CAM与自动编程
- 格式:pptx
- 大小:9.08 MB
- 文档页数:22
《数控技术》实验报告实验名称:数控自动编程实验班级:学号:姓名:日期:2012年6月11日分数:机械工程学院2012年6月一、实验模型的建立在UG软件中设计一个零件,零件的毛坯尺寸严格按照将要加工的毛坯尺寸设计。
设计零件图如图1所示(该毛坯的尺寸为mm50⨯50⨯)。
mmmm40图1二、自动编程在菜单栏“开始”处选择“加工”。
根据零件图可判断出是加工平面图形,选择mill_planer(两轴)。
1.创建加工坐标系及安全平面在工具条中选择“几何视图”按钮,再选择窗口左侧资源条中的“操作导航器”按钮,导航视图为“几何视图”。
双击“MCS_MILL”节点,系统弹出如图2所示的对话框。
在“指定MCS,”上选择如图3所示的上表面,在“安全平面”中选择平面,点击按钮,在偏置距离中输入5,并选择上表面,其结果如图3所示。
图2图32.创建刀具在工具条中选择“创建刀具”按钮,出现如图4所示界面。
点击“确定”,出现如图5的界面,按照加工要求输入刀具直径(本实验取的刀具直径为8mm),如图5所示,点击“确定”,完成刀具的编辑。
图4图53.创建操作。
1)在工具条中选择“创建操作”按钮,出现如图6所示界面。
在“刀具”处选择“MILL”,在“几何体”处选择“WORKPIECE”,然后点击“确定”,出现如图7所示界面。
图6图72)在“指定部件”处选择按钮,系统弹出如图8的“部件几何体”对话框,在视图窗口中选择零件模型,单击“确定”按钮。
在“指定面边界”处选择按钮,体统弹出如图9所示界面,选择加工平面如图9所示,点击“确定”按钮。
图8图93)在“指定壁铣削面”处选择按钮,体统弹出如图10所示界面,选择如图10所示的所有侧面,然后点击“确定”按钮。
4)在“切削模式”处根据需要选择“跟随部件”,如图11所示。
5)在“毛坯距离”和“每一刀的深度”处根据零件要求选择恰当的数值,如图11所示。
6)在“进给和速度”处选择,根据加工要求给出“主轴转速”和“进给速度”,如图12所示。
着现代加工业的发展,实际生产过程中,比较复杂的二维零件、具有曲线轮廓和三维复杂零件越来越多,手工编程已满足不了实际生产的要求。
如何在较短的时间内编制出高效、快速、合格的加项目序,在这种需求推动下,数控自动编程得到了很大的发展。
7. 1什么叫自动编程自动编程又称为计算机辅助编程。
其定义是:利用计算机(含外围设备>和相应的前置、后置处理程序对零件源程序进行处理,以得到加项目序单和数控带的一种编程方式。
7. 2自动编程的工作过程自动编程的工作过程如图7-1所示。
图7-1 自动编程的工作过程从自动编程的工作过程中可以看出,数控语言、编译程序和通用电子计算机是实现自动编程的必备条件。
7.2.1数控语言数控语言是指其语言、语法程序所必需的一套规定语句及其应用规则。
通过数控语言而编写的零件程序与用规定地址指令和格式编写的可直接用于机床的零件加项目序有着本质的区别,这种程序称为零件源程序,又称为计算机输入程序。
零件源程序是电子计算机进行各种处理工作的依据,其内容包括零件的形状、尺寸、刀具及其动作、切削条件等方面参数,以及机床的各种辅助功能等。
零件源程序(单和带>必须在自动编程的准备工作中,由手工方式提前准备好,以便计算机接收。
7.2.2编译程序为了使电子计算机识别零件源程序,必须在计算机内存放有处理零件源程序的软件,即编译程序。
编译程序可对其源程序的语句、语法进行检查(自诊断>,然后阅读、译码、分类,以及进行十→二进制数的转换等。
不同的编译程序可以处理不同的源程序。
7.2.3通用电子计算机通用电子计算机是自动编程的核心设备,被称为自动编程的“主机”。
