New estimates of double trigonometric sums with exponential functions
- 格式:pdf
- 大小:124.54 KB
- 文档页数:10
第43卷第3期西南大学学报(自然科学版)2021年3月V o l.43 N o.3J o u r n a l o f S o u t h w e s t U n i v e r s i t y(N a t u r a l S c i e n c e E d i t i o n)M a r. 2021D O I:10.13718/j.c n k i.x d z k.2021.03.011双s i n e-G o r d o n方程的新精确解及其应用林府标,张千宏贵州财经大学数统学院,贵阳550025摘要:首先利用试探函数法结合初等积分方法给出了双s i n e-G o r d o n方程的许多新显式精确解.其次采用这些新显式精确解构造了一种求非线性偏微分方程的双s i n e-G o r d o n方法.最后给出了双s i n e-G o r d o n方法的一些具体应用例子.关键词:双s i n e-G o r d o n方程;试探函数法;双s i n e-G o r d o n方法;精确解;应用中图分类号:O175.14;O175.29文献标志码:A文章编号:16739868(2021)03007408双s i n e-G o r d o n方程u x t=s i n u+s i n2u(1)在物理学和工程等领域有广泛的应用[1-10].虽然已经有很多解析求解非线性偏微分方程的理论和方法[3-16],但求解非线性偏微分方程没有统一而普遍适用的途径,而且许多非线性偏微分方程至今都还没有找到精确解.因此,继续探求行之有效的新解析求解方法并给出非线性偏微分方程的新精确解仍然是一项有实际价值和意义的工作.在前人工作的基础上,首先利用试探函数法找到了文献[3-8]中并没有给出的方程(1)的许多新显式精确解,然后运用初等积分方法结合这些新精确解进一步找到了方程(1)的更多新显式精确解.其次利用这些新显式精确解和方程(1)的简化方程构造了双s i n e-G o r d o n方法.最后采用方程(1)的新显式精确解结合双s i n e-G o r d o n方法探求B u r g e r s,K d V和B B M方程的新显式行波解.1试探函数法试探函数法[11-12,14]的核心思想是巧妙地运用某些初等函数作为非线性偏微分方程解的试探函数,从而可以获得这些方程的显式精确解.假设u(x,t)=f(ξ),ξ=x-αt,αɪR是方程(1)的解,则函数f=f(ξ)满足方程αfᵡ+s i n f+s i n2f=0(2)利用试探函数法假设方程(2)的精确解的表达式为f(ξ)=ʃ2a r c t a n[v(ξ)]通过计算可得收稿日期:20190523基金项目:国家自然科学基金项目(11761018);贵州省科技厅科学技术基金项目([2020]1Y008);贵州省教育厅创新群体项目(黔教合K Y字[2021]015).作者简介:林府标,副教授,博士,主要从事微分方程的解法研究.通信作者:张千宏,教授,博士.f ᵡ=ʃ2v ᵡ(1+v 2)-2v v '2(1+v 2)2s i n f =ʃ2v 1+v 2 s i n 2f =ʃ22v (1-v 2)(1+v 2)2于是约化方程(2)变成αv ᵡ(1+v 2)-2αv v '2+3v -v 3=0(3)依据试探函数法的基本思想,假设方程(3)的显式精确解可写成v =v 0+a +b w 2c +d w,w =e kξ,v 0,a ,b ,c ,d ,k ɪR通过计算可得v '=b d k w 3+2b c k w2(c +d w )2v ᵡ=b d 2k 2w 4+3b c d k 2w 3+4b c 2k 2w 2(c +d w )3把v ,v ',v ᵡ的表达式代入方程(3),计算整理得关于w 的多项式函数方程,分别令w j (j =0,1, ,8)的系数为零,得到关于待定参数v 0,a ,b ,c ,d ,α,k 的非线性代数方程组b 3d 2(αk 2+1)=0,b 2d (5αbc k 2+2b c +3d 2v 0)=0b (5αa b d 2k 2-3a b d 2-4αb 2c 2k 2-2αb cd 2k 2v 0+αd 4k 2v 02+αd 4k 2-b 2c 2-9b c d 2v 0-3d 4v 02+3d 4)=0d (5αa b 2c k 2+8αa b d 2k 2v 0-6a b 2c -6a b d 2v 0-2αb 2c 2k 2v 0+5αb c d 2k 2v 02+5αb c d 2k 2-9b 2c 2v 0-12b c d 2v 02+12b c d 2-d 4v 03+3d 4v 0)=05αa 2b d 2k 2-3a 2b d 2+20αa b c d 2k 2v 0+αa d 4k 2v 02+αa d 4k 2-3a b 2c 2-18a b c d 2v 0-3a d 4v 02+3a d 4+11αb c 2d 2k 2v 02+11αb c 2d 2k 2-3b 2c 3v 0-18b c 2d 2v 02+18b c 2d 2-5c d 4v 03+15c d 4v 0=0d (9αa 2b c k 2-6a 2b c -3a 2d 2v 0+20αa b c 2k 2v 0+αa c d 2k 2v 02+αa c d 2k 2-18a b c 2v 0-12a c d 2v 02+12a c d 2+11αb c 3k 2v 02+11αb c 3k 2-12b c 3v 02+12b c 3-10c 2d 2v 03+30c 2d 2v 0)=04αa 2b c 2k 2-αa 3d 2k 2-2αa 2c d 2k 2v 0-3a 2b c 2-9a 2c d 2v 0+8αa b c 3k 2v 0-αa c 2d 2k 2v 02-αa c 2d 2k 2-6a b c 3v 0-18a c 2d 2v 02+18a c 2d 2+4αb c 4k 2v 02+4αb c 4k 2-3b c 4v 02+3b c 4-10c 3d 2v 03+30c 3d 2v 0-a 3d 2=0c d (-αa 3k 2-2a 3-2αa 2c k 2v 0-9a 2c v 0-αa c 2k 2v 02-αa c 2k 2-12a c 2v 02+12a c 2-5c 3v 03+15c 3v 0)=0c 2(-a 3-3a 2c v 0-3a c 2v 02+3a c 2-c 3v 03+3c 3v 0)=0(4)利用软件M a t l a b 结合吴消元法,可求得方程组(4)的一组解为v 0=0,c =0,α=-1k2,d =ʃ2a b ,a b >0.因此,方程(3)的精确解可写成v =ʃa +b w 22a b w,w =e kξ,ξ=x +1k 2t ,a b >0所以方程(1)的行波解和方程(2)的精确解为u (x ,t )=f (ξ)=ʃ2a r c t a n [v (ξ)],v =a +b w 22a b w,w =e kξ,ξ=x +1k 2t ,a b >0(5)特别地若取a =b =1,则方程(1)的行波解和方程(2)的精确解的表达式为u (x ,t )=f (ξ)=ʃ2a r c t a n [c o s h (k ξ)],ξ=x +1k2t (6)57第3期 林府标,等:双s i n e -G o r d o n 方程的新精确解及其应用类似地,利用试探函数法可求得方程(3)的精确解为v =ʃ2-3a b w a +b w 2,w =e k ξ,ξ=x +3k2t ,a b <0因此,方程(1)的行波解和方程(2)的精确解为u (x ,t )=f (ξ)=ʃ2a r c t a n [v (ξ)],v =2-3a b w a +b w 2,w =e kξ,ξ=x +3k2t ,a b <0(7)特别地若取a =-1,b =1,则方程(1)的行波解和方程(2)的精确解的表达式为u (x ,t )=f (ξ)=ʃ2a r c t a n [3c s c h (k ξ)],ξ=x +3k2t (8)文献[3-8]没有给出方程(1)的显式行波解(5)-(8).2 初等积分方法若令变换f =2ω,即ω=12f (ξ),ξ=x -αt ,α为常数,则约化方程(2)转化成d 2ωd ξ2=-1α(s i n ωc o s ω+s i n 2ωc o s 2ω)(9)在方程(9)两边同时乘以2ω',可得α((ω')2)'=-(s i n 2ω)'-12(s i n 22ω)'然后两边同时关于ξ积分一次,记积分常数为c ,于是有d ωd ξ2=1α(2s i n 4ω-3s i n 2ω+c ),c ɪR (10) 1)若取c =1,α<0,ε=ʃ1,则方程(10)变成d ωd ξ=ε1αc o s 2ωc o s 2ω(11)取α=-1k2,易验证方程(11)的精确解为ω=12f (ξ),ξ=x +1k2t (12)其中f =f (ξ)见(5)式.2)若取c =0,α<0,ε=ʃ1,则方程(10)变成d ωd ξ=ε-αs i n ω3-2s i n 2ω(13)取α=-3k2,易验证方程(13)的精确解为ω=12f (ξ),ξ=x +3k2t (14)其中f =f (ξ)见(7)式.3)若取c =98,α>0,ε=ʃ1,则方程(10)变成d ωd ξ=ε2αs i n 2ω-34(15)作三角函数代换,若令 =t a n ω2,即ω=2a r c t a n ,s i n ω=21+2,则通过分离变量可求出方程(15)的一67西南大学学报(自然科学版) h t t p ://x b b jb .s w u .e d u .c n 第43卷般解为ω=2a r c t a n ( j (ξ)) j =1,2(16)其中: 1=φ+1+2φ2-φ+13(φ-1), 2=φ+1-2φ2-φ+13(φ-1),φ=λe ε32αξ,λɪR ,ε=ʃ1.从而利用(16)式与 j (j =1,2)的关系式和三角函数恒等式,可得t a n ω=2 j 1- 2j s i n ω=2 j1+ 2j c o s ω=1- 2j1+ 2jj =1,2(17)因此,方程(1)的显式行波解和方程(2)的显式精确解的表达式为u (x ,t )=f (ξ)=4a r c t a n ( j (ξ)) j =1,2(18) 1=φ+1+2φ2-φ+13(φ-1) 2=φ+1-2φ2-φ+13(φ-1)φ=λe ε32αξ,ξ=x -αt ,α>0,λɪR ,ε=ʃ1 4)若取c =1,α=1,ε=ʃ1,则方程(10)变成d ωd ξ=εc o s ωc o s 2ω(19) 注意到通过分离变量,方程(19)可改写成d s i n ω(1-s i n 2ω)1-2s i n 2ω=εd ξ若令变换s =c o t 2ω-1,则该方程变成d s1+s2=εd ξ两边同时积分得方程(19)的一般解为ω=a r c c o t [ʃs e c (ξ+λ)],λɪR (20)从而方程(1)的行波解和方程(2)的显式精确解的表达式为u (x ,t )=f (ξ)=2a r c c o t [ʃs e c (ξ+λ)],ξ=x -t ,λɪR (21)文献[3-8]没有给出方程(1)的显式行波解(18)和(21).3 双s i n e -G o r d o n 方法的求解步骤方程(11),(13),(15)和(19)是双s i n e -G o r d o n 方程(1)和约化方程(2)的另一种被简化的变换形式,其对应的显式精确解分别为(12),(14),(16)和(20).作为一种应用,这些变换方程及其相应的显式精确解可用来求解非线性偏微分方程F (u ,u t ,u x ,u x t ,u t t ,u x x , )=0(22) 第一步:对变量x 和t 作行波变换,令ξ=x -αt ,其中α为常数,表示波速.假设u (x ,t )=v (ξ),ξ=x -αt 为方程(22)的解,于是方程(22)可转化为关于v =v (ξ)的常微分方程F (v ,-αv ',v ',-αv ᵡ,α2v ᵡ,v ᵡ, )=0(23) 第二步:假设方程(23)的精确解的表达式可写成以下3种形式中的一种v (ξ)=ðn i =0a i s i n i[ω(ξ)] v (ξ)=ðn i =0a i c o s i[ω(ξ)] v (ξ)=ðni =0a i t a n i [ω(ξ)](24)其中α,a 0, ,a n 是待定的未知实参数,ω=ω(ξ)满足方程(11)或(13)或(15)或(19),n 是正整数,可采用齐次平衡原理,通过平衡方程(22)中的非线性项和最高阶导数项而得到.第三步:把表达式(24)代入方程(22)中,利用软件M a t l a b 或M a t h e m a t i c a 计算,可得到关于s i n iω,77第3期 林府标,等:双s i n e -G o r d o n 方程的新精确解及其应用s i n iωc o s jω,c o s iω(i ,j =0,1, )的多项式.然后令多项式的各项系数为零,则进一步可获得关于待求实参数α,a 0, ,a n 的代数方程组.第四步:确定常数α,a 0, ,a n 后,将方程(11)或(13)或(15)或(19)的对应解代入(24)式,即可获得非线性偏微分方程(22)的新精确解.4 B u r ge r s 方程的新行波解双s i n e -G o r d o n 方法(24)与广义T a n h 函数法[9-10]的基本思想类似,但有时又比广义T a n h 函数法更简洁,且能找到方程(22)的新精确解.下面用双s i n e -G o r d o n 方法(24)求解B u r ge r s 方程u t +u u x -βu x x =0,β>0(25)这里β是耗散系数,方程(25)的背景和其它应用介绍可参见文献[10,12].假设u (x ,t )=v (ξ),ξ=x -αt ,αɪR 是方程(25)的解.因此,方程(25)变成αv '-v v '+βv ᵡ=0(26)注意到方程(15)和(24),平衡方程(26)中的项v v '和v ᵡ,于是假设方程(26)的精确解的表现形式可写成v (ξ)=a 0+a 1t a n [ω(ξ)],a 0,a 1ɪR (27)这里ω满足变换方程(15),其中ε=1.于是把(27)式代入方程(26),通过计算整理得关于a 0,a 1,α的代数方程4a 1β-2αa 1αsi n 3ω-4a 1α(a 0-α)2αs i n 2ωc o s ω-3a 1β-2αa 1αsi n ω+3a 1α(a 0-α)2αc o s ω=0 分别令s i n 3ω,s i n 2ωc o s ω,s i n ω,c o s ω的系数为零,解得a 0=α,a 1=β2α,α>0.类似地,若ω满足变换方程(15),且选取ε=-1,则可解得a 0=α,a 1=-β2α,α>0.注意到(27)式和ω满足方程(15),而(16)是方程(15)的解,故直接利用(17)式的第一个三角恒等式,方程(25)的新显式行波解可写成u j (x ,t )=αʃβ2α j (ξ)1- 2j (ξ) j =1,2(28) 1=φ+1+2φ2-φ+13(φ-1) 2=φ+1-2φ2-φ+13(φ-1) φ=λe ε32αξ其中ξ=x -αt ,α>0,λɪR ,ε=ʃ1.文献[9-12,16-20]没有给出方程(25)的显式行波解(28).显式行波函数(28)的取值仅与相ξ=x -αt ,α>0有关,当x ңʃɕ时,可得到ξңʃɕ.若取ε=1,则l i m ξң+ɕφ=l i m ξң+ɕλe32αξ=ɕl i m ξң-ɕφ=l i m ξң-ɕλe32αξ=0若取ε=-1,则l i m ξң+ɕφ=l i m ξң+ɕλe-32αξ=0l i m ξң-ɕφ=l i m ξң-ɕλe-32αξ=ɕ于是注意到(28)式可得l i m x ң-ɕu j (x ,t )与l i m x ң+ɕu j (x ,t )为有限值,j =1,2.因此,显式行波解(28)收敛,即显式行波解(28)具有冲击波的特征.显式行波解(28)的扭结型(k i n k)或反扭结型(a n t e -k i n k )依赖于(28)式中符号 ʃ 和ε=ʃ1的选取.87西南大学学报(自然科学版) h t t p ://x b b jb .s w u .e d u .c n 第43卷5 K d V 和B B M 方程的新行波解5.1 K d V 方程的新行波解K o r t e w e g 和de V r i e s 在研究浅水波的传播时建立了标准的K d V 方程u t +6u u x +u x x x =0(29)并且探求出了方程(29)的孤立波解,K d V 方程的常见其它形式参见文献[10-12,15],其一般形式为u t +a u u x +b u x x x =0,a ,b ɪR ,但标度变换并不改变方程本身的固有特性.假设方程(29)的行波解可写成u (x ,t )=v (ξ),ξ=x -αt ,其中α为常数,表示波速.于是该行波变换将方程(29)化为关于ξ的常微分方程αv '-6v v '-v ‴=0(30)将方程(30)两边关于ξ同时积分一次,并令积分常数为零可得αv -3v 2-v ᵡ=0(31)利用方程(30)注意到(24)式,平衡最高阶导数项v ‴和非线性项v v '推出n =2.因此,可假设方程(30)的解的表达式为v (ξ)=b 0+b 1t a n [ω(ξ)]+b 2t a n 2[ω(ξ)],b 0,b 1,b 2ɪR (32)其中ω满足变换方程(15),而ε=1.把(32)式代入方程(30),计算整理之后分别令s i n 2j ω(j =0,1, ,8)和s i n2j-1ωc o s ω(j =1, ,8)的系数为零,可得关于b 0,b 1,b 2,α的代数方程组b 1(2α2-12αb 0+36αb 2+3)=0,-2α2b 2+12αb 0b 2+6αb 12-12αb 22-9b 2=0b 1(-62α2+372αb 0-972αb 2-87)=0,18α2b 2-108αb 0b 2-54αb 12+92αb 22+77b 2=0b 1(140α2-840αb 0+1872αb 2+183)=0,-52α2b 2+312αb 0b 2+156αb 12-220αb 22-211b 2=0b 1(-203α2+1218αb 0-2250αb 2-246)=0,25α2b 2-150αb 0b 2-75αb 12+84αb 22+96b 2=0b 1(196α2-1176αb 0+1728αb 2+219)=0,-8α2b 2+48αb 0b 2+24αb 12-20αb 22-29b 2=0b 1(-42α2+252αb 0-276αb 2-43)=0,46α2b 2-276αb 0b 2-138αb 12+76αb 22+157b 2=0b 1(364α2-2184αb 0+1584αb 2+339)=0,-44α2b 2+264αb 0b 2+132αb 12-36αb 22-141b 2=0b 1(-25α2+150αb 0-54αb 2-21)=0,α2b 2-6αb 0b 2-3αb 12+3b 2=0,b 1(4α2-24αb 0+3)=0(33)利用吴消元法结合软件M a t l a b 计算,可获得代数方程组(33)的一组解为b 0=α2+36α,b 1=0,b 2=-14α,α>0.