MURA160中文资料
- 格式:pdf
- 大小:44.12 KB
- 文档页数:2
一杀毒二毒娃三地呷四恩爸五你妈六恶男七赌球八得拉半九深碧蓝十谁哺乳二十毒娃哺乳五十你妈哺乳一百谁拉肚子五百你妈拉肚子一千谁离谱五千你妈离谱一万谁哺乳离谱五万你妈哺乳离谱十万谁拉肚子离谱五十万你妈拉肚子离谱excuse me: APA KABAR 阿爸咖吧ok BAIK: 八一beautiful: CANTIK 战地thanks: TERIMAKASIH 带你妈看戏so so: SAMA SAMA 三八三八how much: BERAPA 播喇叭expensive: MAHAL 妈哈yes: MAU 猫not: TAK MAU 打猫i love you: SAYA CINTA ANDA 沙哑金大按他toliet: KAMAR KECIL 干吗客气good morning: SELAMAT PAGI 色喇嘛八极good afternoon: SELAMAT SIANG 色喇嘛西洋good evening: SELAMAT MALAM 色喇嘛马兰sorry: SORRY 说理没关系TAK APA APA 打阿爸阿爸1 我I Saya 杀鸭2 你You Kamu 嘎母3 她、他she、he Dia 抵押4 我们We Kita / kami 嘎米5 你们You Kalian 嘎里安6 他们They Mereka 么瑞嘎7 早上好Goodmorning Selamat Pagi 色喇嘛巴ki8 下午好Good afternoon Selamat Siang 色喇嘛餮?br/> Selamat Sore 色拉嘛说瑞(下午3点后)9 借光Excuse me permisi ber 米西10 晚上好Good evening Selamat MALAM 色喇嘛马拉m11 请Please Silakan 西拉干12 请坐set down Silakan Duduk西拉干土土13 请(让人干事)Please Tolong 多龙14 请分开每人一份Tolong Dibagi 多龙第八给15 请给我Please give me Kasih 嘎西16 来Come / to arrive Datang 搭当17 欢迎welcome Selamat datang 色拉嘛搭档18 再见(对离开的人说)Good bye Selamat Jalan色拉嘛加兰19 再见(对留下的人说)Good bye SelamatTinggal 色拉嘛丁嘎(儿)芳思·小语种20 很好Fine baik 巴一克21 好Good Bagus 巴故事22 谢谢Thank you Terima kasih 德勒马嘎西23 不用谢you’re welcome Sama-sama 杀马杀马24 对不起I’m sorry Ma af / Sorry 马阿夫25 没关系It don’t matter Tidak Masalah 抵达麻纱啦No problem26 有问题Have problem Ada Masalah 阿达麻纱拉27 是yes, right Ya 呀28 不/ 没有no, not Tidak 抵达29 小汽车Car Mobil 模比尔30 司机driver supir 苏比尔31 火三轮one type of 3 wheels vehicle Bajaj 八戒32 自行车Bicycle Sepeda 色白搭33 交通堵塞Traffic Macet 马册特34 商店Shop Toko 多果35 准备好了吗Are you ready Kamu siap 嘎母西呀(P)36 饱Full kenyang 跟娘37 饿hungry lapar 腊八38 能Can Bisa 比萨39 有Have / there is Ada 阿打40 已经Already Sudah 苏打41 今天today Hari ini 哈里一尼42 明天tomorrow Besok 白说43 昨天Yesterday Kemarin 克马ring44 后天The day after tomorrow Lusa 路撒45 前天The day before yesterday Kemarin 克马ring46 本月This month Bulan ini 不蓝一尼47 上个月Last month Bulan lalu 不蓝拉鲁48 下个月Next month Bulan Depan 不蓝的班49 今年This year Tahun ini 打混一尼50 明年Next year Tahun depan 打混德办51 去年Last year Tahun lalu 打混拉鲁52 星期一Monday Senin 色您53 星期二Tuesday Selasa 色拉沙54 星期三Wednesday Rabu Ra 布55 星期四Thursday Kamis 卡米S56 星期五Friday Jumat 舅妈t57 星期六Saturday Sabtu 纱布毒58 星期天Sunday Minggu 鸣鼓59 上星期Last week Minggu Lalu 鸣鼓拉鲁60 下星期Next week Minggu Depan 鸣鼓德办61 热/ 发烧Hot / Fever Panas 巴拿S62 非常热Very hot Sangat panas 洒安(ga)巴拿S63 冷Cold Dingin 钉音64 凉快Cool Sejuk 色就65 它, 那个it Itu 一睹66 这个This Ini 一尼67 回家go home Pulang 布朗68 我要回去I want to go home Saya mau pulang.杀鸭马武布朗69 来Come / to arrive Datang 搭当70 到达To reach Sampai 扇摆71 去To go,to leave Pergi 布(儿)给72 等一会Wait Tunggu 冬菇73 开门Open the door Buka pintu 不嘎病毒74 关门Close the door Tutup pintu 嘟嘟病毒75 为什么Why Kenapa 哥拿爸76 谁Who Siapa 西哑巴77 几点了What time Jam berapa 姜(母)不喇叭78 桌子table Meja 每家79 抽屉Drawer Laci 垃圾80 睡觉Sleep Tidur 低度81 钱money uang 王82 多少(钱)How much money Berapa 不拉巴83 我不知道I don’t know Saya tidak tahu 杀鸭抵达大户84 马上Soon / Immediately Sebentar lagi 舍本打拉G85 立即Soon Segera 色各ra86 等一会儿Waite a monent Tunggu sebentar 冬菇色本大87 厨房kitchen Dapur 大步(儿)88 现在Now Sekarang 色嘎狼89 多Much / many Banyak 搬娘芳思·小语种90 少Little Sedikik 色地k91 大big Besar 贝(儿)撒(儿)92 小small Kecil 客气(儿)93 先生Sir / Mr Pak 巴94 女士/ 母亲Miss Ibu 一步95 完成(verb)finish Ser lesai 色了赛96 没有了no anymore habis 哈逼死97 方便面instant noodle Indomi In tommy98 地址Address Alamat / Domisili 啊拉嘛/多米西里99 近Near Dekat 德嘎(t)100 前面Front Depan 德办101 直走/ 往前Straight Lurus / T erus 露露斯/德努S102 后back Belakang / mundur 白拉钢/ 蒙都103 左left Kiri 给瑞104 左转Turn left Belok kiri 白落给瑞105 右right Kanan 卡难106 右转Turn right Belok kanan 白落卡难107 买buy Beli 不(儿)理108 付钱Pay Bayar 摆呀109 价格Price Harga 哈儿嘎110 不变价Fixed price Harga pas 哈儿嘎怕死111 贵Expensive Mahal 马哈(儿)112 便宜Cheap Murah 目ra113 男Man Pria 布瑞呀114 女Woman Wanita 往尼她115 水果Fruit Buah 布娃116 桥Bridge Jembatan 将巴丹117 纸Paper Kertas 哥(儿)打死118 我不会说印尼语I can’t speak IndonesianSaya tidak Bisa bahasa Indonesia 杀鸭抵达必杀巴哈杀印度尼西亚119 生病Sick Sakid 杀给(t)120 医院Hospital Rumah sakit 若吗沙给121 病人Patient Pasien 八(十)仙122 登革热Dengue Demam berdarah 得妈(目)ber打ra123 打针Injection Suntik 送地K124 妻子Wife Istri 意思德(瑞)125 丈夫Husband Suami 酸米126 空调Air condition Ac 阿色127 还要吗?want more? Tambah lagi 党把(哈)拉给128 再来一个Once more Satu lagi 杀毒拉给129 飞机Plane Pesawat terbang 白沙瓦得儿旁130 机场Air port bandara 棒打ra131 头痛headache Pusing 不行132 哪一个Which one Yang Mana?杨麻那133 哪里Where is Di mana 弟麻那134 住哪儿?Where are you live?Tinggal dimana 定嘎弟麻那135 你在哪里?Where are you Kamu dimana 卡母弟麻那136 这里Here Disini 底细尼137 我在这里I am here Saya Disini 杀鸭体细尼138 你到哪里去?Where are you going?Andapergi kemana 安大per给哥马那139 城市City Kota 扩大(↑)140 按时On time Tepat waktu 得把娃(K)毒141 迟了Late Telat / terlambat 得拉/ 得(儿)狼办142 身体好Good health Sehat 蛇哈(t)143 大岛Island Pulau 不老144 小岛Small island Pulau Kecil 不老个七(L)145 菜单Manu Menu 莫努(末路)146 买单Bill Minta bon 命大波(born)147 饭菜打包parcel, pack bungkus 崩古十148 进来/ 入口Come in / entry Masuk 马术(K)149 外面/ 出口Outside / exit Keluar 哥卤娃150 停电Power cut / blackout mati lampu 马地兰布151 事故Accident kecelakaan 哥责拉嘎安152 绳子Rope Tali Dalle153 会议Meeting Rapat Ra把154 灭蚊器Extinguishes the mosquito Basminyamuk 怕色米娘木155 报子Newspaper koran 过ran156 清真寺Mosque mesjid 马死切d157 行李Luggage,baggage Bagasi 爸嘎西158 手提箱Suitcase kopor 口波(儿)159 包Bag Tas Wanita 打死160 盒子Case Kotak 柯达(短音)161 钱包Wallet Dompet 东配(T)162 洗澡To Bath Mandi 满地163 有时Sometimes Kadang-kadang 嘎党-嘎党164 一般So-so Lumayan 路马烟165 删除To Cancel Batal 爸打(儿)166 北部North Utara 吴他拉167 南部South selatan 蛇拉单168 防晒霜Sun block