该计算机将其输入的零件源程序通过相应的编译程序进行翻译、轨迹计算及工艺处理等前置处理工作后,由针对特定机床和加工性质(车、铣、电等>的机内后置处理程序处理,然后通过联网的外围设备制成加项目序单和数控带。
7. 3自动编程的分类方法随自动编程一般可按所用设备(编程系统>、插补类型和编程语言等进行分类,目前多按所用设备(除数控机床已具备其直接编程功能外>分类。
Master-CAM软件自动编程数控自动编程是利用计算机和相应的编程软件编制数控加工程序的过程。
现代加工业的发展,实际生产过程中,比较复杂的二维零件、具有曲线轮廓和三维复杂零件越来越多,手工编程已满足不了实际生产的要求。
如何在较短的时间内编制出高效、快速、合格的加工程序,在这种需求的推动下,数控自动编程得到了很大的发展。
随着微电子技术和CAD技术的发展,自动编程技术逐渐发展到以图形交互为基础,与CAD相集成的CAD/CAM一体化的编程方法。
可提供单一准确的产品几何模型,几何模型的产生和处理手段灵活、多样、方便,可实现设计、制造一体化。
通过几年的教学经验,主要从CAM 系统关键技术、CAM软件编程过程其操作步骤、数控自动编程的实践性等方面谈谈我的几点看法:一、CAM系统关键技术主要有:1.复杂形状零件的几何建模对于图纸及曲面特征点测量数据的复杂形状零件数控编程,其首要环节是建立被加工零件的几何模型。
复杂零件建模的主要技术内容包括:曲线曲面生成、编辑、裁剪、拼接、过度、偏置等等。
2.加工方案与加工参数的合理选择数控加工的效率与质量有赖于加工方案与加工参数的合理选择,其中刀具、刀轴控制方式、走刀路线和进给速度的自动优化选择与自适应控制是重中之重。
其目的是在满足加工要求、机床正常运行和一定的刀具寿命的前提下,尽可能提高加工效率。
3.刀具轨迹生成刀具轨迹生成是复杂零件数控加工中最重要的内容,能否生成有效的刀具轨迹直接决定了加工的可能性、质量与效率。
刀具轨迹生成的首要目标是使所生成的刀具轨迹能满足无干涉、无碰撞、轨迹光滑、切削负荷光滑并满足要求、代码质量高。
同时,刀具轨迹生成还应满足通用性好、稳定性好、编程效率高、代码量小等条件。
4.数控加工仿真尽管目前在工艺规划和刀具轨迹生成等技术方面已取得很大进展,但由于零件形状的复杂多变以及加工环境的复杂性,要确保所生成的加工程序不存在任何问题仍十分困难,其中最主要的有加工过程的过切与欠切、机床各部件之间的干涉与碰撞等。
MasterCAM自动编程9.1数控自动编程简介数控自动编程是利用计算机和相应的编程软件编制数控加工程序的过程。
随着现代加工业的发展,实际生产过程中,比较复杂的二维零件、具有曲线轮廓和三维复杂零件越来越多,手工编程已满足不了实际生产的要求。
如何在较短的时间内编制出高效、快速、合格的加工程序,在这种需求推动下,数控自动编程得到了很大的发展。
数控自动编程的初期是利用通用微机或专用的编程器,在专用编程软件(例如APT系统)的支持下,以人机对话的方式来确定加工对象和加工条件,然后编程器自动进行运算和生成加工指令,这种自动编程方式,对于形状简单(轮廓由直线和圆弧组成)的零件,可以快速得完成编程工作。
目前在安装有高版本数控系统的机床上,这种自动编程方式,已经完全集成在机床的内部(例如西门子810系统)。
但是如果零件的轮廓是曲线样条或是三维曲面组成,这种自动编程是无法生成加工程序的,解决的办法是利用CAD /CAM软件来进行数控自动编程。
随着微电子技术和CAD技术的发展,自动编程系统已逐渐过渡到以图形交互为基础,与CAD相集成的CAD/CAM一体化的编程方法。
与以前的APT等语言型的自动编程系统相比,CAD/CAM集成系统可以提供单一准确的产品几何模型,几何模型的产生和处理手段灵活、多样、方便,可以实现设计、制造一体化。
