动态型问题专题复习
- 格式:ppt
- 大小:971.00 KB
- 文档页数:13
模型介绍★旋转动角问题三步解题技巧总结一.根据题意找到目标角度二.表示出目标角度1.角度一边动另一边不动,角度变大:目标角=起始角+速度×时间2.角度一边动另一边不动,角度变小:目标角=起始角-速度×时间3.角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角-速度×时间变大:目标角=速度×时间-起始角4.角度两边都动,运动方向相同且变大目标角=起始角+速度差×时间5.角度两边都动,运动方向相同且变小目标角=起始角-速度差×时间6.角度两边都动,运动方向相反目标角=起始角+速度和×时间三.根据题意列方程求解例题精讲【例1】.如图,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD,当OC边与OB边重合时,∠COD从图中的位置绕点O顺时针旋转n°(0<n<126),则n°=51°或69°.时,∠MON=2∠BOC.解:①0°<n<54°时,∠BOC=n°,∠MON=2n°,∠MON=(126°+n°)+54°﹣(54°+n°)=100°,∴n=51.②当54°<n<126°时,∠AOC=360°﹣(126°+n°)=234°﹣n°,∠BOD=54°+n°,∴∠MON=360°﹣∠AOM﹣∠AOB﹣∠BON=360°﹣(234°﹣n°)﹣126°﹣(54°+n°)=138°∴n=69.综上所述,n的值为51或69.故答案为:51°或69°.变式训练【变式1-1】.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D 重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒15°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为2或8或10秒.解:∵∠E=∠ABC=30°,∠C=∠EFB=90°,∠E=∠ABC=30°,∴∠D=∠A=60°.①当DE∥AC时,如图1中,∵∠C=90,∴AC⊥BC,∴DE⊥BC,∴∠D+∠BFD=90°,∴∠BFD=90°﹣60°=30°,∴旋转时间t==2s.②如图2中,当DE∥BC时,∠BFE=∠E=30°,∴∠DFB=90°+30°=120°,∴旋转时间t==8s.③当DE∥AB时,如图3中,∴∠BGF=∠E=30°,∴∠BFE=30°+30°=60°,∴∠DFB=60°+90°=150°,∴旋转时间t==10s.综上所述,旋转时间为2s或8s或10s时,△ABC恰有一边与DE平行.故答案为:2或8或10.【变式1-2】.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75+5t),解得t=.当∠NPQ=∠MPN时,15t=(75+5t),解得t=.故t的值为3或或.故答案为:3或或.【例2】.一副三角板按图1方式拼接在一起,其中边OA,OC与直线EF重合,∠AOB=45°,∠COD=60°,保持三角板COD不动,将三角板AOB绕着点O顺时针旋转一个角度α,(如图2),在转动过程中两块三角板都在直线EF的上方,当OB平分由OA,OC,OD其中任意两边组成的角时,α的值为30°或90°或105°.解:当OB平分∠AOD时,∵∠AOE=α,∠COD=60°,∴∠AOD=180°﹣∠AOE﹣∠COD=120°﹣α,∴∠AOB=∠AOD=60°﹣α=45°,∴α=30°,当OB平分∠AOC时,∵∠AOC=180°﹣α,∴∠AOB=90°﹣α=45°,∴α=90°;当OB平分∠DOC时,∵∠DOC=60°,∴∠BOC=30°,∴α=180°﹣45°﹣30°=105°,综上所述,旋转角度α的值为30°或90°或105°;故答案为:30°或90°或105°.变式训练【变式2-1】.将一副直角三角板ABC,ADE按如图1叠加放置,其中B与E重合,∠BAC =45°,∠BAD=30°.将三角板ADE从图1位置开始绕点A顺时针旋转,并记AM,AN分别为∠BAE,∠CAD的平分线,当三角板ADE旋转至如图2的位置时,∠MAN的度数为37.5°.解:∵AM,AN分别为∠BAE,∠CAD的角平分线,∴∠MAE=∠BAE,∠NAC=∠DAC,∴∠MAN=∠MAE+∠NAC﹣∠CAE=(∠BAE+∠DAC)﹣∠CAE=(∠BAC+∠DAE+2∠CAE)﹣∠CAE=×75°=37.5°;故答案为:37.5.【变式2-2】.如图①,O为直线AB上一点作射线OC,使∠AOC=120°,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O以每秒5°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中第t 秒时,OQ所在直线恰好平分∠BOC,则t的值为24s或60s.解:如图1,∵∠AOC=120°,∴∠BOC=60°,∵OQ平分∠BOC,∴∠BOQ=∠BOC=30°,∴t==24s;如图2,∵∠AOC=120°,∴∠BOC=60°,∵OQ′平分∠BOC,∴∠AOQ=∠BOQ′=∠BOC=30°,∴t==60s,综上所述,OQ所在直线恰好平分∠BOC,则t的值为24s或60s,故答案为:24s或60s.1.如图,已知PQ∥MN,点A,B分别在MN,PQ上,射线AC自射线AM的位置开始,以每秒3°的速度绕点A顺时针旋转至AN便立即逆时针回转,射线BD自射线BP的位置开始,以每秒1°的速度绕点B逆时针旋转至BQ后停止运动.若射线BD先转动30秒,射线AM才开始转动,当射线AC,BD互相平行时,射线AC的旋转时间为37.5或105秒.解:根据题意,需要分两种情况,当射线AC顺时针旋转时,如图所示:∵PQ∥MN,∴∠PBD=∠BDN,∵BD∥AC,∴∠BDA=∠CAN,∴∠PBD=∠CAN,设射线AC运动时间为t,则∠MAC=3°t,∠PBD=30°+1°t,∴∠CAN=180°﹣3°t,∴30°+1°t=180°﹣3°t,解得t=37.5.当射线AC逆时针旋转时,如图所示:∵PQ∥MN,∴∠PBD=∠BDN,∵BD∥AC,∴∠BDA=∠CAN,∴∠PBD=∠CAN,设射线AC运动时间为t,则∠CAN=3°t﹣180°,∠PBD=30°+1°t,∴30°+1°t=3°t﹣180°,解得t=105.故答案为:37.5或105.2.如图1,直线ED上有一点O,过点O在直线ED上方作射线OC,将一直角三角板AOB (∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线ED上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,旋转时间为t秒.若射线OC的位置保持不变,且∠COE=140°.则在旋转过程中,如图2,当t =2或8或32秒时,射线OA,OC与OD中的某一条射线恰好是另两条射线所夹角的平分线.解:当射线OA是∠COD的平分线时,∵∠COD=180°﹣∠COE=40°,OA是∠COD的平分线,∴∠AOD=∠COD=20°,∴t==2;当射线OC是∠AOD的平分线时,∠AOD=2∠COD=80°,∴t==8;当射线OD是∠COA的平分线时,360﹣10t=40,∴t=32,故答案为:2或8或32.3.如图1,已知∠ABC=50°,有一个三角板BDE与∠ABC共用一个顶点B,其中∠EBD =45°.(1)若BD平分∠ABC,求∠EBC的度数;(2)如图2,将三角板绕着点B顺时针旋转α度(0°<α<90°),当AB⊥BD时,求∠EBC的度数.解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠CBD==25°,∵∠EBD=45°,∴∠EBC=∠EBD+∠DBC=45°+25°=70°.(2)∵AB⊥BD,∴∠ABD=90°,∵∠ABC=50°,∴∠DCB=90°﹣50°=40°,∵∠EBD=45°,∴∠EBC=45°﹣40°=5°.4.将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数;(2)如图(1),求∠BOD+∠AOC的度数;(3)如图(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.解:(1)若∠AOD=35°,∵∠AOB=∠COD=90°,∴∠BOD=90°﹣35°=55°,∴∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∵∠BOD=∠AOB+∠COD﹣∠AOC,∴∠BOD+∠AOC=∠AOB+∠COD=90°+90°=180°;(3)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°;当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.5.已知∠AOB=60°,OM平分∠AOC,ON平分∠BOC,求:(1)如图1,OC为∠AOB内部任意一条射线,求∠MON=30°;(2)如图2,当OC旋转到∠AOB的外部时,∠MON的度数会发生变化吗?请说明原因;(3)如图3,当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,OM平分∠AOC,射线ON在∠BOC内部,∠NOC=∠BOC,求∠COM﹣∠BON的值?解:(1)∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠BOC+∠AOC=∠AOB=×60°=30°.故答案为:30°;(2)不变,当OC旋转到∠AOB的外部时,∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=∠BOC﹣∠AOC=∠AOB=×60°=30°.∴∠MON的度数不会发生变化;(3)当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,∵OM平分∠AOC,∠NOC=∠BOC,∴∠COM=∠AOC,∠BON=∠BOC,∴∠COM﹣∠BON=∠AOC﹣×∠BOC=∠AOC﹣∠BOC=∠AOB=30°.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=1:2,∠MON 的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图1,求∠CON的度数;(2)将图1中的∠MON绕点O以每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,如图2,若直线ON恰好平分锐角∠AOC,求∠MON所运动的时间t值;(3)在(2)的条件下,当∠AOC与∠NOC互余时,求出∠BOC与∠MOC之间的数量关系.解:(1)∵∠AOC:∠BOC=1:2,∠AOC+∠MOC=180°,∴∠AOC=,∵∠MON=90°,∴∠AON=90°,∴∠CON=∠AOC+∠AON=90°+60°=150°;(2)当直线ON平分∠AOC时,如图,ON'平分∠AOC,逆时针旋转60度至ON''时,直线ON平分所以t=3,∵∠AOC=60°,∴∠AON'=30°,此时射线ON逆时针旋转60度,∴∠MON所运动的时间t=60÷20=3(s);如图②,∵直线ON恰好平分锐角∠AOC,∴ON沿逆时针旋转的度数为90°+150°=240°,∴∠MON所运动的时间t==12(s);综上,∠MON所运动的时间t值为3s或12s;(3)如图③所示:∵∠AOC+∠NOC=90°,OM与OA重合∴∠BOC与∠MOC互补.如图②所示:当ON平分∠AOC时,∠AOC+∠NOC=90°,∴∠NOC=30°,∠MOC=120°,∠BOC=120°,∴∠BOC=∠MOC.综上所述:∠BOC与∠MOC互补或相等.顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,求∠MOC的度数;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=∠AOM,求∠NOB的度数.解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°;(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°,∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠COB﹣∠BON=65°﹣40°=25°,即∠BON=40°,∠CON=25°;(3)∵∠NOC=∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65=115°,∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°,∴4∠NOC+∠NOC=25°,∴∠NOC=5°,∴∠NOB=∠NOC+∠BOC=70°.点放在O处,即∠DOE=90°.(1)如图1,若直角三角板DOE的一边OE放在射线OA上,求∠COD的度数;(2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分∠AOC,求∠COD的度数;(3)将直三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好∠COD=∠AOE,求此时∠BOD的度数.解:(1)由题意得∠BOD=90°,∵∠BOC=40°,∴∠COD=90°﹣40°=50°.(2)∵∠AOC+∠BOC=180°,∠BOC=40°,∴∠AOC=180°﹣40°=140°,∵OE平分∠AOC,∴∠COE=∠AOC=70°,∵∠DOE=90°,∴∠COD=90°﹣70°=20°,(3)①当∠COD在∠BOC的内部时,∵∠COD=∠BOC﹣∠BOD,而∠BOC=40°,∴∠COD=40°﹣∠BOD,∵∠AOE+∠EOD+∠BOD=180°,∠EOD=90°,∴∠AOE=90°﹣∠BOD,又∵∠COD=∠AOE,∴40°﹣∠BOD=(90°﹣∠BOD),∴∠BOD=15°;②当∠COD在∠BOC的外部时,∵∠COD=∠BOD﹣∠BOC,而∠BOC=40°,∴∠COD=∠BOD﹣40°,∵∠AOE+∠EOD﹣∠BOD=180°,∠EOD=90°,∴∠AOE=90°﹣∠BOD,又∵∠COD=∠AOE,∴∠BOD﹣40°=(90°﹣∠BOD),∴∠BOD=52.5°,综上所述:∠BOD的度数为15°或52.5°.9.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,当OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;如图,当射线OC在OB右侧时,∵∠COM=∠AOC,∠BON=∠BOD,∴∠MON=∠MOC+∠BON+∠BOC=∠AOC+∠BOD+∠BOC=(∠AOC+∠BOD)+∠BOC=(∠AOD﹣∠BOC)+∠BOC=×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t的值为21秒.10.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=25°;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°.