导入(5分钟)利用多媒体课件展示二次函数的图像,引导学生观察和描述二次函数的性质。
2.呈现(10分钟)提出问题:二次函数与一元二次方程之间有什么关系?如何从二次函数图像上找到一元二次方程的根?3.操练(10分钟)让学生分组操作,利用实物模型和多媒体课件进行探究,尝试解答问题。
4.巩固(10分钟)教师引导学生总结二次函数的性质和一元二次方程的解法,加深学生对知识的理解。
5.拓展(10分钟)出示一些有关二次函数与一元二次方程的应用题,让学生小组合作解决问题,提高学生的应用能力。
2.2.1 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。
22.2 二次函数与一元二次方程教学时间课题22.2 二次函数与一元二次方程课型新授课教 学 目 标知 识 和能 力 通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。
过 程 和方 法 使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。
情 感 态 度 价值观进一步培养学生综合解题能力,渗透数形结合思想。
教学重点 使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题教学难点 进一步培养学生综合解题能力,渗透数形结合的思想 教学准备教师多媒体课件学生“五个一〞课 堂 教 学 程 序 设 计设计意图一、引言 在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。
本节课,请同学们共同研究,尝试解决以下几个问题。
二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水。
连喷头在内,柱高为。
水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。
根据设计图纸:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y =-x 2+2x +45。
(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教学要点1.让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y =-x 2+2x +45最大值,问题(2)就是求如图(2)B 点的横坐标;2.学生解答,教师巡视指导; 3.让一两位同学板演,教师讲评。
问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB =时,涵洞顶点与水面的距离为。
这时,离开水面处,涵洞宽ED 是多少?是否会超过1m?教学要点1.教师分析:根据条件,要求ED 的宽,只要求出FD 的长度。
《二次函数与一元二次方程、不等式(第一课时)》教学设计1.经历从实际情境中抽象出一元二次不等式模型的过程,了解一元二次不等式的现实意义,提升数学抽象素养;2.能用二次函数的观点,看一元二次方程和一元二次不等式,并能求解二次方程和二次不等式问题,感悟数学知识的整体性和关联性,提升逻辑推理、几何直观和数学运算等核心素养.教学重点:从实际问题中抽象出一元二次不等式模型,并会借助二次函数求解一元二次不等式,体会函数思想、化归思想及数形结合的思想.教学难点:理解二次函数、一元二次方程与一元二次不等式解集之间的关系.GEOGEBRA 、PPT 课件.一、情境引入问题1:园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24 m ,围成的矩形区域的面积要大于20 m 2,则这个矩形的边长为多少米?师生活动:学生独立思考,把实际问题中的数量关系用数学模型表示出来. 预设的答案:1.因为学生已经学习过基本不等式,所以部分学生会令矩形的一边长为x ,另一边为y ,可以得到⎩⎨⎧>=+.20,12xy y x 此时还需要消元从而转化为一元二次不等式求解.2.部分学生用一个未知数x 即可表示问题中的不等式20)-12>x x (,但学生容易忘记自变量x 的取值范围.追问:不等式20)-12>x x (即020122<+-x x ,与我们学习过的一元一次不等式有什么不同?你能再举出一些类似的不等式吗?师生活动:学生可以回答这个问题.之后学生阅读课本获得定义,或者教师给出一元二次不等式的定义,一元二次不等式的一般形式:0022<++>++c bx ax c bx ax 或,并且强调二次项的系数a ≠0.设计意图:通过具体问题抽象出一元二次不等式的过程,明确一元二次不等式的定义和一般形式,体会一元二次不等式的现实意义.二、探究新知1.探究一元二次不等式的解法问题2:在初中,我们学习了从一次函数的观点看一元一次方程、一元一次不等式的思想方法.那么这三个“一次”之间的关系是什么?