2017春九年级数学下册26.1.1反比例函数教案(新版)新人教版
- 格式:doc
- 大小:438.50 KB
- 文档页数:3
2017春九年级数学下册26.1 反比例函数教案1 (新版)新人教版编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春九年级数学下册26.1 反比例函数教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春九年级数学下册26.1 反比例函数教案1 (新版)新人教版的全部内容。
26.1反比例函数
【教学目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例
函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题
的习惯,体会数学在解决实际问题中的作用。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式。
【学习难点】反比例函数的解析式的确定.
【学法指导】自主、合作、探究。
人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。
这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。
但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。
三. 教学目标1.了解反比例函数的定义和性质。
2.能够绘制反比例函数的图象。
3.能够运用反比例函数解决实际问题。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的绘制。
五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。
2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。
3.结合实际例子,让学生感受反比例函数在生活中的应用。
六. 教学准备1.多媒体演示文稿。
2.数学软件。
3.实际例子和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。
2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。
同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。
3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。
同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。
5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。
26. 1. 1 反比例函数教学目标知识技能1.结合具体情境体会反比例函数的意义,丰富对函数、函数概念的认识和理解.2.能辨析一个函数是否为反比例函数,能根据已知条件确定反比例函数的解析式.数学思考与问题解决1.让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题.2.能运用类比思想方法,从实际问题中抽象概括出反比例函数的概念,进一步感受待定系数法,确定反比例函数的解析式,丰富认识和理解数学概念的基本思路和方法.情感态度经历反比例函数的形成过程,体验反比例函数也是描述变量间对应关系的重要数学模型,体会数学来源于生活,又服务于生活,培养学生良好的思考习惯和探索精神.重点难点重点:理解反比例函数的概念,确定反比例函数的解析式.难点:反比例函数意义的理解.教学设计活动一:创设情境在下列实际问题中,变量间的对应关系具有函数关系吗?请写出它们的解析式.1.小明以6 km/h 的速度步行上学,他与家的距离S(单位:km)随时间t(单位:h)的变化而变化.(S =6t ①)2.小明家距学校2 km ,他上学的步行速度v(单位:km/h)随时间t(单位:h)的变化而变化.(v =t 2②)思考:1.以上函数都是我们已学过的函数吗?它们有什么不同?2.完成教材第2页思考(1)~(3).答案:(1)v =t 1 463;(2)y =x 1 000;(3)S =n 1.68×104.3.上述②与(1)(2)(3)具有怎样的共同特点?能否用一个函数解析式把它们表示出来?设计意图:利用学生熟悉的实际问题引入,提高学生思考问题的主动性和解决问题的能力,调动学生的学习兴趣,培养学生的模型思想,通过对这些问题的探究、观察分析,结合与同学的交流合作,对比已学过的正比例函数,找出新函数的特点,把握反比例函数的特征,从而促成反比例函数概念的生成.活动二:生成概念归纳概括反比例函数的概念:一般地,形如________( )的函数,叫做反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是________.观察反比例函数的解析式,与正比例函数y =kx(k ≠0)比较,并思考:1.两者从形式上有何异同?反比例函数y =x k (k ≠0)中,自变量的次数是1吗?为什么?2.反比例函数y =x k (k ≠0)中常数k 的条件要求是什么?如何确定常数k?3.反比例函数y =x k (k ≠0)中,两个变量的取值范围是什么?4.反比例函数的解析式还有其他表达形式吗?5.你能举出生活中类似的例子吗?试一试:下列关系式中,y 是x 的反比例函数的是________.(1)y =x 1;(2)y =2x ;(3)y =x +19;(4)xy =6;(5)y =-5x 6;(6)y =x 2-1;(7)y =x -4;(8)y =7x -1.活动三:运用概念探究1:当a 取什么值时,函数y =(a -2)·x |a|-3是反比例函数? 分析:由反比例函数的意义可知成为反比例函数需满足两个条件:(1)常数k ≠0;(2)自变量x 的次数为-1.解:由题意得a -2≠0,|a|-3=-1,解得a =-2,即a =-2时,y =(a -2)x |a|-3是反比例函数.设计意图:掌握反比例函数的一般形式及其条件,特别是常数k ≠0这个条件,往往容易忽略,学生通过对此问题的探究分析,小组成员间的交流,针对出现a =2和a =-2两种结果展开讨论,进一步加深对反比例函数概念的理解.探究2:教材第3页例1.