因此,方程(29)的行波解为u (x ,t )=α2+36α-14αt a n 2[ω(ξ)],ξ=x -αt ,α>0(34)采用(17)式可以写出行波解(34)的具体表达式,为了行文简洁省略其重复列举过程.类似地,求解方程(31)也可以获得解(34),但其中α=62.文献[9-13]没有给出显式行波解(34).5.2 B B M 方程的新行波解假设B B M 方程u t +u x +u u x -u x x t =0(35)的行波解为u (x ,t )=v (ξ),ξ=x -αt ,αɪR .于是方程(35)约化为常微分方程(1-α)v '+v v '-αv ‴=0.类似地,可获得方程(35)的行波解为u (x ,t )=α-4+32t a n 2[ω(ξ)],ξ=x -αt ,α>0(36)其中ω=ω(ξ)见(16)式,利用(17)式可以写出行波解(36)的具体表达式,为了行文简洁省略其过程.文献97第3期 林府标,等:双s i n e -G o r d o n 方程的新精确解及其应用08西南大学学报(自然科学版)h t t p://x b b j b.s w u.e d u.c n第43卷[21-24]没有给出显式行波解(36).另外,类似地可探求变系数的B B M方程u t+κu x+βu u x-γu x x t=0,κ,β,γɪR的显式行波解.6结论与探讨首先找到了双s i n e-G o r d o n方程的许多新行波解,并且构造了一种求解非线性偏微分方程精确解的双s i n e-G o r d o n方法.其次,利用构造的双s i n e-G o r d o n方法分别给出了B u r g e r s㊁K d V和B B M方程的显式新精确解,并对找到的B u r g e r s方程的新精确解的相关性质作了分析.最后,构造的双s i n e-G o r d o n方法可用于求解其它非线性偏微分方程,如采用该方法可获得修正的B B M方程u t+u x+u2u x+βu x x t=0,β>0的行波解为u(x,t)=ʃ3β2t a n[ω(ξ)],ξ=x-αt,α=3β+44,其中ω见(16)式.如何探求更多的双s i n e-G o r d o n方程(1)的解析求解方法和找到变换方程(10)的新精确解值得今后进一步探索,并且如何用它们找到非线性科学中许多具有实际意义和应用价值的非线性偏微分方程的新显式精确解值得在今后的工作中进一步研究和深思.参考文献:[1]S A L E R N O M,Q U I N T E R O N R.S o l i t o n R a t c h e t s[J].P h y s i c a l R e v i e w E,S t a t i s t i c a l,N o n l i n e a r,a n d S o f t M a t t e rP h y s i c s,2002,65(2):1-4.[2] G A N I V A,K U D R Y A V T S E V A E.K i n k-A n t i k i n k I n t e r a c t i o n s i n t h e D o u b l e S i n e-G o r d o n E q u a t i o n a n d t h e P r o b l e m o fR e s o n a n c e F r e q u e n c i e s[J].P h y s i c a l R e v i e w E,S t a t i s t i c a l P h y s i c s,P l a s m a s,F l u i d s,a n d R e l a t e d I n t e r d i s c i p l i n a r y T o p-i c s,1999,60(3):3305-3309.[3] P O P O V C A.P e r t u r b a t i o n T h e o r y f o r t h e D o u b l e S i n e-G o r d o n E q u a t i o n[J].W a v e M o t i o n,2005,42(4):309-316.[4] WA N G M L,L I X Z.E x a c t S o l u t i o n s t o t h e D o u b l e S i n e-G o r d o n E q u a t i o n[J].C h a o s,S o l i t o n s&F r a c t a l s,2006,27(2):477-486.[5] L I U S K,F U Z T,L I U S D.E x a c t S o l u t i o n s t o S i n e-G o r d o n-T y p e E q u a t i o n s[J].P h y s i c s L e t t e r s A,2006,351(1-2):59-63.[6] H E B,M E N G Q,L O N G Y,e t a l.N e w E x a c t S o l u t i o n s o f t h e D o u b l e S i n e-G o r d o n E q u a t i o n U s i n g S y m b o l i c C o m p u t a-t i o n s[J].A p p l i e d M a t h e m a t i c s a n d C o m p u t a t i o n,2007,186(2):1334-1346.[7] C H E N Y Z,Y O N G X L.E x a c t S o l u t i o n s t o t h e S i n e-G o r d o n-T y p e E q u a t i o n s[J].A p p l i e d M a t h e m a t i c s a n d C o m p u t a-t i o n,2008,202(2):539-543.[8] S U N Y C.N e w E x a c t T r a v e l i n g W a v e S o l u t i o n s f o r D o u b l e S i n e-G o r d o n E q u a t i o n[J].A p p l i e d M a t h e m a t i c s a n d C o m-p u t a t i o n,2015,258:100-104.[9]范恩贵.可积系统与计算机代数[M].北京:科学出版社,2004.[10]郭玉翠.非线性偏微分方程引论[M].北京:清华大学出版社,2008.[11]刘式适,刘式达.物理学中的非线性方程[M].2版.北京:北京大学出版社,2012.[12]李志斌.非线性数学物理方程的行波解[M].北京:科学出版社,2007.[13]田畴.李群及其在微分方程中的应用[M].北京:科学出版社,2001.[14]林府标,张千宏,张俊,等.预李群分类法的应用和F i t z h u g h-N a g u m o方程的行波解[J].应用数学,2017,30(4):908-915.[15]WA Z WA Z A M.T w o I n t e g r a b l e T h i r d-O r d e r a n d F i f t h-O r d e r K d V E q u a t i o n s w i t h T i m e-D e p e n d e n t C o e f f i c i e n t s[J].I n t e r n a t i o n a l J o u r n a l o f N u m e r i c a l M e t h o d s f o r H e a t&F l u i d F l o w,2019,29(6):2093-2102.[16]G R I G O R I E V Y N,I B R A G I MO V N H,K O V A L E V V F,e t a l.S y mm e t r i e s o f I n t e g r o-D i f f e r e n t i a l E q u a t i o n s:w i t h A p-p l i c a t i o n s i n M e c h a n i c s a n d P l a s m a P h y s i c s[M].N e w Y o r k:S p r i n g e r,2010.[17]李伟.B u r g e r s方程的新的精确解[J].沈阳师范大学学报(自然科学版),2017,35(1):73-75.[18]谢元喜.B u r g e r s方程的新解[J].吉首大学学报(自然科学版),2008,29(5):5-9,22.[19]谢元喜.B u r ge r s 方程的直接解法[J ].华东师范大学学报(自然科学版),2007(3):89-92.[20]谢元喜,唐驾时.对 求一类非线性偏微分方程解析解的一种简洁方法 一文的一点注记[J ].物理学报,2005,54(3):1036-1038.[21]胡凯丽,李 岩.基于符号计算的B B M 方程的精确解[J ].计算机技术与发展,2019,29(5):70-73.[22]套格图桑,斯仁道尔吉.B B M 方程和修正的B B M 方程新的精确孤立波解[J ].物理学报,2004,53(12):4052-4060.[23]任莹蓉,丁琰豪,范佳琪,等.B B M 方程的精确行波解研究[J ].湖州师范学院学报,2017,39(2):8-11.[24]姜喜春.B B M 方程的显式精确行波解[J ].辽宁工业大学学报(自然科学版),2010,30(2):136-140.N e w E x a c t S o l u t i o n s o f D o u b l eS i n e -G o r d o n E q u a t i o n a n d T h e i r A p pl i c a t i o n L I N F u -b i a o , Z HA N G Q i a n -h o n gS c h o o l o f M a t h e m a t i c s a n d S t a t i s t i c s ,G u i z h o u U n i v e r s i t y o f F i n a n c e a n d E c o n o m i c s ,G u i y a n g 550025,C h i n a A b s t r a c t :F i r s t l y ,m a n y n e w e x p l i c i t a n d e x a c t s o l u t i o n s o f t h e d o u b l e s i n e -G o r d o n e q u a t i o n a r e g i v e n b ym e a n s o f t h e m e t h o d o f t r i a l f u n c t i o n a n d e l e m e n t a r y i n t e g r a l s .S e c o n d l y,a d o u b l e s i n e -G o r d o n m e t h o d i s d e v e l o p e d b y u s i n g t h e o b t a i n e d n e w s o l u t i o n s o f t h e d o u b l e s i n e -G o r d o n e qu a t i o n ,w h i c h c a n b e u s e d t o f i n d e x a c t s o l u t i o n s o f n o n l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s .F i n a l l y ,s o m e e x a m p l e s o f a p pl i c a t i o n o f t h e d o u b l e s i n e -G o r d o n m e t h o d a r e p r e s e n t e d .K e y wo r d s :d o u b l e s i n e -G o r d o n e q u a t i o n ;t r i a l f u n c t i o n m e t h o d ;d o u b l e s i n e -G o r d o n m e t h o d ;e x a c t s o l u -t i o n ;a p pl i c a t i o n 责任编辑 张 栒18第3期 林府标,等:双s i n e -G o r d o n 方程的新精确解及其应用。
复变高斯积分
公式为:
cos(r,n) = cos(x,n)cos(x,r)+sin(x,n)sin(x,r)。
=((x-e)cos(x,n)/|r| + (y-m)sin(x,n)/|r|。
高斯积分是在概率论和连续傅里叶变换等的统一化等计算中有广泛的应用。
在误差函数的定义中它也出现。
虽然误差函数没有初等函数,但是高斯积分可以通过微积分学的手段解析求解。
高斯积分(Gaussian integral),有时也被称为概率积分,是高斯函数的积分。
它是依德国数学家兼物理学家卡尔·弗里德里希·高斯之姓氏所命名。
高斯积分在概率论和连续傅里叶变换等的统一化等计算中有广泛的应用。
在误差函数的定义中它也出现。
虽然误差函数没有初等函数,但是高斯积分可以通过微积分学的手段解析求解。
作者简介:
德国布隆斯威克人。
德国的数学家、物理学家和天文学家。
高斯幼年时就显示出非凡的数学才能,得到Carl Wil-helm Ferdinand大公的赏识。
在大公的支持下,1795—1798年在哥廷根(Gottingen)大学学习,1799年因证明代数学的基本定理而获得哈勒(Halle)大学的博士学位。
第2"卷第1期2021年1月高等数学研究STUDIES IN COLLEGE MATHEMATICSVol.2",No.1Jan. , 2021doi:10. 3969/j. issn. 1008-1399. 2021. 01. 004一类含三角函数级数求和的极限问题赵月,沈荣鑫(泰州学院数理学院,江苏泰州225300)摘要设f和g是两个互素的正整数,a=上疋.本文讨论了极限lim1' [sinia]的取值,证明了 :(1)如果g为奇D" i= 1数,则该极限值为一2*(2)如果g为偶数,则该极限值为一2^2.2q2q关键词函数极限;取整函数;正弦函数;级数中图分类号〇172 文献标识码A文章编号1008 - 1399(2021)01 - 0011 - 0"Limit of Sums of a Class of Trigonometric SeriesZHAO Yue and SHEN Rongxin(Department of Mathematics and Physics,Taizhou University,Taizhou 225300,China)p1 ".q—1 Abstract Let p,q be two relatively prime numbers,and a=—*.The limit of lim —'[sinz'a] i s—^ i fq n i= 12q _2q i s o dd; or _^ i f q i s even.2qKeywords limit of function,integral function,sine function,series1引言众所周知,关于三角函数的级数求和及其极限是数学分析中的重要内容&b3].含有取整函数的极限亦是高等数学中有趣的教学和研究课题["b6].本 文将讨论一类三角函数与取整函数复合的函数级数,考虑到取整函数的不连续性,我们用离散的处理 方法来计算、估计这一类级数的部分和.本文中,符 号表示取整函数.设正实数a是圆周率*的有理数倍,我们利用正弦函数的周期性,在极限意义下实现了对级数部分和'[sina ]的估值,并分情况收稿日期:2020 - 03 - 28 修改日期2020- 06 - 12基金项目:国家自然科学基金(11501404),江苏省高等教育教改研究立项重点课题(2017;!S;IG490).作者筒介:赵月(1998 —),女,江苏扬州人,本科在读,泰州学院数学与应用数学(师范)•Email:4〇8846615@.沈荣鑫(1981 —),男,江苏泰州人,博士,教授,主要从事拓扑学研究•Email:srx20212021@163. com.得出 lim 1' [sim’a]的值.2 正文引理1设p和q是两个互素的正整数,a =如果p为偶数,q为奇数,则'[sina]= —q—1证明 显然[sinqa ]= [sinpTr ]二 0.如 q 二 1,则结论显然成立.下面设q $ 1,我们来证明几个断 言.断言 I :任一 i ) {1,2,…,q—1},sina * 0.设i) {1,2,…,q—1},如果sink = 0,则存在正整数々使ia =々*,即i -= 々*,从而p = q々.q由于p和q互素,所以q整除i,这与i) +,2,…,q —1}矛盾,说明断言I成立.断言-:任一 i) +,2,…,q—1},sina * 1.12高等数学研究2021年1月设f ) {1,2,…!一1},如果sinfa = 1,则存在非负整数々使得k 5 *C2々*,即f •= *C2 q22々*整理化简得2z> = (1 +"々%,这与9是奇数矛盾,故断言n成立.断言.:任一 f )+,2,…,f},sinza • sin(q 一f f a〈 0.设 f) {1,2,…,q 一 1,由断言 I 知 sink *0,sin(q —f)a *0,故 sina •sin(q —f)a *0.我们注意到a+$—f% = a 5由于夕是偶数,故i a和sin(q—f)a 互为相反数,从而 sinOz • sin(q—f)a〈 0,故断言.成立.由断目n知任一f)+,2,…,q—1},[sina]的取值只能为0或一 1.由断言.