师生活动:教师引导学生回答问题,并强调从代数和几何两方面的理解,注意数形结合的思想.师生共同总结如下:设计意图:通过对三个“一次”的关系的总结,帮学生梳理函数和相应的方程、不等式之间的关系,为下面的探索做好铺垫.问题3:类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?以函数20122+-=x x y 为例.师生活动:学生类比研究,应该有一部分学生可以获得思路.教师设计追问,引导学生思考.追问1:教师用信息技术画出函数20122+-=x x y 的图象,图象与x 轴有两个交点,并在函数图象上任取一点P (x ,y ).当点P 在抛物线上移动时,请你观察:随着点P 的移动,它的纵坐标的符号怎样变化?师生活动:学生观察思考后回答.ax 2+bx +c =0(a >0)的根ax 2+bx +c >0(a >0)的解集ax 2+bx +c <0(a >0)的解集师生活动:学生思考并对上述方法进行了归纳、概括,获得求解一般一元二次不等式的解法.预设的答案:求解一元二次不等式的关键是利用二次函数的图象与x 轴的相关位置确定不等式对应的x 的取值范围,而确定x 的取值范围需要先求出相应一元二次方程的根.这种关系体现在下表中.Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}{x |x ≠-b 2a} Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅ ∅设计意图:通过问题引导学生从具体的“三个二次”的关系,归纳、概括、获得一般的一元二次不等式的解法.在这个过程中培养学生数学抽象概括的能力,以及从具体到抽象,从特殊到一般的研究问题的基本方法.并体会数形结合和函数思想的应用.3.应用举例例1 求下列不等式的解集:(1)0652>+-x x (2)01692>+-x x (3)03-2-2>+x x追问:求解不等式的依据是什么?步骤是什么?第(3)题与(1)(2)题有何异同?能否转化为(1)(2)题.师生活动:学生独立完成后展示交流,师生总结求解思路.对于二次项系数是负数(即0<a )的不等式,可以先把二次项系数化成正数,再求解.预设的答案:(1)解:对于方程0652=+-x x ,因为∆>0, 所以它有两个实数根,解得3,221==x x , 画出二次函数652+-=x x y 的图象(图2.3-2)结合图象得不等式0652>+-x x 的解集为}{3,2><x x x 或.(2)解:对于方程01692=+-x x ,因为∆=0,所以它有两个相等的实数根,解得3121==x x ,画出二次函数169y 2+-=x x 的图象(图2.3-3),结合图象得不等式01692>+-x x 的解集为}31|{≠x x .(3)解:不等式可化为032-2<+x x ,因为∆=-8<0,所以方程032-2=+x x 无实数根,画出二次函数32y 2+-=x x 的图象(图2.3-4),结合图象得不等式032-2<+x x 的解集为∅.因此原不等式的解集为∅.追问:通过这三道题的学习,请你试着总结一下:解一元二次不等式的一般步骤是什么?师生活动:学生总结,教师完善.预设的答案:步骤是:(1)先把二次项系数化为正数;(2)求判别式的值;(3)求相应方程的实数根;(4)结合函数图象写出一元二次不等式的解集.设计意图:这三道例题对应的三个二次函数的图象分别与x 轴有两个交点、有一个交点和没有交点,再次巩固了利用二次函数解二次不等式的方法.并要注重代数问题的求解程序的提炼总结,以便学生有序地思考,规范地求解,提升学生的数学运算素养.注重数形结合思想方法的应用,培养学生思维的严谨性.例 2 已知一元二次不等式02<++c bx ax 的解集为{}53-><x x x ,或,则图2-3-502<+-c bx ax 的解集为________.追问:如何利用“三个二次”的关系求解?能大致画出不等式对应的函数的草图吗? 师生活动:学生先独立思考,画出函数的草图,从而可以确定a 0<.并利用方程的根与函数零点的关系,及韦达定理求出a ,b ,c 之间的关系(而不是具体的值),再化简求值.预设的答案:解:根据题意可知a 0<.令)0(02≠=++a c bx ax .由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧⨯-=+-=,53,53-ac a b解得⎩⎨⎧-=-=.15,2a c a b 代入所求不等式得01522<-+a ax ax .①又∵0<a ,∴①化为01522>-+x x . 对于方程015-22=+x x ,因为∆>0,所以它有两个实数根,解得3,-521==x x ,画出二次函数15-22x x y +=的图象(图2-3-5),结合图象得不等式15-22>+x x 的解集为}{53-<>x x x ,或.设计意图:进一步理解三个“二次”之间的关系,在较复杂的情境中应用新知识,提高学生分析问题的能力.三、归纳小结,布置作业问题4:这节课我们学习了解一元二次不等式,那么我们是如何去研究一元二次不等式解的过程的?在这个过程中体现了哪些数学方法和思想?师生活动:师生共同总结,教师强调关键点是从具体的实际问题入手,利用函数、方程与不等式的关系,结合相应的二次函数图象,求一元二次不等式的解集.其中体现了数形结合、化归及函数思想.。