分析:类比求一次函数解析式的过程,显然要运用待定系数法,先设出解析式,再根据已知条件求出待定系数.变式:若反比例函数y=x k与一次函数y=x-3的图象都过点A(a,2).(1)求A点的坐标;(2)求该反比例函数的解析式.分析:因为点A(a,2)在一次函数图象上,所以可将A点坐标代入一次函数解析式,求得A点的坐标.反比例函数解析式中只有一个待定系数,因此运用待定系数法只需一个点的坐标就可求函数解析式.解:(1)将点A(a,2)的坐标代入y=x-3得2=a-3,解得a=5,所以A(5,2).(2)因为反比例函数y=x k的图象过点A(5,2),所以2=5k,解得k=10,所以y=x10.设计意图:这一环节主要是复习待定系数法,再次应用这种重要的数学方法由已知条件确定反比例函数解析式,由于反比例函数解析式中只有一个待定系数,所以只需找到满足函数解析式的一个点的坐标即可.活动四:基础练习教材第3页练习1,2,3.备选练习:1.张大叔预交了2 000元手机话费,则这些话费能够使用的时间y(单位:月)与平均每月话费x(单位:元)之间有怎样的函数关系?写出自变量的取值范围.若平均每月用125元,那么这些话费可以用多少时间?2.已知y 与x 2成反比例,且当x =3时,y =4.(1)写出y 关于x 的函数解析式;(2)当x =1.5时,求y 的值.3.已知函数y =y 1+y 2,y 1与x +2成正比例,y 2与x 成反比例,且当x =1时,y =0;当x =4时,y =9.当x =-1时,求y 的值.(答案:1.y =x 2 000(x>0),当x =125时,y =16;2.(1)y =x236;(2)当x =1.5时,y =16;3.当x =-1时,y =748.)活动五:课堂小结与作业布置课堂小结:1.什么是反比例函数,反比例函数的解析式有哪些形式?2.如何根据已知条件求反比例函数的解析式?作业布置:教材第8至9页第1,2,4,6,7题.补充:1.当m 取何值时,函数y =2x 2-m +m 2-4是y 关于x 的反比例函数?2.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5.(1)写出y 关于x 的函数解析式;(2)当x =-2时,求y 的值.(答案:1.m =-2;2.(1)y =2x +x 2;(2)当x =-2时,y =-5.)板书设计。
人教版数学九年级下册教学设计26.1.1《反比例函数》一. 教材分析人教版数学九年级下册第26.1.1节《反比例函数》是本册教材的重要内容之一,主要介绍了反比例函数的定义、性质及图象。
本节内容是在学生已经掌握了函数概念、正比例函数的基础上进行的,为后续学习比例函数、二次函数等奠定了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。
但学生在学习过程中,可能对反比例函数的定义和性质理解不够深入,对反比例函数图象的认识和应用能力有待提高。
因此,在教学过程中,要注重引导学生从实际问题中抽象出反比例函数模型,培养学生运用函数知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的定义,掌握反比例函数的性质,会画反比例函数的图象。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.反比例函数的定义及其性质。
2.反比例函数图象的特点及应用。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生感受到数学与生活的紧密联系。
2.启发式教学法:引导学生从实际问题中抽象出反比例函数模型,培养学生运用函数知识解决实际问题的能力。
3.小组合作学习:让学生在小组内讨论、探究,培养学生的团队协作精神。
六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。
2.教学素材:准备一些实际问题,用于引导学生从实际问题中抽象出反比例函数模型。
3.黑板、粉笔:用于板书反比例函数的重要性质和图象特点。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数,如已知正方形的面积为25平方厘米,求其边长。
引导学生从实际问题中抽象出反比例函数模型。
2.呈现(10分钟)呈现反比例函数的定义、性质及图象,让学生初步感知反比例函数的特点。
26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
26.1.1反比例函数、教学目标 1 .核心素养通过学习反比例函数的概念和性质,渗透模型思想,培养学生数学抽象能力.2.学习目标(1 )理解反比例函数的定义,弄清它的三种表达形式.(2)会判定哪些函数是反比例函数.(3)能够根据已知条件,确定反比例函数的解析式.(4)会用待定系数法求反比例函数的解析式.3.学习重点理解反比例函数的定义,会用待定系数法求反比例函数的解析式.4.学习难点反比例函数定义的灵活运用.二、教学设计(一)课前设计1 .预习任务任务1阅读教材P1- P3,思考:反比例函数的定义是什么?定义中的三个量应分别满足什么条件? 任务2k反比例函数定义中的y 可以有哪些变形?请写出变形后的式子.X2.预习自测1.下列函数是反比例函数的是().X A. y = __2B2.y=--XC.y=x *D.2 + 1y = —x2答案:B2.反比例函数yk的图象经过点(2, -6 ),X则k的值为()A. -12B.12C. -3 D . 3答案:A3•若反比例函数y =—过点(2, 3),则(x)必在这个函数的图象上A. (5, 1)2B. (3, — ) C . (-1 , 5)3D . (-1 , -6 )答案:D(二)课堂设计1•知识回顾(1)路程S、速度v、时间t满足S=vt,请写出它变形后的式子.(2)当一个人行走的路程S保持不变时,他的行走速度v和时间t之间有什么关系?(3)正比例函数的解析式y二kx中,比例系数k必须满足k = 0 .(4 )大家预习本课后,得到反比例函数的表达式是什么?它可以做哪些变形?2.问题探究问题探究一观察分析,引入新知•活动一创设情境,感受函数关系问题1:京沪线铁路全程为1463km,某次列车的平均速度v (单位:km/h)随此次列车的全程运行时间t (单位:h)的变化而变化.学生观察章前图,教师提出问题,引导学生分析路程、速度、时间三者的关系,并回答下列问题:(1 )平均速度v和时间t之间存在着怎样的关系?(2 )在这个问题中的“路程、速度、时间”三者中,谁是常量,谁是变量?