故答案为:25°.(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°.∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°.∠CON=∠COB﹣∠BON=65°﹣40°=25°.即∠BON=40°,∠CON=25°;(3)∵∠NOC=∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65=115°.∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°.∴4∠NOC+∠NOC=25°.∴∠NOC=5°.∴∠NOB=∠NOC+∠BOC=70°.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM ﹣∠NOC的度数.解:(1)直线ON平分∠AOC.理由如下:如图,设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB=,又∠MOD=∠MON=90°,∴∠COD=90°﹣∠BOC=30°,∵∠AOC=180°﹣∠BOC=60°,∴∠COD=∠AOC,∴OD平分∠AOC,即直线ON平分∠AOC;(2)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.12.已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF 的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=30或50或90.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,∴∠EOF=∠EOB+∠COF=50°+20°=70°;(2)∠AOE﹣∠BOF的值不是定值,理由是:当0<n<80时,如图2.∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;当n=80时,∠AOC=180°,∠AOE﹣∠BOF=(100°+80°)﹣(40°+80°)=30°;当80<n<90时,如图3.∠AOE=(360°﹣100°﹣α)=130°﹣n°,∠BOF=(40°+n°),则∠AOE﹣∠BOF=110°﹣n°,不是定值;(3)当0<n<40时,C和D在OA的右侧,∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.当40≤n<80时,如图2所示,D在OA的左侧,C在OA的右侧.当∠AOD=∠AOB+∠COD+n°>180°时,∠AOD=360°﹣∠AOB﹣∠COD=220°﹣n°,∠EOF=70°,∵∠AOD+∠EOF=6∠COD,∴220°﹣n°+70°=6×40°,解得n=50.当80<n<140时,如图3所示,∠AOD=360°﹣100°﹣40°﹣n°=220°﹣n°,∠EOF=360°﹣(130°﹣n)﹣(40°+n)﹣100°=110°,则(220﹣n)+110°=240°,解得n=90°;当140≤n<180时,∠AOD=220°﹣n°,∠EOF=70°,则220﹣n+70=240,解得n=50(舍去).故答案是:30或50或90.13.新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线是这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为15°或22.5°或30°;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x,由题意得,x+2x=45°,解得x=15°,②设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=22.5°,③设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=30°,故答案为:15°或22.5°或30°;(3)当0<t≤4时,∠MON=60+5t,∠AON=60﹣15t,若射线OA是∠MON的幸运线,则∠AON=,即60﹣15t=(60+5t),解得t=;∠AON=∠MON,即60﹣15t=(60+5t),解得t=;∠AON=∠MON,即60﹣15t=(60+5t),解得t=;当4<t<9时,∠MOA=20t,∠AON=15t﹣60,若射线ON是∠AOM的幸运线,则∠AON=∠MOA即15t﹣60=×20t,解得t=12(舍);∠AON=∠MOA,即15t﹣60=×20t,解得t=;∠AON=∠MOA,即15t﹣60=×20t,解得t=36(舍);故t的值是或或或.14.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如图1,如果OA,OC重合,且OD在∠AOB的内部,求∠MON的度数;(2)如图2,固定∠AOB,将图1中的∠COD绕点O顺时针旋转n°(0<n≤90).①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m≤100),如图③,请直接写出∠MON 与旋转度数m°之间的数量关系:∠MON=m°+25°.解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)如图2,①∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°;②当∠MON=90°时,n+25=90,∴n=65.(3)如图3中,当ON在∠AOB内部时∠MON=∠AOM﹣∠AON=65°﹣(40°﹣m°)=m°+25°.当ON在∠AOB外部时时,∠MON=∠AOM+∠AON=65°+m°﹣40=m°+25°.综上所述,∠MON=m°+25°.故答案为:∠MON=m°+25°.15.已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数;(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”;(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,直接写出符合条件的所有的旋转时间5秒或7.5秒..解:(1)∵射线OP是∠AOB的好线,且∠BOP=30°,∴∠AOP=∠BOP=60°,①当OP在∠AOB内部时,∠AOB=∠BOP+∠AOP=90°,②当OP在∠AOB外部时,∠A0B=∠AOP﹣∠BOP=30°,∴∠AOB=90°或30°;(2)∵OB,OA分别是∠MOP和∠PON的平分线,∴∠AOB=∠BOP+∠AOP=(∠MOP+∠NOP)=90°,∠BOP=∠BOM=30°,∴∠AOP=90°﹣30°=60°,∴∠BOP=∠AOP,∴OP是∠AOB的一条“好线”;(3)5秒或7.5秒.设运动时间为t,则∠MOP=12t,∠BOA=4t,①当OP在OB上方时,∠BOP=80°﹣12t,∠AOP=80°+4t﹣12t=80°﹣8t,∴80﹣8t=2(80﹣12t)解得:t=5;②当OP在OB下方时,∠BOP=12t﹣80°,∠AOP=80°+4t﹣12t=80°﹣8t,∴80﹣8t=2(12t﹣80),解得:t=7.5;综上所述:t的值为5秒或7.5秒.故答案为:5秒或7.5秒.16.如图,点O为直线AB上一点,∠AOC=90°,在直线AB上方有射线OM、ON分别从OA和OC开始绕点O顺时针旋转,旋转过程中始终保持∠AOM=2∠CON,OQ平分∠AON.(1)如图1,证明:ON平分∠MOB;(2)如图2,在旋转过程中,当∠CON=2∠MOQ时,求∠CON的度数;(3)如图3,在旋转过程中,∠AOM是锐角,射线OD在∠MON内部,∠MOD=30°,OP平分∠MON,∠MOQ:∠POD=m,∠NOB:∠QOC=n,在AB下方有射线OT,∠AOT=90°﹣(m+n)°,∠BOT+∠MOQ=110°,求∠AOM的度数解:(1)设∠CON=α,∠AOM=2∠CON=2α,∴∠AON=∠AOC+∠CON=90°+α,∵∠AOB=180°,∴∠NOB=∠AOB﹣∠AON=180°﹣(90°+α)=90°﹣α,∠MOB=∠AOB﹣∠AOM=180°﹣2α=2(90°﹣α),∴∠MOB=2∠NOB,∴ON平分∠MOB;(2)若射线OM在∠AOQ内时,∵OQ平分∠AON,∴∠AOQ=∠AON=(90°+α)=45°+α,∴∠MOQ=∠AOQ﹣∠AOM=45°+α﹣2α=45°﹣α,∵∠CON=2∠MOQ,∴α=2(45°﹣α),∴α=22.5°,即∠CON=22.5°,若射线OM在∠BOQ内时,∴∠MOQ=∠AOM﹣∠AOQ=2α﹣(45°+α)=α﹣45°,∵∠CON=2∠MOQ,∴α=2(α﹣45°),∴α=45°,即∠CON=45°,故∠CON的度数为22.5°或45°;(3)由(1)(2)知∠AON=90°+α;∠AOQ=45°+α,∠MOQ=45°﹣α;∠NOB=90°﹣α=2(45°﹣α),∴∠MON=∠AON﹣∠AOM=90°+α﹣2α=90°﹣α,∵OP平分∠MON,∴∠MOP=∠MON=(90°﹣α)=45°﹣α,情况1:射线OM在∠AOQ内,∠POD=∠MOP﹣∠MOD=45°﹣α﹣30°=15°﹣α,∠QOC=∠AOC﹣∠AOQ=90°﹣(45°+α)=45°﹣α,∴m=∠MOQ:∠POD=(45°﹣α):(15°﹣α)=3(15°﹣α):(15°﹣α)=3,n=∠NOB:∠QOC=(90°﹣α):(45°﹣α)=2(45°﹣α):(45°﹣α)=2,∴∠AOT=90°﹣(m+n)°=90°﹣(3+2)°=85°,∴∠BOT=∠AOB﹣∠AOT=180°﹣85°=95°,∵∠BOT+∠MOQ=110°,∴∠MOQ=110°﹣95°=15°,∴45°﹣α=15°,解得∠α=20°∠AOM=2α=40°,情况2:射线OM在∠BOQ内,∠POD=∠MOD﹣∠MOP=30°﹣(45°﹣α)=α﹣15°,∠MOQ=∠AOM﹣∠AOQ=2α﹣(45°+α)=α﹣45°=3(α﹣15°),∴m=∠MOQ:∠POD=(α﹣45°):(α﹣15°)=3(α﹣15°):(α﹣15°)=3,由情况1可知:n=∠NOB:∠QOC=(90°﹣α):(45°﹣α)=2,∴∠AOT=90°﹣(m+n)°=90°﹣(3+2)°=85°,∠BOT=95°,∠MOQ=15°,∴α﹣45°=15°,解得∠α=40°,∴∠AOM=2α=80°.故∠AOM的度数为40°或80°.17.如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=40°°;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC 与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.解:(1)∵OM为∠AOB的角平分线、∠AOB=40°,∴∠MOB=20°.∵∠MON=70°,∴∠BON=∠MON﹣∠MOB=50°.∵ON为∠BOD的角平分线,∴∠BON=∠DON=50°.∴∠CON=∠COD﹣∠DON=10°∴∠BOC=∠DON﹣∠CON=40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C′在B上方时,根据题意可知,∠BOC′=40°﹣4t,∠BOD′=∠BOD﹣4t=100°﹣4t.∠BON′=∠BOD′==50°﹣2t,∵OC′平分∠BON′,∴∠BOC′=,即40°﹣4t=(50°﹣2t),解得:t=5(s).当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.顺时针旋转时:如图②,同理当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.当C′在B上方时,即OC′与OB重合,由题意可求OC′与OB重合用的时间=∠AOC÷4+∠AOB÷6=(∠AOB+∠BOC)÷4+∠AOB÷6=(s).∴OC′与OB重合之后,∠BOC′=6(t﹣)(s).∴∠BOD′=∠BOC′+60°=6(t﹣)+60°=6t﹣100°.∴∠BON′==(6t﹣100°)=3t﹣50°,∵OC′平分∠BON′,∴∠BOC′=,∴6(t﹣)=(3t﹣50°),解得:t=30(s)综上所述t的值为5或30.②逆时针旋转时:如图3中,当射线OP在射线OB的上方时,∵∠POB=(140°﹣4t)﹣40°=30°﹣2t,∠BON′=(100°﹣4t)=50°﹣2t,∴∠PON′=∠BON′﹣∠POB=20°∴|∠BOP﹣∠MON′|=|∠BOM+∠PON′|=40°,当OP与OB重合时,(140°﹣4t)﹣40°=0,解得t=15.∴0≤t≤15时,|∠BOP﹣∠MON′|的值不变,是40°.当射线OP返回时与OB重合时.时间t=20+=,当运动到射线OD与OA共线时,60°+6(t﹣20)=180°时,解得t=40,观察图象可知,≤t≤40时,|∠BOP﹣∠MON′|的值不变,是40°.当射线OD运动到与射线OB共线时,20°+6(t﹣20)=180°,解得t=,当≤t≤50时,如图4中,同法可得,∠PON′=20°,∴|∠BOP﹣∠MON′|=|∠BOM+∠PON′|=40°,综上所述,满足条件的t的值为:0≤t≤15或≤t≤40或≤t≤50.18.如图1,摆放一个三角形纸板ODE,边OD在正东方向的射线上,点A,B分别在正西,正东方向上,∠COF=30°,现将三角形纸板ODE从图1位置开始绕点O以每秒5度的速度逆时针方向匀速旋转,设旋转的时间为t秒,在旋转一周的过程中.(1)当t=5时,求∠AOD的度数,并写出点D的方向角;(2)如图2,当三角形纸板ODE旋转至△OD1E1时,边OE1恰好落在射线OF上,且OF平分∠AOD1,OD1平分∠BOC,求t的值,并写出点F的方向角;(3)当旋转至△OD2E2时,OE2所在直线平分∠AOC,求t的值.解:(1)因为三角形纸板ODE绕点O旋转的速度为每秒5度,所以当t=5时,∠BOD=25°,此时,点D在北偏东65°方向上,又∠AOD+∠BOD=180°,所以∠AOD=180°﹣∠BOD,即∠AOD=180°﹣25°=155°.(2)如图2中,设∠BOD1=x°.因为OD1平分∠BOC,所以∠BOC=2x°,∠COD1=x°,因为∠COF=30°,所以∠D1OF=∠COD1+∠COF=x°+30°=(x+30)°,又OF平分∠AOD1,即∠AOF=∠D1OF,因为∠AOF+∠D1OF+∠BOD1=180°,即2∠D1OF+∠BOD1=180°,所以2(x+30)°+x°=180°,化解得3x°=120°,解得x=40,所以三角形纸板ODE运动的时间(秒),所以∠AOF=∠D1OF=40°+30°=70°,由90°﹣70°=20°,得点F的方向角为北偏西20°.(3)如图3中,由(2)得∠AOC=180°﹣∠BOC=180°﹣2x°=180°﹣2×40°=100°,且∠D1OF=∠DOE=70°,又∠COE=∠BOC﹣∠DOE=80°﹣70°=10°,当OE2线段平分∠AOC时,OE旋转的角大小为,所以三角形纸板ODE旋转的时间为(秒),当线段OE2的反向延长线平分∠AOC时,OE旋转的角大小为60°+180°=240°,所以三角形纸板ODE旋转的时间为(秒).综上,当OE所在直线平分∠AOC时,t=12秒或48秒.19.