2.3.1二次函数与一元二次方程、不等式(第一课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1.从函数观点看一元二次方程会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系。
2.从函数观点看一元二次不等式。
经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。
能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。
3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系。
二、教学重难点1.判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系。
2.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。
三、教学过程从函数观点看一元二次方程和一元二次不等式用函数理解方程和不等式是数学的基本思想方法。
可以帮助学生用一元二次函数认识一元二次方程和一元二次不等式。
通过梳理初中数学的相关内容,理解函数、方程和不等式之间的联系,体会数学的整体性。
1.一元二次不等式的概念1.1创设情境,引发思考二次函数与一元二次方程、不等式在初中,我们从一次函数的角度看一元一次方程、一元次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题对于二次函数、一元二次方程和一元二次不等式,是否也有这样的联系呢? 问题1:【数学情境】园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的20m,则这个矩形的边长为多少米?矩形区域的面积要大于2【设计意图】通过实际问题,让学生感受“求不等式”这样的问题是客观存在的,是源于实际生活的.同时引发学生思考.1.2探究典例,形成概念问题2: 【数学情境】在初中,我们学习了从一次函数的观点看一元二次方程、一元一次不等式的思想方法.类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?【活动预设】通过图象解决不等式求解问题,分析二次函数与一元二次函数不等式之间的关系【设计意图】从引例中的具体问题入手,树立学生数形结合的数学思想,为推广一元二次不等式求解做准备。
21.3二次函数与一元二次方程(第1课时)太湖三中杨流芬一、教学背景(一)教材分析本节课的内容是研究一元二次方程与二次函数的关系,利用二次函数的图像求一元二次方程的近似解,重要的是这种求解方程的思路,而不是求解的结果。
在教学中,让学生经历探索二次函数与一元二次方程的关系的过程,进一步体会方程与函数之间的联系;经历用图像法求一元二次方程近似根的过程,获得用图像法求近似根的体验,理解二次函数与x 轴交点的个数与一元二次方程根的个数之间的关系,理解何时方程有两个不等的实根,两个相等的实根和没有实根;应关注学生是否能利用图像法求一元二次方程的近似根,是否理解这种求解方程的思路。
通过类比一次函数与一次函数的关系研究二次函数与二次方程的关系,使学生理解抛物线与x轴交点的横坐标就是对应的一元二次方程的解;再次体会到函数与方程之间的联系,进一步渗透数形结合的数学思想方法,为学习二次函数与二次不等式的关系做好准备。
(二)学情分析在学生学习了一元二次方程的解法、根的判别式、一次函数、二次函数的图像的画法有关内容后,在12.3节已经学习过用图像法求一元一次方程的根,二元一次方程组的解,再学习用图像法求一元二次方程近似根的过程。
二、教学目标知识与技能1、探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解方程何时有两个不等的实根,两个相等的实根和没有实数根。
3、理解一元二次方程的根ax2+bx+c=0(a≠0)根就是二次函y=ax2+bx+c(a≠0)与x轴交点的横坐标。
4、进一步发展学生的估算能力。
过程与方法1、经历用图像法求一元二次方程的近似根的过程,获得用图像法求一元二次方程近似根的体验。
2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根情况,进一步培养学生的数形结合思想。