知指标集J ={f |f) {1,2,…,q —1},sin?a〈0}的元素个数为q 一 1,即f |f) {1,2,…,q —1},[sin?a]=—1}的元素个数为,一1,故q-1'[sina]='sina q —1定理1设 2 p q是两个互素的正整数,a 5 f*如果满数,q为雜则lim 1' [sinza ____ i n<^•q1 2q证明 对于正整数n (q,由带余除法知存在唯一的正整数K w)和非负整数r(W),使〃=K w)q+厂(n)且 0 "厂(n)〈 q.n t(n)q n于是'[sina ]5 ' [sina ]+'f-1 f-1又由于引理1可知道-*(n)q+1t(n)q'[sinza f-1*(n)—1k q C q''[sina]k-0f-k q C1*(n)—1q''[sin(kq +i)a]k-0@-1t(n)一1q''[sin(kf * C@a)]k-0@-1S s a]-—('q—1t n注意到|r(n) |〈 q,所以lim r()n%!n2从一 t(n)- = lim q丨一r(n)]5imn%!竹n%!丄[1 —lim#q n%!n进而tin)q'[sina ]lim ^------- - 1i m(q—1)(n)2q —12q •又因为|'[sina ] |"q,故t(n)q C1sinzai i m f-t(n)q+1n%! n0.综上,我们有1i m1' [sin?a ]- 1i m(-____-a <^ ____tin)q'[sinaz'[sina ]-t(n)q C1______)-一q—12q •引理2 设f p q是两个互素的正整数,a -如果f为奇数,q为奇数,则'[sina]- —q+1.q「1证明 显然[sinqi]二[sinft]二0, [sin2a]二[sin2f*] -0.如q -1,则结论显然成立.下设q>1,我们来证明几个断言.断目 I任一 f) {1,2,…,q—1,q +1,…,2q —1},sinza * 0.设f ){1,2,…,q —1},如果sinfa -0,则存在正整数k使得a - k*即f•- k*从而有f -qkq.由于f和q互素,所以q整除f,这与f){1,2,…,q—1}矛盾,故任一 f ){1,2,…,q—1},sinia *0.我们注意到 a+(2q —f)a 二 2qa 二 2f*,故sinfa和sin(2q —f)a互为相反数,从而任一 f ){q+1,…,2q—1},s i r n’a*0.故断言 I 成立.断言 n :任一 f ){12,…,2q},sinfa * 1.设f ){1,2,…,2q},如果sinfa - 1,则存在非负整数 k 使得a - *+2k*,即f• f*- 2k* +*,2 q2整理化简得2zf -(1 +4k)q,这与q是奇数矛盾,n.断言任一f ) U,2,…,q—1},sina • sin(2q —f)a〈 0 .设f){1,2,…,q — 1},由断目I中证明知,sinia和sin(2q —f)a互为相反数,且sinia *0,由此第24卷第1期赵 月,沈荣鑫:一类含三角函数级数求和的极限问题13可知sinfa - sin(2g —f)a # 0,所以断言瓜成立.由断言-知任一 z ) {1,2,…,一1,+1,…,2g —1},[sinia]的取值只为0或一1.由断目.知:指标集 + I{1,2,…g —1,+1,…,2g —1},sinza # 0}中的元素个数为g—1,即+ |Z ) {1,2,■",g—1,+1,…,2g—1},[sinia] =—1}中的元素2g个数为 g—1,所以'[sinza]=—g +1.i~1定理2设f p g是两个互素的正整数,a =I*.g如果I为奇数,g为奇数,则lim 1' [sin,]=一^一一12g证明对于正整数2g,由带余除法知存在唯一的正整数K")和非负整数r(")使"=2i(")g +厂(")且 0 "厂(")# 2g.n2t(n)g n于是'[sin,]=' [sin,]+'[sin,].又i= 1i= 1i= 2t(n~)g+1由于引理2可知道2t(n)g'[sin,*(n)—12k q-\-2g''[sin,k=0i= 2k gC1t(n)一1 2g''[sin(2kg +@)a]k=0 @= 1*(n)—1 2g=''[sin(2k加+@a)] k=0 @=1t(n)一1 2g=''[sinj'a]k=0 @=1=—(g —1)(n).注意到|r(n) |<2g,故lim ^^ = 0,从而n%! n)^[n—r(n)]lim 心=lim 2----------n%! n%!1[1—limn2g n%! n2g进而2t(n)g'[sin,lim -------n%! n又为lim—(g —1)(n)ng —12g •'[ i= 2j(n)g+1s i n i,]"2g,故lim 1-2《n)g+1综上,我们有lim — ' [sin,2n%! n i=1g —12g •引理3 设|P g是两个互素的正整数,,=如果夕为奇数,g为偶数,贝[sin,]=—g +2.g i=1证明 显然[sin,] = [sin^*] = 0,[sin2,]= [sin2|*] = 0.下面我们来证明几个断言.断目 I:任一 i) {1,2,…,g—1,g +1,…,2g—1},sin,* 0.设i )+,2,…,g —1},如果sin,= 0,则存在正整数k使得,=k*即i-上* = k*从而有| =gkg.由于|和g互素,所以g整除i,这与i) {1,2贝•.,g—1}矛盾,故任一i){1,2贝•.,g—1},sin,*0.我们注意到,+(2g —i),= 2g,= 2夕*,故sin,和sin(2g —i)互为相反数,从而任一 i ) {g+1贝",2g—1},sin,*0.故断言 I 成立.断言-存在唯一 i) +,2,…,2g},使sin,=1.2tin)g n'[sin,]'[sin,]lim(i=-------+i=*C n)^1-------)先证存在性.设i ) {1,2,…,2g},当z= 2时,sin i, = sin n sin晏*当!Sin i,2-=sin 2*•由于1是奇数,所以sin 1.注意到sin 和sin当,互为相反数,故有sin g,= 1或sin =,= 1成立.再证唯一性.假设存在两个不同的正整数rn,n ) {1,2,…,2g}使得 sin/,= sin,= 1,则存在正整数*使得|肌一n,= 2*,所以,=^---*~#.* |m—n\/2注意到有理数,只有唯一的既约分数表示1,故*Dm—n必须是g的倍数,然而由m,){1,2,…,2g}知1m—n <g,故矛盾.所以断言-成立.断言任一i) {1,2贝"g—1},sin,- sin(2g —i),<0 .i ){1 2 !… !D— 1}!I 中知 ! sin,和sin(2g —i)互为相反数,且sin,*0,由此 可知sin,- sin(2g —i)<0,所以断言.成立.由断言-知任一 z) {1,2,…,g—1,+1,…,14高等数学研究2021年1月2g — 1},[sima]的取值可以为0,1,一1.并且指标集 及 5 + I f ) +,2,…! 一 1,g + 1,…,2g — 1, [sinza] = 1}中的元素个数为1.断言豇告诉我们: 指标集尺二 + | f ) {1,2,…!一1,+ 1,…,2g — 1},sinza <0}的元素个数为 g —1,即+ | f ) {1,2, …g —1,+ 1,…,2g —1} [sinia ] =— 1}的元素个!q数为 g — 1,故'[sinfa ] =— q + 2.设_q 是两个~雜-整数,a = f *如果^为奇数,q 为偶数,则lim 1'____■v t'4sinzaq — !2q •证明对于正整数w (2q ,由带余除法知存在 唯一的正整数Kra)和非负整数r(?z )使= 2f(w)q +r(w)且 0 " r(w ) < 2q.于是2t (n ) q'[sin,] = ' [sin,] +f =1 f =1又由于引理3可知道Vf = 2j (r a )q +12 t (n ~)q '[sin,t (n )—1 2 k q C 2 q ''[sin,k =0f = kq C 1t (n ~)—1 2 q''[sin( 2 kq +>)a ]k = 0 @ = 1 t (n )—1 2 q=''[sin( 2 k p * C @a )]k =0 @=1t (r i )—1 2 q=''[sinja ] =— (q — 2k =0 @=1注意到 | r(r a ) | < 2q ,故lim ^^ = 0,从而limr a %! 7Z r a %! r a q[r a — r(r a )]lim 进而1[1 —lim#!qr a %! r a!q!t(ra )q [sinza]lim------- = lim —( — 2t r a =—q —1.r a %! ra r a %! ra 2q又为sinzaf = 2t (n ~) q +1r a I ' [sink ] | " 2q ,故lim ff = 2t (n )qC 1 r a %!综上,我们有!t $r a )q r ar a ' [ s i n a z ] ' [sinazlim 丄公[sina ] = lim(二#--------C ------q — 22q •以上三个定理是本文的主要结果,它们表明,对于a = P ^(p 、q 互素),当ra充分大时,级数部分和q'[sinza]的近似值只与ra和q 有关:当q 为奇数f =1时,该近似值为—气一1);当q 为偶数时,该近似!q 值为ra(q — 2)2q3 未解决的问题和猜想本文在,是有理数的情况下,讨论了极限*lim 1 [sinia ]的取值,但我们还不知道如果,r a %! r a f =1 *不是有理数!im [sina]是否存在?如果存在r a %! r a f = 1的话取值如何?特别地!i m 1' [sim]取值如何?r a %! r a f =1可以肯定的是当,不是有理数时,本文中所使 *用的计算技巧不再适用于求此极限.也许我们应该 换一个角度来看这个问题:由于此时[sirna ]的取值 只会出现0和一1两种情况,并且出现概率一样,那 么不妨考虑将其看作为一个平均的两点分布,由大 数定律知,样本的值会以概率收敛于总体均值,因此我们猜想当,不是有理数时!i m 1' [sinia]的值. r a %! r a 为一1.我们非常期待有兴趣的读者能给出证明.参考文献[]华东师范大学数学系.数学分析[M ]. 4版.北京:高等教育出版社,2010.[]裴礼文.数学分析中的典型问题与方法[M ].北京:高等教育出版社!993.[]文生兰,刘倩.从正交分解看傳里叶级数[].高等数学研究,2017,20(3):20 - 22.[]赵天玉.取整函数的性质和应用[].高等数学研究,2004,7(5):45 - 47.[]谭毓澄.取整函数及其生成的数列[].高等数学研究,2011,14(5):22 - 24.[]何桂添,田艳.取整函数的性质在极限概念教学中的应用[J ].高等数学研究,2015,18(5):34 - 36.[]王小胜,郭海英,李丽华.任意随机变量序列的一个强极限定理[].大学数学,2007,23(1): 130 - 132.[]钱国旗.关于关联随机变量序列的极限收敛定理[J ].应用概率统计!992,8(2): 173 - 180.。
2.12.比:ratio 比例:proportion 利率:interest rate 速率:speed 除:divide 除法:division 商:quotient 同类量:like quantity 项:term 线段:line segment 角:angle 长度:length 宽:width高度:height 维数:dimension 单位:unit 分数:fraction 百分数:percentage3.(1)一条线段和一个角的比没有意义,他们不是相同类型的量.(2)比较式通过说明一个量是另一个量的多少倍做出的,并且这两个量必须依据相同的单位.(5)为了解一个方程,我们必须移项,直到未知项独自处在方程的一边,这样就可以使它等于另一边的某量.4.(1)Measuring the length of a desk, is actually comparing the length of the desk to that of a ruler.(3)Ratio is different from the measurement, it has no units. The ratio of the length and the width of the same book does not vary when the measurement unit changes.(5)60 percent of students in a school are female students, which mean that 60 students out of every 100 students are female students.2.22.初等几何:elementary geometry 三角学:trigonometry 余弦定理:Law of cosines 勾股定理/毕达哥拉斯定理:Gou-Gu theorem/Pythagoras theorem 角:angle 锐角:acute angle 直角:right angle 同终边的角:conterminal angles 仰角:angle of elevation 俯角:angle of depression 全等:congruence 夹角:included angle 三角形:triangle 三角函数:trigonometric function直角边:leg 斜边:hypotenuse 对边:opposite side 临边:adjacent side 始边:initial side 解三角形:solve a triangle 互相依赖:mutually dependent 表示成:be denoted as 定义为:be defined as3.(1)Trigonometric function of the acute angle shows the mutually dependent relations between each sides and acute angle of the right triangle.(3)If two sides and the included angle of an oblique triangle areknown, then the unknown sides and angles can be found by using the law of cosines.(5)Knowing the length of two sides and the measure of the included angle can determine the shape and size of the triangle. In other words, the two triangles made by these data are congruent.4.(1)如果一个角的顶点在一个笛卡尔坐标系的原点并且它的始边沿着x轴正方向,这个角被称为处于标准位置.(3)仰角和俯角是以一条以水平线为参考位置来测量的,如果正被观测的物体在观测者的上方,那么由水平线和视线所形成的角叫做仰角.如果正被观测的物体在观测者的下方,那么由水平线和视线所形成的的角叫做俯角.(5)如果我们知道一个三角形的两条边的长度和对着其中一条边的角度,我们如何解这个三角形呢?这个问题有一点困难来回答,因为所给的信息可能确定两个三角形,一个三角形或者一个也确定不了.2.32.素数:prime 合数:composite 质因数:prime factor/prime divisor 公倍数:common multiple 正素因子: positive prime divisor 除法算式:division equation 最大公因数:greatest common divisor(G.C.D) 最小公倍数: lowest common multiple(L.C.M) 整除:divide by 整除性:divisibility 过程:process 证明:proof 分类:classification 剩余:remainder辗转相除法:Euclidean algorithm 有限集:finite set 无限的:infinitely 可数的countable 终止:terminate 与矛盾:contrary to3.(1)We need to study by which integers an integer is divisible, that is , what factor it has. Specially, it is sometime required that an integer is expressed as the product of its prime factors.(3)The number 1 is neither a prime nor a composite number;A composite number in addition to being divisible by 1 and itself, can also be divisible by some prime number.(5)The number of the primes bounded above by any given finite integer N can be found by using the method of the sieve Eratosthenes.4.(1)数论中一个重要的问题是哥德巴赫猜想,它是关于偶数作为两个奇素数和的表示.(3)一个数,形如2p-1的素数被称为梅森素数.求出5个这样的数.(5)任意给定的整数m和素数p,p的仅有的正因子是p和1,因此仅有的可能的p和m的正公因子是p和1.因此,我们有结论:如果p是一个素数,m是任意整数,那么p整除m,要么(p,m)=1.2.42.集:set 子集:subset 真子集:proper subset 全集:universe 补集:complement 抽象集:abstract set 并集:union 交集:intersection 元素:element/member 组成:comprise/constitute包含:contain 术语:terminology 概念:concept 上有界:bounded above 上界:upper bound 最小的上界:least upper bound 完备性公理:completeness axiom3.