人教版七年级上册 第二章 整式的加减知识点总结及例题讲解
- 格式:pdf
- 大小:176.90 KB
- 文档页数:2
第二章整式的加减知识点总结整式有理式代数式分式无理式※、书写含有字母的式子时应注意:(1)当数字与字母相乘时,乘号通常省略不写或简写为“·”,且数字在前,字母在后,若数字是带分数,要化为假分数,如×a写成·a或a;(2)字母与字母相乘时,乘号通常省略不写或简写为“·”,如a×b写成a·b或ba;(3)除法运算写成分数形式,如1÷a通常写作。
(一)单项式1、都是数字与字母的乘积2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
如5的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
如-k,pq2等。
12、单项式的次数仅与字母有关,与单项式的系数无关。
如9×103a2b3c的次数是6,与103无关。
13、圆周率π是常数。
(二)多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
要点诠释:(1)多项式的每一项都包括它前面的符号。
如多项式6x2-2x-7,它的项是6x2,-2x,-7;(2)多项式3n4-2n2+n+1的项是3n4,-2n2,n,1,其中3n4是四次项,-2n2是二次项,n是一次项,1是常数项;(3)多项式的次数不是所有的项的次数之和,而是次数最高项的次数;(4)多项式中含有几项,就是几项式,最高项的次数是几,就是几次式;(5)多项式没有系数的概念,但对多项式中的每一项来说都有系数。
第二章:整式一:列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的321倍是 ; (5)小明从每月的零花钱m 元中贮存x 元钱捐给希望工程,一年下来小明捐款_元。
观察所列代数式包含哪些运算,有何共同运算特征。
注意:①代数式中出现的乘号,通常写作“·”,或省略不写,如4×a 常写成4·a 或4a②数字与字母相乘时,数字写在字母前面,如4a 一般不写作a4; 若数字因数是带分数时,应写成假分数的形式。
③除法运算写成分数形式如1÷a 通常写成a1 ④在字母表示数量关系时,如果所列运算为加减的代数式,且后面有单位,要用括号把整个代数式括起来。
二:整式1.单项式:由数与字母的乘积组成的代数式称为单项式。
特别地,单独 一个数或一个字母也是单项式,如a ,5。
2.单项式系数和次数系数:单项式中的数字因数叫做这个单项式的系数。
次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
注意:①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等; ③单项式次数只与字母指数有关。
观察以下几个式子,发现它们与所学的单项式有什么区别(1)2(a +b) ; (2)21+x ; (3)a +b ; (4)2a +4b3:多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
例如,多项式5232+-x x 有三项,它们是23x ,( ),5。
其中5是( ) 项。
4:多项式的次数多项式里次数最高项的次数,叫做这个多项式的次数。
5:多项式的命名:一个多项式含有几项,就叫几项式。
多项式里次数最高的项的次数,就是这个多项式的次数。
例如,多项式5232+-x x 是一个二次三项式。
一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1 【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可. 【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3, 根据题意得n ﹣3=0,m ﹣1=0, 解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1. 【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD . (1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y ,第8个分式为178x y-.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子. 【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y, ……∴任意一个分式除以前面一个分式,都得2x y-.(2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 4.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由. (3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0. 【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可. 【详解】解:(1)∵2A B C +=,∴2B C A =-. B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+- 2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++-- 2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关; (3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= .【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键. 5.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-. 解析:24a b --,-2. 【分析】原式合并同类项后代入字母的值计算即可. 【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-. 【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可. 【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+. 故答案为:3a b c --+. 【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星; (2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星. 解析:(1)16,19;(2)6061,31n +. 【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得. 【详解】解:(1)观察发现,第1个图形★的颗数是134+=, 第2个图形★的颗数是1327+⨯=, 第3个图形★的颗数是13310+⨯=, 第4个图形★的颗数是13413+⨯=, 所以第5个图形★的颗数是13516+⨯=, 第6个图形★的颗数是13619+⨯=. 故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=, 第n 个图形★的颗数是31n +. 故答案为:6061,31n +. 【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键. 8.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=.解析:8xy -,12 【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可. 【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可. 【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.10.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少? 解析:15a 【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%. 【详解】 解:根据题意,得设第一年的产量为a ,以15%的速度增长, ∴第二年的产量为a (1+15%)=1.15a . 【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 11.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕. (1)第3次对折后共有多少条折痕?第4次对折后呢? (2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条? 解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条. 【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得. 【详解】(1)动手操作可知,第3次对折后的折痕条数为7条, 第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条, 第2次对折后的折痕条数为2321=-条, 第3次对折后的折痕条数为3721=-条, 第4次对折后的折痕条数为41521=-条, 归纳类推得:第n 次对折后的折痕条数为21n -条, 因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.12.用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数.解析:(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.13.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1)图②有个三角形;图③有个三角形;(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).解析:(1)5,9 ;(2)43n - 【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形. 【详解】解:(1)根据图形可得:5,9; (2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形. 【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型. 14.