lotion Sun block lotion 山不落169 请讲Please say Bilang 多龙比浪170 可能Maybe / Possible Mungkin 蒙kin171 不可能Impossible Mustahil 目死打黑(儿)172 吃Eat makan 马竿173 喝Drink MINUM 米怒M174 要去工地Go to site Ke Lokasi 哥落卡西175 停车Parking PARKIR176 来吧,我们走Let’s go Ayo Pergi 阿有配给177 来吧,回家Let’s go home Ayo Pulang 马力布朗路嘛178 不要忘记Don’t forget Jangan Lupa 江安路巴179 上帝保佑God bless you Assalamualaikun 阿沙拉目阿来昆180 我爱你I love You Aku cinta kamu 阿姑今他卡目181 欢迎光临Welcome Selamat Datang 色喇嘛搭档182 开斋节快乐Festival of Fast Breaking Selamat Idul Fitri 色喇嘛一对了Vthree183 禁斋Fasting Puasa 不阿沙184 电话亭Telephone Box Wartel 挖得了185 走let’s go Ayo 阿又186 这是我的名片This is my name care Ini nama saya 一尼那麻杀鸭187 你叫什么名字what your name Siapa Nama kamu 西阿把那麻卡目188 生日快乐Happy Birthday Hari ulang tahun 哈瑞屋郎大婚189 多少钱?How much Berapa harganya 背拉把哈卡娘190 等一会儿Wait a moment Tunggu sebentar 冬菇舍本打191 你好Hello Halo 哈LO192 你好吗?Are you fine ? Apa kabar? 阿巴卡巴儿193 很高兴认识你Nice to meet you Senang berkenalan denganmu 色囊/被儿哥拿兰/灯安母194不用谢/you’re welcome/Sama-Sama/杀马杀马195 请原谅/对不起I’m sorry Maafkan saya 骂AF干杀鸭196 没关系it’s ok Tidak apa-apa 地打(K) 阿巴-阿巴197 好/行ok Baiklah 巴一克198 恭喜Congratulation Selamat 色拉嘛199 祝你一路平安Have a nice journey Semogaselamat dalam perjalanan 色模夹色拉嘛达拉M Per架拉难200 葱onion Bawang merah/ daun 巴旺每辣201 白菜cabbage Kubis 股皮色202 青菜green vegetables Bayam/ sawi 杀鱼芳思·小语种203 虾shrimp Udang 乌当204 花菜cauliflower Kembang kol 坑帮口(L)205 萝卜radish Kangkung 康公206 胡萝卜carrot Wortel Wortel207 鱼fish Ikan 一干208 牛肉beef Daging sapi 达G因杀比209 鸡chicken Ayam 阿呀M210 羊肉lamb Daging kambing 达可因干冰211 洋葱onion Bawang bombay 巴旺泊M败212 鸡蛋egg Telur ayam 德路儿阿呀M213 鸡精cooking flavor Rasa ayam 拉杀阿呀M(鸡精,牛精,等的牌子) Masako 吗杀口214蒜/garlic Bawang putih巴旺补滴215 螃蟹crab Kepiting 个比丁217 姜ginger Jahe 加黑218 茄子eggplant Terong 德溶219 番茄tomato Tomat T o吗t220 土豆potato Kentang 跟汤221 四季豆string bean Kacang buncis 嘎脏盆第士222 菜油vegetable oil Minyak sayur 米亚撒油儿223 吃饭eat / have a meal Makan 马干224 米饭cooked rice Nasi 那西225 稀饭porridge Bubur beras 普普儿Pe 拉s226 米rice Beras Pe 拉s227 面条noodle Bakmi 巴K米228 面包bread Roti basah 若滴巴杀229 米粉rice flour Tepung Beras 的捕NG被拉S230 绿豆green bean/mung bean Kacang Hijau伽张一交231 绿茶green tea Teh Hijau 得(读:dei)一交232 咖啡coffee Kopi 购必233 红茶red tea Teh Merah 德H美啦H234 啤酒beer Bir 皮儿235 水water Air 啊一儿236 矿泉水mineral water Air mineral 啊一儿米呢热237 茶杯tea cup Cangkir Teh 脏gear 得238 香菇mushroom grown on logs Jamur Yoko擦木耳哟购239 小白菜a variety of cabbage sawi putih 萨V不第240 芹菜celery Seledri 色类dr一241 乌龟tortoise kura-kura 股拉股拉242 鱿鱼Cumi-Cumi 组米组米243 豆腐beancurd Tahu 大湖244 酱油soy sauce Kecap 给杂P245 醋vinegar Cuka 祖嘎246 吃醋jealousy Cemburu 真普如247 盐salt Garam 卡然248 糖sugar Gula 哭拉249 白糖white sugar Gula putih 哭拉部第250 果酱jam Selai buah 色来251 砂糖granulated sugar Gula pasir 哭拉把戏儿252 冰糖crystal sugar Gula batu 哭拉怕杜253 红糖brown sugar Gula merah 哭拉每拉254 豇豆cowpea Kulit kacang polong 股利伽脏波龙255 辣椒chili Cabe 杂配256 花椒prickly ash Tumbar 东怕257 花生peanut Kacang tanah putih 伽张大拿不地258 味精monosodium glutamate Bumbu masakboom普妈萨259 香蕉banana Pisang 必上260 椰子树coconut tree Pohon kelapa 波恨格拉把261 椰子肉coconut flesh/meat Daging kelapa 他king 格拉把262 椰子汁coconut juice Santan 山但263 苹果apple Buah apel 普娃阿不了(普娃阿bel)264 芒果mango Buah mangga 普娃芒卡265 木瓜papaya Pepaya be把鸭266 西瓜watermelon Semangka 色芒伽267 果汁fruit juice Jus Buah/ Sari buah 醋斯/撒利普瓦merry christmas:Selamat Hari Natal!happy new year:Selamat Tahun Baru!。
MURA160T3Preferred DeviceSurface MountUltrafast Power RectifierIdeally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.Features•Small Compact Surface Mountable Package with J−Bend Leads •Rectangular Package for Automated Handling •High Temperature Glass Passivated Junction•Low Forward V oltage Drop (1.05 V Max @ 1.0 A, T J = 150°C)•Pb−Free Package is AvailableMechanical Characteristics:•Case: Epoxy, Molded•Weight: 70 mg (Approximately)•Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable•Lead and Mounting Surface Temperature for Soldering Purposes:260°C Max. for 10 Seconds•Polarity: Polarity Band Indicates Cathode Lead•ESD Protection:Human Body Model > 4000 V (Class 3)Machine Model > 400 V (Class C)MAXIMUM RATINGSRatingSymbol Value Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking VoltageV RRM V RWM V R 600VAverage Rectified Forward Current @ T L = 145°C @ T L = 110°CI F(AV)1.02.0ANon-Repetitive Peak Surge Current (Surge Applied at Rated LoadConditions Halfwave, Single Phase,60 Hz)I FSM30AOperating Junction Temperature RangeTJ−65 to +175°CTHERMAL CHARACTERISTICSCharacteristicSymbol Max Unit Thermal Resistance, Junction−to−Lead (T L = 25°C) (Note 1)Thermal Resistance, Junction−to−Ambient (Note 1)Psi JL (Note 2)R q JA24216°C/WMaximum ratings are those values beyond which device damage can occur.Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.1.Rating applies when surface mounted on the minimum pad size recommended, PC Board FR−4.2.In compliance with JEDEC 51, these values (historically represented by R q JL )are now referenced as Psi JL .Preferred devices are recommended choices for future use and best overall value.ELECTRICAL CHARACTERISTICSCharacteristicSymbol Max Unit Maximum Instantaneous Forward Voltage (Note 3)(i F = 1.0 A, T J = 25°C)(i F = 1.0 A, T J = 150°C)v F1.251.05VMaximum Instantaneous Reverse Current (Note 3)(Rated dc Voltage, T J = 25°C)(Rated dc Voltage, T J = 150°C)i R5.0150m A Maximum Reverse Recovery Time(i F = 1.0 A, di/dt = 50 A/m s)t rr75ns3.Pulse Test: Pulse Width = 300 m s, Duty Cycle v 2.0%.V F , INSTANTANEOUS VOLTAGE (VOLTS)Figure 3. Typical Forward Voltage Figure 4. Maximum Forward VoltageI R , R E V E R S E C U R R E N T (m A )I F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A )V F , INSTANTANEOUS VOLTAGE (VOLTS)I F ,I F (A V ), A V E R A G E F O R W A R D C U R R E N T (A )Figure 9. Power DissipationI F(AV), AVERAGE FORWARD CURRENT (AMPS)C , C A P A C I T A N C E (p F )PACKAGE DIMENSIONSDIM A MIN NOM MAX MINMILLIMETERS1.912.16 2.410.075INCHES A10.050.100.150.002b 1.27 1.45 1.630.050c 0.150.280.410.006D 2.29 2.60 2.920.090E 4.06 4.32 4.570.160L0.761.14 1.520.0300.0850.0950.0040.0060.0570.0640.0110.0160.1030.1150.1700.1800.0450.060NOM MAX 4.83 5.21 5.590.1900.2050.220H E SMACASE 403D−02ISSUE CNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.403D−01 OBSOLETE, NEW STANDARD IS 403D−02.ǒmm inchesǓSCALE 8:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*STYLE 1:PIN 1.CATHODE (POLARITY BAND)2.ANODEON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION。
mura160t3g结构-回复Mura-160T3G是一种具有特殊结构的新型材料,该结构以中括号内的内容为主题。
本文将逐步回答有关Mura-160T3G结构的问题,并详细介绍它的特点和应用。
第一部分:Mura-160T3G结构简介Mura-160T3G是一种具有特殊结构的材料,其名称中的"160T3G"代表了其结构和化学成分。
Mura-160T3G由许多重复单元组成,这些单元通过化学键连接在一起。
该结构具有高度有序的排列,这使得它具有许多优异的性质。
第二部分:Mura-160T3G结构的特点Mura-160T3G结构的特点是多种多样的。
首先,它具有非常高的强度和硬度,这使得它在各种应用中具有出色的耐磨性和耐冲击性。
其次,Mura-160T3G还表现出优异的导热性能,使其能够广泛用于高温环境下的热传导材料。
此外,Mura-160T3G结构还具有优异的化学稳定性,在酸碱环境以及高温下保持其特性不受影响。
这使得Mura-160T3G很适合用于化学工业中的腐蚀性环境。
此外,该结构还表现出良好的电气绝缘性能和良好的光学透明性,使其成为制造微电子器件和光学元件的理想材料。
第三部分:Mura-160T3G结构的应用Mura-160T3G结构由于其独特的特点,在许多领域都得到了广泛应用。
首先,在汽车工业中,Mura-160T3G结构可用于制造汽车零部件,如发动机和变速器的齿轮,以及制动系统的耐磨片。
其高强度和硬度使得这些部件能够承受高速和高温环境下的严酷工作条件。
其次,在航空航天领域,Mura-160T3G结构被广泛应用于制造飞行器的结构部件,如飞机机翼和机身。
其轻量化和高强度的特点使得飞机能够在空中飞行时保持较小的体积和较高的速度。
此外,在能源领域,Mura-160T3G结构被用于制造燃气轮机和核反应堆中的核燃料元件。
其高导热性能和化学稳定性使得这些元件能够在高温高压的环境下工作。
最后,在电子和光学领域,Mura-160T3G结构被用于制造半导体器件和光纤。
mura160t3g结构-回复什么是mura160t3g结构?mura160t3g 是一个较新的混凝土结构体系,是由日本建筑师Kenzo Tange 设计并首次应用于建筑中。
Mura 实际上是日语中“村” 的意思,因此也可称之为村160t3g 结构。
这种结构采用了一种具有创新性的建筑设计方法,旨在提供更高的建筑强度和更大的自由空间。
1. 这种结构有哪些特点?首先,mura160t3g 结构采用了大面积的混凝土墙体作为主体结构。
这些墙体不仅能够承受建筑的重量,还起到了防护和隔热的作用。
在这种结构中,每个混凝土墙体都是一个独立的结构单元,相邻的墙体之间通过横向的连梁相连,形成了一个整体。
这种结构设计使建筑具有更高的抗震性能和抗风能力,为居民提供了更高的安全保障。
其次,mura160t3g 结构还采用了设计灵活性较强的建筑模块化概念。
通过多个独立的模块单元的组合和连接,可以实现不同大小、不同功能的建筑空间。
这种模块化设计方法使得建筑解决方案更加个性化和灵活,能够适应不同的需求和使用场景。
此外,mura160t3g 结构还注重环境友好性。
在墙体的混凝土中掺入了一定比例的再生材料,比如再生混凝土或工业废料,以减少环境负荷和资源浪费。
2. mura160t3g 结构的优势是什么?(1)高强度和耐久性:mura160t3g 结构采用了大面积混凝土墙体作为主要承重结构,使整个建筑具有较高的抗震性和抗风能力。
同时,混凝土墙体还能够有效地隔热和隔音,提供更好的居住环境。
(2)灵活性和个性化:mura160t3g 结构的模块化设计方法使得建筑可以根据不同需求进行自由组合和调整。
这种灵活性使得建筑能够适应不同的功能和使用场景,满足不同居住者的需求。
(3)环保可持续性:mura160t3g 结构采用了再生材料,如再生混凝土和工业废料,以减少对环境的影响。
同时,该结构还考虑到了建筑节能和资源利用效率,使建筑更加环保和可持续。
AND8098/DLow−Cost 100 mAHigh−Voltage Buck and Buck−Boost Using NCP1052 Prepared by: Kahou WongON SemiconductorINTRODUCTIONThis application note presents low-cost high-voltage 100 mA non-isolated power supply using NCP1052 by buck and buck-boost topology. The NCP1052 is one of the latest low-cost switching controllers with integrated 700V/ 300 mA power switch from ON Semiconductor. It is primarily designed for isolated 10 W-range flyback converter. If isolation is not needed, the IC can also be used as stepping-down buck and buck-boost converter for further cost saving by removing optocoupler and replacing the transformer by an inductor. The output current capability is 100 mA. The possible operating range is from input range between 20 Vdc and 700 Vdc to output range of 5.0 V or above with 100 mA. Typical efficiency around 65% is obtained in the 12 V buck demo board.Advantages of the proposed circuits include:•Comparing to flyback, buck and buck-boost eliminates optocoupler and replaces transformer by an inductor for cost saving.•Buck and buck-boost offers smaller voltage stress in switches comparing to flyback. It minimizes the switching loss and increases efficiency.•NCP105x can power up itself from the high input voltage with wide range between 20 Vdc and 700 Vdc. It needs no extra supply circuit.•NCP105x operates at 44, 100, or 136 kHz and accommodates low-cost components such as aluminum electrolytic capacitors and powered-iron core magnetic.•NCP105x offers frequency jittering for reduced electromagnetic inference (EMI).•NCP105x offers thermal and short circuit fault protection.•Simple design as no control-loop compensation is concerned.The proposed buck and buck-boost converters are very similar to each other. Their major difference is that buck provides a positive output voltage but buck-boost provides a negative output voltage referring to the input ground.PRINCIPLE OF OPERATIONFigure 1 shows the proposed buck and buck-boost converters. The rectifier circuit, which consists of capacitor C3 and diode D3, is in the front end for AC or DC input voltage. Then, the NCP1052 is self-powered up from the rectified input voltage directly with a V CC capacitor C2. When the switch inside the IC is opened, there is a voltage across Drain (D) and Source (S) pins of the IC. If this voltage is greater than 20 V, an internal current source I start = 6.3 mA (typ.) inside the IC charges up C2 and a voltage in C2 is built up for the operation of the IC. Comparing to the switching frequency, the V CC voltage level is in a lower-frequency 7.5-8.5 V hysteresis loop. This V CC hysteresis loop is for frequency jittering features to minimize EMI and short-circuit fault timing function.