(3)两个变量之间具有函数关系吗?试说明理由.(4)你能写出列车的平均速度v随此次列车的全程运行时间t的函数关系吗?•活动二整合旧知,感受反比例全程S为1463km保持不变,不同车次列车的运行时间t (单位:h)有长有短,它们的平均速度v (单位:km/h)也有快有慢.从比例的角度看,平均速度v随列车运行时间t的变化而变化,这个变化可用怎样的函数关系式表示?•活动三对比分析,构建反比例函数模型问题2:下列问题中,变量之间具有函数关系吗?如果有,它们的解析式有什么共同特点?(1 )某住宅小区要种植一个面积为900卅的矩形草坪,草坪的长y (单位:m随宽(单位:m的变化而变化;4 2 2(2)已知北京市总面积为1. 68 10 km,人均占有面积S (单位:km /人)随全市总人口n (单位:人)的变化而变化教师提出问题,学生小组讨论、交流,引导学生写出解析式,思考并解答下列问题:(1)在每个问题中,谁是常量,谁是变量?(2)两个变量之间具有函数关系吗?并说明理由.(3)它们的解析式有什么共同特点?问题探究二归纳概括,建立模型. 重点★•活动一归纳概括,准确描述概念问题3: (1)能否根据上面函数的共同特点写出这种函数的解析式?(2)归纳得到反比例函数的概念.k般地,形如y (k为常数,且k = 0 )的函数叫做反比例函数 . 其中x是自变x量,y是因变量,自变量x的取值范围是不等于0的一切实数.•活动二大胆变式,加深认识对于反比例函数的解析式ky = -(k为常数,且k式0 ),如果我们去掉分母,则可得到: xK A Axy二k .如果我们将y= —改写为y =k —,再将一改写为x‘,则反比例函数的解x x x析式可以表示为y二kx」.»k —也就是说,反比例函数有三种表达式,分别是:(1)y =仝;(2)y = kx~;(3)xy = k .但x无论哪种表达式,均要求k为常数,且k = 0 .k在反比例函数y (k为常数,且k = 0 )中,分母x 一定不等于0, k = 0,所以yx的值也一定不会为0.问题探究三辨析概念,体会运用. 重点★•活动一初步运用,理解定义例1下列哪些关系式中,y是x的反比例函数的是______________ (填序号)① y = 4x ;②;x2③y二x④y=4x 1 ;⑤ y = x2- 1;1⑥y 2 ;⑦xy =123⑧y =k x x【知识点:反比例函数的定义】答案:③⑦【点拨】:(1)反比例函数有三种表达形式:y = k、xy = k,以及y = kx‘ ; (2)任何x一种表达形式中,都要求常数k = 0 ••活动二注重细节,加深认识例2已知y =(m2• 2m)x m f亠是反比例函数,求m的值.【知识点:反比例函数的定义,解一元二次方程,解不等式】详解:••• ^(m22m)x m mJ是反比例函数m2m -1 =-1m22m = 01【点拨】:形如y = kx的反比例函数本身蕴含两个约束条件: k = 0•判别时,两个条件缺一不可.问题探究四解决问题,培养能力. |重点、难点知识•活动一用待定系数法求反比例函数的解析式例3 已知y是x的反比例函数,并且当x =2时,y =6.(1)写出y关于x的函数解析式;(2 )当x=4时,求y的值.【知识点:反比例函数的定义,待定系数法】k详解:设反比例函数的解析式为y = kxx=2 时,y =6 ••• k=12,即反比例函数的解析式为12.•.当x =4 时,y = =3(1) x的指数恒为-1 ; ( 2)12 y =x4【点拨】:求反比例函数的解析式用待定系数法.•活动二 拓展提高,挑战极限 例2已知函数 鸟二月1 y ,且y i 与x +1成反比例, 当 x =0 时,y =3 • (1 )求y 关于x 的之间的函数关系式; (2) 求自变量x 的取值范围;(3) 当x =-3和x =2时,函数y 的值分别是多少?【知识点:反比例函数,正比例函数,自变量的取值范围,待定系数法】kk 2详解:(1)设 y 1— , y 2 二 k 2x 2,则 y — - k ?xx+1x + 1由题意得:3舟,解得Kt3*0 k^23 3-y 关于x 的之间的函数关系式为 y =—— -x 2x + 1 2(2) x 的取值范围为X = -1 •(3)当 x =-3 时,y =12; 当 x =2 时,y =7 •【点拨】:(1)用待定系数法求函数解析式时, 如果一个题中涉及多个函数解析式, 一定不能设相同的待定系数,但可以用k 1、k 2进行区分;(2)必须看清当x 为某一个实数时,对应的是y 还是y 1,或者是丫2等其它变量. 3 •课堂总结 【知识梳理】k(1)形如y( k 为常数,且k = 0 )的函数叫做反比例函数x• 其中x 是自变量,y是因变量,自变量 x 的取值范围是不等于 0的一切实数.⑵反比例函数有三种表达式,分别是:(1) y = — ; (2) y = kx* ; ( 3) xy = k .但x无论哪种表达式,均要求 k 为常数,且k = 0 . (3) 求反比例函数解析式的方法主要是待定系数法.2y 2与x 成正比例,当x =i 时,y = 3 ;【重难点突破】(1)反比例函数中的待定系数k均不等于o;反比例函数中的两个变量都不等于0.⑵不能将反比例函数的定义理解为:y随x的增大而减小的函数叫做反比例函数.⑶ 求反比例函数的待定系数时,必须验证它的k值是否为0.如果k=0,则必须将它舍去.(4)同一个习题中,如果需要用多个待定系数,一定要注意区分.4.随堂检测1.下列y关于x的函数一定是反比例函数的是()A. y = k B24D. y -x .八x 1 C. 3y = xx答案:D解析:2.下列各选项中列举的两个变量之间的关系是反比例函数关系的是()A.矩形的面积S=ab中,当S是常量时,a与b之间的关系B.多边形的内角和与边数之间的关系C.圆的周长C与半径r之间的关系2 彳D.y 1中y与x之间的关系x答案:Ak223.若函数y =(k -1)x 是反比例函数,则k的值等于()A. _ 1 B . 1 C. -1 D. 、3答案:C4.已知y与-3x成反比例,x与z成正比例,则y是Z的()A.正比例函数 B .反比例函数 C .一次函数 D.不能确定答案:B5.某灯泡的使用寿命为800小时,它的可使用天数y与平均每天的使用小时数x之间的关系式为_______________________ .答案:y-800x解析:6. ________________________________________ 下列函数中,反比例函数是;这几个反比例函数相应的 _________________________________ k值分别是________________ .col I m CM。