化简与求值:(1)若1a =-,则式子21a -的值为______; (2)若1a b +=,则式子12a b++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可; (2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可. 【详解】解:(1)()221110a -=--=; (2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-. 【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-. 【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项. 【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键. 16.计算: (1)()()312⨯-+-(2)2235223x x x x -+-+- 解析:(1)5-;(2)241x x -- 【分析】(1)直接根据有理数的混合运算法则即可求解. (2)直接根据整式的加减混合运算法则即可求解. 【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.已知单项式﹣2x 2y 的系数和次数分别是a ,b . (1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值. 解析:(1)﹣2;(2)1. 【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案. 【详解】 解:由题意,得 a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2; (2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1; 【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键. 18.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=(______ )2= ______ . 根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2. (2)猜想:113+123+133+143+153= ______ . 解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值. 详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225 (1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2;(2)、113+123+133+143+153=13+23+33+…+153-(13+23+33+…+103) =(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.19.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++. 【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.20.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 21.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14 . 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.22.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.23.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.解析:见解析,7.试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.24.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 25.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.26.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
整式的加减知识点总结及例题1.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放在一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.K知识参考答案:2.(1)合并同类项;(2)不变;(4)降幂;升幂3.(1)相同;相反一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是A.62和x2B.11abc和9bcC.3m2n3和–n3m2D.0.2a2b和ab2【答案】CA.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4【答案】C二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1【答案】B【解析】A、4a与3b不是同类项,不能直接合并,故本选项错误;B、4xy–3xy=xy,计算正确,故本选项正确;C、–2x+5x=3x,计算错误,故本选项错误;D、2y–y=y,计算错误,故本选项错误.故选B.【名师点睛】合并同类项是逆用乘法对加法的分配律,运用时应注意:(1)不是同类项的项不能合并;(2)同类项的系数相加,字母部分不变;(3)确定好每一项系数的符号.三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体. 【例4】下列去括号正确的是 A .–(a +b –c )=–a +b –c B .–2(a +b –3c )=–2a –2b +6c C .–(–a –b –c )=–a +b +cD .–(a –b –c )=–a +b –c【答案】B四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算. 3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m –(m –n )的结果是 A .2m –nB .n –2mC .–nD .n【名师点睛】整式加减的结果要最简: (1)不能有同类项;(2)含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数.(3)不再含括号.。
整式的加减知识点总结与典型例题一、整式——单项式1、单项式的定义:由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:⑴单项式的系数可以是整数,也可能是分数或小数。
如23x 的系数是3;32ab 的系数是31;a 8.4的系数是; ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如24xy -的系数是4-;()y x 22-的系数是2-;⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如2ab -的系数是-1;2ab 的系数是1;⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 242的次数是字母z ,y ,x 的指数和,即4+3+1=8,而不是7次,应注意字母z 的指数是1而不是0;⑵单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式43242z y x -的次数是2+3+4=9而不是13次;⑶单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“• ”或者省略不写。
例如:t ⨯100可以写成t •100或t 1005、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数. ※典型例题考向1:单项式1、代数式中,单项式的个数是( )A .1B .2C .3D .42、下列式子:中,单项式的个数是( )A .1B .2C .3D .43、下列式子:单项式的个数是( )A .4B .3C .2D .14、单项式y x 22-的系数为( )A .2B .-2C .3D .-3 5、单项式2ab 2π-的系数和次数分别是( )A .-2π、3B .-2、2C .-2、4D .-2π6、单项式z xy 2-的( )A .系数是0,次数是2B .系数是-1,次数是2C .系数是0,次数是4D .系数是-1,次数是47、单项式-2πy 的系数为( )A .-2πB .-2C .2D .2π8、下列各式中,次数为3的单项式是( )A.33y x +B.y x 2C.y x 3D.xy 3 9、单项式3224c ab -的系数与次数分别是( ) A .-2,6 B .2,7 C .32-,6 D. 32-,7 10、设a 是最小的自然数,b 是最大的负整数,c ,d 分别是单项式2xy -的系数和次数,则a ,b ,c ,d 四个数的和是( )A .-1B .0C .1D .3二、整式——多项式1、多项式的定义:几个单项式的和叫多项式.2、多项式的项:多项式中的每个单项式叫做多项式的项.3、多项式的次数:多项式里,次数最高项的次数叫多项式的次数.4、多项式的项数:多项式中所含单项式的个数就是多项式的项数.5、常数项:多项式里,不含字母的项叫做常数项.6、整式:单项式与多项式统称整式.※典型例题考向2:多项式1、多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式2、多项式321xy xy +-的次数是( )A .1B .2C .3D .43、多项式21xy xy -+的次数及最高次项的系数分别是( )A .2,1B .2,-1C .3,-1D .5,-14、下列说法正确的是( )A .-2不是单项式B .-a 的次数是0 C.53ab 的系数是3 D.324-x 是多项式 5、下列代数式其中整式有( )A .1个B .2个C .3个D .4个6、在整式有( )A .4个B .5个C .6个D .7个7、代数式中是整式的共有( )A .5个B .4个C .3个D .2个8、在代数式中有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同9、若m ,n 为自然数,则多项式n m n m y x +--4的次数应当是( )A .mB .nC .m+nD .m ,n 中较大的数10、如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .611、多项式是关于x 的二次三项式,则m 的值是( )A .2B .-2C .2或-2D .3三、整式的加减——合并同类项1、同类项的概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.说明:⑴同类项必须具备两个条件:所含字母相同;相同字母的指数也分别相同。