(1)Set theory has become one of the common theoretical foundation and the important tools in many branches of mathematics.(3)Set S itself is the improper subset of S; if set T is a subset of S but not S, then T is called a proper subset of S.(5)The subset T of set S can often be denoted by {x}, that is, T consists of those elements x for which P(x) holds.(7)This example makes the following question become clear, that is, why may two straight lines in the space neither intersect nor parallel.4.(1)设N是所有自然数的集合,如果S是所有偶数的集合,那么它在N中的补集是所有奇数的集合.(3)一个非空集合S称为由上界的,如果存在一个数c具有属性:x<=c对于所有S中的x.这样一个数字c被称为S的上界.(5)从任意两个对象x和y,我们可以形成序列(x,y),它被称为一个有序对,除非x=y,否则它当然不同于(y,x).如果S和T是任意集合,我们用S*T表示所有有序对(x,y),其中x术语S,y属于T.在R.笛卡尔展示了如何通过实轴和它自己的笛卡尔积来描述平面的点之后,集合S*T被称为S和T的笛卡尔积.2.52.竖直线:vertical line 水平线:horizontal line 数对:pairs of numbers 有序对:ordered pairs 纵坐标:ordinate 横坐标:abscissas 一一对应:one-to-one 对应点:corresponding points圆锥曲线:conic sections 非空图形:non vacuous graph 直立圆锥:right circular cone 定值角:constant angle 母线:generating line 双曲线:hyperbola 抛物线:parabola 椭圆:ellipse退化的:degenerate 非退化的:nondegenerate任意的:arbitrarily 相容的:consistent 在几何上:geometrically 二次方程:quadratic equation 判别式:discriminant 行列式:determinant3.(1)In the planar rectangular coordinate system, one can set up aone-to-one correspondence between points and ordered pairs of numbers and also a one-to-one correspondence between conic sections and quadratic equation.(3)The symbol can be used to denote the set of ordered pairs(x,y)such that the ordinate is equal to the cube of the abscissa.(5)According to the values of the discriminate,the non-degenerate graph of Equation (iii) maybe known to be a parabola, a hyperbolaor an ellipse.4.(1)在例1,我们既用了图形,也用了代数的代入法解一个方程组(其中一个方程式二次的,另一个是线性的)。
同时主验证验证此公式,可透过因式分解,首先运用环的原理,设以下公式:然后代入:透过因式分解,可得:这样便可验证:和立方验证透过和立方可验证立方和的原理:那即是只要减去及便可得到立方和,可设:右边的方程运用因式分解的方法:这样便可验证出:几何验证图象化透过绘立体的图像,也可验证立方和。
根据右图,设两个立方,总和为:把两个立方体对角贴在一起,根据虚线,可间接得到:要得到,可使用的空白位置。
该空白位置可分割为3个部分:∙∙∙把三个部分加在一起,便得:之后,把减去它,便得:上公式发现两个数项皆有一个公因子,把它抽出,并得:可透过这样便可证明反验证透过也可反验证立方和。
以上计算方法亦可简化为一个表格:这样便可证明1. 把因式分解∙把两个数项都转为立方:∙运用立方和可得:2. 把因式分解∙把两个数项都转为立方:∙运用立方和便可得:∙但这个并非答案,因为答案仍可被因式分解:∙亦可使用另一个方法来减省步骤。
首先把公因子抽出:∙直接使用立方和,并得:立方差立方差也可以使用立方和来验证,例如:运用负正得负,可得:然后运用立方和,可得:这个方法更可验证到立方差的公式是平方差及的排列并不重要,可随意排放。
来验证。
先设及。
那即是,同时运用了若上列公式是的话,就得到以下公式:以上运用了,也即是两方是相等,就得到:注:塞尔伯格迹公式空间的函数空间上某类算子的,其中而设为紧致、负常曲率曲面,这类曲面可以表为上半平面对的某离散子群的商。
考虑上的拉普拉斯算子由于为紧曲面,该算子有离散谱;换言之,下式定义的值至多可数事实上,更可将其由小至大排列:对应的特征函数,并满足以下周期条件:行变元代换于是特征值可依排列。
塞尔伯格迹公式写作和式中的取遍所有双曲共轭类。
所取函数须满足下述性质:∙在带状区域上为解析函数,在此为某常数。
∙偶性:。
∙满足估计:,在此为某常数。
函数是的。
后续发展的尖点问题提供了纯粹的代数框架。
最后,为紧的情形可藉处理,然而,一旦取泰勒公式称为指数函数在0处的n阶泰勒展开公式。
沃利斯公式求法摘要:一、沃利斯公式简介1.沃利斯公式的定义2.沃利斯公式在数学中的应用二、沃利斯公式的推导1.基本概念和准备知识2.推导过程三、沃利斯公式的性质与特点1.沃利斯公式的性质2.沃利斯公式与其他数学公式的关系四、沃利斯公式的应用实例1.应用沃利斯公式解决实际问题2.沃利斯公式在理论研究中的应用五、总结1.沃利斯公式的重要性2.对未来研究的展望正文:沃利斯公式是数学领域中一个非常重要的公式,它广泛应用于数学的各个分支。
沃利斯公式是由英国数学家沃利斯在17世纪提出的,它的定义如下:沃利斯公式:若函数f(x)满足一定条件,则有f(x) = a * exp(-x^2/2) * (1+ b * x + c * x^2)。
其中,a、b、c为常数,exp表示指数函数。
沃利斯公式在数学中有很多应用,比如在概率论、统计学、数值分析等领域都有重要意义。
下面我们来详细介绍一下沃利斯公式的推导过程。
首先,我们需要了解一些基本概念和准备知识。
这些知识包括:指数函数、平方根函数、微积分等。
在此基础上,我们可以开始推导沃利斯公式。
推导过程如下:1.假设f(x)是一个满足一定条件的函数,我们可以对其进行积分。
2.对f(x)进行积分后,我们可以得到一个关于f(x)的积分表达式。
3.通过变量代换等方法,我们可以将积分表达式进一步简化。
4.最终,我们可以得到沃利斯公式。
沃利斯公式具有一些性质和特点。
例如,沃利斯公式具有正则性,即当x 趋近于正无穷或负无穷时,f(x)也趋近于0。
此外,沃利斯公式与其他数学公式,如欧拉公式等,有着密切的关系。
沃利斯公式在实际应用中也有很多重要意义。
例如,在统计学中,沃利斯公式可以用于正态分布的逼近;在数值分析中,沃利斯公式可以用于插值和拟合等问题的解决。
总之,沃利斯公式是数学领域中一个非常重要的公式,它具有广泛的应用和深刻的理论意义。
Mathematics Course DescriptionMathematics course in middle school has two parts: compulsory courses and optional courses. Compulsory courses content lots of modern mathematical knowledge and conceptions, such as calculus, statistics, analytic geometry, algorithm and vector. Optional courses are chosen by students which is according their interests.Compulsory Courses:Set TheoryCourse content:This course introduces a new vocabulary and set of rules that is foundational to the mathematical discussions. Learning the basics of this all-important branch of mathematics so that students are prepared to tackle and understand the concept of mathematical functions. Students learn about how entities are grouped into sets and how to conduct various operations of sets such as unions and intersections (i.e. the algebra of sets). We conclude with a brief introduction to the relationship between functions and sets to set the stage for the next stepKey Topics:➢The language of set theory➢Set membership➢Subsets, supersets, and equality➢Set theory and functionsFunctionsCourse content:This lesson begins with talking about the role of functions and look at the concept of mapping values between domain and range. From there student spend a good deal of time looking at how to visualize various kinds of functions using graphs. This course will begin with the absolute value function and then move on to discuss both exponential and logarithmic functions. Students get an opportunity to see how these functions can be used to model various kinds of phenomena. Key Topics:➢Single-variable functions➢Two –variable functions➢Exponential function➢ Logarithmic function➢Power- functionCalculusCourse content:In the first step, the course introduces the conception of limit, derivative and differential. Then students can fully understand what is limit of number sequence and what is limit of function through some specific practices. Moreover, the method to calculate derivative is also introduced to students.Key Topics:➢Limit theory➢Derivative➢DifferentialAlgorithmCourse content:Introduce the conception of algorithm and the method to design algorithm. Then the figures of flow charts and the conception of logical structure, like sequential structure, contracture of condition and cycle structure are introduced to students. Next step students can use the knowledge of algorithm to make simple programming language, during this procedure, student also approach to grammatical rules and statements which is as similar as BASIC language.Key Topics:➢Algorithm➢Logical structure of flow chart and algorithm➢Output statement➢Input statement➢Assignment statementStatisticsCourse content:The course starts with basic knowledge of statistics, such as systematic sampling and group sampling. During the lesson students acquire the knowledge like how to estimate collectivity distribution according frequency distribution of samples, and how to compute numerical characteristics of collectivity by looking at numerical characteristics of samples. Finally, the relationship and the interdependency of two variables is introduced to make sure that students mastered in how to make scatterplot, how to calculate regression line, and what is Method of Square.Key Topics:➢Systematic sampling➢Group sampling➢Relationship between two variables➢Interdependency of two variablesBasic Trigonometry ICourse content:This course talks about the properties of triangles and looks at the relationship that exists between their internal angles and lengths of their sides. This leads to discussion of the most commonly used trigonometric functions that relate triangle properties to unit circles. This includes the sine, cosine and tangent functions. Students can use these properties and functions to solve a number of issues.Key Topics:➢Common Angles➢The polar coordinate system➢Triangles properties➢Right triangles➢The trigonometric functions➢Applications of basic trigonometryBasic Trigonometry IICourse content:This course will look at the very important inverse trig functions such as arcsin, arcos, and arctan, and see how they can be used to determine angle values. Students also learn core trig identities such as the reduction and double angle identities and use them as a means for deriving proofs. Key Topics:➢Derivative trigonometric functions➢Inverse trig functions➢Identities●Pythagorean identities●Reduction identities●Angle sum/Difference identities●Double-angle identitiesAnalytic Geometry ICourse content:This course introduces analytic geometry as the means for using functions and polynomials to mathematically represent points, lines, planes and ellipses. All of these concepts are vital in student’s mathematical development since they are used in rendering and optimization, collision