反比例函数课题26.1.1 反比例函数授课类型新授课标依据结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
教学目标知识与技能会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.过程与方法通过对实际问题的分析、类比、归纳,培养分析问题的能力,并体会函数在实际问题中的应用.情感态度与价值观体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美.教学重点难点教学重点理解反比例函数的意义,确定反比例函数的解析式。
教学难点反比例函数的解析式的确定。
知识点学习目标媒体类型媒体内容要点教学作用使用方式所得结论占用时间媒体来源介绍知识目标图片 a g 拓展知识2分钟自制讲解过程与方法图片 a e 建立表象5分钟下载观看过程与方法图片 a e 帮助理解5分钟下载理解情感态度与价值观图片 a I 升华感情2分钟下载①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括.I讨论_交流_总结J其他教学师生活动设计意图过程设计一、情境导入现有一张一百元的人民币,如果把它换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?我们可以发现当面值由大变小的时候,张数会怎样变化?你知道什么没有变化?思考:y是不是x的函数?学生独立解答,并列出函数解析式。
回答思考,引入新课。
教师板书课题:26.1.1反比例函数的意义二、探究新知问题:在下列实际问题中,变量间的对应关系可用怎样的函数关系式表示?(见课件)教师提出问题,引导学生回答,师生互动。
第二十六章反比例函数随风潜入夜,润物细无声。
出自杜甫的《春夜喜雨》车前学校陈道锋26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为200m3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m3/h)的变化而变化;(2)某长方体的体积为1000cm3,长方体的高h(单位:cm)随底面积S (单位:cm2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强P随物体与地面的接触面积S的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y是x的反比例函数,当x=2 时,y = 6.(1) 写出y与x之间的函数解析式;(2) 当x=4时,求y的值.【分析】由于y是x的反比例函数,故可其表达式为y =kx,只须把x=2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明本例展示了确定反比例数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x ,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5=16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.【素材积累】1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
26.1.1反比例函数 教学设计 人教版九年级数学下册一、教学目标1.从现实情境和已知识经验出发,研究两个变量之间的相互关系,抽象出反比例函数的概念.2.能根据实际问题中的条件确定反比例函数的解析式,能结合具体情境体会反比例函数的意义,体会数学从实践中来又到实际中去的研究、应用过程,培养学生的观察能力,以及发现问题,解决问题的能力。
.3.掌握反比例函数解析式的特点,能够用待定系数法求出反比例函数的解析式,通过建立反比例函数模型解决实际问题过程中渗透建模思想二、教学重难点1. 教学重点用待定系数法求出反比例函数的解析式2. 教学难点能根据具体实际问题确定反比例函数的解析式三、教学过程(一)新课导入回顾旧识:1. 一般地,在一个变化的过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是因变量,y 是x 的函数。
(学生填写)2. 负整数指数幂:aa n 1=- 3.教师提问:我们以前学习过哪些函数?你能说出它们的一般形式吗?正比例函数(0)y kx k =≠一次函数(0)y kx b k =+≠二次函数2(0)y ax bx c a =++≠(二)探索新知思考:下列问题中,变量间具有函数关系吗?如果有,它们的解析式有什么共同特点?(1)问题1:京沪线铁路全程为1463km ,某次列车的平均速度v (单位:km/h )随此次列车的全程运行时间t (单位:h )的变化而变化;①平均速度v ,运行时间t 存在什么数量关系?②这两个变量间有函数关系吗?试说明理由.③你能写出v 关于t 的解析式吗?(2)问题2:某长方体的体积为 1000 cm 3,长方体的高 h (单位:cm )随底面积 S (单位:cm2)的变化而变化(3)问题3:一个物体重 100 N ,物体对地面的压强 p (单位:Pa )随物体与地面的接触面积 S (单位:m 2)的变化而变化sp s h t 100,1000,1463v === 上述解析式都具有k y x=的形式,其中k 是非零常数. 提问:类比一次函数、正比例函数的一般形式,你能根据特点给出反比例函数的定义及其一般形式吗?定义:一般地,形如(0)k y k k x=≠为常数,的函数,叫做反比例函数.其中x 是自变量,y 是函数.提问:反比例函数中,自变量x 和函数y 的取值范围分别是什么? 在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x 无意义,所以自变量x 的取值范围是不等于0的一切实数,函数y 的取值范围是不等于0的一切实数.提问:回顾以上问题的答案,想一下反比例函数的解析式还可以有哪些形式? 反比例函数的三种形式:①(0)k y k k x=≠为常数,;②(0)xy k k k =≠为常数,;③1(0)y kx k k -=≠为常数, .例 判断下列函数是不是反比例函数?