七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
-系数:单项式中的数字因数叫做单项式的系数。
-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
-多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。
4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。
2. 识别同类项:找出所有同类项。
3. 合并同类项:利用合并同类项法则进行合并。
4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。
5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。
6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。
-注意系数的符号,特别是负号的作用。
-运算后要进行必要的化简,使结果更加简洁明了。
第二章整式的加减知识点1.单项式:数字与字母的积或者字母与字母的积。
一个单独的数字或者具体的数字也是单项式。
注意:数字与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。
2.单项式的系数:单项式中的数字因数。
如果在一个单项式中没有出现具体的数字,则它的系数是1.例如:xy 它的系数是1,-n 它的系数是-1.常数项(具体的数字)的系数就是它本身,例如:3的系数就是3,π的系数就是π。
π是一个常数(具体的数字),不是字母。
3.单项式的次数:单项式中所以字母指数的和。
例如:xy 6的次数是2次,323n m 的次数是5次,y x 233的次数是3次。
常数(具体的数字)的次数是0次,例如:3的次数就是0,π的次数是0。
4.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。
例如:多项式4y 32xy 22-+-m 是由单项式22xy 、m 2-、y 3、7-相加组成,所以22xy 、m 2-、y 3、7-就是多项式4y 32xy 22-+-m 的项,7-就是常数项。
5.多项式的次数:多项式中次数最高项的次数。
要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。
其中次数最高的项叫最高次项,例如:多项式4y 32xy 22-+-m ,22xy 的次数是3次,m 2-的次数是1次,y 3的次数是1次,7-的次数是0次,所以22xy 的次数最高,那么22xy 就是最高次项,则这个多项式的次数就是3次。
6.整式:多项式和单项式统称为整式。
如果一个式子的分母中出现了字母(π除外),那么它就不是整式(即它不是单项式,也不是多项式)。
7.同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如233-n m 与325m n 是同类项,因为这两个项中都含有字母m 、n ,并且字母m 的指数都是3,字母n 的指数都是2,所以他们是同类项。
(名师选题)七年级数学上册第二章整式的加减易错知识点总结单选题1、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.2、已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n答案:D分析:先用含a、b、m、n的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.解:如图,由图和已知条件可知:AB=a,EF=b,AC=n﹣b,GE=n﹣a.阴影部分的周长为:2(AB+AC)+2(GE+EF)=2(a+n﹣b)+2(n﹣a+b)=2a+2n﹣2b+2n﹣2a+2b=4n.∴求图中阴影部分的周长之和,只需知道n一个量即可.故选:D.小提示:本题主要考查了整式的加减,能用含a、b、m、n的代数式表示出阴影矩形的长宽是解决本题的关键.3、下列计算正确的是()A.2a2b+3a2b=5a2b B.2a2+3a2=5a4C.2a+3b=5ab D.2a2−3a2=−a答案:A分析:根据合并同类项法则计算即可判断.解:A、2a2b+3a2b=5a2b,故正确;B、2a2+3a2=5a2,故错误;C、2a+3b不能合并,故错误;D、2a2−3a2=−a2,故错误;故选A.小提示:本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.4、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.5、将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112答案:A分析:观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,1)表示的数,然后得出(15,10)表示的数即可.解:因为(1,1)表示的数是:1,(2,1)表示的数是:1+1=2,(3,1)表示的数是:1+1+2=4,(4,1)表示的数是:1+1+2+3=7,(5,1)表示的数是:1+1+2+3+4=11,……所以(a,1)表示的数是:1+1+2+3+4+⋯…+(a−1)=1+[1+(a−1)](a−1)2=1+a(a−1)2=a2−a+22,所以(15,1)表示的数是:a 2−a+22=152−15+22=106,所以(15,10)表示的数是:106+10-1=115,故选A.小提示:本题考查了找图形和数字规律,从题目分析发现每一行的第一个数字都等于前面数字的个数再加1是本题的关键.6、下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|答案:C分析:根据去括号法则及绝对值化简依次计算判断即可.解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−|−5|=−5,不符合题意;故选:C.小提示:题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.7、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列去括号正确的是( )A.a2−(2a−b2)=a2−2a−b2B.−(2x−y)−(−x2+y2)=−2x−y+x2−y2C.2x2−3(x−5)=2x2−3x+5D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a答案:D分析:根据去括号法则进行判断即可.解:A.a2−(2a−b2)=a2−2a+b2,故A错误,不符合题意;B.−(2x−y)−(−x2+y2)=−2x+y+x2−y2,故B错误,不符合题意;C.2x2−3(x−5)=2x2−3x+15,故C错误,不符合题意;D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a,故D正确,符合题意.故选:D.小提示:本题主要考查了去括号法则,解题的关键是熟练掌握去括号法则,注意括号前面为负号的的将负号和括号去掉后,括号里面的每一项符号要发生改变.10、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.填空题11、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.12、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然;最后根据图形中的后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1)2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1×(1+1);2n=2时,“○”的个数是3=2×(2+1),2n=3时,“○”的个数是6=3×(3+1),2n=4时,“○”的个数是10=4×(4+1),2……∴第n个“○”的个数是n(n+1),2由图形中的“○”的个数和“.”个数差为2022∴3n−n(n+1)2=2022①,n(n+1)2−3n=2022②解①得:无解解②得:n1=5+√162012,n2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13、将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是_______.答案:(10,18)分析:分析每一行的第一个数字的规律,得出第n行的第一个数字为1+(n−1)2,从而求得最终的答案.第1行的第一个数字:1=1+(1−1)2第2行的第一个数字:2=1+(2−1)2第3行的第一个数字:5=1+(3−1)2第4行的第一个数字:10=1+(4−1)2第5行的第一个数字:17=1+(5−1)2…..,设第n行的第一个数字为x,得x=1+(n−1)2设第n+1行的第一个数字为z,得z=1+n2设第n行,从左到右第m个数为y当y=99时1+(n−1)2≤99<1+n2∴(n−1)2≤98<n2∵n为整数∴n=10∴x=1+(n−1)2=82∴m=99−82+1=18所以答案是:(10,18).小提示:本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.14、若关于x、y的多项式27x2y−9mxy−38y3−3xy+2化简后不含二次项.则m=________.答案:−13分析:首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.解:27x2y−9mxy−38y3−3xy+2=2 7x2y−38y3−(9m+3)xy+2,∵化简后不含二次项,∴9m+3=0,解得m=−13,所以答案是:−13.小提示:此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.15、在代数式3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有___________个.答案:3分析:根据单项式的定义,进行逐一判断即可.解:在3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有3xy2,m,12,一共3个,所以答案是:3.