如图为两个特殊三角板AOB和三角板COD,∠A=45°,∠D=60°,O为直角顶点,两直角顶点重合,A,O,D在同一直线上,OB,OC重合,OM平分∠COD,ON平分∠AOB.(1)∠MON=90度;(2)若三角板AOB与三角板COD位置如图(2)所示,满足∠BOC=20°,求∠MON 的度数;(3)在图(1)的情形下,三角板AOB固定不动,若三角板COD绕着O点旋转(旋转角度小于45°),∠BOC=α,求∠MON的度数(用含α的式子表示).解:(1)∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD,∠NOB=∠AOB,∵∠MON=∠MOC+∠NOB,∴∠MON=∠AOD,∵A,O,D在同一直线上,∴∠AOD=180°,∴∠MON=90°,故答案为90;(2)由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB﹣∠BOC,∠BOC=20°,∴∠MON=45°+45°﹣20°=70°;(3)①当两三角板由重叠时,由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB﹣∠BOC,∠BOC=α,∴∠MON=45°+45°﹣α=90°﹣α;②当两三角板无重叠时,由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB+∠BOC,∠BOC=α,∴∠MON=45°+45°+α=90°+α.20.已知长方形纸片ABCD,E、F分别是AD、AB上的一点,点I在射线BC上、连接EF,FI,将∠A沿EF所在的直线对折,点A落在点H处,∠B沿FI所在的直线对折,点B 落在点G处.(1)如图1,当HF与GF重合时,则∠EFI=90°;(2)如图2,当重叠角∠HFG=30°时,求∠EFI的度数;(3)如图3,当∠GFI=α,∠EFH=β时,∠GFI绕点F进行逆时针旋转,且∠GFI总有一条边在∠EFH内,PF是∠GFH的角平分线,QF是∠EFI的角平分线,旋转过程中求出∠PFQ的度数(用含α,β的式子表示).解:(1)∵EF平分∠AFH,IF平分∠BFG,∴∠EFH=∠AFH,∠IFH=∠BFH,∵∠EFI=∠EFH+∠IFG=(∠AFH+∠BFH)=∠AFB=90°,∴∠EFI=∠AFB=90°,故答案为:90.(2)令∠EFG=x,∠HFI=y,∵∠HFG=30°∴∠EFA=30°+x,∠BFI=30°+y∴∠AFE+∠EFI+∠BFI=(30°+x)+(x+30°+y)+(30°+y)=180°,即2x+2y=90°,∴x+y=45°,∴∠EFI=x+y+30=75°,∴∠EFI=75°.(3)由题意得∠AFE=∠EFH=β,∠BFI=∠GFI=α,∴∠GFH=2α+2β﹣180°,∴∠GFP=∠HFP=α+β﹣90°,又∵,∴∠PFQ=|∠GFI﹣∠GFP﹣∠QFI|,∴∠PFQ=|α﹣(α+β﹣90°)﹣|=||,∴∠PFQ|=||。
2022年中考数学专题复习:动态几何问题1.在△ABC中,AB = AC,△ABC = 30°,△BDE是等边三角形,连接CD、AE.(1)如图1,当A、B、D三点在同一直线上时,AE、BC交于点P,且AE△AC.若PC = 4,求PE的长;(2)如图2,当B、E、C三点在同一直线上时,F是CD中点,连接AF、EF,求证:AE = 2AF;(3)如图3,在(2)的条件下,AB=8,E在直线BC上运动,将△AEF沿EF翻折得到△MEF,连接DM,G是AB上一点,且BG=14AB,O是直线BC上的另一个动点,连接OG,将△BOG沿OG翻折得到△HOG,连接HM,当HM最小时,直接写出此时点D到直线EM的距离.2.如图1和图2,在△ABC中,AB=AC=5,sinC=35.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.3.如图,在等腰梯形ABCD中,AB△CD,AB=8cm,CD=2cm,AD=6cm.点P从A 点出发,以2cm/s的速度沿AB向B点运动(运动到B点即停止);点Q从C点出发,以1cm/s的速度沿CD−DA向A点运动(当点P停止运动时,点Q也即停止),设P、Q同时出发并运动了t秒.(1)求梯形ABCD的高和△A的度数;(2)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(3)试问是否存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,若存在,请求出t的值;若不存在,请说明理由.4.如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连结AG 、DE .(1)猜想AG 与DE 的数量关系,请直接写出结论;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转,旋转角为α(0°<α<180°),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在正方形OEFG 旋转过程中,请直接写出: △当α=30°时,△OAG 的度数;△当△AEG 的面积最小时,旋转角α的度数.5.如图1,在ABC 中,90,ACB CD ∠=︒平分ACB ∠,且AD BD ⊥于点D .(1)判断ABD △的形状;(2)如图2,在(1)的结论下,若3,75BQ DQ BQD ==∠=︒,求AQ 的长; (3)如图3,在(1)的结论下,若将DB 绕着点D 顺时针旋转()090αα︒<<︒得到DP ,连接BP ,作DE BP ⊥交AP 于点F .试探究AF 与DE 的数量关系,并说明理由.6.如图,在Rt ABCAB=,4∠=︒,5AC=.动点P从点A出发,沿AB △中,90C⊥交AC或BC于点Q,以每秒4个单位长度的速度向终点B运动.过点P作PQ AB分别过点P、Q作AC、AB的平行线交于点M.设PQM与ABC重叠部分的面积为t t>秒.S,点P运动的时间为()0(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).(2)当点M落在BC上时,求t的值.(3)当PQM与ABC的重合部分为三角形时,求S与t之间的函数关系式.(4)点N为PM中点,直接写出点N到ABC的两个顶点的距离相等时t的值.7.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB 向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.8.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?9.如图,在Rt△ABC中,△B=90°,BC=5 ,△C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF△BC于点F,连接DE、EF.(1)AC的长是________,AB的长是________.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是2 ?10.在Rt△ABC中,△BAC=90°,AB=AC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG.【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG 与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?△请在图2中补全图形;△若成立,请给出证明;若不成立,请说明理由.【拓展应用】(3)若AB=AC,其他条件不变,连接BF、CF.当△ACF是等边三角形时,请直接写出△BDF的面积.11.如图,等腰三角形△ABC的腰长AB=AC=5cm,BC=8cm,动点P从B出发沿BC 向C运动,速度为2cm/s.动点Q从C出发沿CA向A运动,速度为1cm/s,当一个点到达终点时两个点同时停止运动.点P'是点P关于直线AC的对称点,连接PP′和P′Q,P′P和AC相交于点E.设运动时间为t秒.(1)若当t的值是多少时,P'P恰好经过点A?(2)设△P′PQ的面积为y,求y与t之间的函数关系式(0<t≤4);(3)是否存在某一时刻t,使PQ平分△P′PC?若存在,求出相应的t值,若不存在,请说明理由;(4)是否存在某一时刻t,使点Q在PC的垂直平分线上?若存在,求出相应的t值,若不存在,请说明理由.12.如图,△ABC为等腰三角形,AB=AC,将CA绕点C顺时针旋转至CD,连接AD,E为直线CD上一点,连接AE;(1)如图1,若△BAC=60°,△ACD=90°,E为CD中点,AB=△BCE的面积;(2)如图2,若△ACD=90°,点E在线段CD上且△DAE+△ABC=90°,AE的延长线与BC的延长线交于点F,连接DF,求证:BC=;(3)如图3,AB=1,△BAC=90°,△ACD=105°,若BE恰好平分△AEC,点P为线段AE上的动点,点E′与点E关于直线DP对称,AE′与CD交于点Q,连接CE′,当'+-''的值最小时,直接写出CQ的值.AE CE13.已知,如图△,在平行四边形ABCD中,AB=3cm,BC=5cm,AC△AB,△ACD 沿AC的方向匀速平移得到△PNM,速度为1cm/s:同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图△,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)CQ=,BQ=,AP=,CP=.(2)当t为何值时,PQ∥MN;(3)设△OMC的面积为y(cm2),求y与t之间的函数关系式;(4)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4.若存在,求出t的值;若不存在,请说明理由.14.如图,等腰ABC的底边BC=8,高AD=2,M是AB中点,连接MD.动点E从点B出发,以每秒1个单位的速度沿BC向点C运动,到点C停止,另一动点F从点B出发,以相同的速度沿BC运动,到点D停止.已知点E比点F早出发1秒,当点F出发后,以EF为边作正方形EFGH,使点G、H和点A在BC的同侧,设点E运动的时间为t秒.(1)当t≥1时,用含t的代数式表示EF的长;(2)设正方形EFGH面积为S 1,正方形EFGH与ABC重叠面积为S2,当S1:S2=2时,求t的值;(3)在点F开始运动时,点P从点D出发,以每秒DM ﹣MB﹣BM﹣MD运动,到达点D停止,在点E的整个运动过程中,求点P在正方形EFGH内(含边界)的时长.15.如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动.设运动的时间为x s,△AQP的面积为y cm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a=.(2)当x为何值时,APQ的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点.16.如图1,有一张矩形纸条ABCD ,边AB 、BC 的长分别是方程27100x x -+=的两个根()AB BC >,E 为CD 上一点,1CE =. (1)连接AE ,BE ,试说明90AEB =︒∠.(2)如图2,M 为边AB 上一个动点,将四边形BCEM 沿ME 折叠,使点B ,C 分别落在点B ′,C '上,边MB '与边CD 交于点N . △如图3,当点M 与点A 重合时,求N 到ME 的距离.△在点M 从点A 运动到点B 的过程中,求点N 相应运动的路径长(路程).17.如图,已知在Rt ABC 中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当ABP △为等腰三角形时,求t 的值;(3)过点D 作DE AP ⊥于点E ,连接PD ,在点P 的运动过程中,当PD 平分APC ∠时,直接写出t 的值.18.如图,已知在Rt△ABC 中,△ACB =90°,AB =10,AC =6,点D 是斜边AB 上的动点,联结CD ,作DE △CD 交射线CB 于点E ,设AD =x . (1)当点D 是边AB 的中点时,求线段DE 的长; (2)当△BED 是等腰三角形时,求x 的值; (3)如果DEy DB=,求y 关于x 的函数解析式,并写出它的定义域.19.已知:如图,在长方形ABCD 中,4cm,6cm AB BC ==,点E 为AB 中点.点P 在线段BC 上以每秒2cm 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设点P 的运动时间为t 秒,解答下列问题:(1)线段,BP PC 的长可用含t 的式子分别表示为 cm , cm ;(2)若某一时刻BPE 与CQP 全等,求此时t 的值和点Q 的运动速度.20.在平面直角坐标系中,点A(0,4),点B(4,0),连接AB,点P(0,t)是y 轴上的一动点,以BP为一直角边构造等腰直角△BPC(B,P,C的顺序为顺时针),且△BPC=90°,过点A作AD△x轴并与直线BC交于点D,连接PD.(1)如图1,当t=2时,求点C的坐标;(2)如图2,当t>0时,求证:△ADC=△PDB;(3)如图3,当t<0时,求DP﹣DA的值(用含有t的式子表示).。
专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。
一.模型特点滑块放置于木板上,木板放置于水平桌面或地面上。
二.题型特点:判定滑块与木板是否发生相对滑动,或摩擦力方向和大小的动态变化情况。
需分析处理临界或极值问题。
1.有些题目中有“刚好〞、“恰好〞、“正好〞等字眼,明显说明题述的过程存在着临界点;2.假设题目中有“取值范围〞、“多长时间〞、“多大距离〞等词语,说明题述的过程存在着“起止点〞,而这些起止点往往就对应临界状态;3.假设题目中有“最大〞、“最小〞、“至多〞、“至少〞等字眼,说明题述的过程存在着极值,这个极值点往往是临界点;4.假设题目要求“最终加速度〞、“稳定速度〞等,即是求收尾加速度或收尾速度。
三.题型难点是对摩擦力的理解,相关必会知识如下:1.两种摩擦力的比拟(1)定义:彼此接触的物体发生相对运动时,摩擦力和正压力的比值.公式μ=F fF N.(2)决定因素:接触面的材料和粗糙程度.3、注意易错点:〔1〕摩擦力的方向总是与物体间相对运动(或相对运动趋势)的方向相反,但不一定与物体的运动方向相反.〔2〕摩擦力总是阻碍物体间的相对运动(或相对运动趋势),但不一定阻碍物体的运动,即摩擦力可以是阻力,也可以是动力.〔3〕受静摩擦力作用的物体不一定静止,但一定与施力物体保持相对静止.4、判断摩擦力的方法〔1〕假设法〔2〕运动状态法此法关键是先确定物体的运动状态,再利用平衡条件或牛顿第二定律确定静摩擦力的有无及方向.〔3〕牛顿第三定律法“力是物体间的相互作用〞,先确定受力较少的物体是否受到静摩擦力及方向,再根据牛顿第三定律确定另一物体是否受到静摩擦力及方向.四、例题精讲例1:如下图,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg、m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增大,在增大到45N的过程中,那么 ()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对滑动C.两物体从受力开始就有相对滑动D.两物体始终没有相对滑动【常见错误解析】AB间最大静摩擦力是12N,所以只要拉力超过12N时,两物体就开始相对滑动【错因分析】把此题的情景当成A放在地面时的情景分析处理,实际上,A对B的摩擦力使A相对地面加速运动,拉力超过12N时,AB间静摩擦力可能会小于最大静摩擦力12N,从而使AB保持相对静止。