detection, response and other critical areas. Students look at intersection formulas and distance formulas with respect to lines, points, planes and also briefly talk about ellipsoidal intersections. Key Topics:➢Parametric representation➢Parallel and perpendicular lines➢Intersection of two lines➢Distance from a point to a line➢Angles between linesAnalytic Geometry IICourse content:Students look at how analytic geometry plays an important role in a number of different areas of class design. Students continue intersection discussion by looking at a way to detect collision between two convex polygons. Then students can wrap things up with a look at the Lambertian Diffuse Lighting model to see how vector dot products can be used to determine the lighting and shading of points across a surface.Key Topics:➢Reflections➢Polygon/polygon intersection➢LightingSequence of NumberCourse content:This course begin with introducing several conceptions of sequence of number, such as, term, finite sequence of number, infinite sequence of number, formula of general term and recurrence formula. Then, the conception of geometric sequence and arithmetic sequence is introduced to students. Through practices and mathematical games, students gradually understand and utilizethe knowledge of sequence of number, eventually students are able to solve mathematical questions.Key Topics:➢Sequence of number➢Geometric sequence➢Arithmetic sequenceInequalityThis course introduces conception of inequality as well as its properties. In the following lessons students learn the solutions and arithmetic of one-variable quadratic inequality, two variables inequality, fundamental inequality as well how to solve simple linear programming problems.Key Topics:➢Unequal relationship and Inequality➢One-variable quadratic inequality and its solution➢Two-variable inequality and linear programming➢Fundamental inequalityVector MathematicsCourse content:After an introduction to the concept of vectors, students look at how to perform various important mathematical operations on them. This includes addition and subtraction, scalar multiplication, and the all-important dot and cross products. After laying this computational foundation, students engage in games and talk about their relationship with planes and the plane representation, revisit distance calculations using vectors and see how to rotate and scale geometry using vector representations of mesh vertices.Key Topics:➢Linear combinations➢Vector representations➢Addition/ subtraction➢Scalar multiplication/ division➢The dot product➢Vector projection➢The cross productOptional CoursesMatrix ICourse content:In this course, students are introduced to the concept of a matrix like vectors, matrices and so on. In the first two lessons, student look at matrices from a purely mathematical perspective. The course talks about what matrices are and what problems they are intended to solve and then looks at various operations that can be performed using them. This includes topics like matrix addition and subtraction and multiplication by scalars or by other matrices. At the end, students can conclude this course with an overview of the concept of using matrices to solve system of linear equations.Key Topics:➢Matrix relations➢Matrix operations●Addition/subtraction●Scalar multiplication●Matrix Multiplication●Transpose●Determinant●InversePolynomialsCourse content:This course begins with an examination of the algebra of polynomials and then move on to look at the graphs for various kinds of polynomial functions. The course starts with linear interpolation using polynomials that is commonly used to draw polygons on display. From there students are asked to look at how to take complex functions that would be too costly to compute in a relatively relaxed studying environment and use polynomials to approximate the behavior of the function to produce similar results. Students can wrap things up by looking at how polynomials can be used as means for predicting the future values of variables.Key Topics:➢Polynomial algebra ( single variable)●addition/subtraction●multiplication/division➢Quadratic equations➢Graphing polynomialsLogical Terms in MathematicsCourse content:This course introduces the relationships of four kinds of statements, necessary and sufficient conditions, basic logical conjunctions, existing quantifier and universal quantifier. By learning mathematical logic terms, students can be mastered in the usage of common logical terms and can self-correct logical mistakes. At the end of this course, students can deeply understand the mathematical expression is not only accurate but also concise.Key Topics:➢Statement and its relationship➢Necessary and sufficient conditions➢Basic logical conjunctions➢Existing quantifier and universal quantifierConic Sections and EquationCourse content:By using the knowledge of coordinate method which have been taught in the lesson of linear and circle, in this lesson students learn how to set an equation according the character of conic sections. Students is able to find out the property of conic sections during establishing equations. The aim of this course is to make students understand the idea of combination of number and shape by using the method of coordinate to solve simple geometrical problems which are related to conic sections.Key Topics:➢Curve and equation ➢Oval➢Hyperbola➢Parabola。
一个新的三角拟合四阶预估校正方法郑娟【摘要】A new method of trigonometrically fitted method was developed based on the fourth algebraic order predictor -corrector method.The local truncation error of the new method was analyzed , and the regions of absolute stability were given.Some numerical experiments show that the new method is more efficient than some other methods when dealing with initial value problems with oscillating scheme .% 以四阶预估校正方法为基础,利用三角拟合技术,得到一个新的三角拟合预估校正方法,给出了新方法的局部误差,并对误差做了分析,同时也给出新方法的稳定性区域。
数值算例说明该方法较其它一些方法在处理周期性初值问题时具有明显的高效性【期刊名称】《佳木斯大学学报(自然科学版)》【年(卷),期】2012(000)004【总页数】3页(P595-597)【关键词】周期性初值问题;三角拟合;预估校正方法【作者】郑娟【作者单位】枣庄学院数学与统计学院,山东枣庄277160【正文语种】中文【中图分类】O02420 引言下面形式的一阶微分方程初值问题在天体力学、化学物理学、电子学等不同的领域內广泛出现,很多情况下其解具有一定的周期性.如果能对解的主导频率有较准确的估计,常采用变系数方法求这类问题的数值解,三角拟合[1]是其中常用的方法.Vanden Berghe及Simos[2,3]等人对三角拟合Runge-kutta方法作了深入的研究.本文在线性多步法中预估校正方法基础上,利用三角拟合技术,得出了一个新的三角拟合预估校正方法,数值试验表明,新方法在求解周期初值问题时具有明显的高效性.1 三角拟合预估校正方法对于的数值求解,考虑下面的预估校正格式[4]令式(2)的预估格式精确积分{1,x,cos(ωx),sin(ωx)}的线性组合,得如下方程组令式(2)中校正格式精确积分{1,x,x2,cos(ωx),sin(ωx)}的线性组合,得分别解线性方程组(3)与(4)可求得b0,b1,b2与c0,c1,c2,c3.当u 较小时,应使用它们的泰勒展开式由式(5)确定的三角拟合预估校正格式(2)记为ADM4PCF1N,由式(5),当ω→ 0时,新方法ADM4PCF1N将变为原始的预估校正方法[4].图1 原始四阶预估校正方法的稳定性区域图2 三角拟合四阶预估校正方法分别当u=1,u=8时的稳定性区域计算y(xn+1)-yn+1可得局部截断误差故其代数阶为 4.由式(6),当 y为{cos(ωx),sin(ωx)}的线性组合时,局部截断误差将消减为0,这也说明新方法ADM4PCF1N可对{cos(ωx),sin(ωx)}的线性组合精确积分.2 稳定性分析将预估校正格式(2)应用到试验方程:得差分方程其中H=λh式(8)的特征方程为图3 数值实验3.1图4 数值实验3.2图5 数值实验3.3解关于H的方程(9),用边界轨迹法[5]画出θ∈[0,2π]时的绝对稳定区域.图1与图2分别给出原始四阶预估校正方法与三角拟合四阶预估校正方法分别当u=1,u=8时的稳定性区域.由图2看出,随着频率取值增大,三角拟合四阶预估校正方法的绝对稳定性区域也随之变大.这使得新方法较其它只有较小稳定性区域的方法有很大的优势.3 数值实验选用下列三个方法予以比较四阶预估校正方法[4],用ADM4PC表示.四阶预估校正方法[4],用ADM5PC表示.三角拟合四阶预估校正方法,即本文得到的新方法,用ADM4PCF1N表示.评价的标准是比较三个方法的全局误差及计算所用的函数的个数.3.1 问题1考虑如下的二体问题:其中问题的解析解为:在计算中,选择区间0≤ x≤ 100,对方法ADM4PCF1N估计频率,数值运算结果由图3给出.3.2 问题2考虑下面初值问题:其精确解为:y(x)=cos(10x)+sin(10x)+sin(x)在计算中,选择区间0≤ x≤ 100,对方法ADM4PCF1N估计频率ω=10,数值运算结果由图4给出.3.3 问题3考虑下面初值问题:精确解为在计算中,选择区间0≤ x≤ 100,对方法ADM4PCF1N估计频率ω=13,数值运算结果由图5给出.4 结论构造了一个处理振荡问题的新的三角拟合四阶预估校正方法,它可以精确积分{cos(ωx),sin(ωx)}的线性组合.数值试验表明新方法‴应用于求解周期性初值问题时,其性能远好于原始的四阶及五阶预估校正方法.参考文献:[1] Ixaru L G,Berghe G V.Exponential fitting[M].Kluwer Academic Publishers,Dordrecht,2004.[2] Simos T E.An Exponentially-fitted Runge-Kutta Method for the Numerical Integration of Initial-value Problems with Periodic or Oscillating Solutions[J].Computer Physics Communications,1998,(115):1-8.[3] Vanden Berghe G,De Meyer H,Van Daele M,Van Hecke T.Exponentially - fitted Explicit Runge–Kutta Methods[J].Computer Physics Communications,1999,(123):7 -15.[4] Hairer E,Norsett S P,Wanner G.Solving Ordinary Differential Equations:Nonstiff Problems[M].Springer Verlag,Berlin Heidelberg,1993.[5] Lambert J D.Numerical Methods for Ordinary Differential Systems:the Initial Value Problem[M].John Wiley & Sons,Inc.,New York,1991.。