小提示:本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.解答题16、化简:(9x−3)−2(x+1)(1)13(2)(3a2b−ab2)−(ab2+3a2b)答案:(1)x−3;(2)−2ab2分析:(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.解:(1)原式=3x−1−2x−2=3x−2x−2−1=x−3(2)原式=3a2b−ab2−ab2−3a2b=3a2b−3a2b−ab2−ab2=−2ab2小提示:本题考查的整式的加减运算,掌握去括号,合并同类项是解题的关键.17、已知多项式A=2x2+my−12,B=nx2−3y+6.(1)若(m+2)2+|n−3|=0,化简A−B;(2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.答案:(1)−x2+y−18,(2)-5分析:(1)根据非负数的性质求出m、n,再计算A-B即可;(2)先计算A+B,再根据不含x2项以及y项,得出m、n的值,代入即可.解:(1)∵(m+2)2+|n−3|=0,∴m+2=0,n−3=0,解得,m=−2,n=3,∴A=2x2−2y−12,B=3x2−3y+6,A−B=2x2−2y−12−(3x2−3y+6),=2x 2−2y −12−3x 2+3y −6,=−x 2+y −18.(2)A +B =2x 2+my −12+(nx 2−3y +6),=(2+n)x 2+(m −3)y −6,∵结果中不含有x 2项以及y 项,∴2+n =0,m −3=0,解得,n =−2,m =3,把n =−2,m =3代入,m +n +mn =3−2+3×(−2)=−5.小提示:本题考查了非负数的性质和整式的加减以及代数式求值,解题关键是能够根据非负数的性质或多项式不含某一项确定字母系数的值,并能熟练应用整式加减的法则进行计算.18、如图,一个点从数轴上的原点开始,先向左移动3cm 到达A 点,再向右移动4cm 到达B 点,然后再向右移动72cm 到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ?(4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA −CB 的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA −CB 的值.答案:(1)见解析(2)152(3)经过32或72秒后点A 到点C 的距离为3cm(4)BA −CB 的值不会随着t 的变化而变化,BA −CB =12分析:(1)根据题意,在数轴上表示点A 、B 、C 的位置即可;(2)利用数轴上两点间的距离公式解题;(3)分两种情况讨论:点A 在点C 的左侧或点A 在点C 的右侧;(4)表示出BA 、CB ,再相减即可解题.(1)解:由题意得:A 点对应的数为−3,B 点对应的数为1,点C 对应的数为92, 点A ,B ,C 在数轴上表示如图:(2)解:设原点为O ,如图,∴OA =3,OC =92,∴AC =OA +OC =152. 所以答案是:152.(3)解:①当点A 在点C 的左侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:152−3x =3,解得:x =32.②当点A 在点C 的右侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:3x −152=3,解得:x =72. 综上,经过32或72秒后点A 到点C 的距离为3cm .(4)解:BA −CB 的值不会随着t 的变化而变化,BA −CB =12. 由题意:AB =4cm ,CB =72cm , ∵移动t 秒后,AB =4+t +4t =(4+5t )cm ,CB =9t −4t +72=(5t +72)cm ,∴BA −CB =(4+5t )−(5t +72)=12.∴BA −CB 的值不会随着t 的变化而变化,BA −CB =12.小提示:本题考查数轴、数轴上两点间的距离等知识,是重要考点,掌握相关知识是解题关键.。
《常考题》初中七年级数学上册第二章《整式的加减》知识点总结(含答案解析)一、选择题1.(0分)在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( )A .2个B .3个C .4个D .5个C解析:C 【分析】单项式和多项式统称为整式,分母中含有字母的不是整式. 【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个. 故选择C. 【点睛】本题考查了整式的定义.2.(0分)点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.3.(0分)与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.(0分)把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7 B.﹣1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.5.(0分)一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键. 6.(0分)下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+ B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.7.(0分)下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.(0分)若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .9.(0分)某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题11.(0分)与22m m +-的和是22m m -的多项式为__________.【分析】直接利用整式的加减运算法则计算得出答案【详解】设多项式A 与多项式的和等于∴A=-()故答案为:【点睛】本题主要考查了整式的加减正确去括号和合并同类项是解题关键 解析:32m -+【分析】直接利用整式的加减运算法则计算得出答案. 【详解】设多项式A 与多项式22m m +-的和等于22m m -, ∴A=22m m --(22m m +-)2222m m m m =---+32m =-+.故答案为:32m -+. 【点睛】本题主要考查了整式的加减,正确去括号和合并同类项是解题关键. 12.(0分)请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】试题1111++++ 133********⨯⨯⨯⨯=11111111111 1)()()() 23235257299101 -+-+-++-(=11111111 1++) 23355799101 ---++-(=11 1) 2101-(=1100 2101⨯=50 101.13.(0分)将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4; 第三行的第三列的数是 13=1+4+8; 第四行的第四列的数是 25=1+4+8+12; ......第n 行的第n 列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1); ∴第七行的第七列的数是1+2×7×(7-1)=85; 故答案为:85. 【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.14.(0分)当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25. 【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解. 【详解】解:∵当x =1时,ax +b +1的值为﹣3, ∴a +b +1=﹣3, ∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25. 【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键. 15.(0分)在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答. 【详解】解:222222(2)x xy y x xy y -+-=--+. 故答案是:222x xy y -+.本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.16.(0分)如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.(0分)已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2 【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可. 【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 18.(0分)为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代 解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可. 【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元). 故答案为:(98a +24). 【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.19.(0分)用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+ 解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果. 【详解】解:第1个图形棋子的个数:1; 第2个图形,1+4; 第3个图形,1+4+7; 第4个图形,1+4+7+10; …第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子. 故答案为:3n-2 【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.20.(0分)图中阴影部分的面积为______.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可. 【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.