初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)一、选择题1、如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm22、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定3、如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC 上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C. D.4、数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.1 C.0 D.﹣15、如图,正方形ABCD边长为4个单位,两动点P、Q分别从点A、B处,以1单位/s、2单位/s的速度逆时针沿边移动.记移动的时间为x(s),△PBQ面积为y(平方单位),当点Q移动一周又回到点B终止,则y与x的函数关系图象为()A. B.C. D.6、如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7、如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π8、如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD的延长线上移动时,则△PBD的外接圆的半径的最小值为()A.1 B.C.D.9、如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度向点C移动(到达点C后停止运动),同时点Q从点A出发,以1cm/s的速度沿AB﹣BC的方向向点C移动(到达点C后停止),若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t (s)之间函数关系的大致图象是图2()A.B.C.D.10、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定12、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.13、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.14、已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()二、填空题15、如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s, V Q=1cm/s,当点P到达点B时, P、Q两点停止运动,设点P的运动时间为ts,则当t=___ s时,△PBQ为直角三角形.16、如图,AO OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF.等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为_________.17、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.18、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.19、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.20、如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点(0,1),(1,1),(1,0),(1,-1),(2,-1),(2,0),…,则点的坐标是.21、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,MN,设移动时间为t(单位:秒,0<t<2.5).(1)当时间为t秒时,点P到BC的距离为cm.(2)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(3)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.22、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.23、如图,直线AB、CD相交于点O,∠AOC=30°,⊙P的半径为1cm,且OP=4cm,如果⊙P 以1cm/s的速度沿由A向B的方向移动,那么秒后⊙P与直线CD相切.三、解答题24、如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动。
第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。
2014年数学中考二轮专题复习讲义:动态型问题【考纲要求】动态几何问题就是研究在几何图形的运动中伴随着一定的图形位置、数量关系的 “变”与 “不变”性.就其运动对象而言,有 “点动” “线动”和“面动”;就其运动形式而言,有“移动”“滚动”“旋转”和“翻折”等.【命题趋势】动态几何问题常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活多变,动中有静,动静结合,能够在运动变化过程中发展学生思维和空间想象能力,是中考热点,常在中考中以压轴题的形式出现.题型分类 、深度剖析:考点一、点动型问题例1、(2013·黄冈)如图,在平面直角坐标系中,四边形ABCO 是梯形,其中A(6,0),B(3,3),C(1,3),动点P 从点O 以每秒2个单位的速度向点A 运动,动点Q 也同时从点B 沿B →C →O 的线路以每秒1个单位的速度向点O 运动,当点P 到达A 点时,点Q 也随之停止,设点P 、Q 运动的时间为t(秒).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)当点Q 在CO 边上运动时,求△OPQ 的面积S 与时间t 的函数关系式;(3)以O 、P 、Q 为顶点的三角形能构成直角三角形吗?若能,请求出t 的值,若不能,请说明理由;(4)经过A 、B 、C 三点的抛物线的对称轴、直线OB 和PQ 能够交于一点吗?若能,请求出此时t 的值(或范围),若不能,请说明理由.解:(1)设所求抛物线的解析式为y =ax 2+bx +c ,把A (6,0),B (3,3),C (1,3)三点坐标代入得⎩⎨⎧36a +6b +c =0,9a +3b +c =3,a +b +c =3,解得a =-315,b =4 315,c =4 35. 即所求抛物线的解析式为y =-315x 2+4 315x +4 35.2)依题意,可知OC =CB =2,∠COA =60°,∴当动点Q 运动到OC 边时,OQ =4-t ,∴△OPQ 的高为:OQ ·sin60°=(4-t )×32. 又OP =2t ,∴S =12×2t ×(4-t )×32=-32(t 2-4t )(2≤t ≤3). 3)依题意,可知:0≤t ≤3.当0≤t ≤2时,Q 在BC 边上运动,此时OP =2t ,OQ =3+(3-t )2,PQ =3+[2t -(3-t )]2=3+(3t -3)2.∵∠POQ <∠POC =60°,∴若△OPQ 为直角三角形,只能是∠OPQ =90°或∠OQP =90°.若∠OPQ =90°,则OP 2+PQ 2=OQ 2,即4t 2+3+(3t -3)2=3+(3-t )2,解得:t =1或t =0(舍);若∠OQP =90°,则OQ 2+PQ 2=OP 2,即6+(3-t )2+(3t -3)2=4t 2,解得t =2;当2<t ≤3时,Q 在OC 边上运动,此时OP =2t >4,∠POQ =∠COP =60°,OQ <OC =2,∴△OPQ 不可能为直角三角形.综上所述,当t =1或t =2时,△OPQ 为直角三角形.4)由(1)可知:抛物线y =-315x 2+4 315x +4 35=-315(x -2)2+1615 3,其对称轴为x =2.又OB 的解析式为y =33x ,∴抛物线对称轴与OB 的交点为M ⎝⎛⎭⎪⎫2,2 33.又P (2t ,0),设过P 、M 的直线解析式为y =kx +b ,∴⎩⎪⎨⎪⎧2 33=2k +b ,k 2t +b =0,解得⎩⎪⎨⎪⎧k =33(1-t ),b =-2 3t 3(1-t ),即直线PM :y =33(1-t )x - 2 3t 3(1-t ), 即3(1-t )y =x -2t .又0≤t ≤2时,Q (3-t ,3),代入上式,得:3(1-t )×3=3-t -2t ,恒成立,即0≤t ≤2时,P 、M 、Q 总在一条直线上,即M 在直线PQ 上;2<t ≤3时,OQ =4-t ,∠QOP =60°,∴Q (4-t 2,3(4-t )2),代入上式,得:3(4-t )2×3(1-t )=4-t 2-2t ,解得:t =2或t =43,均不合题意,应舍去. ∴综合所述,可知:过A 、B 、C 三点的抛物线的对称轴、直线OB 和PQ 能够交于一点,此时0≤t ≤2.归纳:探索几何图形上一个或几个动点在运动变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等题目.以点的运动带动图形的变化,常与方程、函数知识联系在一起.考点二、线动型问题例 2:(2013 年甘肃兰州)如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器 0 刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3°的速度旋转,CP 与量角器的半圆弧交于点E,第 24 秒,点E 在量角器上对应的读数是________.解:连接OE,∵∠ACB=90°,∴A,B,C 在以点O 为圆心,AB 为直径的圆上.∴点E,A,B,C 共圆.∵∠ACE=3×24=72°,∴∠AOE=2∠ACE=144°.∴点E 在量角器上对应的读数是 144°.答案:144°归纳:本题考查的是圆周角定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.考点三、面动型问题:例3、(2013 ·潍坊)如图,将一个边长为 2 的正方形ABCD 和一个长为 2、宽为 1 的长方形CEFD 拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C 按顺时针旋转至CE′F′D′,旋转角为α.(1)当点D′恰好落在EF 边上时,求旋转角α的值;(2)如图,G 为BC 中点,且 0°<α<90°,求证:GD′=E′D;(3)小长方形CEFD 绕点C 按顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.(1)解:∵长方形CEFD 绕点C 顺时针旋转至CE′F′D′,∴CD′=CD=2.在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°. ∵CD∥EF,∴∠α=30°.(2)证明:∵G 为BC 中点,∴CG=1.∴CG=CE.∵长方形CEFD 绕点C 顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°.CE=CE′=CG.∴∠GCD′=∠DCE′=90°+α.∴△GCD′≌△E′CD(SAS).∴GD′=E′D(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD.∵CD=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形.当∠BCD′=∠DCD′时,△BCD′≌△DCD′.②当△BCD′与△DCD′为锐角三角形时,α=360°-90°2=315°.即当旋转角a的值为135°或315°时,△DCD′与△CBD′全等.归纳:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形、矩形的性质以及三角形全等的判定与性质.跟踪练习:1、如下图,在矩形ABCD 中,AB=6,BC=8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则 DF 的长为()A.1 B.2 C.3 D.42、(2012·宜宾)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动.且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动的过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.。
专题10 电路动态问题一、电路动态问题主要研究的基本内容1.滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化(1)串联电路中滑动变阻器的滑片P的位置的变化引起的变化(2)并联电路中滑动变阻器的滑片P的位置的变化引起的变化2.电键的断开或闭合引起电路中电学物理量的变化(1)串联电路中电键的断开或闭合引起的变化(2)并联电路中电键的断开或闭合引起的变化3.电键的断开或闭合、同时滑动变阻器也移动的情况下,引起电路中电学物理量的变化4.电路的故障引起电路中电学物理量的变化及故障原因分析二、解决电路动态问题主要应用的物理规律和方法1.串并联电路特点(1)串联电路:电流关系:I=I1=I2电压关系:U=U1+U2电阻关系:R=R1+R2(2)并联电路:电流关系:I=I1+I2电压关系:U=U1=U2电阻关系:1/R=1/R1+1/R22.欧姆定律(1)内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比.(2)公式:I=U/R(3)变形公式:U=IR R=U/I3.电功率公式P=UI P=I2R P= U2/R4.判断电路连接——可以先简化电路,电流表当导线看,电压表当开路看.5.如何判断电流表测量通过哪个用电器的电流。
方法:看电流表与哪个用电器串联,则就测通过那个用电器的电流.6.如何判断电压表测哪部分电路两端的电压。
方法:电压表与哪个用电器并联就测哪个用电器两端的电压.三、解决动态电路问题复习策略1.学会正确分析电路图。
首先要让学生养成分析电路图的习惯,无论是静态电路还是动态电路,都要求学生能够独立分析题目给出的电路图中,各个用电器之间是串联还是并联。
具体的方法是把电流表简化成导线,将电压表简化成断开的开关或干脆拿掉,把闭合的开关看成导线,把被局部短路的用电器拿掉,把开关断开的支路去掉,从而简化电路。
经过电路简化后,电路中基本只出现电源、用电器,电路显得比较简单,把刚才去掉的电表复原上去,明确电压表和电流表分别测量那个用电器的电压和电流。
几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。
2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。