(a) Buck(b) Buck-boostFigure 1. Proposed Circuit Using NCP1052In Figure 2a it is noted that in the buck topology the input voltage powers up the IC through the path across the inductor L and capacitor C. This charging path passesAPPLICATION NOTEthrough the output and a low-frequency ripple will be found in the output voltage. Hence, the value of C 2 is needed to be small enough to increase this charging frequency f VCC in order to reduce output voltage ripple because some efficiency is lost due to this low-frequency ripple.Figure 2. Charging Current of C 2In Figure 2b it is noted that in the buck-boost topology the charging current path is blocked by diode D and hence the charging of C 2 does not affect the output voltage directly.However, it still affects the output voltage indirectly and slightly by adding some low-frequency noise on the inductor. Hence, small value of C 2 is also wanted.(b) Buck-boostFigure 3. Output Voltage Couples to C 1 with aCharging CurrentThe function of diode D 1, capacitor C 1 and resistor R 1 are to transfer the magnitude of output voltage to a voltage across C 1 so that the IC can regulate the output voltage. In Figure 3, when the main switch inside the IC is opened and the diode D is closed. In buck, the potential of the IC reference ground (pin S) becomes almost 0 V in this moment. In buck-boost, the potential of the IC reference ground (pin S) becomes -V out in this moment. The voltage in C 1 will be charged to the output voltage. On the other hand, when main switch is closed and the diode D is opened,diode D 1 is reverse biased by a voltage with magnitude V in and V in +V out respectively. Hence, D 1 does not affect the normal operation of the buck and buck-boost converter.It is noted that the instantaneous voltage in C 1 can be possibly greater than the output voltage especially when output current or output ripple is too large. It directly affects the load regulation of the circuit since the IC regulates the output voltage based on the voltage in C 1. In order to solve it, larger values of L and R 1 can help to slow down the charging speed of C 1. It reduces the maximum instantaneous voltage in C 1 so that output voltage at high output current can be pulled up and a good regulation is made.Larger value of L can help the load regulation but it usually unwanted because it is bulky. Hence, resistor R 1 is recommended. Larger value of R 1 makes higher output voltage. Hence, it is called as a “pull-up resistor” and it can help to pull up the output voltage slightly.The voltage in C 1 representing the output voltage is feedback to the feedback (FB) pin of the NCP1052 through a diode D 2 and zener diode Z 2. When output voltage is too high, there will be a greater-than-50 m A current inserting into the feedback pin of the NCP1052. The NCP1052 will stop switching when it happens. When output voltage is not high enough, the current inserting into the feedback is smaller than 50 m A. The NCP1052 enables switching and power is delivered to the output until the output voltage is too high again.The purpose of the diode D 2 is to ensure the current is inserting into the feedback pin because the switching of NCP1052 can also be stopped when there is a greater-than-50 m A current sinking from the FB pin. The purpose of the zener diode Z 2 is to set the output voltage threshold. The FB pin of NCP1052 with a condition of 50 m A sourcing current is about 4.3 V . The volt-drop of the diode D 2 is loosely about 0.7 V at 50 m A. Hence, the output voltage can be loosely set as follows:V out +zener )4.3V )0.7V(eq. 1)+zener )5VAccording to (1), the possible minimum output voltage of the circuit is 5.0 V when there is no zener diode Z 2.If there is no load, the IC will automatically minimize its duty cycle to the minimum value but the output voltage is still possible to be very high because there is no passive component in the circuit try to absorb the energy. As a result,output voltage will rise up dramatically and burn the output capacitor eventually. Hence, a zener diode Z1 or minimum “dummy” load resistor is needed to consume the minimum amount of energy as shown in Figure 1. It is also noted that when R1 pulls up the output voltage at a given output current condition, the output voltages at lower output current conditions are also pulled up. Hence, the clamping zener diode Z1 is needed to be with the breakdown voltage as same as the output voltage but it will reduce some of the efficiency at lower output current conditions.DESIGN CONSIDERATIONTopologyBuck circuit is to step down a voltage. Buck-boost circuit is to step up or down a voltage. The output voltage is inverted. The maximum duty of NCP1052 is typically 77%.Because of burst-mode control, the effective maximum duty is lower and said to be 70% roughly. When a buck converter is in continuous conduction mode (CCM), the input voltage V in and output voltage V out are related by the duty