若是,请指出k 的值13y x -= 是,k =3 3x y =- 不是 111y x =- 111k =-是, 31y x =- 不是 21y x= 不是 概念应用:1.当m= ________时,322-=m x y 是反比例函数2.当m =__±1___时,22m y x-=是反比例函数. 3.已知函数(2)(1)k k y x-+=是反比例函数,则k 必须满足2 1.k k ≠≠-且 例1 已知 y 是 x 的反比例函数,并且当 x=2 时,y =6.(1)写出 y 关于 x 的函数解析式;(2)当 x =4 时,求 y 的值.分析:因为y 是x 的反比例函数,所以设k y x =.把x =2和y =6代入上式,就可以求出常数k 的值.解:(1)设k y x =.因为当x =2时,y =6,所以有62k =. 解得k =12. 因此12.y x= (2)把x =4代入12,y x =得12 3.4y == 方法总结:用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式;②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出反比例函数解析式.课堂练习:1.计划修铁路l (km ),铺轨天数为t (d ),每日铺轨量为s (km/d ),则在下列三个结论中,正确的是( )①当l 一定时,t 是s 的反比例函数;②当t 一定时,l 是s 的反比例函数;③当s 一定时,l 是t 的反比例函数.A.仅①B.仅②C.仅③D.①②③2.点(2,4)-在反比例函数k y x =的图像上,则下列各点在此函数图像上的是( ) A.(2,4) B.(4,2) C.(2,4)- D.()2,4--3.在下列函数:①,②y x =,③,④11y x =+中,反比例函数有( ) A.0个 B.1个 C.2个 D.3个4.下列各问题中,两个变量之间的关系不是反比例函数的是( )A.小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m/s )之间的关系B.菱形的面积为48,它的两条对角线的长y (cm )与x (cm )之间的关系C.一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的密度ρ之间的关系D.压力为600N 时,压强p 与受力面积S 之间的关系5.已知y 是x 的反比例函数,下面给出了x ,y 的一些数值:(1)写出这个函数的解析式;2y x =1y x -=2cm(2)根据解析式完成上表.(三)小结作业小结:本节课我们主要学习了哪些内容?1.本节课主要学习了反比例函数的哪些知识?如何获得反比例函数的概念?2.反比例函数解析式三种形式分别是什么?自变量和函数的取值范围是什么?3.如何根据已知条件求反比例函数的解析式?作业:四、板书设计:。
人教版九年级数学下册:26.1.1《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是学生在学习了正比例函数之后,进一步探索函数的性质和应用。
本节内容通过引入反比例函数的概念,让学生理解反比例函数的定义、性质及其在实际生活中的应用。
教材通过丰富的例题和练习,帮助学生掌握反比例函数的图象和解析式,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。
但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例,引导学生理解反比例函数的定义和性质。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.学会反比例函数的解析式,并能灵活运用。
3.提高解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数的解析式的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探索反比例函数的性质;以实际案例为例,让学生理解反比例函数的应用;小组讨论,培养学生的合作精神和数学思维。
六. 教学准备1.准备相关的案例和实际问题。
2.准备反比例函数的图象和解析式的资料。
3.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过提问方式复习正比例函数的知识,然后引导学生思考:如果两个量的乘积为定值,这两个量之间是什么关系?从而引出反比例函数的概念。
2.呈现(15分钟)呈现反比例函数的定义和性质,让学生初步了解反比例函数的概念。
通过展示反比例函数的图象,让学生直观地感受反比例函数的性质。
3.操练(15分钟)让学生分组讨论,根据反比例函数的性质,找出实际生活中的反比例关系。
每组选取一个实例,并用反比例函数的解析式表示。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对反比例函数的理解和运用。
26.1.1反比例函数教案1. 仔细审题,完成下面填空:(1)京沪线铁路全长1463km,某次列车的平均速度v •随此次列车的全程运行时间t 的变化而变化,其关系可用函数式表示为:(2)某住宅小区要种植一个面积为1 000 m2矩形草坪,草坪的长y随宽x 的变化而变化,其关系可用函数式表示为(3) 已知北京市的总面积为1.68×104km2,人均占有的土地面积S km2/人,随全市总人口n人的变化而变化,其关系可用函数式表示为.2、合作探究分析:上述问题中的函数关系式都是y=的形式,其中k为常数.归纳:一般地,形如y=(k为常数,且k•≠0)•的函数称为。
注:在y=中,自变量x是分式的分母,当x=0时,分式无意义,所以x•的取值范围.3、反比例函数的变形形式:新课标第一网(1) xy=k; (2) y=kx-1.四、【教后反思】在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标。
这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.本节教案旨在实行启发式教学,主要以学生的自主探究为主,教师以问题的形式形成主导作用。