\初三数学讲义专题复习——动态几何之最值问题一.课堂衔接1.课前交流,帮助整理知识点。
2.复习旧知,课前练习。
动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。
在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A .21B .5C .14555 D .52 【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
,点A、B分别是圆柱两底面圆周例3.(2011四川凉山5分)如图,圆柱底面半径为2cm,高为9cm上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。
中考数学动态几何专题复习图形的运动变化问题。
【典型例题】例1. 已知;⊙O 的半径为2,∠AOB =60°,M 为AB ⋂的中点,MC ⊥AO 于C,MD ⊥OB 于D ,求CD 的长。
分析:连接OM 交CD 于E ,∵∠AOB =60°,且M 为AB ⋂中点∴∠AOM =30°,又∵OM =OA =2 ∴OC =3∴CE CD ==323,例2. 如图,AB 是 ⊙O 的直径,⊙O 过AE 的中点D ,DC ⊥BC ,垂足为C 。
(1)由这些条件,你能推出哪些正确结论?(要求:不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,写出4个结论即可) (2)若∠ABC 为直角,其它条件不变,除上述结论外,你还能推出哪些新的正确结论?并画出图形。
(要求:写出6个结论即可,其它要求同(1)) 分析:(1)AB =BE DC =CE ∠A =∠E DC 为⊙O 切线(2)若∠ABC 为直角则∠A =∠E =45°,DC =BCDC ∥AB ,DC =CE ,BE 为⊙O 的切线DC AB BE ==1212例3. 在直径为AB 的半圆内划出一块三角形区域,使三角形的一边为AB ,顶点C 在半圆上,现要建造一个内接于△ABC 的矩形水池DEFN ,其中DE 在AB 上,如图的设计方案是AC =8,BC =6。
(1)求△ABC 中AB 边上的高h ;(2)设DN =x ,当x 取何值时,水池DEFN 的面积最大?分析:(1)∵AB 为半圆直径∴∠ACB =90°∵AC =8,BC =6 ∴AB =10∴△ABC 中AB 边上高h =4.8m (2)设DN =x ,CM =h =4.8 则MP =xNF AB CPCM =NF x104848=-..NF x=-102512 S ND NF =·=-=-+=--x x x x x x ()()102512251210251224522当x =125时,水池面积最大。
备考2022年中考数学二轮复习-图形的性质_几何图形的动态问题-填空题专训及答案几何图形的动态问题填空题专训1、(2019常熟.中考模拟) 已知轴上一点,,为轴上的一动点,连接,以为边作等边如图所示,已知点随着点的运动形成的图形是一条直线,连接,则的最小值是________.2、(2018灌南.中考模拟) 如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D 与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.3、(2018盐城.中考模拟) 如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.4、(2019金华.中考模拟) 一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.5、(2019绍兴.中考模拟) 如图①,在四边形ABCD中,AD∥BC,∠C=90°,CD=6cm.动点Q从点B出发,以1cm/S的速度沿BC运动到点C停止,同时,动点P也从B 点出发,沿折线B→A→D运动到点D停止,且PQ⊥BC.设运动时间为t(s),点P运动的路程为y(cm),在直角坐标系中画出y关于t的函数图象为折线段OE和EF(如图②).已知点M(4,5)在线段OE上,则图①中AB的长是________ cm.6、(2019丽水.中考模拟) 如图,矩形中,,,点从开始沿折线以的速度运动,点从开始沿边以的速度移动,如果点、分别从、同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.7、(2018象山.中考模拟) 如图,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,点D 是线段AB上的动点,M、N分别是AD、CD的中点,连接MN,当点D由点A向点B运动的过程中,线段MN所扫过的区域的面积为________.8、(2018杭州.中考模拟) 如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为________秒.在整个运动过程中,与矩形重叠部分面积的最大值为________.9、(2018禹会.中考模拟) 如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为________.10、(2018河南.中考模拟) 如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为 BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为________.11、(2018河南.中考真卷) 如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN 上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为________.12、(2019武汉.中考模拟) 等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为________秒.13、(2020舟山.中考模拟) 如图,矩形硬纸片ABCD的顶点A在轴的正半轴及原点上滑动,顶点B在轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5,给出下列结论:①点A从点O出发,到点B运动至点O为止,点E经过的路径长为12π;②△OAB的面积的最大值为144;③当OD最大时,点D的坐标为,其中正确的结论是________(填写序号).14、(2020嘉兴.中考真卷) 如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N 分别在边AB,CD上,CN=1cm。
高考数学总复习考点知识讲解与提升练习专题54 空间动态问题突破空间动态问题,是高考常考题型,常以客观题出现.常见题型有空间位置关系判定、轨迹问题、最值问题、范围问题等.题型一空间位置关系的判定例1(1)(2023·昆明模拟)已知P,Q分别是正方体ABCD-A1B1C1D1的棱BB1,CC1上的动点(不与顶点重合),则下列结论错误的是()A.AB⊥PQ B.平面BPQ∥平面ADD1A1C.四面体ABPQ的体积为定值 D.AP∥平面CDD1C1答案C解析对于A,∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC,BB1⊂平面BCC1B1,∴AB⊥平面BCC1B1,∵PQ⊂平面BCC1B1,∴AB⊥PQ,故A正确;对于B,∵平面ADD1A1∥平面BCC1B1,平面BPQ与平面BCC1B1重合,∴平面BPQ∥平面ADD1A1,故B正确;对于C,∵A到平面BPQ的距离AB为定值,Q到BP的距离为定值,BP的长不是定值,∴四面体ABPQ的体积不为定值,故C错误;对于D,∵平面ABB1A1∥平面CDD1C1,AP⊂平面ABB1A1,∴AP∥平面CDD1C1,故D正确.(2)(多选)已知等边△ABC的边长为6,M,N分别为边AB,AC的中点,将△AMN沿MN折起至△A′MN,在四棱锥A′-MNCB中,下列说法正确的是()A.直线MN∥平面A′BCB.当四棱锥A′-MNCB体积最大时,平面A′MN⊥平面MNCBC.在折起过程中存在某个位置使BN⊥平面A′NCD.当四棱锥A′-MNCB体积最大时,它的各顶点都在球O的球面上,则球O的表面积为39π4答案AB解析因为MN∥BC,MN⊄平面A′BC,BC⊂平面A′BC,所以直线MN∥平面A′BC,故A 正确;因为四棱锥A′-MNCB的底面积为定值,所以当点A′到平面MNCB距离最大时,体积最大,此时平面A′MN⊥平面MNCB,满足题意,故B正确;对于C,如图,若BN⊥平面A′NC,则BN⊥AA′,又A′D⊥MN,AD⊥MN,A′D∩AD=D,可知MN⊥平面A′AD,所以A′A⊥MN,又MN∩BN=N,所以A′A⊥平面MNCB,这显然不可能,故C错误;当四棱锥A′-MNCB体积最大时,平面A′MN⊥平面MNCB,如图,由∠MBC =π3,取BC 的中点E ,则E 是等腰梯形MNCB 外接圆的圆心,F 是△A ′MN 的外心,作OE ⊥平面MNCB ,连接OF ,则OF ⊥平面A ′MN ,则O 是四棱锥A ′-MNCB 外接球的球心, 且OF =DE =332,A ′F =3,设四棱锥A ′-MNCB 外接球的半径为R ,则R 2=A ′F 2+OF 2=394.故球O 的表面积为4πR 2=39π.故D 错误. 思维升华解决空间位置关系的动点问题 (1)应用“位置关系定理”转化. (2)建立“坐标系”计算.跟踪训练1(2022·杭州质检)如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列结论一定成立的是()A .三棱锥A -A 1PD 的体积大小与点P 的位置有关B .A 1P 与平面ACD 1相交C .平面PDB 1⊥平面A 1BC 1D .AP ⊥D 1C 答案C解析对于选项A ,11A A PD P AA D V V --=.在正方体中,BC 1∥平面AA 1D ,所以点P 到平面AA 1D 的距离不变, 即三棱锥P -AA 1D 的高不变,又△AA 1D 的面积不变, 因此三棱锥P -AA 1D 的体积不变,即三棱锥A -A 1PD 的体积与点P 的位置无关,故A 不成立; 对于选项B ,由于BC 1∥AD 1,AD 1⊂平面ACD 1,BC 1⊄平面ACD 1, 所以BC 1∥平面ACD 1,同理可证BA 1∥平面ACD 1,又BA 1∩BC 1=B , 所以平面BA 1C 1∥平面ACD 1,因为A 1P ⊂平面BA 1C 1, 所以A 1P ∥平面ACD 1,故B 不成立;对于选项C ,因为A 1C 1⊥BD ,A 1C 1⊥BB 1,BD ∩BB 1=B , 所以A 1C 1⊥平面BB 1D ,则A 1C 1⊥B 1D ;同理A 1B ⊥B 1D , 又A 1C 1∩A 1B =A 1,所以B 1D ⊥平面A 1BC 1,又B 1D ⊂平面PDB 1,所以平面PDB 1⊥平面A 1BC 1,故C 成立; 对于选项D ,当B 与P 重合时,AP 与D 1C 的夹角为π4,故D 不成立. 题型二轨迹问题例2(1)(2023·韶关模拟)设正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面正方形ABCD 内的一动点,若△APC 1的面积S =12,则动点P 的轨迹是()A .圆的一部分B .双曲线的一部分C .抛物线的一部分D .椭圆的一部分答案D解析设d 是△APC 1边AC 1上的高,则1APC S △=12·|AC 1|·d =32d =12,所以d =33,即点P 到直线AC 1的距离为定值33,所以点P 在以直线AC 1为轴,以33为底面半径的圆柱侧面上,直线AC 1与平面ABCD 既不平行也不垂直,所以点P 的轨迹是平面ABCD 上的一个椭圆,其中只有一部分在正方形ABCD 内.(2)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AA 1,AB 的中点,M 点是正方形ABB 1A 1内的动点,若C 1M ∥平面CD 1EF ,则M 点的轨迹长度为________.答案 2解析如图所示,取A 1B 1的中点H ,B 1B 的中点G ,连接GH ,C 1H ,C 1G ,EG ,HF ,可得四边形EGC 1D 1是平行四边形,所以C 1G ∥D 1E ,又C 1G ⊄平面CD 1EF ,D 1E ⊂平面CD 1EF ,所以C 1G ∥平面CD 1EF .同理可得C 1H ∥CF ,C 1H ∥平面CD 1EF .因为C 1H ∩C 1G =C 1,所以平面C 1GH ∥平面CD 1EF .由M 点是正方形ABB 1A 1内的动点可知,若C 1M ∥平面CD 1EF ,则点M 在线段GH 上,所以M 点的轨迹长度GH =12+12= 2.思维升华解决与几何体有关的动点轨迹问题的方法 (1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定,或用代替法进行计算. (3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除. 跟踪训练2(1)(2022·滨州模拟)如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足∠PAB =π6,则点P 的轨迹为()A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分 答案B解析建立如图所示的空间直角坐标系,设OB =OA =1,则B (0,1,0),A (0,0,1),P (x ,y ,0), 则AB →=(0,1,-1), AP →=(x ,y ,-1), 所以cos 〈AB →,AP →〉=y +12·x 2+y 2+1=32,即x 2+(y -2)23=1,所以点P 的轨迹是椭圆.(2)已知动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的表面上运动,且PA =r (0<r <3),记点P 的轨迹长度为f (r ),则f (1)+f (2) =________. 答案3π解析如图,当r =1时,点P 在正方体表面上的轨迹分别是以A 为圆心,1为半径的三个面上的三段弧,分别为BD ,1A B ,1A D ,则f (1)=3×14×2π=3π2,当r =2时,点P 在正方体表面上的轨迹为在平面A 1B 1C 1D 1上以A 1为圆心,1为半径的11B D ,在平面B 1BCC 1上为以B 为圆心,1为半径的1B C , 在平面DCC 1D 1上为以D 为圆心,1为半径的1CD , 则f (2)=3×14×2π=3π2,所以f (1)+f (2)=3π2+3π2=3π. 题型三最值、范围问题例3(1)如图所示,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起,使平面ACD ′⊥平面ACB ,则此时空间四面体ABCD ′体积的最大值为()A.16327 B.539C .1D.34答案A解析取AC 的中点O ,连接D ′O (图略). 设∠ABC =α,α∈(0,π),所以D ′O =AD ′cos α2=2cos α2,S △ABC =12×2×2sin α=2sin α.因为D ′O ⊥平面ABC ,所以V 四面体ABCD ′=13S △ABC ×D ′O =43sin αcos α2=83sin α2cos 2α2=83sin α2·⎝ ⎛⎭⎪⎫1-sin 2α2⎝ ⎛⎭⎪⎫0<α2<π2.