3、在探索二次函数与一元二次方程的关系的过程中,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
第二十二章二次函数22.2 二次函数与一元二次方程典案一教学设计课题22.2二次函数与一元二次方程授课人教学目标知识技能1.理解二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,准确表述何时方程有两个不相等的实数根,两个相等的实数根和没有实数根;2.会利用二次函数的图象求一元二次方程的近似解.数学思考通过学生自主探索和合作交流,真正理解和掌握二次函数与一元二次方程之间的关系.问题解决能够从函数解析式的角度分析二次函数与一元二次方程之间的关系,同时也能够从函数图象的角度分析函数与方程之间的关系.情感态度通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.教学重点掌握二次函数与一元二次方程之间的关系,会利用函数图象求一元二次方程的近似解教学难点理解二次函数的图象与x轴的交点个数与一元二次方程的根的个数之间的关系授课类型新授课课时教具多媒体(续表)教学活动教学步骤师生活动设计意图回顾1.一元二次方程的一般形式是__ax2+bx+c=0(a≠0)__,其根的判别式是__b2-4ac__,求根公式是通过回顾一元二次方程和二次函数的相关知识,巩固以前__x =-b±b 2-4ac 2a__.2.二次函数的一般式是__y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)__,顶点坐标是__⎝⎛⎭⎫-b 2a ,4ac -b 24a __.3.抛物线y =x 2+2x -4的对称轴是__直线x =-1__,开口方向是__向上__,顶点坐标是__(-1,-5)__. 4.抛物线y =2(x -2)(x -3)与x 轴的交点坐标为__(2,0),(3,0)__.5.已知抛物线与x 轴的交点为(-1,0),(1,0),并且经过点(0,1),则抛物线的解析式为__y =-x 2+1__. 师生活动:学生自主解答上述问题,教师进行个别指导,然后进行点评和总结.所学知识,为学好本节课的新知识做好铺垫.活动 一: 创设 情境 导入 新课【课堂引入】图22-2-6问题:如图22-2-6所示,以40 m /s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m )与飞行时间t(单位:s )之间具有函数关系h =20t -5t 2.考虑以下问题:(1)球的飞行高度能否达到15 m ?如果能,需要飞行多长时间?(2)球的飞行高度能否达到20 m ?如果能,需要飞行多长时间?(3)球的飞行高度能否达到20.5 m ?为什么? (4)球从飞出到落地要用多长时间?师生活动:教师进行引导,飞行高度h 与飞行时间t 的解析式为h =20t -5t 2,所以将h 的值代入函数解析式,得到关于t 的一元二次方程即可求解. 让学生完成解答过程,教师巡视指导.从小球飞行问题中寻找一元二次方程与二次函数的关系,为学生能够积极主动投入到探索活动创设情境,激发学生的学习热情.活动 二: 实践 探究 交流 新知1.探究新知活动一:针对[课堂引入]的问题进行探究,教师总结解题过程:(1)解方程15=20t -5t 2,t 2-4t +3=0.t 1=1,t 2=3. 当球飞行1 s 和3 s 时,它的高度为15 m .(2)解方程20=20t -5t 2,t 2-4t +4=0.t 1=t 2=2. 当球飞行2 s 时,它的高度为20 m .(3)不能.理由:解方程20.5=20t -5t 2,t 2-4t +4.1=0. 因为16-4×4.1<0,所以此方程无解,所以球的飞行高度不能达到20.5 m .(4)解方程0=20t-5t2,t2-4t=0.t1=0,t2=4.当球飞行0 s和4 s时,高度均为0 m,即0 s时球从地面飞出,4 s时球落回地面,所以球从飞出到落地要用4 s.教师总结:把函数值代入函数解析式,得到关于自变量的一元二次方程,解方程即可得到自变量的值.(续表)活动二:实践探究交流新知活动二:画出二次函数h=20t-5t2的图象,体会以上问题的答案.问题提示:(1)教师引导学生利用列表、描点、连线的步骤进行画图;(2)教师巡视指导,与学生合作、交流;(3)教师引导学生观察函数图象,体会得到问题答案的过程;(4)学生小组讨论、交流、总结二次函数与一元二次方程的关系.活动三::图22-2-7思考二次函数①y=x2+x-2;②y=x2-6x+9;③y=x2-x+1.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?师生活动:教师展示二次函数的图象,如图22-2-7,学生观察图象,展开讨论,并回答问题.