三、解答题21.(0分)如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A表示数-3,∴将A点向右移动7个单位长度,那么终点B表示的数是-3+7=4,A,B两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3-7+5=1,A,B两点间的距离为3-1=2,故答案为:1,2;(3)∵点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是-4+168-256=-92,A,B两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为m+n-p,A,B两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.22.(0分)有一长方体形状的物体,它的长,宽,高分别为a,b,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a+4b+8c,方式乙所用绳长为4a+6b+6c,方式丙所用绳长为6a+6b+4c,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.23.(0分)已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.24.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.25.(0分)用代数式表示:(1)a的5倍与b的平方的差;(2)m的平方与n的平方的和;(3)x,y两数的平方和减去它们积的2倍.解析:(1)5a-b2(2)m2+n2(3)x2+y2-2xy【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;【详解】解:(1)a的5倍与b的平方的差可表示为:5a-b2;(2)m的平方与n的平方的和可表示为:m2+n2;(3)x,y两数的平方和减去它们积的2倍可表示为:x2+y2-2xy.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.26.(0分)(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.27.(0分)有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.28.(0分)为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x超过250度时,再分别代入计算即可.【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x度,则当x≤150时,应付电费:0.50x元;当150<x≤250时,应付电费:0.65(x-150)+75=0.65x22.5-(元);当250<x<300,应付电费:0.80(x-250)+140=0.8x60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,150250 0.860,250300x xx xx x<≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.。
2021-2022学年度 秋季 七年级上学期 人教版数学第二章 整式的加减 知识点归纳2.1.1 单项式由 与 的积组成的式子叫做单项式。
单独一个数字或字母.......也是单项式,如5-,y 等。
(注意:分母中出现字母的,就不再是单项式。
如:x1) 系数:单项式中的 因数叫做这个单项式的系数。
(★:π属于数字,不是字母) 次数:单项式所有字母的 之和叫做这个单项式的次数。
注意:①数字次数是0;②系数和次数是1时,1通常省略不写;③若单项式中出现“-”号,则“-”号是系数的性质符号。
例:指出下列各单项式的系数和次数:(1)xy 5, (2)a 21-, (3)5a , (4)42bc a , (5)732y x π【练习】下列式子中,哪些是单项式?指出这些单项式的系数和次数。
x ,ab 21-,x1,b a +2,y x 25-,20-,2mn -2.1.2 多项式多项式:几个 的和.叫做多项式。
(注意:分母中出现字母的,就不是多项式。
如:a x+1) 多项式的项:多项式中的每个单项式,叫做多项式的 。
如b a +2中,a 2,b 都是项。
多项式的次数:多项式中,次数最高的项的 ,叫做这个多项式的次数。
(★最高次项是指多项式中次数最高的项,如:122+-a a 中最高次项是:2a ) 常数项:多项式中,不含 的项称为常数项。
例1:多项式232+-+-y x xy xπ的项分别是 ,次数是 ;最高次项是 ;常数项是 。
多项式的命名:多项式可以由项数及次数确定为 次 项式。
如:122+-a a ,共 项,次数为 ,故称为 次 项式。
例2:给下列多项式命名。
①6524252--+y y y : 次 项式 ②345567x x x +-: 次 项式多项式的排序:多项式可以按各项次数的高低进行排列,若从低到高为升幂排列;若从高到低,则为降幂排列。
如:122+-a a 为 排列;221a a +-为 排列。
1.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 3.下列计算正确的是( ) A .﹣1﹣1=0 B .2(a ﹣3b )=2a ﹣3b C .a 3﹣a=a 2D .﹣32=﹣9D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2 C .3 D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2 C .3 D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值. 10.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B . 14.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.15.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B .本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65. 故答案为65.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.5.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a 【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a . 考点:列代数式.7.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可. 【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6. 【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.1.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.2.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.3.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。
七年级上册数学整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子。
它只包含一种运算,即乘法,不能有加、减、除等运算符号。
单项式可以分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。
知识点2:单项式的系数单项式中的数字因数叫做这个单项式的系数。
系数可以是整数、分数或小数,并且可以是正数或负数。
对于只含有字母因素的单项式,其系数是1或-1,不能认为是0.表示圆周率的π,在单项式中应将其作为系数的一部分,而不能当成字母。
知识点3:单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
单项式是一个单独字母时,它的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
单项式的指数只和字母的指数有关,与系数的指数无关。
知识点4:多项式的有关概念多项式是由几个单项式相加组成的式子。
多项式中的每个单项式叫做多项式的项。
不含字母的项叫做常数项。
多项式里次数最高项的次数叫做多项式的次数。
单项式与多项式统称整式。
B、一个多项式中的每一项都包含符号,例如多项式-2xy+6a-9共有三项,分别是-2xy,6a,-9.一个多项式中包含几个单项式,就称这个多项式为几项式,例如-332xy3+6a-9就是一个三项式。
C、多项式的次数不是所有项的次数之和,也不是各项字母的指数和,而是组成这个多项式的单项式中次数最高的那个单项式的次数。
例如多项式-2xy+6a-9由三个单项式-2xy,6a,-9组成,其中-2xy的次数最高,为4次,因此这个多项式的次数就是4.它是一个四次三项式。
对于一个多项式而言,没有系数这一说法。
1)书写含乘法运算的式子时,要注意省略乘号,数字与字母相乘时,数字必须写在字母的前面。
带分数要化成假分数。
2)书写含除法运算的式子时,结果一般用分数线表示。