ratio D.V outin+D t0.7(eq. 2) The relationship in buck-boost isV outV in+D1*Dt0.71*0.7+2.33(eq. 3) Another aspect on topology is the output current. The maximum output current is always smaller than the maximum switch current in non-isolated topologies. However, in isolated topologies such as flyback the maximum output current can be increased by a transformer.Table 1. Summary of Topology Difference Using NCP1052Burst-mode OperationThe NCP1052 is with a burst-mode control method. It means the MOSFET can be completely off for one or more switching cycles. The output voltage is regulated by the overall duration of dead time or non-dead time over a number of switching cycles. This feature offers advantageson saving energy in standby condition since it can reduce the effective duty cycle dramatically. In flyback topology, the circuit is mainly designed for discontinuous conduction mode (DCM) in which the inductor current reaches zero in every switching cycle. The DCM burst-mode waveform canbe represented in Figure 4. It is similar to the pulse-width modulation (PWM) one.Figure 4. DCM Inductor Currents in Burst Modeand PWM ControlBurst modePWMIn non-isolated topologies such as buck or buck-boost,the circuits are mainly designed for CCM. The CCM burst-mode waveform is different to the PWM waveform in Figure 5. Because of this characteristic, burst mode requires a higher peak value of the inductor current in order to have the same level of averaged inductor current (or output current).Figure 5. CCM Inductor Currents in Burst Modeand traditional PWM ControlBurst modePWMAs shown in Figure 4 and 5 burst-mode control produces low-frequency waveform comparing to the switching frequency. Part of the power loss in this low frequency becomes audible noise. Therefore, burst-mode control is not suitable for high power applications such as more than 20 W.V CC CapacitorThe V CC capacitor C 2 is the key component to make the circuit operate in normal mode or fault mode. The device recognizes a fault condition when there is no feedback current in the FB pin during the time from V CC = 8.5 V to 7.5 V . The V CC capacitor directly affects this time duration.In normal mode, the V CC follows a 8.5 V-7.5 V-8.5 V hysteresis loop. When the circuit is in fault mode, the V CC follows a 8.5 V-7.5 V-4.5 V-8.5 V hysteresis loop. The device keeps its MOSFET opened except for the time from V CC = 8.5 V to 7.5 V and delivers a little amount of power to the output in fault mode.A common and extreme case to enter fault condition is the startup. The MOSFET begins switching at the V CC is firstly charged to 8.5 V and hence output voltage rises. The output voltage needs some time to build up the output voltage from 0 V to a desired value. When the desired level is reached, a feedback current flows into the device to stop its switching.If the feedback current is determined before V CC reaches 7.5V , the circuit will remain in normal mode. Otherwise, the circuit will enter the fault mode and cannot provide the output voltage at its desired level. Therefore, the V CC capacitor is needed to be big enough to ensure sufficient time for V CC going from 8.5 V to 7.5 V to sample feedback current in startup.Figure 6. Startup Scenarios of the Circuits withBig Enough or Too Small V CC CapacitorOutput waveforms with too small V CC capacitorPractically, the NCP1052 consumes approximately 0.5mA in normal operation. The concerned fault sampling time for feedback signal is from 8.5 V to 7.5V . Hence,C +I dt dV+0.5 10-31·sampling time(eq. 4)+0.5 10-3·sampling timeFor example, if sampling time or startup transient is designed to be 20 ms, 10 µF V CC capacitor is needed.InductorThe 300 mA current limit in the NCP1052 is measured with a condition that the di/dt reaches 300 mA in 4 µs. When the buck or buck-boost circuit is designed for universal ac input voltage (85 to 265 V ac), the rectified input voltage will be possibly as high as 375 Vdc. In order to keep the 4 µs condition, the inductance value will be 5 mH by (5) and (6).For buck,di dt +V in *V out L [V in L(eq. 5)For buck-boost,di +V in(eq. 6)The 5 mH is practically too high and hence not verypractical. Therefore, the inductor is basically selected by market available inductor models which is with a normally smaller inductance (but not too small). It must have enough saturation current level (>300 mA). If inductance is toosmall, the di/dt becomes too high and the NCP1052 will have a very high current limit effectively because there is a propagation delay (typically 135 ns) to turn off the switch. The current flowing through the inductor L includes three parts. First, there is a V CC charging current I start in Figure 2. It happens when V CC needs charging. Its magnitude is 6.3 mA. It is noted that the V CC discharging current does not flow through the inductor. Second, it is the main inductor current to deliver the output current. It is noted that the peak of burst-mode inductor current is higher than PWM one as in Figure 5 for the same level of averaged inductor current (or output current). Finally, there is a current flowing through diode D1 to charge up C1. It also flows through the inductor as shown in Figure 3. Its magnitude