(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标分别是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴只有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.教师总结:一般地,如果二次函数y=ax2+bx+c的图象与x轴相交,那么交点的横坐标就是一元二次方程ax2+bx+c=0的根.2.归纳总结通过以上学生间、师生间的观察、交流、讨论,进行总结:一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此1.利用函数图象解决方程根的问题,让学生把方程与函数统一起来,体会数与形的结合带来的方便.2.设计活动三使学生掌握通过函数图象判断方程的根这一方法,并把方程与函数建立联系,促使学生能够积极主动地投入到探索活动中.x=x0就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,只有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.因为作图或观察时可能存在误差,所以由图象求得的根一般是近似的.(续表)活动二:实践探究交流新知3.提升归纳问题:(1)观察二次函数y=x2-6x+9的图象和y=x2-2x+3的图象,分别说出一元二次方程x2-6x+9=0和x2-2x+3=0的根的情况.(2)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?师生活动:师生共同讨论总结:当Δ>0时,方程有两个不相等的实数根,抛物线与x轴有两个交点;当Δ=0时,方程有两个相等的实数根,抛物线与x轴只有一个交点;当Δ<0时,方程没有实数根,抛物线与x轴没有交点.3.利用函数图象解决方程根的问题,让学生把方程与函数统一起来,体会数与形结合带来的方便.活动三:开放训练体现应用【应用举例】图22-2-8例1利用函数图象求一元二次方程x2-2x-2=0的实数根(精确到0.1).师生活动:教师引导学生做出函数图象,或求出抛物线与x轴的交点坐标,学生进行计算.解:作二次函数y=x2-2x-2的图象,如图22-2-8.它与x轴的公共点的横坐标x1≈-0.7,x2≈2.7,所以一元二次方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求一元二次方程的解,前一个课件用来画图,可根据图象估计出方程x2-2x-2=0的近似解,后一个课件可以准确地求出方程的解,体会其中的差异.通过课前设疑,激发学生的学习兴趣,运用所学知识,从不同的角度进行解答,既训练了学生一题多解的能力和思维的灵活性,又培养了学生深层次的思维能力.【拓展提升】例2已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在该抛物线上.师生活动:学生自主解答后,教师进行讲解,学生再次审题,完成对题目的重新整理.由抛物线与x轴的交点个数逆向求函数解析式的字母系数的取值范围,进一步提高学生对二次函数与一元二次方程关系的认识,提升学生灵活运用知识的能力.(续表)活动四:课堂总结反思【达标测评】1.二次函数y=x2-2x-3与x轴的交点坐标为__(3,0),(-1,0)__,两个交点间的距离为__4__.2.抛物线y=x2-2x-8与x轴有__2__个交点.3.若抛物线y=x2-4bx+4的顶点在x轴上,则b=__±1__.4.二次函数y=ax2+bx+c的值永远为负值的条件是(D)A.a>0,b2-4ac<0B.a<0,b2-4ac>0C.a>0,b2-4ac>0 D.a<0,b2-4ac<0学生进行当堂检测,完成后,教师进行批阅、点评、讲解.针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.1.课堂总结:谈一谈你在本节课中有哪些收获?有哪些进步?还有哪些困惑?教师总结:抛物线与x轴的交点问题有三种情况,分别是有两个交点、有一个交点、没有交点,主要判定方法可以通过计算相应一元二次方程根的判别式进行确定.2.布置作业:教材第47页习题22.2第5题.让学生养成自主归纳课堂重点的习惯,提高学生的学习能力.【知识网络】提纲挈领,重点突出【教学反思】①[授课流程反思]在探究新知的环节中,教师做好问题的求解和“数形结合”的对比演示,使学生能够理解“数”与“形”之间的关系;课堂训练环节中,教师给予学生自主解答问题的时间,教师做好点评.②[讲授效果反思]教师引导学生注意以下几点:(1)抛物线与坐标轴交点的求法,即把已知坐标代入;(2)抛物线与x轴交点个数可通过计算b2-4ac进行判断.③[师生互动反思]教学过程中,以学生为主体,通过学生自主探索和合作交流,真正理解和掌握二次函数与一元二次方程之间的关系.④[习题反思]好题题号错题题号反思教学过程和教师表现,进一步提升操作流程和自身素质.。