(名师选题)七年级数学上册第二章整式的加减全部重要知识点单选题1、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.2、为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100−x)元C.8(100−x)元D.(100−8x)元答案:C分析:根据题意列求得购买乙种读本(100−x)本,根据单价乘以数量即可求解.解:设购买甲种读本x本,则购买乙种读本(100−x)本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100−x)元故选C小提示:本题考查了列代数式,理解题意是解题的关键.3、下列各式中,不是..整式的是()A.1x B.x-y C.xy6D.4x答案:A分析:利用整式的定义逐项判断即可得出答案.既不是单项式,又不是多项式,不是整式,故本选项符合题意;解:A.1xB.x-y,是多项式,是整式,故本选项不符合题意;,是单项式,是整式,故本选项不符合题意;C.xy6D.4x,是单项式,是整式,故本选项不符合题意;故选A.小提示:本题考查整式的定义,整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母.4、下列计算正确的是()A.2a+2b=4ab B.5x−3x=2C.2m2−3m=−m D.−2ab+3ab=ab答案:D分析:根据合并同类项的计算法则逐一求解判断即可.解:A、2a与2b不是同类项,不能合并,故此选项计算不正确,不符合题意;B、5x−3x=(5−3)x=2x,故此选项计算不正确,不符合题意;C、2m2与3m不是同类项,不能合并,故此选项计算不正确,不符合题意;D、−2ab+3ab=(−2+3)ab=ab,此选项计算正确,符合题意;故选:D.小提示:本题主要考查了合并同类项,熟知合并同类项的计算法则是解题的关键.5、已知关于x、y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则m+n的值为()A.-5B.-1C.1D.5答案:C分析:先对多项式mx2+4xy−7x−3x2+2nxy−5y进行合并同类项,然后再根据不含二次项可求解m、n的值,进而代入求解即可.解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴m+n=3−2=1.故选:C小提示:本题主要考查整式的加减,熟练掌握整式的加减是解题的关键.6、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.7、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.8、下列等式中正确的是()A.2x−5=−(5−2x)B.7a+3=7(a+3)C.−(a−b)=−a−b D.2x−5=−(2x−5)答案:A分析:根据去括号和添括号法则逐项进行判断即可.A.2x−5=−(5−2x),故A正确,符合题意;),故B错误,不符合题意;B.7a+3=7(a+37C.−(a−b)=−a+b,故C错误,不符合题意;D.2x−5=−(−2x+5),故D错误,不符合题意.故选:A.小提示:本题主要考查了去括号和添括号法则,熟练掌握去括号法则:括号前面是加号时,去掉括号,括号内的算式不变。
1.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差 C .x 的平方与y 的差的倒数 D .x 与y 的差的平方的倒数B解析:B 【分析】根据代数式的意义,可得答案. 【详解】 解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键.2.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C 解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D 【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可. 【详解】第个图案中有黑色纸片3×1+1=4张 第2个图案中有黑色纸片3×2+1=7张, 第3图案中有黑色纸片3×3+1=10张, …第n 个图案中有黑色纸片=3n+1张. 当n=7时,3n+1=3×7+1=22. 故选D. 【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律. 4.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可. 【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6n B .8+6nC .4+4nD .8n A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 7.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .11A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A.本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3C .1D .﹣1D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513由图可知:501+502+503+504=2010满足题意.故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D 【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可. 【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1, 即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数, ∴从2013到2014再到2015,箭头的方向是.故选:D . 【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- C解析:C 【分析】各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 13.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B 【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式. 14.多项式33x y xy +-是( ) A .三次三项式 B .四次二项式C .三次二项式D .四次三项式D解析:D 【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了. 【详解】 解:由题意,得该多项式有3项,最高项的次数为4, 该多项式为:四次三项式. 故选:D . 【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33C .31,62,63D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2). 【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键. 2.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0 【解析】 由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:()++--=+-+=.x23x2x5x27故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.===,……=m=_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】n+=代入即可得出答案.n+,将21013【详解】解:==……,13n+n+=210∴=n8∴=+=m n19故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.7.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.8.多项式223324573x x y x y y --+-按x 的降幂排列是______。
整式一、知识梳理:专题一:用字母表示式子; 专题二:整式的概念; 专题三:整式的加减.二、考点分类考点一:用字母表示数1.字母和数一样,可以参与运算,可以用式子把数量关系简明地表示出来.2.列式的注意事项:①数与字母、字母和字母相乘省略乘号;②数与字母相乘时数字写在前面.【例1】下列各式中,符合代数式书写要求的是( )(1)134x 2y ; (2)a ×3;(3)ab ÷2; (4)a 2-b 23. A .4个 B .3个 C .2个 D .1个解析:(1)正确的书写格式是74x 2y ,不符合要求;(2)正确的书写格式是3a ,不符合要求;(3)正确的书写格式是12ab ,不符合要求;(4)符合要求.符合代数式书写要求的共1个.故选D.方法总结:代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“·”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.【例2】用字母表示下列问题中的数量关系:(1)为落实“阳光体育”工程,某校计划购买m 个篮球和n 个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为__________元.(2)在运动会中,一班总成绩为m 分,二班比一班总成绩的23还多5分,则二班的总成绩为________.(3)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为______________元.解析:(1)用购买m 个篮球的总价加上n 个排球的总价表示.所以购买这些篮球和排球的总费用为(80m +60n )元.(2)二班的总成绩=23m +5.(3)根据题意得m (1+50%)(1-30%)(1-10%)=0.945m (元). 方法总结:像这样的实际问题要先找出各个量之间的关系.要抓住关键词语,明确它们之间的意义及它们之间的关系,如和、差、积、商、大、小、多、少、倍、分等,注意数量关系的运算顺序,正确使用运算符号及括号.【例3】用字母表示图中阴影部分的面积:(1) (2) 解析:(1)图中阴影部分的面积是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a 2;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a ,宽为b ,小正方形的边长为x .解:(1)S =a 2-π·(a 2)2;(2)S =ab -4x 2. 方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.【例4】观察下列图形:它们是按一定规律排列的.(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n 个图案需要几个五角星?(3)摆成第2015个图案需要几个五角星?解析:通过观察已知图形可得每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得∵第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n 个图中有五角星3n 个.∴第20个图中五角星有3×20=60个.(2)由(1)可知,摆成第n 个图案需要3n 个五角星.(3)摆成第2015个图案需要五角星2015×3=6045(个).方法总结:此题首先要结合图形具体数出几个值.注意由特殊到一般的分析方法.此题的规律为摆成第n 个图案需要3n 枚五角星.考点二:单项式由数或字母的积组成的代数式叫单项式,单独的一个数或一个字母也是单项式.