设t =sinα2,则0<t <1,V 四面体ABCD ′=83(t -t 3). 设f (t )=83(t -t 3),0<t <1,则f ′(t )=83(1-3t 2),0<t <1.所以当0<t <33时,f ′(t )>0,f (t )单调递增; 当33<t <1时,f ′(t )<0,f (t )单调递减. 所以当t =33时,f (t )取得最大值16327.所以四面体ABCD ′体积的最大值为16327.(2)在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,PA =AC =2,AB =3.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为________. 答案31111解析因为在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,所以AB ⊥平面PAC ,则BD 与平面PAC 所成的角为∠ADB ,tan∠ADB =AB AD =3AD ,当AD 取得最小值时,∠ADB 取得最大值.在等腰Rt△PAC 中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (3,0,0),C (0,2,0),P (0,0,2),D (0,1,1), 则AD →=(0,1,1),PC →=(0,2,-2),BC →=(-3,2,0). 设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·BC →=0,即⎩⎨⎧2y -2z =0,-3x +2y =0,令y =3,得n =(2,3,3).因为cos 〈n ,AD →〉=n ·AD →|n ||AD →|=3+322×2=31111,所以AD 与平面PBC 所成角的正弦值为31111.思维升华在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值,即可求解.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.跟踪训练3(1)在四面体ABCD 中,若AD =DB =AC =CB =1,则四面体ABCD 体积的最大值是() A.2327B.13C.239 D.33答案A解析如图,取AB 的中点E ,连接CE ,DE ,设AB =2x (0<x <1),则CE =DE =1-x 2,当平面ABC ⊥平面ABD 时,四面体ABCD 的体积最大,此时,四面体ABCD 的体积V =13×12×2x ×1-x 2×1-x 2=13x -13x 3.所以V ′=13-x 2,令V ′=0,得x =33.当x ∈⎝ ⎛⎭⎪⎫0,33时,V 单调递增,当x ∈⎝ ⎛⎭⎪⎫33,1时,V 单调递减.故当x =33时,V 有最大值,V max =13×33-13×⎝ ⎛⎭⎪⎫333=2327.(2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为B 1C 1,C 1D 1的中点,P 是底面A 1B 1C 1D 1上一点.若AP ∥平面BEF ,则AP 长度的最小值是________,最大值是________.答案32452解析如图,取A 1D 1的中点N ,A 1B 1的中点M ,连接AM ,AN ,MN ,NE ,B 1D 1,在正方体ABCD -A 1B 1C 1D 1中,E ,N 分别为B 1C 1,A 1D 1的中点, ∴EN ∥A 1B 1∥AB ,EN =A 1B 1=AB , ∴四边形ABEN 为平行四边形, ∴AN ∥BE ,又AN ⊄平面BEF ,BE ⊂平面BEF , ∴AN ∥平面BEF ,∵E ,F 分别为B 1C 1,C 1D 1的中点, 由中位线性质知EF ∥B 1D 1, 同理可知MN ∥B 1D 1, ∴MN ∥EF ,又MN ⊄平面BEF ,EF ⊂平面BEF , ∴MN ∥平面BEF ,又AN ∩MN =N ,AN ,MN ⊂平面AMN , ∴平面AMN ∥平面BEF ,∵P 是底面A 1B 1C 1D 1上一点,且AP ∥平面BEF , ∴P ∈MN ,在等腰△AMN 中,当AP 的长度最大时,P 在M 点或N 点, 即AP max =AM =AN =12+⎝ ⎛⎭⎪⎫122=52,当AP 的长度最小时,P 为MN 的中点,MN =22, ∴AP =AM 2-⎝ ⎛⎭⎪⎫MN 22=⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,即AP min =324.课时精练1.如图,在正方体ABCD -A 1B 1C 1D 1中,点M 是平面A 1B 1C 1D 1内一点,且BM ∥平面ACD 1,则tan∠DMD 1的最大值为()A.22B .1 C .2D. 2 答案D解析因为当M 在直线A 1C 1上时,都满足BM ∥平面ACD 1, 所以tan∠DMD 1=DD 1MD 1,当MD 1最小时,tan∠DMD 1取得最大值,此时tan∠DMD 1=DD 122DD 1=2.2.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱DD 1,BB 1上的动点(异于所在棱的端点).则下列结论正确的是()A .在点F 运动的过程中,直线FC 1可能与AE 平行B .直线AC 1与EF 必然异面C .设直线AE ,AF 分别与平面A 1B 1C 1D 1相交于点P ,Q ,则点C 1可能在直线PQ 上 D .设直线AE ,AF 分别与平面A 1B 1C 1D 1相交于点P ,Q ,则点C 1一定不在直线PQ 上 答案AC解析在长方体ABCD -A 1B 1C 1D 1中,AB =C 1D 1,DD 1=BB 1,B 1C 1=AD ,连接C 1E ,AC 1,EF , 当点E ,F 分别是棱DD 1,BB 1的中点时,由勾股定理得AE =AD 2+DE 2,C 1F =C 1B 21+B 1F 2,故AE =C 1F ,同理可得AF =C 1E ,故四边形AEC 1F 是平行四边形,所以在点F 运动的过程中,直线FC 1可能与AE 平行,AC 1与EF 相交,A 正确,B 错误; 以C 1为坐标原点,C 1D 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则当点E ,F 分别是棱DD 1,BB 1中点且几何体ABCD -A 1B 1C 1D 1为正方体时, 设棱长为2,延长AE ,A 1D 1交于点M ,延长AF ,A 1B 1交于点N ,连接MN , 则C 1(0,0,0),M (2,-2,0),N (-2,2,0), 则C 1M —→=(2,-2,0),NC 1—→=(2,-2,0), 则C 1M —→=NC 1—→, 又两向量有公共点C 1, 所以C 1,M ,N 三点共线,故点C 1可能在直线PQ 上,C 正确,D 错误.3.(2023·广州模拟)点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为() A .πB .2πC .4πD .25π 答案C解析根据题意知,该正方体的内切球半径为r =5,如图.取BB 1的中点N ,连接CN ,则CN ⊥BM ,∴CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线,∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为55=1,∴截面圆的半径为2,∴点P 的轨迹的长度为2π×2=4π.4.(多选)如图,在等腰Rt△ABC 中,BC =2,∠C =90°,D ,E 分别是线段AB ,AC 上异于端点的动点,且DE ∥BC ,现将△ADE 沿直线DE 折起至△A ′DE ,使平面A ′DE ⊥平面BCED ,当D 从B 滑动到A 的过程中,下列选项中正确的是()A .∠A ′DB 的大小不会发生变化B .二面角A ′-BD -C 的平面角的大小不会发生变化 C .三棱锥A ′-EBC 的体积先变小再变大D .A ′B 与DE 所成的角先变大后变小 答案AB解析设A ′D =a ,则DB =22-a ,A ′E =2a 2,EC =2-22a ,BC 2+CE 2=BE 2,A ′B 2=A ′E 2+BE2,cos∠A′DB=A′D2+BD2-A′B22·BD·A′D=-12是定值,∴∠A′DB的大小不会发生变化,故A正确;由三垂线法作出二面角A′-BD-C的平面角,可知其大小为定值,故B正确;设A′E=x,则CE=2-x(0<x<2),则V三棱锥A′-BCE=V三棱锥B-A′CE=13×12BC·CE·A′E=13(2-x)x=13(2x-x2)(0<x<2),由二次函数的单调性,可知V先变大后变小,故C错误;A′B与DE所成的角先变小后变大,故D错误.5.在空间直角坐标系Oxyz中,正四面体P-ABC的顶点A,B分别在x轴、y轴上移动.若该正四面体的棱长是2,则|OP|的取值范围是()A.[3-1,3+1] B.[1,3]C.[3-1,2] D.[1,3+1]答案A解析如图所示,若固定正四面体P-ABC的位置,则原点O在以AB为直径的球面上运动.设AB的中点为M,则PM=22-12=3,所以原点O到点P的最小距离等于PM减去球M的半径,最大距离是PM加上球M的半径,所以3-1≤|OP|≤3+1,即|OP|的取值范围是[3-1,3+1].6.已知正四面体D-ABC,点E,F分别为棱CD,AC的中点,点M为线段EF上的动点,设EM=x,则下列说法正确的是()A .直线DA 与直线MB 所成的角随x 的增大而增大 B .直线DA 与直线MB 所成的角随x 的增大而减小C .直线DM 与平面ABD 所成的角随x 的增大而增大 D .直线DM 与平面ABD 所成的角随x 的增大而减小 答案D解析因为E ,F 分别为DC ,AC 的中点,所以EF ∥DA ,所以直线DA 与直线MB 所成的角等于直线EF 与BM 所成的角.在等腰△BEF 中,直线EF 与BM 所成的角随着x 的增大先增大,再减小,当M 运动到EF 中点时取到最大值,故A ,B 选项说法错误;设M 点到平面ABD 的距离为d ,直线DM 与平面ABD 所成的角为α,则sin α=dMD.因为EF ∥AD ,EF ⊄平面ABD ,AD ⊂平面ABD ,所以EF ∥平面ABD ,所以随着x 的增大,d 保持不变,MD 在增大,所以sin α的值在减小,即α随着x 的增大而减小,故C 选项说法错误,D 选项说法正确.7.(多选)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面内一动点,则下列命题正确的是()A .若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B .若MN =4,则MN 的中点P 的轨迹所围成图形的面积为2πC .若点N 到直线BB 1与到直线DC 的距离相等,则点N 的轨迹为抛物线D .若D 1N 与AB 所成的角为π3,则点N 的轨迹为椭圆 答案AC解析如图所示,对于A ,根据正方体的性质可知,MD ⊥平面ABCD ,所以∠MND 为MN 与平面ABCD 所成的角,若∠MND =π4,则DN =DM =12DD 1=12×4=2,所以点N 的轨迹为以D 为圆心,2为半径的圆,故A 正确;对于B ,在Rt△MDN 中,DN =MN 2-MD 2=42-22=23,取MD 的中点E ,连接PE ,因为P 为MN 的中点,所以PE ∥DN ,且PE =12DN =3,因为DN ⊥ED ,所以PE ⊥ED ,即点P在过点E 且与DD 1垂直的平面内,又PE =3,所以点P 的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确;对于C ,连接NB ,因为BB 1⊥平面ABCD ,所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,因为点N 到点B 的距离等于点N 到定直线CD 的距离,又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0),则AB →=(0,4,0),D 1N —→=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3,所以|cos 〈AB →,D 1N —→〉|=cos π3, 所以⎪⎪⎪⎪⎪⎪4y 4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 错误. 8.如图,在四棱锥P -ABCD 中,顶点P 在底面的投影O 恰为正方形ABCD 的中心,且AB =2,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN +MN 取最小值时,动点M 恰为PD 的中点,则该四棱锥外接球的表面积为()A.9π2B.16π3C.25π4D.64π9 答案B解析如图,在PC 上取点M ′,使得PM =PM ′,连接NM ′,则MN =M ′N ,AN +MN =AN +M ′N ,则当A ,N ,M ′三点共线时,AN +M ′N 最小,为AM ′,当AM ′⊥PC 时,AM ′取得最小值,即AN +NM ′的最小值.因为此时M 恰为PD 的中点,所以M ′为PC 的中点,所以PA =AC =2,因此PO =PA 2-AO 2= 3.易知外接球的球心在四棱锥内部,设外接球的半径为r ,则r 2=(3-r )2+1,解得r =233,因此外接球的表面积S =4πr 2=16π3. 9.在三棱锥A -BCD 中,AB ,AC ,AD 两两垂直且长度均为6,定长为l (l <4)的线段MN 的一个端点M 在棱AB 上运动,另一个端点N 在△ACD 内运动(含边界),若线段MN 的中点P 的轨迹的面积为π2,则l 的值为________.答案2解析由题意可知,∠MAN =90°,在Rt△AMN 中,AP =12l ,线段MN 的中点P 的轨迹是以A 为球心,12l 为半径的球面的18,所以线段MN 的中点P 的轨迹的面积为18×4π×⎝ ⎛⎭⎪⎫12l 2=π2,则l =2.10.如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥底面ABC ,AC ⊥CB ,点D 是AB 上的动点.下列结论正确的是________.(填序号)①AC ⊥BC 1;②存在点D ,使得AC 1∥平面CDB 1;③不存在点D ,使得平面CDB 1⊥平面AA 1B 1B ;21 / 21④三棱锥A 1-CDB 1的体积是定值. 答案①②④解析如图所示,由CC 1⊥底面ABC ,知AC ⊥CC 1,又AC ⊥CB ,CC 1∩CB =C ,CC 1⊂平面BCC 1B 1,CB ⊂平面BCC 1B 1,所以AC ⊥平面BCC 1B 1,又BC 1⊂平面BCC 1B 1,故AC ⊥BC 1,故①正确;设B 1C 与BC 1交于点M ,取AB 的中点D ,连接MD ,则MD ∥AC 1,MD ⊂平面CDB 1,AC 1⊄平面CDB 1所以AC 1∥平面CDB 1,故②正确;当CD ⊥AB 时,因为AA 1∥CC 1,CC 1⊥底面ABC ,CD ⊂平面ABC ,所以CD ⊥AA 1,AA 1∩AB =A ,AA 1,AB ⊂平面AA 1B 1B ,所以CD ⊥平面AA 1B 1B ,因为CD ⊂平面CDB 1,故平面CDB 1⊥平面AA 1B 1B ,故③不正确;设点C 到平面A 1B 1D 的距离为h ,则111111111136A CDBC A BD A B D A B BA V V S h S h --==⨯⨯=⋅△四边形,因为四边形A 1B 1BA 面积为定值,h 为定值,所以三棱锥A 1-CDB 1的体积是定值,故④正确.。