重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实,注重数学思想方法的渗透.26.1.2反比例函数的图像和性质(1)一、【教材分析】二、【教学流程】1.函数x y 20=的图象在第________象限, 在每一象限内,y 随x 的增大而_________.2.函数x y 30-= 的图象在第________象限, 在每一象限内,y 随x 的增大而_________. 3.函数 x πy = ,当x >0时,图象在第____象限, y 随x 的增大而_________. 4.1000米长跑比赛中,速度h 关于时间t 的函数的图象大致是( ) .5.当0>k 时,函数kx y =与x k y -=在同一坐标系的大致图像是( ).6.在平面直角坐标系中,反比例函数xa a y 22+-=图象的两个分支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 7.如图k >0能表示在同一坐标系中的大致图像的是( )Y y y y XxxxA B C D1.抛物线y =ax 2+bx +c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数xc b a y ++=在同一坐标系内的图像大致为( )2.若)>(0k xky =当x=-3,-2,-1时值为y y y 321,,小刚说y y y 321<<,你同意他的观点吗?说明理由.三、【板书设计】四、【教后反思】反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用. 课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。
人教版九年级数学下册:26.1.1《反比例函数》教学设计3一. 教材分析《人教版九年级数学下册:26.1.1》是九年级数学的重要内容,是学生学习函数知识的最后一部分,也是学生对函数知识的深化和拓展。
本节课主要介绍了反比例函数的定义、性质及其图象。
通过本节课的学习,使学生能理解反比例函数的概念,掌握反比例函数的性质,会画反比例函数的图象,为后续学习打下基础。
二. 学情分析九年级的学生已经学习了正比例函数和一次函数,对函数的概念和性质有一定的了解。
但反比例函数与正比例函数和一次函数有很大的不同,学生可能难以理解和接受。
因此,在教学过程中,要注重引导学生通过已学的正比例函数和一次函数的知识来理解和掌握反比例函数的知识。
三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的性质,会画反比例函数的图象。
2.过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质。
3.情感态度与价值观:培养学生的团队合作意识,激发学生对数学的兴趣。
四. 教学重难点1.重点:反比例函数的概念、性质和图象。
2.难点:反比例函数的性质的理解和应用。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生能更好地理解和接受。
2.合作学习法:引导学生分组讨论,培养学生的团队合作意识。
3.启发式教学法:引导学生通过观察、分析、归纳等方法,自主探索反比例函数的性质。
六. 教学准备1.准备反比例函数的生活实例和图片,用于导入和呈现。
2.准备反比例函数的性质和图象的PPT,用于讲解和展示。
3.准备一些反比例函数的练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,如“汽车以60公里/小时的速度行驶,行驶1小时,行驶的距离是多少?”引导学生思考,引出反比例函数的概念。
2.呈现(10分钟)利用PPT呈现反比例函数的性质和图象,引导学生观察和分析,通过已学的正比例函数和一次函数的知识来理解和掌握反比例函数的知识。
26.1.1 反比例函数教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十六章“反比例函数”26.1.1 反比例函数,内容包括:从实例中归纳出反比例函数的概念及反比例函数的辨析.2.内容解析教材中本课时的主要内容是通过对三个实际问题列方程,得到三个不同于以前学过的函数解析式,给学生以疑问.让学生通过观察、探究与归纳,得到反比例函数的概念.本节内容体现了由特殊到一般、数学建模、从具体到抽象以及分类讨论等思想方法.这样安排的目的有两个,一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学理念,体会数学就在我们身边的道理;二是从简单的实际问题入手,激发学生学习数学的兴趣.基于以上分析,确定本节课的教学重点是:理解反比例函数的概念.二、目标和目标解析1.目标1.理解反比例函数的概念;2.根据题目条件会求对应量的值,能用待定系数法求反比例函数的关系式.3.能利用反比例函数的意义分析简单的问题.2.目标解析达成目标1)的标志是:理解反比例函数的概念,需要注意的地方是自变量x的取值范围是不等于0的一切实数,及会判别反比例函数.达成目标2)的标志是:用待定系数法求反比例函数的关系式.达成目标3)的标志是:能利用反比例函数的意义分析简单的问题.三、教学问题诊断分析学生在思考1)v=1463t 2)y=1000x3)S=1.68×104n的共同特征时,发现函数的特征不容易统一,所以引导学生找解析式中变量和常量的位置,这三个解析式结构都是:变量= 常量变量,进而得出反比例函数的概念.基于以上分析,本节课的教学难点是:从实例中归纳出反比例函数的概念及反比例函数的辨析.四、教学过程设计(一)复习巩固【提问一】什么是正比例函数?【提问二】什么是一次函数?【提问三】什么是二次函数?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习反比例函数打好基础.(二)探究新知下列问题中两个变量间具有函数关系吗?如果有,请直接写出解析式.[情景一]京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.[情景二]某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.[情景三]已知北京市的总面积为1.68×104 km2 ,人均占有面积S(单位:km2 /人)随全市总人口n (单位:人)的变化而变化.师生活动:学生积极回答问题.【设计意图】以学生比较熟知的,贴近学生生活的例子引入课题,一方面可以提高学生的兴趣,另一方面可以降低学生理解的难度.