is a greater-than-50µA current and practically it is about 1 mA. Hence, the saturation current of the inductor L is needed to be bigger than their sum.Another consideration on the inductor is the low-pass filtering capability for the V CC hysteresis low frequency (and the 50/ 60 Hz rectified AC line voltage ripple). As shown in Figure 2, there is a low-frequency charging current with magnitude 6.3 mA flowing through the inductor and causes low-frequency ripple in the output voltage. A higher value of the inductance can help to reduce the output ripple. It is noted that when the output power is higher, the startup time becomes longer. It needs bigger V CC capacitor and makes lower V CC charging frequency. As a result, a bigger inductance is needed.The last consideration is the effect of load regulation. Large inductor can limit the inrush current flowing into capacitor C1 as shown in Figure 3. High inrush current is not desirable because it can make the C1 voltage higher than the output voltage. It makes load regulation poor. If there is no pull-up resistor R1, inductor value L is chosen to be as large as possible, say 2 mH.Output CapacitorBecause of the burst-mode characteristic and the low-frequency V CC charging current, the output ripple is larger than those in PWM. Hence, a relatively bigger output capacitor is needed to keep output ripple small. However, big output capacitor needs a long time to build up the output voltage initially and hence the circuit may enter into fault mode in the startup in Figure 6.Buffering CapacitorBuffering capacitor C2 is to provide a greater-than-50 µA to the feedback pin of NCP1052. It is relatively much smaller than the output capacitor because the current consumption in this capacitor is much smaller and the output voltage cannot copy to this buffering capacitor if the buffering capacitor voltage is higher than the output voltage. DiodesD and D1 are recommended to be the same part for compatibility in speed and voltage drop. It helps the voltage in the capacitor C1 to be similar to the output voltage. The reverse blocking voltage of D and D1 is needed to be large enough to withstand the input voltage in buck and input voltage plus output voltage in buck-boost respectively.D2 is not a critical component. Its function is to make sure that feedback current is only in one direction. The accuracy of its voltage drop used in (1) is not important since the 4.3V reference voltage in the NCP1052 is loosely set.Zener DiodesZ1 is to clamp the output voltage when there is light load or no load. Hence, the accuracy of Z1 helps the regulation accuracy in the light load or no load condition. It is also the main component to consume energy when the circuit is in no load condition. The output voltage is clamped and hence the output capacitor is protected.Z2 and R1 are to set the output voltage at the nominal load current. Hence, their accuracy affects the regulation accuracy at the nominal load condition. The relationship between zener voltage and output voltage is shown in (1). Higher value of R1 helps to pull up the output voltage higher by reducing the charging rate of the buffering capacitor C1. Standby ConditionThe standby ability of the proposed buck converter is not good. It is because there is a V CC charging current I start flows through the output capacitor in Figure 2(a). This charging current is a low-frequency pulsating signal. As a result, the voltage in the output capacitor continuously rises up by the charging current pulses. In order to prevent over voltage in the output capacitor, the zener Z1 absorbs the charging current. It consumes main portion of energy in standby.The proposed buck-boost is better in term of the standby ability. It is because the V CC charging current in Figure 2(b)only passes through the inductor. The charging current pulses become an averaged energy stored in the inductor and consume smaller amount of power comparing to the buck case.Figure 7. Auxiliary Winding to improve standbyAbillity(a) Buck(b) Buck-boostThe auxiliary winding to supply the V CC voltage in Figure 7 is a method to improve the standby ability. The auxiliary winding keeps the V CC voltage above 7.5 V and disable the V CC charging current and hence its standby loss. The auxiliary winding is coupled from the inductor L with polarity same as the regulated output voltage. The V CC voltage in the auxiliary winding is designed to be between the normal V CC limits of 7.5 and 8.5 V typically. The frequency jittering feature loses when the V CC voltage is fixed. When output is shorted, there will be no voltage coming from the auxiliary winding and the circuit will enterfault mode with the 4.5 V-8.5 V-7.5 V-4.5 V hysteresis loop.Another method to supply the V CC voltage is coupling capacitor technique in Figure 8. The output voltage is coupled to the inserted capacitor when the diodes are closed.The voltage drop of the diodes compensate each other.Hence, the diode voltage drop effect can be neglected. The NCP1052 needs a nominal V CC voltage of 8V . The inserted resistor consumes some voltage from the output voltage V out to make a 8V to the V CC pin. Based on the 0.5mA typical current consumption of V CC pin. The inserted resistance value is (V out - 8) / 0.5 k W .Figure 8. Coupling Capacitor Technique toImprove Standby Abillity (a) Buck(b) Buck-boostTemperature RiseThe NCP1052 is a very compact package with the control circuit and high-voltage power switch. Its typical on resistance is 22 Ω. Temperature rise exists. It is recommended to design the PCB board with a large copper area next to the device as a heatsink. This heatsink decreasesthe temperature rise and reduces the on resistance. Finally, the efficiency of the circuit is benefited.EXAMPLES12 V / 100 mA NCP1052 Buck Demo BoardFigure 9. Layout of the Demo BoardFigure 10. 