单项式中的数字因数,叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.【例5】下列代数式2x ,-13ab 2c ,x +12,πr 2,4x ,a 2+2a ,0,m n中,单项式有( ) A .4个 B .5个 C .6个 D .7个解析:2x ,-13ab 2c ,πr 2,0,都符合单项式的定义,共4个.故选A. 方法总结:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式.分母中含字母的不是单项式,分子中含加、减运算的式子也不是单项式.【例6】分别写出下列单项式的系数和次数.(1)-ab 2; (2)5ab 3c 27; (3)2πxy 23. 解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.解:(1)单项式的系数是-1,次数是3;(2)单项式的系数是57,次数是6; (3)单项式的系数是2π3,次数是3. 方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看做0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x 3y ,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.考点三:多项式几个单项式的和叫做多项式.多项式中的每个单项式叫做多项式的项.不含字母的项叫做常数项.多项式里次数最高项的次数叫做多项式的次数.单项式与多项式统称整式.【例7】指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b 3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7. 解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x 2+x ,1x 的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b 3,6xy +1,2x 2-x -5; 整式有:x 2+y 2,-x ,a +b 3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【例8】写出下列各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5;(2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2. 解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式; (2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【例9】已知-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m+2=6,解得m=4,进而可得此多项式.解:由题意得m+2=6,解得m=4,此多项式是-5x4+104x4-4x4y2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【例10】若关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,∴m=0,n-1=0,则m=0,n=1.方法总结:多项式不含哪一项,则哪一项的系数为0.【例11】如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.考点四:同类项1.所含字母相同,并且相同的字母指数也分别相同.判断同类项的条件:两相同,两无关2.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.【例12】若-5x2y m与x n y是同类项,则m+n的值为( )A.1 B.2 C.3 D.4解析:∵-5x 2y m 和x ny 是同类项,∴n =2,m =1,m +n =1+2=3,故选C.方法总结:注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,解题时易混淆,因此成了中考的常考点.【例13】 将下列各式合并同类项.(1)-x -x -x ;(2)2x 2y -3x 2y +5x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2;(4)-ab 3+2a 3b +3ab 3-4a 3b .解析:逆用乘法的分配律,再根据合并同类项的法则“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变”进行计算.解:(1)-x -x -x =(-1-1-1)x =-3x ;(2)2x 2y -3x 2y +5x 2y =(2-3+5)x 2y =4x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2=2a 2+(4-6)b 2+(-3-5)ab =2a 2-2b 2-8ab ;(4)-ab 3+2a 3b +3ab 3-4a 3b =(-1+3)ab 3+(2-4)a 3b =2ab 3-2a 3b .方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.【例14】化简求值:2a 2b -2ab +3-3a 2b +4ab ,其中a =-2,b =12. 解析:原式合并同类项得到最简结果,把a 与b 的值代入计算即可求出值.解:2a 2b -2ab +3-3a 2b +4ab =(2-3)a 2b +(-2+4)ab +3=-a 2b +2ab +3.将a =-2,b =12代入得原式=-(-2)2×12+2×(-2)×12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.考点五:去括号去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.注意:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.【例15】 下列去括号正确吗?如有错误,请改正.(1)+(-a -b )=a -b ;(2)5x -(2x -1)-xy =5x -2x +1+xy ;(3)3xy -2(xy -y )=3xy -2xy -2y ;(4)(a +b )-3(2a -3b )=a +b -6a +3b .解析:先判断括号外面的符号,再根据去括号法则选用适当的方法去括号.解:(1)错误,括号外面是“+”号,括号内不变号,应该是:+(-a -b )=-a -b ;(2)错误,-xy 没在括号内,不应变号,应该是:5x -(2x -1)-xy =5x -2x +1-xy ;(3)错误,括号外是“-”号,括号内应该变号,应该是:3xy -2(xy -y )=3xy -2xy +2y ;(4)错误,有乘法的分配律使用错误,应该是:(a +b )-3(2a -3b )=a +b -6a +9b . 方法总结:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.【例16】 先去括号,后合并同类项:(1)x +[-x -2(x -2y )];(2)12a -(a +23b 2)+3(-12a +13b 2); (3)2a -(5a -3b )+3(2a -b );(4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}.解析:去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.解:(1)x +[-x -2(x -2y )]=x -x -2x +4y =-2x +4y ;(2)原式=12a -a -23b 2-32a +b 2=-2a +b 23; (3)2a -(5a -3b )+3(2a -b )=2a -5a +3b +6a -3b =3a ;(4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}=-3{9(2x +x 2)+9(x -x 2)+9}=-27(2x +x 2)-27(x -x 2)-27=-54x -27x 2-27x +27x 2-27=-81x -27.方法总结:解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【例17】 有理数a ,b ,c 在数轴上的位置如图所示,化简|a +c |+|a +b +c |-|a -b |+|b +c |.解析:根据数轴上的数,右边的数总是大于左边的数,即可确定a ,b ,c 的符号,进而确定式子中绝对值内的式子的符号,根据正数的绝对值是本身,负数的绝对值是它的相反数,即可去掉绝对值符号,对式子进行化简.解:由图可知:a >0,b <0,c <0,|a |<|b |<|c |,∴a +c <0,a +b +c <0,a -b >0,b +c <0,∴原式=-(a +c )-(a +b +c )-(a -b )-(b +c )=-3a -b -3c .方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.【例18】 先化简,再求值:已知x =-4,y =12,求5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y -xy 2.解析:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.解:原式=5xy 2-3xy 2+4xy 2-2x 2y +2x 2y -xy 2=5xy 2,当x =-4,y =12时,原式=5×(-4)×(12)2=-5. 方法总结:解决本题是要注意去括号,去括号要注意顺序,先去小括号,再去中括号,最后去大括号.负数代入求值时,要加上括号.【例19】 已知式子x 2-4x +1的值是3,求式子3x 2-12x -1的值.解析:若从已知条件出发先求出x 的值,再代入计算,目前来说是不可能的.因此可把x 2-4x 看作一个整体,采用整体代入法,则问题可迎刃而解.解:因为x 2-4x +1=3,所以x 2-4x =2,所以3x 2-12x -1=3(x 2-4x )-1=3×2-1=5.方法总结:在整式的加减运算中,运用整体思想对某些问题进行整体处理,常常能化繁为简,解决一些目前无法解决的问题.【例20】 某商店有一种商品每件成本a 元,原来按成本增加b 元定出售价,售出40件后,由于库存积压,调整为按售价的80%出售,又销售了60件.(1)销售100件这种商品的总售价为多少元?(2)销售100件这种商品共盈利多少元?解析:(1)求出40件的售价与60件的售价即可确定出总售价;(2)由利润=售价-成本列出关系式即可得到结果.