Numerical Methods for Convection-Dominated Diffusion Problems Based on Combining the Method of Characteristics with Finite Element or Finite Difference ProceduresAuthor(s): Jim Douglas, Jr. and Thomas F. RussellSource: SIAM Journal on Numerical Analysis, Vol. 19, No. 5 (Oct., 1982), pp. 871-885 Published by: Society for Industrial and Applied MathematicsStable URL: /stable/2156980Accessed: 27/04/2010 00:10Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at/action/showPublisher?publisherCode=siam.Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@.Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extendaccess to SIAM Journal on Numerical Analysis.。
(3+1)维Zakharov-Kuznetsov方程的Wronskian形式解崔艳英;吕大昭;刘长河【摘要】基于Wronskian行列式的形式和结构,提出了Wronskian形式展开法,通过这一方法求出了(3+1)维Zakharov-Kuznetsov(ZK)方程的双孤子解、双三角函数解、Complexiton解、Matveev解和Jacobi椭圆函数解.%In this paper,based on the forms and structures of Wronskian determinant,a Wronskian form expansion method is presented to find out double soliton solutions,double trigonometric function solutions,Complexiton solutions,Matveev solutions and Jacobi elliptic function solutions of the(3+1)-Dimensional Zakharov-Kuznetsov equation.【期刊名称】《北京建筑工程学院学报》【年(卷),期】2012(028)002【总页数】4页(P68-71)【关键词】Zakharov-Kuznetsov(ZK)方程;Wronskian;Complexiton解;Matveev解【作者】崔艳英;吕大昭;刘长河【作者单位】北京工业大学耿丹学院,北京101301;北京建筑工程学院理学院,北京100044;北京建筑工程学院理学院,北京100044【正文语种】中文【中图分类】O29寻找非线性演化方程的精确解一直是物理学家和数学家的重点课题之一.在众多有效的方法[1-4]当中,Wronskian 技巧[5-8]特别受人青睐,它应用广、效率高.这得益于Wronskian行列式本身良好的性质:后一列是前一列的导数.这使得Wronskian行列式的导数只是由少数几个同阶行列式的和构成,与行列式的阶数无关.所以在把解代入到双线性方程或Bäcklund变换中进行验证时,其过程往往比较简单.如,对于KdV方程:如果取:那么根据传统的W ronskian技巧[5]知:是KdV方程(1)的解.这种方法简称为孤立子方程的Wronskian技巧.但W ronskian技巧也有缺点:Wronskian行列式的元素常常满足一组特定的线性偏微分方程组.因此,如果找不到这样的特定线性偏微分方程组,那么人们又该如何获得Wronskian形式解呢?另一方面,隐藏在传统的Wronskian技巧背后的一个重要性质是:以KdV方程为例,当i≠j时,ki和kj相互独立.即,ki不是kj的函数:ki≠ki(kj);并且kj也不是ki 的函数:kj≠kj(ki).许多其它孤立子方程如 KP 方程[5]、Boussinesq 方程[6]、AKNS 方程组[8]等也具有这样良好的性质,因此它们都能用传统的Wronskian 技巧来求解.然而,本文研究的(3+1)维Zakharov-Kuznetsov(ZK)方程却不具有这样良好的性质,那么人们又该如何获得这一类型方程的Wronskian形式解呢?为了解决上述两个难题,本文提出了一种新的Wronskian形式展开法,运用这一方法求得了(3+1)维Zakharov-Kuznetsov(ZK)方程的双孤子解、双三角函数解、Complexiton解、Matveev解和Jacobi椭圆函数解.1 W ronskian形式展开法和(3+1)维ZK方程的W ronskian解(3+1)维 Zakharov-Kuznetsov(ZK)方程为:因为这个方程与波动现象密切相关,所以它不断出现在众多物理学研究领域之中.由于(3+1)维ZK方程不能用反散射方法求解,于是人们通过各种方法[9-15]来研究它.其中刘宏准[15]指出林麦麦等[14]的结论是错误的:即(3+1)维ZK方程不具有双线性形式.通过Maple的验证程序,直接检验林麦麦等[14]的结论确实是错误的.这就进一步增加了求(3+1)维ZK方程多孤子解的难度.利用P ainlevé截断展开方法,可以得到(3+1)维ZK方程(4)如下形式的Bäcklund 变换:本文以二阶W ronskian行列式为例来说明W ronskian形式展开法,即f=W(φ1,φ2).如果我们取:那么利用变换(5),可以得到(3+1)维ZK方程(4)具有如下形式的解:其中 ai,ki,li,ri,λi待定.现在把(7)式代入到(4)式,可以得到一个关于双曲函数的方程,然后进行约化,合并同幂次项,最后令它们的系数为零,则获得一个超定代数方程组,在吴文俊消元法[16]的帮助下,解此代数方程组,得到 ai,ki,li,ri,λi的值,再把该值代回到(7)式,我们就能获得双孤子解:和注1:本文所获得的所有解都被Maple程序验证过,确实是原始(3+1)维ZK方程(4)的解.注 2: 我们很容易地看到 k1、l1、r1、λ1 和 k2、l2、r2、λ2不是互相独立的,因此无论φi取什么函数,一般情况下f=W(φ1,φ2,…,φN)轻易不是(3+1)维ZK 方程(4)的解.所以用传统的 Wronskian技巧[5-8]不能获得(3+1)维 ZK 方程(4)的 Wronskian解.相似地,如果我们取:那么,利用上面的步骤,我们得到:和如果取:那么得 Complexiton 解[7]:如果取:那么得 Matveev解[17]:若取:则得到另一种类型的Matveev解:注3:我们也能获得高阶Wronskian形式解.例如,取:我们获得了三阶的Complexiton解:但是,Wronskian行列式阶数越高,利用吴文俊消元法解代数方程组就越困难.注4:求各种行波解对我们来说是一件非常容易的事.例如,仅仅取:其中snξ≡sn(ξ,m)是模数为 m的 Jacobi椭圆函数,则有:显然,我们的Wronskian形式展开法比以前求行波解的方法,比如:Jacobi椭圆函数展开法[18]、Tanh 函数展开法[19]、双曲函数展开法[20]、三角函数展开法[21]、指数函数展开法[22]、范子方程方法[23]、F ~展开法[24]、G'/G 展开法[25]、Riccati方程展开法[26]等等,更加高效,广泛. 注5:事实上,在该方法中,也可以取其它类型的函数得到其它类型的相互作用解,限于篇幅,我们不再一一列举.2 结论本文提出W ronskian形式展开法,通过这一方法求得了(3+1)维Zakharov-Kuznetsov(ZK)方程的双孤子解、双三角函数解、Complexiton解、Matveev解和Jacobi椭圆函数解.该方法也能应用到其它孤立子方程.3 验证解u1的M aple执行程序>restart:> xi[1]:=(9):> xi[2]:=(10):>u:=(8):> ZK:=diff(u,t)+6*u*diff(u,x)+diff(u,x$3)+3*diff(u,x,y$2)+3*diff(u,x,z$2):>numer(ZK):>simplify(%)参考文献:[1] Ablowitz M J,Clarkson PA.Soliton,nonlinear evolution equations and inverse scattering[M].Cambridge:Cambridge University Press,1991:40-87[2] Matveev V B,Salle M A.Darboux transformations and solitons [M].Berlin:Springer-Verlag,1991:55 -79[3]Miura R M.Bäcklund transformation[M].Berlin:Springer,1978:23 - 89[4] Hirota R.Direct method in soliton theory[M].Cambridge:Cambridge University Press,2004:80-120[5] Freeman N C,Nimmo J J C.Soliton solutions of the korteweg-de vries and kadomtsev-petviashvili equations:thewronskian technique [J].Phys.Lett.A,1983(95):1-3[6] Nimmo JJC,Freeman N C.A method of obtainning the soliton solution of the Boussinesq equation in terms of a Wronskain[J].Phys.Lett.A,1983(95):4 -6[7] MaW plexiton solutions to the Korteweg-de Vries equation [J].Phys.Lett.A,2002(301):35 -44[8]陈登远,张大军,毕金钵.AKNS方程的新双Wronskian解[J].中国科学A辑:数学,2007(37):1335-1348[9] Shukla P K.Nonlinear waves and structures in dusty plasmas [J].Phys.Plamas,2003(10):1619 - 1627[10] Duan W S.Nonlinear waves propagating in the electrical transmission line[J].Euro.Phys.Lett.,2004(66):192-197[11] Li B,Chen Y,Zhang H Q.Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J].Appl.Math.and Compu.,2003(146):653 -666[12] Wazwaz A M.Nonlinear dispersive special type of the Zakharov-Kuznetsov equation ZK(n,n)with compact and noncom pact structures [J].Appl.Math.and Compu.,2005(161):577-590[13] Wazwaz A M.Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov(ZK)equation and its modified form[J].Communications in Nonlinear Science and Numerical Simulation,2005(10):597-606[14]林麦麦,段文山,吕克璞.(3+1)维ZK方程的N孤子解[J].西北师范大学学报:自然科学版,2006(42):41-45[15]刘宏准.孤子理论若干问题研究[D].浙江大学博士学位论文,2007:34-35[16]吴文俊.关于代数方程组的零点——Ritt原理的一个应用[J].科学通报,1985,30(12):881-883[17] Matveev V B.Generalized Wronskian formula for solutions of the KdV equations:first applications[J].Phys.Lett.A,1992(166):205-208 [18]刘式适,傅遵涛,刘式达,等.Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用[J].物理学报,2001(50):2068-2073[19] MalflietW.Solitary wave solutions of nonlinear wave equations [J].Amer.J.Phys.,1992(60):650 -654[20]黄定江,张鸿庆.扩展的双曲函数法和Zakharov方程组的新精确孤立波解[J].物理学报,2004(53):2434-2438[21] Yan C T.A simple transformation for nonlinear waves[J].Phys.Lett.A,1996(224):77-84[22] He JH,Wu X H.Exp-function method for nonlinear wave equations[J].Chaos,Solitons and Fractals,2006(30):700-708[23] Zhang S,Xia T C.A further improved extended Fan sub-equation method and its application to the(3+1)-dimensional Kadomstev-Petviashvili equation[J].Phys.Lett.A,2006(2):119-123[24] Peng Y Z.Exact solutions for some nonlinear partial differential equations[J].Phys.Lett.A,2003(314):401-408[25]李帮庆,马玉兰,徐美萍.(G'/G)展开法与高维非线性物理方程的新分形结构[J].物理学报,2010(59):1409-1415[26] Chen Y,Wang Q.Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer-Kaup equation[J].Phys.Lett.A,2005(4):215-227。
stolze公式Stolze公式是20世纪日耳曼数学家卡尔斯托尔泽定义的双曲线椭圆积分的通用公式,它使得可以计算双曲线椭圆曲线上任意两点之间的积分。
从数学上来说,Stolze公式是用来求解双曲线椭圆积分的通用公式,它把双曲线椭圆积分的技巧总结在一个整体的方程组中。
它的公式如下:$$int_{a}^{b}f(x)dx=frac{1}{2}[F(a)+F(b)+sum_{k=1}^{n}(-1)^ {k+1}(2k-1)f(x_{2k-1})+sum_{k=1}^{n-1}(-1)^{k}(2k)f(x_{2k})]$$其中,f为需要积分的函数,F为f的原函数,a为积分的下限,b为积分的上限,n为将区间分成n段,x1, x2,, x2n-1为均等分割后的节点。
由此可见,Stolze公式便是一个将双曲线椭圆积分求解的常用公式。
双曲线椭圆积分是物理学中最常用的一种数值求积方法,它是为了求解无限曲线在任何一个指定区间上的积分而提出的。
双曲线椭圆积分计算分为积分的起点与总区间、积分区间的划分、函数在各分段的极限计算等三个步骤。
该积分的计算量会受到划分的段数与区间的长度的影响,在计算时,必须根据实际情况来进行取舍。
由于Stolze公式的出现,使得科学发展得更加的方便快捷,更加的准确可靠。
借助Stolze公式,可以用更加简洁的方式来求解双曲线椭圆积分。
它给双曲线椭圆积分问题带来了方便,而且降低了计算量,使得物理学中可以求解复杂无限曲线在任何一个指定区间上的积分的计算成为可能。
Stolze公式的出现对双曲线椭圆积分的计算方法及应用也产生了巨大影响。
它不仅可以简化计算步骤,而且能够更加准确地求解双曲线椭圆积分,并且可以有效地减少计算量。
另外,它还可以用来计算贝尔格里德空间中物体的活动轨迹,以及电磁场中电流、电场强度等问题,可见其应用多方面。
自从Stolze公式的出现以来,已经有许多学者在推广和改进它,使它成为现代科学的重要组成部分。