12V / 100mA Buck PerformanceOUTPUT CURRENT (mA)15010504350O U T P U T V O L T A G E (V )01426825020010012300OUTPUT CURRENT (mA)150505020300E F F I C I E N C Y (%)0801030402502001006070(a) Load Regulation(b) EfficiencyDual Output Buck-boost with Increased Output Current CapabilityReplacing NCP1052 by NCP1055, which is with a current limit of 680 mA, the output current capability is rger value of inductor L is selected for high current. On the other hand, the current consumption of NCP1055 is higher than NCP1052 and the startup transient time is longer in a higher power application. Hence, the V CC capacitor is increased. When the V CC capacitor increased, its charging frequency is decreased. Output capacitor is also needed to be increased to reduce this lower-frequency charging current/ripple.In addition, by adding one more auxiliary winding to the inductor a secondary output is made. A typical example is shown in Figure 11. In higher output current application, the load regulation is the major problem. The 5.1k Ω resistor plays an important role for the load regulation. The primary output voltage is higher than the secondary because it can increase the output current ability by stepping up the current in the transformer. The line regulation is shown in Figure 12when the output currents are constant.Figure 11. Dual Output Buck-boostGNDFigure 12. Line Regulation of the Dual OutputBuck-boostINPUT VOLTAGE (Vac)150-1050300O U T P U T V O L T A G E (V )-250-20-15250200100-5CONCLUSION100 mA high-voltage low-cost buck and buck-boost circuits using NCP1052 are presented. These circuits are designed for cost-saving non-isolated application so that optocoupler and transformer are saved. The possible input voltage range is from 20 Vdc to 700 Vdc so that it is suitable for general AC/DC and DC/DC applications with positive or negative output voltages. It is noted that the standby ability of the circuits is not good because of the V CC capacitor charging current. However, it can be improved by adding an auxiliary winding to the V CC . The design consideration of each component in the circuits is explained. By replacing the NCP1052 with NCP1055, the output current can be increased. By adding an auxiliary winding, multi-output can be obtained. A 12 V / 100 mA demo board is presented with typical 65% efficiency.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051Phone: 81-3-5773-3850。
160mva变压器参数160MVA变压器是一种大容量的变压器设备,主要用于电力系统的输电和配电。
它能够将高电压输送到远距离的地方,同时也能将电能从高电压向低电压方向送至用户终端。
本文将介绍160MVA变压器的常见参数以及其相关参考内容。
首先,160MVA变压器的额定容量为160兆伏安(MVA),这意味着它可以承受的最大容量为160,000千瓦或160,000,000瓦。
这一数据是该变压器所能承受的最大负载容量,因此在设计和使用时需要考虑其负载情况,以保证其正常运行。
其次,160MVA变压器的额定电压分为高压和低压两侧。
高压侧通常为110KV或220KV,而低压侧的电压通常为6.3KV、10.5KV或其他适用于用户需求的电压等级。
这两个电压的选择可以根据具体的电力系统需求来确定,以确保系统的正常运行和电压的稳定性。
除了电压和容量,160MVA变压器还有许多其他参数需要考虑。
其中包括变压器的短路阻抗、温升、绝缘等级和冷却方式等。
短路阻抗是变压器的特性之一,它表示在发生短路时,电流的大小和电压的降低程度。
通常,160MVA变压器的短路阻抗在5%到10%之间。
温升是指变压器在工作时的温度升高,通常在额定负载下,变压器的温升应该控制在规定的范围内。
绝缘等级是变压器的绝缘材料的能力,它表示变压器可以抵御的电压和电流冲击。
最后,冷却方式是指变压器的冷却方式,通常有自然冷却和强迫冷却两种方式。
在实际使用中,160MVA变压器的选型与设计需要考虑的因素较多,例如电力系统的负载需求、输电距离、电力损耗、可靠性要求以及经济性等。
因此,在设计和选型过程中,可以参考各个国家的标准和规范,如国际电工委员会(IEC)的标准、美国标准协会(ANSI)的标准以及各个国家的电力行业标准。
这些标准和规范提供了160MVA变压器选型和设计方面的指导和参考,可以帮助设计人员合理选择变压器的参数和配置,以满足具体的应用需求。
此外,还可以参考电力系统中其他类似容量的变压器的设计和应用情况。
MUR1605THRU MUR166016 Amp Super Fast Glass PassivatedRectifier FeaturesMaximum Ratings• Operating Temperature: -55°C to +155°C •Storage Temperature: -55°C to +155°CMCCCatalog NumberDevice MarkingMaximum Recurrent Peak Reverse VoltageMaximum RMS Voltage Maximum DC Blocking Voltage MUR 1605MUR 1605 50V 35V 50V MUR 1610 MUR 1610 100V 70V 100V MUR 1620 MUR 1620 200V 140V 200V MUR 1640 MUR 1640 400V280V 400VElectrical Characteristics @ 25°C Unless Otherwise Specified Average Forward CurrentI F(AV)16.0AT C =110°CPeak Forward Surge CurrentI FSM 250A 8.3ms, half sineMaximum Forward Voltage Drop PerElement Maximum DC Reverse Current At Rated DC Blocking Voltage I R 10uA 250uA T J = 25°C T J = 100°C •Glass passivated chip• Super fast switching time for hight efficiency • Low reverse leakage current • High surge capacity1505-15301540-1560 T J = 25°C 1640-1650 1660 1.3V 1.5 V I FM =16A T rrI F =0.5A, I r =1.0A,I rr =0.25A Typical Junction Capacitance C J 65pF Measured at 1.0MHz, V R =4.0V 35ns 60ns Maximum Reverse Recovery Time 50 to 600 Volts*Pulse Test: Pulse Width 300µsec, Duty Cycle 2% omp onents 20736 Marilla Street Chatsworth! "# $ % ! "#Revision: 1 2007/04/24Micro Commercial Componentswww.mccsemi .com1 of 3Case Material: Molded Plastic.UL Flammability Classification Rating 94V-0 •MUR 1630 MUR 1630 300V 210V 300V 1605- 1630 V F 0.975V 元器件交易网MUR1605 thru MUR1660FIG.1 - FORWARD CURRENT DERATING CURVEA V E R A G E F O R W A R D R E C T I F I E D C U R R E N T , A M P E R E SI I N S T A N T A N E O U S F O R W A R D C U R R E N T ,A M P E R E SFIG.2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENTREVERSE VOLTAGE, VOLTS0.11.04.010100Micro Commercial Componentswww.mccsemi .com Revision: 12007/04/243 of 3元器件交易网Revision: 12007/04/24Micro Commercial Componentswww.mccsemi .com3 of 3products are represented on our website, harmless against all damages.