2011年新疆中考专题复习动态问题一、选择题1.2009年长春如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为2.2009年江苏省如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是 A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格3.2009年新疆下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是4.2009年天津市在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为 A .()43, B .()34, C .()12--, D .()21--,5.2009年牡丹江市ABC △在如图所示的平面直角坐标系中,将ABC △向右平移3个单位长度后得111A B C △,再将111A B C △绕点O 旋转180°后得到222A B C △,则下列说法正确的是甲乙甲乙A .B .C .D.甲乙甲乙OSt OSt OSt OStA PBA .B .C .D .A .1A 的坐标为()31,B .113ABB A S =四边形C.2B C =D .245AC O ∠=°6.2009年莆田如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到A .N 处B .P 处C .Q 处D .M 处7.2009年茂名市如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是 A .点1O 的坐标是(10), B .点1C 的坐标是(21)-,C .四边形111O BA B 是矩形D .若连接OC ,则梯形11OCA B 的面积是3图18.2009年湖北十堰市如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是 .A .π5168B .π24C .π584D .π129.2009 年佛山市将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了A .1圈B .圈C .2圈D .圈二、填空题10.2009年新疆如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .11.2009年包头如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图1所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图1中的ACB △绕点C 顺时针方向旋转到图2的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm 保留根号.ACO12.2009年达州在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ,则△PBQ 周长的最小值为____________㎝结果不取近似值.13.2009年河南如图,在Rt△ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.1①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; 2当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.三、解答题14. 2009年牡丹江市已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB 或它们的延长线于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时如图1,易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系请写出你的猜想,不需证明.A EC F DB图1EA GBC FD 图215.2009年株洲市已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为3,m 0m >,线段AB 与y 轴相交于点D ,以P 1,0为顶点的抛物线过点B 、D . 1求点A 的坐标用m 表示; 2求抛物线的解析式;3设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.16. 2009年北京市在ABCD 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90得到线段EF 如图1 1在图1中画图探究:①当P 为射线CD 上任意一点P 1不与C 重合时,连结EP 1绕点E 逆时针旋转90得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论. 2若AD=6,tanB=43,AE=1,在①的条件下,设CP 1=x ,S 11P FC =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.AE CF BD图1图3ADFECBADBCE 图2F17. 2009年北京市如图,在平面直角坐标系xOy 中,ABC 三个机战的坐标分别为()6,0A -,()6,0B ,()0,43C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E.1求D 点的坐标;2作C 点关于直线DE 的对称点F,分别连结DF 、EF,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短;要求:简述确定G 点位置的方法,但不要求证明18.2009年崇左在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点(02)A ,,点(10)C -,,如图所示:抛物线22y ax ax =+-经过点B . 1求点B 的坐标; 2求抛物线的解析式;3在抛物线上是否还存在点P 点B 除外,使ACP △仍然是以AC 为直角边的等腰直角三角形若存在,求所有点P 的坐标;若不存在,请说明理由.19.2009年郴州市如图1,已知正比例函数和反比例函数的图像都经过点M-2,1,且P 1,-2为双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.1写出正比例函数和反比例函数的关系式;2当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等如果存在,请求出点的坐标,如果不存在,请说明理由;3如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.20.2009年常德市如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.1当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立若成立请证明,若不成立请说明理由;2当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.21.2009年桂林市、百色市如图,已知直线3:34l y x =+,它与x 轴、y 轴的交点 分别为A 、B 两点. 1求点A 、点B 的坐标;2设F 是x 轴上一动点,用尺规作图作出⊙P ,使⊙P 经过点B 且与x 轴相切于点F 不写作法和证明,保留作图痕迹;3设2中所作的⊙P 的圆心坐标为P x y ,,求y 与x 的函数关系式;4是否存在这样的⊙P ,既与x 轴相切又与直线l 相切于点B ,若存在,求出圆心P 的坐标;若不存在,请说明理由.22.2009年黄冈市如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从A,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t 单位:秒 1求A,B,C 三点的坐标和抛物线的顶点的坐标;2当t 为何值时,四边形PQCA 为平行四边形请写出计算过程; 3当0<t <92时,△P Q F 的面积是否总为定值若是,求出此定值,若不是,请说明理由; 4当t 为何值时,△P QF 为等腰三角形请写出解答过程.xAB VFO·y图1 图2 图323.2009年上海市3已知∠ABC=90°,AB=2,BC=3,AD ∥BC,P 为线段BD 上的动点,点Q 在射线AB 上,且满足ABADPC PQ =如图1所示. 1当AD=2,且点Q 与点B 重合时如图2所示,求线段PC 的长; 2在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示△APQ 的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;3当AD AB <,且点Q 在线段AB 的延长线上时如图3所示,求QPC ∠的大小.24.2009重庆綦江如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .1求该抛物线的解析式;2若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形直角梯形等腰梯形3若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小并求出最小值及此时PQ 的长.ADPCBQ 图1DAPCBQ 图2图3C ADPBQ25.2009年湖南长沙如图,二次函数2y ax bx c =++0a ≠的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.1求实数a b c ,,的值;2若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;3在2的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似如果存在,请求出点Q 的坐标;如果不存在,请说明理由.26.2009年内蒙古包头如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. 1如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等2若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇27.2009年绵阳市如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点不包括端点,作∠AEF = 90,使EF 交矩形的外角平分线BF 于点F ,设Cm ,n .1若m = n 时,如图,求证:EF = AE ;2若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE 若存在,请求出点E 的坐标;若不存在,请说明理由.3若m = tnt >1时,试探究点E 在边OB 的何处时,使得EF =t + 1AE 成立并求出点E 的坐标.28.2009襄樊市如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.1求证:梯形ABCD 是等腰梯形;2动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;3在2中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形并指出符合条件的平行四边形的个数; ②当y 取最小值时,判断PQC △的形状,并说明理由.29.2009年淄博市如图,在矩形ABCD 中,BC =20cm,P ,Q ,M ,N 分别从A,B ,C ,D 出发沿AD ,BC ,CB ,DA 方ADC BP MQ60°向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ =x cm 0x ≠,则AP =2x cm,CM =3x cm,DN =x 2cm .1当x 为何值时,以PQ ,MN 为两边,以矩形的边AD 或BC 的一部分为第三边构成一个三角形; 2当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;3以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形如果能,求x 的值;如果不能,请说明理由.30.2009年江苏省如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. 1请用含t 的代数式分别表示出点C 与点P 的坐标; 2以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点点A 在点B 的左侧,连接PA 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.31.2009年齐齐哈尔市直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.1直接写出A B 、两点的坐标;2设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; 3当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.ABDCPQMN32.2009年吉林省如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米这里规定:点和线段是面积为O 的三角形,解答下列问题:1点P 、Q 从出发到相遇所用时间是 秒;2点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; 3求y 与x 之间的函数关系式.33.2009年义乌已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCDA 、B 、C 、D 各点依次排列为正方形时,称这个正方形为此函数图像的伴侣正方形;例如:如图,正方形ABCD 是一次函数1y x =+图像的其中一个伴侣正方形; 1若某函数是一次函数1y x =+,求它的图像的所有伴侣正方形的边长; 2若某函数是反比例函数(0)ky k x=>,他的图像的伴侣正方形为ABCD,点D2,mm <2在反比例函数图像上,求m 的值及反比例函数解析式;3若某函数是二次函数2(0)y ax c a =+≠,它的图像的伴侣正方形为ABCD,C 、D 中的一个点坐标为3,4.写出伴侣正方形在抛物线上的另一个顶点坐标 ,写出符合题意的其中一条抛物线解析式 ,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数本小题只需直接写出答案34.