New Newton’s Method with Third-order Convergence for Solving Nonlinear EquationsOsama Yusuf AbabnehAbstract—For the last years,the variants of the Newton’s methodwith cubic convergence have become popular iterative methods tofind approximate solutions to the roots of non-linear equations.Thesemethods both enjoy cubic convergence at simple roots and do notrequire the evaluation of second order derivatives.In this paper,wepresent a new Newton’s method based on contra harmonic mean withcubically convergent.Numerical examples show that the new methodcan compete with the classical Newton’s method.Keywords—Third-order convergence,Non-linear equations,Root-finding,Iterative method.I.I NTRODUCTIONS OLVING non-linear equations is one of the most impor-tant problems in numerical analysis.In this paper,weconsider iterative methods tofind a simple root of a non-linear equation f(x)=0,where f:D⊂R→R for anopen interval D is a scalar function.The classical Newtonmethod for a single non-linear equation is written asx n+1=x n−f(x n)(x n).(1)This is an important and basic method[8],which converges quadratically.Recently,some modified Newton methods with cubic convergence have been developed in[1],[2],[3],[4],[5], [6]and[7].Here,we will obtain a new modification of New-tons method.Analysis of convergence shows the new method is cubically convergent.Its practical utility is demonstrated by numerical examples.Letαbe a simple zero of a sufficiently differentiable function f and consider the numerical solution of the equation f(x)=0.It is clear thatf(x)=f(x n)+xx nf (t)dt.(2)Suppose we interpolate f on the interval[x n,x]by the con-stant f (x n),then(x−x n)f (x n)provides an approximation for the indefinite integral in(2)and by taking x=αwe obtain0≈f(x n)+(α−x n)f (x n).Thus,a new approximation x n+1toαis given byx n+1=x n−f(x n) f (x n).Dr.Osama Yusuf Ababneh is with the Department of Mathematics,Irbid National University,Irbid,Jordan e-mail:(ababnehukm@).On the other hand,if we approximate the indefinite integral in(2)by the trapezoidal rule and take x=α,we obtain 0≈f(x n)+12(α−x n)(f (x n)+f (α)),and therefore,a new approximation x n+1toαis given byx n+1=x n−2f(x n)f (x n)+f (x n+1).If the Newton’s method is used on the right-hand side of the above equation to overcome the implicity problem,thenx n+1=x n−2f(x n)f (x n)+f (z n+1),(3)wherez n+1=x n−f(x n)f (x n)is obtained which is,for n=0,1,2,...,the trapezoidal Newton’s method of Fernando et al.[1].Let us rewrite equation(3)asx n+1=x n−f(x n)(f (x n)+f (z n+1))/2,n=0,1, (4)So,this variant of Newton’s method can be viewed as obtained by using arithmetic mean of f (x n)and f (z n+1)instead of f (x n)in Newton’s method defined by(1).Therefore,we call it arithmetic mean Newton’s(AN)method.In[3],the harmonic mean instead of the arithmetic mean is used to get a new formulax n+1=x n−f(x n)(f (x n)+f (z n+1))2f (x n)f (z n+1),n=0,1, (5)which is called harmonic mean Newton’s(HN)method and used the midpoint to getx n+1=x n−f(x n)((x n+z n+1)/2),n=0,1, (6)which is called midpoint Newton’s(MN)method.II.N EW ITERATIVE METHOD AND CONVERGENCEANALYSISIf we use the contra harmonic mean instead of the arithmetic mean in(4),we get new Newton methodx n+1=x n−f(x n)(f (x n)+f (z n+1))f 2(x n)+f 2(z n+1),n=0,1, (7)wherez n +1=x n −f (x n )f (x n ),n =0,1, (8)we call contra harmonic Newton’s (CHN)method.Theorem 2.1:Let α∈D be a simple zero of a sufficientlydifferentiable function f :D ⊂R →R for an open interval D.If x 0is sufficiently close to α,then the methods defined by (7)converge cubically.Proof Let αbe a simple zero of f .Since f is sufficiently differentiable,by expanding f (x n )and f (x n )about αwe getf (x n )=f (α) e n +c 2e 2n +c 3e 3n+... ,(9)andf (x n )=f (α) 1+2c 2e n +3c 3e 2n +4c 4e 3n+... ,(10)where c k =(1/k !)f (k )(α)/f(α),k =2,3,...and e n =x n −α.Direct division gives usf (x n )f (x n )=e n −c 2e 2n +2(c 22−c 3)e 3n +O (e 4n ),and hence,for z n +1given in (8)we havez n +1=α+c 2e 2n +2(c 3−c 22)e 3n +O (e 4n ).(11)Again expanding f (z n +1)about αand using (11)we obtainf (z n +1)=f (α)+(z n +1−α)f (α)+(z n +1−α)2!f(α)+...=f (α)+[c 2e 2n +2(c 3−c 22)e 3n +O (e 4n )]f(α)+O (e 4n )=f (α)[1+2c 22e 2n +4(c 2c 3−c 32)e 3n +O (e 4n )].(12)By using (10)we obtainf 2(x n )=f 2(α)[1+4c 2e n + 4c 22+6c 3 e 2+(12c 2c 3+8c 4)e 3+...].From (12),we getf 2(z n +1)=f 2(α) 1+4c 22e 2n + 8c 2c 3−8c 32 e 3+... ,andf 2(x n )+f 2(z n +1)=2f 2(α)[1+2c 2e n + 4c 22+3c 3 e 2n + 4c 4+10c 2c 3−4c 32 e 3n +...].From (10)and (12)we getf (x n )+f (z n +1)=2f (α)[1+c 2e n +c 22+32c 3e 2n +2 c 2c 3−c 32+c 4 e 3n +O (e 4n )],and using (9)to getf (x n )(f (x n )+f (z n +1))=2f 2(α)[e n +2c 2e 2n+2c 22+52c 3e 3n +O (e 4n )].Hence,f (x n )(f (x n )+f (z n +1))f 2(x n )+f 2(z n +1)=e n −2c 22+12c 3 e 3n +O (e 4n ),x n +1=x n −f (x n )(f (x n )+f (z n +1))f 2(x n )+f 2(z n +1),x n +1=x n −e n −2c 22+12c 3 e 3n +O (e 4n ) ,or subtracting αfrom both sides of this equation we gete n +1=2c 22+12c 3 e 3n +O (e 4n ),which shows that contra harmonic Newton’s method is ofthird order.III.N UMERICAL RESULTS AND CONCLUSIONSIn this section,we present the results of some numerical tests to compare the efficiencies of the new method (CHN).We employed (CN)method,(AN)method of Fernando et al.[1],and (HN)and (MN)methods in [3].Numerical computations reported here have been carried out in a MTHEMATICA environment .The stopping criterion has been taken as |x n +1−x n |<ε,We used the fixed stopping criterion ε=10−14and the following test functions have been used.f 1(x )=x 3+4x 2−10,α=1.365230013414097,f 2(x )=x 2−e x −3x +2,α=0.2575302854398608,f 3(x )=Sinx 2−x 2+1,α=1.404491648215341,f 4(x )=Cosx −x,α=0.7390851332151607,f 5(x )=(x −1)3−1,α=2.In Table 1and Table 2,we give the number of iterations (N)and total number of function evaluations (TNFE)required to satisfy the stopping criterion.As far as the numerical results are considered,for most of the cases HN and MN methods requires the least number of function evaluations.All numerical results are in accordance with the theory and the basic advantage of the variants of Newton’s method based on means or integration methods that they do not require the computation of second-or higher-order derivatives although they are of third order.R EFERENCES[1]S.Weerakoon,T.G.I.Fernando,A variant of Newtons method withaccelerated third-order convergence,Appl.Math.Lett.13(2000)87-93.[2]M.Frontini,E.Sormani,Some variants of Newtons method with third-order convergence,put.140(2003)419-426.[3] A.Y .¨o zban,Some new variants of Newtons method,Appl.Math.Lett.17(2004)677-682.[4]M.Frontini,E.Sormani,Modified Newtons method with third-orderconvergence and multiple roots,put.Appl.Math.156(2003)345-354.TABLE II TERATION NUMBER(N)f(x)NCN AN HN MN CHNf1,x0=164445f2,x0=154444f2,x0=265545f2,x0=375555f3,x0=175455f3,x0=375445f4,x0=153444f4,x0=1.754444f4,x0=−0.364555f5,x0=375555TABLE IIT HE TOTAL NUMBER OF FUNCTION EVALUATIONS(TNFE)f(x)TNEFCN AN HN MN CHNf1,x0=11212121215f2,x0=11012121212f2,x0=21215151515f2,x0=31415151515f3,x0=11415121515f3,x0=31415121215f4,x0=1109121212f4,x0=1.71012121212f4,x0=−0.31212151515f5,x0=31415151515[5]Changbum Chun,A two-parameter third-order family of methods forsolving nonlinear equations,Applied Mathematics and Computation189 (2007)1822-1827.[6]Kou Jishenga,LiYitianb,Wang Xiuhuac,Third-order modification ofNewtons method,Journal of Computational and Applied Mathematics 205(2007)1 5.[7]Mamta,V.Kanwar,V.K.Kukreja,Sukhjit Singh,On some third-orderiterative methods for solving nonlinear equations,Applied Mathematics and Computation171(2005)272-280.[8] A.M.Ostrowski,Solution of Equations in Euclidean and Banach Space,third ed.,Academic Press,NewYork,1973.。