***APPLICATIONS DISCLAIMER******IMPORTANT NOTICE***Aerospace or Military Applications.Products offer by Micro Commercial Components Corp .are not intended for use in Medical,Micro Commercial Components Corp .reserve s the right to make changes without further notice to any product herein to make corrections, modifications , enhancements , improvements , or other changes .Micro Commercial Components Corp .does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights ,nor the rights of others . The user of products in such applications shall assume all risks of such use and will agree to hold Micro Commercial Components Corp .and all the companies whose元器件交易网。
mura160t3g结构-回复中括号内的内容为"mura160t3g结构",这是一个电子元器件型号。
MURA160T3G是一款二极管碳化硅超快恢复二极管。
本文将以这个元器件的结构为主题,逐步解释其构造和工作原理。
一、电子元器件简介MURA160T3G是一款高速恢复二极管,用于高频电路和开关电源中。
它具有较低的反向恢复时间和较高的工作频率,能够快速、稳定地传输高频信号。
下面将详细介绍MURA160T3G的结构。
二、MURA160T3G的结构MURA160T3G结构主要由以下组成部分构成:1. 碳化硅芯片:MURA160T3G使用碳化硅作为主要材料,这种材料具有高温稳定性和高电压抗击穿能力,能够在高温、高压环境下保持良好的电特性。
2. 异质结:该二极管的结构采用异质结,即在芯片的两侧形成不同的材料结构,使得电子流动时能够形成电势差,实现二极管的整流功能。
3. 金属接线:芯片的上下两侧通过金属接线与外部电路连接,以提供外部电源和信号的输入与输出。
三、MURA160T3G的工作原理MURA160T3G的工作原理是利用碳化硅材料的特性以及异质结的形成来实现电流的整流和控制。
其工作过程如下:1. 正向偏置:当外部电源的正极连接到MURA160T3G的阳极(anode),负极连接到阴极(cathode)时,形成了正向偏置电压。
2. 电子流动:此时,电流开始从阳极流向阴极,过程中碳化硅芯片的特性使得电子能够高速流动,并且在异质结处发生整流效应。
3. 反向阻止:当外部电源的极性发生变化,即正极连接到阴极,负极连接到阳极时,二极管的异质结将会形成较高的电阻,阻止电流继续流动,实现反向阻断的功能。
4. 高速恢复:MURA160T3G作为超快速恢复二极管,具有较低的反向恢复时间。
这意味着当电源极性发生变化,二极管能够快速从反向导通状态恢复到正向导通状态,提供更快速的信号传输能力。
四、应用领域MURA160T3G广泛应用于高频电路和开关电源,特别是在需要快速信号传输和高频开关的应用中。
MURA160SURFACE MOUNTPRV : 600 Volts Io : 1.0 AmpereFEATURES :* Small Compact Surface Mountable Package * HighTemperature Glass Passivated Junction * Low forward voltage drop * Ultra fast recovery time * Pb / RoHS FreeMECHANICAL DATA :* Case : SMA Molded plastic* Epoxy : UL94V-O rate flame retardant * Lead : Lead Formed for Surface Mount * Polarity : Color band denotes cathode end * Mounting position : Any * Weight : 0.067 gramMAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICSRating at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load.For capacitive load, derate current by 20%.Maximum Peak Repetitive Reverse Voltage Maximum Working Peak Reversr Voltage Maximum DC Blocking VoltageMaximum Average Forward Current @T L = 145 °C Maximum Non-Repetitive Peak Surge Current (Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz)Maximum Instantaneous Forward Voltage ( IF= 1.0 A, T J = 25 °C)Maximum Instantaneous Reverse Current (Note 1) ( Rated dc Voltage, T J = 25 °C ) ( Rated dc Voltage, T J = 150 °C )Thermal Resistance, Junction to Ambient (Note 2) Maximum Reverse Recovery Time (I F =1.0A, di/dt = 50A/µs)Operating Junction Temperature RangeNotes :(1) Pulse Test : Pulse Width = 300 μs, Duty Cycle ≤ 2.0 %.(2) Rating Applies when surface mounted on the minimum pad size recommended, PC Board FR-4.Page 1 of 2Rev. 01 : November 11, 2005RATINGSYMBOL UNIT V V RRM V V V RWM VALUE 600V F V DC V 1.0I F(AV)VAI FSM30ºCºC/W T J- 65 to + 175216R θJA 75Trr ns I R I R(H) 5.0150600600μA 1.25元器件交易网Page 2 of 2Rev. 01 : November 11, 2005元器件交易网。
MURA160
SURFACE MOUNT
PRV : 600 Volts Io : 1.0 Ampere
FEATURES :
* Small Compact Surface Mountable Package * HighTemperature Glass Passivated Junction * Low forward voltage drop * Ultra fast recovery time * Pb / RoHS Free
MECHANICAL DATA :
* Case : SMA Molded plastic
* Epoxy : UL94V-O rate flame retardant * Lead : Lead Formed for Surface Mount * Polarity : Color band denotes cathode end * Mounting position : Any * Weight : 0.067 gram
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Rating at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load.For capacitive load, derate current by 20%.
Maximum Peak Repetitive Reverse Voltage Maximum Working Peak Reversr Voltage Maximum DC Blocking Voltage
Maximum Average Forward Current @T L = 145 °C Maximum Non-Repetitive Peak Surge Current (Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz)
Maximum Instantaneous Forward Voltage ( I
F
= 1.0 A, T J = 25 °C)
Maximum Instantaneous Reverse Current (Note 1) ( Rated dc Voltage, T J = 25 °C ) ( Rated dc Voltage, T J = 150 °C )
Thermal Resistance, Junction to Ambient (Note 2) Maximum Reverse Recovery Time (I F =1.0A, di/dt = 50A/µs)
Operating Junction Temperature Range
Notes :
(1) Pulse Test : Pulse Width = 300 μs, Duty Cycle ≤ 2.0 %.
(2) Rating Applies when surface mounted on the minimum pad size recommended, PC Board FR-4.
Page 1 of 2Rev. 01 : November 11, 2005
RATING
SYMBOL UNIT V V RRM V V V RWM VALUE 600V F V DC V 1.0I F(AV)V
A
I FSM
30
ºC
ºC/W T J
- 65 to + 175
216R θJA 75Trr ns I R I R(H) 5.0150600600μA 1.25元器件交易网
Page 2 of 2Rev. 01 : November 11, 2005
元器件交易网。