解:(1)根据题意得40(a +b )+60(a +b )×80%=88a +88b (元),则销售100件这种商品的总售价为(88a +88b )元;(2)根据题意得88a +88b -100a =-12a +88b (元),则销售100件这种商品共盈利(-12a +88b )元.方法总结:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.经典例题考点一:用字母表示数【例1】1、某种型号的计算机的价格不断降价,每台原价降低m 元后又降低20%,现售价n 元,那么此种计算机每台的原价为 元(用含m 和n 式子表示)2、学校决定修建一块长方形草坪,长为a 米,宽为b 米,并在草坪上修建如图所示的十字路,已知十字路宽x 米,则草坪的面积是 平方米.3、某种商品按原价的8折出售仍可获利20%,若按原价出售,可获利 %. 考点二:整式的概念【例2】有下列说法:(1)单项式x 的系数、次数都是0;(2)多项式﹣3x 2+x ﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x 2y 与73πr 6都是七次单项式;(4)单项式342y x 和﹣32πa 2b 的系数分别是﹣4和﹣32;(5)32x x +是二次单项式;(6)2a +π31与3π+a21都是整式,其中正确的说法有( )A .0个B .1个C .3个D .4个 【变式训练】多项式是关于x 的三次三项式,并且一次项系数为11.则m+n -k 的值为____________考点三:整式加减 【例3】化简:3a 2+2a -4a 2-7a (-a 2+2ab-b 2)-2(ab-3a 2+b 2)..2.化简求值:,其中a 、b 使得关于x 的多项式不含项和项.拓展提升1、如图,点A 、B 、C 在数轴上表示的数a 、b 、c ,且满足(b +2)2+(c ﹣24)2=0,且多项式x |a +3|y 2﹣ax 3y +xy 2﹣1是五次四项式.(1)则a 的值为 ,b 的值为 ,c 的值为(2)点D 为数轴上一点,它表示的数为x ,求:8149(3x ﹣a )2+(x ﹣b )2﹣161(﹣12x ﹣c )2+4的最大值,并回答这时x 的值是多少.2.已知两个多项式A 和B ,A =nx n +4+x 3-n -x 3+x -3,B =3x n +4-x 4+x 3+nx 2-2x -1,试判断是否存在整数n ,使A -B 为五次六项式.3、已知:有理数a 、b 、c 满足abc <0,且a+b+c >0,当x=|a|a +|b|b +|c|c ,y=ab |ab| +bc |bc| +ca |ca|,求代数式12 x -2(x -13 y 2)+(-32 x+13y 2)的值。
人教版七年级数学上册考点与题型归纳第二章:整式的加减2.2 整式的加减一:考点归纳考点一:同类项所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关考点二:合并同类项把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;考点三:去括号法则去括号,看符号:是正号,不变号;是负号,全变号。
考点四:整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项二:【题型归纳】题型一:去括号法则1.计算:(1)()()2824-+---(2)()()2224133⎡⎤-+---⨯⎣⎦ (3)21(32)xy xy +-+(4)()()223222a ab a ab ---+ 2.去括号,合并同类项(1)(5)3(23)x y x y -+-- (2)2()2()a a b a b ++-+(3)1(3)2(23)xy x x yz ⎡⎤--+-+⎣⎦题型二:整式加减的一般步骤3.先化简,再求值.(1)225[3(23)4]a a a a ---+,其中1a =-;(2)22225(3)4(3)a b ab ab a b ---+,其中1a =-,2b =-.4.如图所示,化简|a ﹣c|+|a ﹣b|+|c|三:基础巩固和培优一、单选题1.下列去括号正确的是( )A .223()333x x y z x x y z --+=-++B .[]35(21)3521x x x x x x ---=--+C .(321)321a x y a x y +-+-=-+-D .(2)(21)221x y x y --+-=--+-2.一个长方形的周长为6a ,一边长为2a b -,则另一边长为( )A .5a b +B .42a b +C .+a bD .2+a b 3.一多项式与2237a a 的和为249a a ,则这个多项式为( ) A .22a a --+ B .2716a a C .216a a D .232a a4.去括号后等于a-b+c 的是() A .()a b c -+B .()a b c --C .()a c b --D .()a b c ++5.下列运算正确的是( )A .326=B .880a a --=C .2416-=-D .523xy xy -+=-6.已知1312a x y -与43b xy +的和是单项式,那么a 、b 的值分别是( ) A .21a b =⎧⎨=⎩ B .21a b =⎧⎨=-⎩ C .21a b =-⎧⎨=-⎩ D .21a b =-⎧⎨=⎩7.下列各组中的两项,属于同类项的是( )A .a 2与aB .﹣3ab 与2abC .a 2b 与ab 2D .a 与b8.化简22(2x +3x-2)-(-x +2)正确的是( )A .2-x +3xB .2-x +3x-4C .23x +3x-4D .2-3x 3x +9.下列说法正确的个数有( )①﹣0.5x2y3与5y2x3是同类项 ②单项式2323x y π-的次数是5次,系数是23- ③倒数等于它本身的数有1,相反数是本身的数是0④2223a b a -+是四次三项式A .1个B .2个C .3个D .4个10.数轴上A 、B 、C 三点表示的数分别是a 、b 、c ,若|a -c |-|a -b |=|c -b |.则下列选项中,表示A 、B 、C 三点在数轴上的位置关系正确的是( )A .B .C .D .二、填空题11.已知223m mn ,24mn n ,则222m n -的值为______.12.已知当2x =时,代数式32ax bx ++的值为7,则当2x =-时,代数式32ax bx ++的值为______.13.单项式523n x y +-与21716m x y -是同类项,则m-n=__________14.已知有理数a 、b 在数轴上的位置如图所示:化简||||()||++--+a b a b ab 结果是______________ .15.定义a b c d 为二阶行列式,规定它的运算法则为abc d =ad -bc .那么二阶行列式2322x yy x---=______________________.三、解答题16.已知2 231A x xy y =++-,2B x xy =-, 若(x +2)2+|y -3|=0,求2A B -的值.17.先化简,再求值:2211(23)4()22x x x x -+--+,其中x=-218.计算(1)15(8)(11)12---+--;(2)71133663145⎛⎫⨯-⨯÷ ⎪⎝⎭;(3)222(2)4(3)(4)(2)-+⨯---÷-;(4)3222[(4)(13)3]-+---⨯;(5)221112()3233ab a a ab --+--; (6)22314[(3)3]22x x x x ---+. 19.先化简,再求值:()331131122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1,2x y =-=-. ()2已知关于xy 的多项式22262351xax y bx x y +-+-+--的值与字母x 的取值无关,求32323243a b a b --+的值. 20.对于有理数a ,b ,定义一种新运算“★”,规定a ★b a b ab =++﹣.(1)计算:3★()5-的值;(2)当a ,b 在数轴上的位置如图所示时,化简:a ★b .7参考答案题型归纳1.(1)14;(2)18;(3)1xy --;(4)277a ab -2.(1)118x y -+;(2)a b -;(3)1336xy x yz ---3.(1)23a a --;1-;(2)223a b ab -;2-.4.b-2c三:基础巩固和培优1.C2.C3.B4.B5.C6.B7.B8.C9.A10.B11.5- 12.3- 13.8- 14.﹣ab 15.-x-4y .16.2A B -的值为10-17.2562x x --;1232. 18.(1)-30;(2)-572(3)48;(4)32;(5)13ab-16a 2;(6)x 2-x-3. 19.(1)33x y -+,5-;(2)28.20.(1)10;(2)2b -。
整式的加减一、复习:1、主要概念:引导学生积极回答所提问题,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(1)关于单项式,你都知道什么?单项式的概念:表示数或字母的积的代数式,叫做单项式,特别地,单独一个数或一个字母也叫做单项式。
(3a, -5x 2, x/3, m, 5,ab 2)单项式中的数字因数,叫做单项式的系数。
一个单项式中,所有字母的指数的和,叫做这个单项式的次数。
(2)关于多项式,你又知道什么?多项式的定义:几个单项式的和叫做多项式,并指出,其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
(3x 2+5y+2z, 5+ 0.5ab -πr 2)多项式里次数最高项的次数,叫做这个多项式的次数。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
4x 2+2x+7+3x-8x 2-2 (找出多项式中的同类项)=4x 2-8x 2+2x+3x+7-2 (交换律)=(4x 2-8x 2 )+(2x+3x)+(7-2) (结合律)=(4-8)x 2 +(2+3)x+(7-2) (分配律)=-4x 2+5x+5把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
注意:1、若两个同类项的系数互为相反数,则两项的和等于零,如:-3ab 2+3ab 2=(-3+3)ab 2=0×ab 2=0。
2、多项式中只有同类项才能合并,不是同类项不能合并。
3、通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如:-4x 2+5x+5或写2。
(3)什么叫整式?整式:⎩⎨⎧升降幂排列)多项式(项同类项次数)单项式(定义系数次数 2、整式的加减:⎩⎨⎧合并同类项。
去(添)括号。
法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。