中英文对照表(按笔画排列)一画一一映射one to one mapping一阶(全)微分形式不变性(total)differential form invariance of first order 一致连续性uniform continuity一致连续(的)uniformly continuous一致连续性定理uniform continuity theorem一致收敛uniform convergence一致收敛的uniformly convergent一致收敛函数序列uniformly convergent sequence of functions一致有界的uniformly bounded一致有界原理uniform boundedness principle一致有界定理uniform boundedness theorem一致有界函数序列uniformly bounded sequence of functions一致有界级数uniformly bounded series一致有界集uniformly bounded set二画二元函数binary function二阶导数second derivative二重极限double limit几何级数geometric series三画三角函数trigonometric function三角函数表trigonometric table三角不等式triangle inequality三角级数trigonometric series下极限lower limit;inferior limit下和lower sum下限lower limit;lower edge下界lower bound下类lower class下积分lower integral下确界infimum;greatest lower bound上极限upper limit;superior limit上和upper sum上限upper limit;upper edge上界upper bound上类upper class上积分upper integral上确界supremum;least upper bound子集subset子序列subsequence四画开区间open interval开覆盖open cover开集open set开域open domain;open region无穷大infinitely great;infinity无穷大的阶order of infinity无穷大量infinitely large quantity无穷小infinitesimal无穷小的阶order of infinitesimals无穷小等价infinitesimals equivalence无穷小数列infinitesimal sequence of number无穷限反常积分infinite limit improper integral无穷积分infinite integral无穷级数infinite series无限开覆盖infinite open cover无限区间infinite interval无限区域infinite region无限维的infinite dimensional无界函数unbounded function无界集unbounded set无理数irrational number不可导underivativity不连续点discontinuous point; point of discontinuity 不定积分indefinite integral不定式indeterminate expression不动点原理fixed point principle区间interval区间套nested intervals区间套定理nested intervals theorem比较原则comparison principle比较法relative method切线方程tangential equation中间变量intermediate variable中值公式mean value formula中值定理mean value theorem内函数interior function内点interior point内部interior牛顿—莱布尼茨公式Newton-Leibniz formula牛顿切线法Newton tangents method反三角函数anti-trigonometric function; inverse trigonometric function; inverse circular function反函数inverse function反函数定理inverse function theorem反常积分improper integral介值性定理intermediate value theorem;location principle分划partition分段连续性piecewise continuity分段连续函数piecewise continuous function分段函数piecewise function分部积分法integration by parts分部求和公式summation by parts formula分割subdividing; segmentation; excision; section分量函数component function区域region;domain切平面tangent plane切点point of contact;point of tangency双曲抛物面hyperbolic paraboloid双纽线lemniscate双侧曲面two sided surface方向导数directional derivative方邻域square neighborhood贝塞尔不等式Bessel inequality贝塔函数—function五画正无穷大plus infinity可去间断点removable discontinuous point可求长的rectifiable可求长性rectifiability可求积性squarability可导derivable可积integrable可微differentiable可微函数differentiable function左导数left derivative左邻域left neighborhood左极限left limit;limit on the left左连续left continuous; continuous on the left 右导数right derivative右邻域right neighborhood右极限right limit; limit on the right右连续right continuous; continuous on the right 凸函数convex function凸区域convex region归结原则resolution principle凹函数concave function凹区域concave region外积outer product外函数outer function外点outer point外微分exterior differentiation半开半闭区间half open half closed interval发散divergence对数求导法logarithm derivation method对数函数logarithmic function对数螺线logarithmic spiral平面点列plane point range平面点集plane point set正交orthogonal正交函数系system of orthogonal functions正弦级数sine series正项级数positive term series右手法则right-hand rule边界boundary发散divergence六画有上界函数upper bounded function有下界函数lower bound function有限开覆盖finite open cover有限维的finite dimensional有限区间finite interval有限增量公式finite increment formula 有限覆盖定理finite cover theorem有界函数bounded function有界点集bounded set of points有界集bounded set有界数列bounded number sequence有理函数rational function有理数rational有势场potential field存在域domain of existence达布下和Darboux lower sum达布上和Darboux upper sum达布和Darboux sum光滑曲线smooth curve曲边梯形curved trapezoid曲率curvature曲率半径radius of curvature曲率圆circle of curvature曲率形式curvature form曲线的曲率curvature of a curve曲率张量curvature tensor曲率向量curvature vector曲顶柱体curved cylinder同阶无穷大量infinitely large quantity of the same order 同阶无穷小量infinitesimals quantity of the same order 因变量dependent variable自变量independent variable自变量增量increment of independent variable全序total order负无穷大minus infinity闭区间closed interval闭区间套nested closed intervals闭域closed region;closed domain闭集closed set导函数derived function导数derivative导数极限定理limit of derivative theorem收敛converge收敛区间convergence interval;interval of convergence收敛半径convergence radius收敛准则convergence criterion收敛点point of convergence收敛域convergence domain;convergence region向量vector向量场vector field向量函数vector function交错级数alternating series压缩映射原理contracting mapping principle全微分total differential全微分方程total differential equation;exact differential equation 全增量total increment优级数majorizing series优级数判别法majorizing series discriminance达朗贝尔判别法D’Alembert's ratio test七画麦克劳林公式Maclaurin formula严格凸函数strictly convex function严格凹函数strictly concave function严格单调函数strictly monotonic function极大值maximum value极小值minimum value极值extreme value极值点extreme point极坐标变换polar coordinates transformation极限limit连续continuous连续函数continuous function连通性connectivity; connectedness连续可微性continuous differentiability抛物线法parabola formula邻域neighborhood狄利克雷判别法Dirichlet principle; Dirichlet criterion 狄利克雷函数Dirichlet function条件收敛conditional convergence条件极值extremum with a condition间断点discontinuous point初始条件initial condition初等函数elementary function局部有界性local boundedness局部保号性local sign-preserving局部利普希茨条件local Lipschitz condition阿基米德有序域Archimedically ordered field阿基米德性Archimedean余项remainder term余弦函数cosine function余集complementary set含参量积分integral with parameter含参量反常积分improper integral with parameter阿贝尔引理Abel lemma阿贝尔判别法Abel criterion阿贝尔定理Abel theorem阿贝尔变换Abel transformation八画奇函数odd function偶函数even function拐点inflection point;point of inflection拉格朗日公式Lagrange formula拉格朗日余项Lagrange remainder term;Lagrange residual term 拉格朗日乘数法Lagrange multiplicator method拉格朗日函数Lagrange function拉贝判别法Raabe criterion非正常下确界improper infimum非正常上确界improper supremum非正常极限improper limit垂直渐近线vertical asymptote周期函数periodic function周期曲线periodic curves变下限的定积分definite integral of variable lower limit 变上限的定积分definite integral of variable upper limit 变化率rate of change变换transformation单侧导数one sided derivative单侧极限one sided limit单侧曲面one sided surface单值对应single valued correspondence单值函数single valued function单调有界定理monotonic bounded theorem单调函数monotonic function单调数列monotonic number sequence单连通区域simply connected region单射injective mapping定义域domain定积分definite integral直积direct product直径diameter函数行列式functional determinant; jacobian位势函数potential function法平面normal plane法线normal line孤立点isolated point细度fineness空心邻域hollow neighborhood和函数summable function欧拉公式Euler formula欧拉积分Euler integral九画弧长length of arc弧微分arc differential柯西中值定理Cauchy mean value theorem; mean value theorem of Cauchy 柯西判别法Cauchy attribute柯西准则Cauchy criterion指数函数exponential function映射mapping矩形法rectangle method复合函数composite function复连通区域complex connected region待定系数法undetermined coefficient method差商difference quotient逆映射inverse mapping逆变换inverse transformation面积area面积元素element of area绝对收敛absolute convergence绝对值absolute value柱面坐标变换cylinder coordinates transformation 显函数explicit function泰勒公式T aylor formula泰勒级数T aylor series泰勒展开式Taylor expansion界点boundary point十画费马定理Fermat theorem根的存在定理existence theorem of root原函数primitive function原像preimage;primary image振幅amplitude换元积分法integration by substitution致密性定理compactness theorem积分区间integral interval积分曲线integral curve积分和integral sum积分变量integral variable积分型余项integral residual term积分常数integration constant积分中值定理integral mean value theorem值域range高阶无穷小量infinitesimals quantity of the higher order 高阶导数higher order derivative高阶微分higher order differential递增数列increasing number sequence递减数列decreasing number sequence被积函数integrand高斯公式Gauss formula调和harmonic调和级数harmonic series部分和partial sum部分和序列sequence of partial sums部分和函数列function sequence of partial sums逐项微分differentiation term by term逐项积分integration term by term逐项地in terms by terms通项general term通项公式the formula of general term圆邻域circular neighborhood格林公式Green theorem根式判别法radical criterion十一画基本初等函数fundamental elementary function 基本周期fundamental period梯形法trapezoidal rule常量函数constant function符号函数sign functional斜渐近线oblique asymptote渐近线asymptote减函数decreasing function像image偏导函数partial derivative偏导数partial derivative偏增量partial increment隐函数implicit function隐函数定理implicit function theorem隐函数的存在性定理existence theorem of implicit function 混合偏导数mixed partial derivative球坐标变换spherical coordinates transformation梯度gradient累次极限repeated limit累次积分repeated integral距离distance十二画最大(小)值定理maximum(minimum)value theorem链式法则chain rule幂函数power function超平面hyperplane傅里叶系数Fourier coefficient等价无穷小量equivalent infinitesimals quantity等比级数geometric series等值面contour surface等值矩阵contour matrix散度divergence斯托克斯公式Stokes formula雅可比行列式Jacobi determinant雅可比矩阵Jacobi matrix十三画及以上瑕点improper point瑕积分improper integral跳跃间断点jump discontinuous point稠密性denseness微分differential微积分学基本定理fundamental theorem of calculus微商differential coefficient; derivative微分中值定理differential mean value theorem; mean value theorem of differential数列number sequence数轴number axis截面面积sectional area聚点cluster point;accumulation point聚点定理cluster point theorem;accumulation point theorem黑塞矩阵Hesse matrix模module稳定点stable point黎曼函数Riemann function黎曼积分Riemann integral黎曼和Riemann sum增函数increasing function增量increment。