【问题一】观察以下三个解析式,你发现了什么?1)v=1463t 2)y=1000x3)S=1.68×104n师生活动:先由学生尝试回答,之后由教师引导学生共同归纳:这三个解析式结构都是:变量= 常量变量,从而归纳得出反比例函数的概念:一般地,形如y= kx(k为常数,且k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.【提问】请说出自变量x的取值范围?师生活动:学生观察反比例函数解析式的结构,得出自变量x的取值范围是不等于0的一切实数.【提问】尝试说出反比例函数的等价变形形式?师生活动:学生观察反比例函数解析式的结构,得出:y= kx⇔ y=kx-1⇔ k=xy(x≠0)⇔y是x的反比例函数.【设计意图】让学生经历合作探究过程,通过观察、发现、归纳,理解反比例函数的概念.再通过提问环节,引导学生初步思考、回顾已有的知识,主动参与到本节课的学习中来.(三)典例分析与针对训练例1 判断下列函数是不是反比例函数,如果是请指出比例系数.【针对训练】1.下列函数中哪些是反比例函数?哪些是一次函数?①y=3x-1 ①y = 2x ①y= 32x ① y= −1x① y= x2①-xy=2 ①y=6x-12. 已知反比例函数的解析式为y=|a|−2x,则a的取值范围是() A.a≠2B.a≠−2C.a≠±2D.a=±2【设计意图】考查学生对反比例函数概念的掌握.例2 若函数①=(m+1)x|m|﹣2是反比例函数,则①=()A.±1B.±3C.﹣1D.1【针对训练】1.函数y=(m﹣1)x m2−m−1是反比例函数,求m的值.例3 已知y是x的反比例函数,当x=2时,y=6.1)写出y与x的函数关系式;2)求当x=4时,y的值.【针对训练】1. 已知y与x2 成反比例,且当x=3时,y=4.1)写出y关于x的函数解析式;2)当x=1.5时,求y的值;3)当y= 6时,求x的值.2. y是x的反比例函数,下表给出了x与y的一些值1)写出这个反比例函数的解析式.2)根据函数表达式完成上表.【问题二】简述利用待定系数法求反比例函数解析式的具体方法?【设计意图】考查学生对利用待定系数法求反比例函数解析式的掌握.例4 矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【针对训练】1. 直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为_________.2. 已知菱形的面积是12cm2,菱形的两条对角线长分别为x和y,则y与x之间的函数关系是________________.3.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式_____.【设计意图】考查学生利用反比例函数描述数量关系的能力.例5 反比例函数y=k+1x的图象经过点(﹣1,2),则k=_____.【针对训练】1 已知反比例函数y= kx(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6)B.(-1,-12)C.(0.5,24)D.(-3,8)【设计意图】考查学生对求反比例函数系数的掌握.(四)能力提升1. 已知反比例函数的解析式为y=√2k−1x,则最小整数k=______.2. 当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?【设计意图】考查学生对求反比例函数概念的掌握.(五)直击中考1.(2020·广西贺州·统考中考真题)在反比例函数y=2x中,当x=−1时,y的值为()A.2B.−2C.12D.−122.(2023·重庆·统考中考真题)反比例函数y=−4x的图象一定经过的点是()A.(1,4)B.(−1,−4)C.(−2,2)D.(2,2)3.(2022·黑龙江哈尔滨·统考中考真题)已知反比例函数y=−6的图象经过点(4,a),则a的值x为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.你知道反比例函数的三种形式吗?3.简述利用待定系数法求反比例函数解析式的具体方法?(七)布置作业P3:练习第1题、第2题.五、教学反思。
《26.1.1反比例函数》教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
这些数学学科素养既相对独立,又互相交融,是一个有机的整体。
核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。
教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。
课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。
设计思路说明:反比例函数是在学习了一次函数和二次函数的基础上的教学内容,大部分学生已经获得学习函数的一般方法和思路,作为起始课,肯定也是由实际问题开始引入,抽象归纳出概念,再对概念进行辨析理解,而后运用概念解决问题。
第一环节“观察分析,导入新知”,类比一次函数和二次函数的引入,用教材的思考栏目的实际问题,引导学生分析得出每个问题中变量之间的关系式;第二环节“联系归纳,建立模型”,通过问题2和追问,层层设问引导学生抽象出反比例函数的一般表达式,再从表达式的变形和问题1中的实际问题中提炼出新函数中的两个变量是成反比例关系的,从而命名“反比例函数”,最后归纳完善概念;第三环节“辨析概念,体会运用”,问题3各种函数形式的给出让学生进行判断,强化反比例函数的概念,也强化反比例函数中的两个变量乘积为定值的基本特征,问题4对比正比例函数,让学生从解析式上对成正比例和反比例的两个变量进行对比分析,加强对反比例函数的认识;第四环节“运用新知,培养能力”,例题的分析讲解给学生用反比例函数解决问题做了示范和归纳,问题5是例题的变式,也是对学生运用反比例函数解决问题的能力的提升,需要用到“整体意识”。
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
1.理解反比例函数的概念;(难点)
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式;(重点) 3.能根据实际问题中的条件建立反比例函数模型.(重点)
一、情境导入
1.京广高铁全程为2298km ,某次列车的平均速度v (单位:km/h)与此次列车的全程运行时间t (单位:h)有什么样的等量关系?
2.冷冻一个物体,使它的温度从20℃下降到零下100℃,每分钟平均变化的温度T (单位:℃)与冷冻时间t (单位:min)有什么样的等量关系?