如图, 直线l 与x 轴、y 轴分别交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 出发,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 出发,以每秒2个单位长度的速度沿O →M 的方向运动.已知点QP 、同时出发,当点Q到达点M 时,QP 、两点同时停止运动, 设运动时间为t 秒.1设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范围. 2当t 为何值时,QP 与l 平行35.2009年娄底如图,在△ABC 中,∠C =90°,BC =8,AC =6,另有一直角梯形DEFHHF ∥DE ,∠HDE =90°的底边DE 落在CB 上,腰DH 落在CA 上,且DE =4,∠DEF =∠CBA ,AH ∶AC =2∶3 1延长HF 交AB 于G ,求△AHG 的面积.2操作:固定△ABC ,将直角梯形DEFH 以每秒1个单位的速度沿CB 方向向右移动,直到点D 与点B 重合时停止,设运动的时间为t 秒,运动后的直角梯形为DEFH ′如右图.探究1:在运动中,四边形CDH ′H 能否为正方形若能, 请求出此时t 的值;若不能,请说明理由. 探究2:在运动过程中,△ABC 与直角梯形DEFH ′重叠部分的面积为y ,求y 与t 的函数关系.lQOM N xyP36.2009丽水市已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为4,0,0,3.现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.1填空:菱形ABCD 的边长是 、面积是 、 高BE 的长是 ; 2探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值;②若点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.37.2009年河南如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B 4,0、C 8,0、D 8,8.抛物线y=ax 2+bx 过A 、C 两点.1直接写出点A 的坐标,并求出抛物线的解析式;2动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形 请直接写出相应的t 值.38.2009江西如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. 1求点E 到BC 的距离;Oxy ABC DE2点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时如图2,PMN △的形状是否发生改变若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时如图3,是否存在点P ,使PMN △为等腰三角形若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.39.2009年济宁市在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N 如图. 1求边OA 在旋转过程中所扫过的面积;2旋转过程中,当MN 和AC 平行时,求正方形 OABC 旋转的度数;3设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化请证明你的结论.xxA D E BF C图4备用A D EBF C图5备用A D E BF C图1 图2A D EBF C PNM图3A D EBFCPN M 第25题40.2009年济宁市如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t 单位:s . 1当t 为何值时,⊙P 与AB 相切;2作PD AC ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s =时,四边形PDBE 为平行四边形.41.2009年衡阳市如图,AB 是⊙O 的直径,弦BC=2cm,∠ABC=60o .1求⊙O 的直径;2若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;3若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF,当t 为何值时,△BEF 为直角三角形.42.2009年衡阳市如图,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点A 、B 两点除外,过M 分别作MC ⊥OA 于点C,MD ⊥OB 于D .1当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化并说明理由;2当点M 运动到什么位置时,四边形OCMD 的面积有最大值最大值是多少3当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.图3B图1B图2A图1图243.2009年包头如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.1如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等2若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇44.2009年包头已知二次函数2y ax bx c =++0a ≠的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =2m >与x 轴交于点D .1求二次函数的解析式;2在直线x m =2m >上有一点E 点E 在第四象限,使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标用含m 的代数式表示;3在2成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.45.2009年本溪在ABC △中,AB AC =,点D 是直线BC 上一点不与B C 、重合,以AD为一边在图1图2图3AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE . 1如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; 2设BAC α∠=,BCE β∠=.①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系请直接写出你的结论.46.2009宁夏如图1、图2,是一款家用的垃圾桶,踏板AB 与地面平行或绕定点P 固定在垃圾桶底部的某一位置上下转动转动过程中始终保持AP A P BP B P ''==,.通过向下踩踏点A 到A '与地面接触点使点B 上升到点B ',与此同时传动杆BH 运动到B H ''的位置,点H 绕固定点D 旋转DH 为旋转半径至点H ',从而使桶盖打开一个张角HDH '∠.如图3,桶盖打开后,传动杆H B ''所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设H C '=B M '.测得6cm 12cm 8cm AP PB DH '===,,.要使桶盖张开的角度HDH '∠不小于60°,那么踏板AB 离地面的高度至少等于多少cm 结果保留两位有效数字 参考数据:2 1.413≈,≈图147.2009宁夏已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动运动开始时,点M 与点A 重合,点N 到达点B 时运动终止,过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为tAEEAC CD D BB图1 图2 AA备用图B CB C 备用图 A P BHH ′B ′A ′图2A P BHH ′B ′MC图3秒.1线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积;2线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.48.2009年湖州如图,在平面直角坐标系中,直线l ∶y =28x --分别与x 轴,y 轴相交于A B ,两点,点()0P k ,是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作P ⊙. 1连结PA ,若PA PB =,试判断P ⊙与x 轴的位置关系,并说明理由;2当k 为何值时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形49.2009年温州如图,在平面直角坐标系中,点A 3,0,B33,2,0,2.动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB,交BC 于点F,连结DA 、DF .设运动时间为t 秒. 1求∠ABC 的度数;2当t 为何值时,AB∥DF;3设四边形AEFD 的面积为S .①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E,当S<23时,求m 的取值范围写出答案即可.备用图C PQB AMN CPQBA M NCPQB A M N50.2009年哈尔滨如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为3-,4,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . 1求直线AC 的解析式;2连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S 0S ≠,点P 的运动时间为t 秒,求S 与t 之间的函数关系式要求写出自变量t 的取值范围;3在2的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.51.2009年中山正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, 1证明:Rt Rt ABM MCN △∽△;2设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;3当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.O M BH ACy 备用图O M BH ACy 备用图O M BH ACy 图2 O M BH ACy 图152.2009年兰州如图①,正方形 ABCD 中,点A 、B 的坐标分别为0,10,8,4,点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动, 同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动, 设运动的时间为t 秒.1当P 点在边AB 上运动时,点Q 的横坐标x 长度单位关于运动时间t 秒的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; 2求正方形边长及顶点C 的坐标;3在1中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;4如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.53.2009年济南如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. 1求BC 的长.2当MN AB ∥时,求t 的值.3试探究:t 为何值时,MNC △为等腰三角形.ADC N54.2009年河北如图,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当t = 2时,AP = ,点Q 到AC 的距离是 ; 2在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;不必写出t 的取值范围 3在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形若能,求t 的值.若不能,请说明理由; 4当DE 经过点C 时,请直接..写出t 的值.55.09湖北宜昌已知:如图1,把矩形纸片ABCD 折叠,使得顶点A 与边DC 上的动点P 重合P 不与点D ,C 重合, MN 为折痕,点M ,N 分别在边BC , AD 上,连接AP ,MP ,AM , AP 与MN 相交于点F .⊙O 过点M ,C ,P .1请你在图1中作出⊙O 不写作法,保留作图痕迹;2AF AN与AP AD是否相等请你说明理由;3随着点P 的运动,若⊙O 与AM 相切于点M 时,⊙O 又与AD 相切于点H . 设AB 为4,请你通过计算,画出..这时的图形.图2,3供参考 ABCFP MNDF MNDOP CBAABCPODNMF图1 图2 图3P。
初中数学论文从“动点问题谈中考专题复习教学抛“砖”方能引“玉”【摘要】中考数学专题复习,是从某一重要的数学知识、技能或数学方法展开,通过对某些典型的数学问题的剖析,纵向深入,使得学生学习系统、完善、深化。
然而在现实的推进中,由于专题复习内容综合性强,能力要求高,学生对此类问题倍感困惑,课堂实效并不理想。
笔者有幸参加了温岭市教研室组织的初三复习研讨会,与会老师《动点问题》中考专题复习课给我留下了深刻印象。
笔者尝试从这节课的教学设计和课堂应变入手分析,尝试探索中考数学专题复习教学的精髓所在。
【关键词】中考专题复习教学动点问题笔者有幸参加了市教研室组织的初三复习研讨会,聆听了与会老师上的“动点问题”中考专题复习课。
应该说,动点问题以几何图形为载体,运动变化为主线,集多个知识点、多种解题方法、数学思想于一身,综合性强,能力要求高,学生对此类问题更是倍感困惑,课堂实效不理想。
然而,在实际的教学中,上课教师精心的教学设计和灵活的课堂应变,使得原本枯燥乏味的复习课生机盎然:炒“冷饭”变成了色香味俱全的“蛋炒饭”。
原来中考专题复习课可以这样上,我恍然大悟。
一、布“点”为基,做好铺垫——工于开头课生辉片段回顾1:课堂伊始,教师开门见山:点、线、图形的运动,构成了数学学习的新问题——动点问题,这是近几年中考的热点,大家把握好这类问题,中考就成功了大半,你们想知道这类题目该怎么去解决吗?(学生点头)教师出示引例:已知如图,△ABC是边长3cm的等边三角形.动点P以1cm/的速度从点A出发沿线段AB向点B运动,设点P的运动时间为(),当t=____时,△PBC是直角三角形?一位学生快速得出正确答案。
教师马上追问:你是怎么想到的。
学生:使△PBC是直角三角形时点P应运动到AB中点。
由这个情况画图就可得出答案。
教师:哦,可以由动点运动的特殊位置“化动为静”,然后画出图形就可解答。
(教师演示图形)教师接着出示问题(2):若另一动点Q从点B出发,沿BC向点C运动,如果动点P、Q都以1cm/的速度同时出发.设运动时间为t(),那么t为何值时,△PBQ是直角三角形学生1上台画出图形并向学生讲解:当∠BQP为直角时△PBC是直角三角形。