问题:这些关系式有什么共同点? 二、合作探究
探究点一:反比例函数的定义 【类型一】 反比例函数的识别
下列函数中:①y =
3
2x ;②3xy =1;③y =1-2x ;④y =x
2
.反比例函数有( ) A .1个 B .2个 C .3个 D .4个
解析:①y =
3
2x 是反比例函数,正确;②3xy =1可化为y =1
3x ,是反比例函数,正确;③y =1-2x 是反比例函数,正确;④y =x
2
是正比例函数,错误.故选C.
方法总结:判断一个函数是否是反比例函数,首先要看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断,其形式为y =k
x
(k 为常数,k ≠0),y =kx -1
(k 为常数,k ≠0)或xy =k (k 为常数,k ≠0).
变式训练:见《学练优》本课时练习“课堂达标训练”第3题 【类型二】 根据反比例函数的定义确定字母的值
已知函数y =(2m 2+m -1)x 2m 2
+3m -3是反比例函数,求m 的值.
解析:由反比例函数的定义可得 2m 2+3m -3=-1,2m 2
+m -1≠0,然后求解即可.
解:∵y =(2m 2
+m -1)x 2m 2
+3m -3是反比例函数,∴⎩
⎪⎨⎪⎧2m 2
+3m -3=-1,
2m 2+m -1≠0,解得m =-2.
方法总结:反比例函数也可以写成y =kx -1
(k ≠0)的形式,注意x 的次数为-1,系数不等于0.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题 探究点二:用待定系数法确定反比例函数解析式 【类型一】 确定反比例函数解析式
已知变量y 与x 成反比例,且当x =2时,y =-6.求:
(1)y 与x 之间的函数解析式; (2)当y =2时,x 的值.
解析:(1)由题意中变量y 与x 成反比例,设出函数的解析式,利用待定系数法进行求解.(2)代入求得的函数解析式,解得x 的值即可.
解:(1)∵变量y 与x 成反比例,∴设y =k x
(k ≠0),∵当x =2时,y =-6,∴k =2×(-6)=-12,∴y 与x 之间的函数解析式是y =-12x
;
(2)当y =2时,y =-12
x
=2,解得x =-6.
方法总结:用待定系数法求反比例函数解析式时要注意:①设出含有待定系数的反比例函数解析式,形如y =k
x
(k 为常数,k ≠0);②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出解析式.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型二】 解决与正比例函数和反比例函数有关的问题
已知y =y
1+y 2,y 1与(x -1)成正比例,y 2与(x +1)成反比例,当x =0时,y =-3;
当x =1时,y =-1.求:
(1)y 关于x 的关系式;
(2)当x =-1
2
时,y 的值.
解析:根据正比例函数和反比例函数的定义得到y 1,y 2的关系式,进而得到y 的关系式,把所给两组数据代入即可求出相应的比例系数,也就求得了所要求的关系式.
解:(1)∵y 1与(x -1)成正比例,y 2与(x +1)成反比例,∴设y 1=k 1(x -1)(k 1≠0),y 2=
k 2x +1(k 2≠0),∵y =y 1+y 2,∴y =k 1(x -1)+k 2
x +1
.当x =0时,y =-3;当x =1时,y =-1,∴⎩
⎪⎨⎪⎧-3=-k 1+k 2,-1=1
2k 2,∴k 1=1,k 2=-2,∴y =x -1-2
x +1; (2)把x =-12代入(1)中函数关系式得y =-11
2
.
方法总结:能根据题意设出y 1,y 2的函数关系式并用待定系数法求得等量关系是解答此
题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题 探究点三:建立反比例函数模型及其相关问题
写出下列问题中两个变量之间的函数表达式,并判断其是否为反比例函数.
(1)底边为3cm 的三角形的面积y cm 2
随底边上的高x cm 的变化而变化;
(2)一艘轮船从相距s km 的甲地驶往乙地,轮船的速度v km/h 与航行时间t h 的关系; (3)在检修100m 长的管道时,每天能完成10m ,剩下的未检修的管道长y m 随检修天数x 的变化而变化.
解析:根据题意先对每一问题列出函数关系式,再根据反比例函数的定义判断其是否为反比例函数.
解:(1)两个变量之间的函数表达式为:y =3
2x ,不是反比例函数;
(2)两个变量之间的函数表达式为:v =s t
,是反比例函数;
(3)两个变量之间的函数表达式为:y =100-10x ,不是反比例函数.
方法总结:解决本题的关键是根据实际问题中的等量关系,列出函数解析式,然后根据解析式的特点判断是什么函数.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题 三、板书设计
1.反比例函数的定义:
形如y =k x
(k 为常数,k ≠0)的函数称为反比例函数.其中x 是自变量,自变量x 的取值范围是不等于0的一切实数.
2.反比例函数的形式:
(1)y =k x
(k 为常数,k ≠0);
(2)xy =k (k 为常数,k ≠0);
(3)y =kx -1
(k 为常数,k ≠0).
3.确定反比例函数的解析式:待定系数法. 4.建立反比例函数模型.
让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景.因为反比例函数这一部分内容与正比例函数相似,在教学过程中,以学生学习的正比例函数为基础,在学生之间创设相互交流、相互合作、相互帮助的关系,让学生通过充分讨论交流后得出它们的相同点,在此基础上来揭示反比例函数的意义.。