采用CAD/CAM数控编程系统进行自动编程已经成为数控编程的主要方式。
目前,商品化的CAD/CAM软件比较多,应用情况也各有不同,下表列出了国内应用比较广泛的CAM 软件的基本情况。
当然,还有一些CAM软件,因为目前国内用户数量比较少,所以,没有出现在上面的表格内,例如Cam-tool、WorkNC等。
上述的CAM软件在功能、价格、服务等方面各有侧重,功能越强大,价格也越贵,对于使用者来说,应根据自己的实际情况,在充分调研的基础上,来选择购买合适的CAD/CAM软件。
掌握并充分利用CAD/CAM软件,可以帮助我们将微型计算机与CNC机床组成面向加工的系统,大大提高设计效率和质量,减少编程时间,充分发挥数控机床的优越性,提高整体生产制造水平。
第六章数控车床自动编程软件实训操作第一节数控车床CAD/CAM自动编程软件介绍现在的CAD(计算机辅助设计)和CAM(计算机辅助制造)已经显示出了它的巨大潜力,在机械制造工业方面已经占据了主导地位。
使用CNC/CAM系统产生的CNC程序代码可以替代传统的手工程序制作。
Mastercam具有强大的计算机辅助设计和计算机辅助制造功能,集工件的二维几何图形设计、三维曲面设计、刀具路径模拟、加工实体模拟等功能于一身,并提供友好的人机交互,是当今广泛使用的计算机辅助设计和计算机辅助制造软件。
图6-1 图6-2启动Mastercam Lathe v8.0后,出现如图6-1所示的欢迎画面,进入Mastercam Lathe v8.0后它的窗口界面如图6-2所示。
Mastercam Lathe v8.0的窗口界面主要由标题栏、工具栏、主功能列表区、子功能列表区、工作区和系统提示区组成,如图6-2所示。
一、工具栏Mastercam Lathe v8.0的工具栏位于主窗口的上方,当光标移动到每个按钮上时,Mastercam Lathe v8.0会自动显示其对应的功能,如图6-3所示。
图6-3图6-4为单击“下一页”按钮,可以看到其它的快捷按钮,这些按钮在主功能列表区和子功能列表区都能找到相应的命令。
二、主功能列表区和子功能列表区图6-10主功能列表区中显示可供用户选择的命令列表,如图6-5所示。
在主功能列表区有两个按钮,分别是“上层功能表”和“回主功能表”。
利用这两个按钮就可以在命令列表之间寻找需要的命令,并可以方便地返回到上一层命令列表或主功能列表。
图6-4例如,单击“档案”命令,主功能列表区变成如图6-6所示的档案命令列表;再单击“档案转换”命令,进入如图6-7所示的档案转换命令列表;单击“DXF ”命令,进入如图6-8所示的命令列表;单击“读取”可以转换其它CAD/CAM 软件中输出的图形。
最后单击“回主功能表”按钮,就回到如图6-5所示的主功能列表区。
caxacam数控车削加工自动编程经典实例CAXA CAM(计算机辅助数控车削加工)是一种集成CAD(计算机辅助设计)和CAM(计算机辅助制造)的软件,可以实现自动编程和控制数控车床进行加工。
在实际应用中,CAXA CAM已经成为数控车削加工中自动编程的重要工具。
下面将介绍几个经典的实例,以展示CAXA CAM在加工过程中的应用。
1.轮扣数控车削加工轮扣是一种常见的机械传动元件,它需要在加工过程中进行切削、倒角、螺纹等多道工序。
使用CAXA CAM进行自动编程,可以通过输入零件CAD图形和加工参数,快速生成加工程序。
CAXA CAM可以自动识别加工轮廓,生成相应的切削路径,并设置刀具路径。
通过CAXA CAM的模拟仿真功能,可以在计算机上进行验证和调整,减少加工过程中的误差和损耗。
然后,将生成的加工程序下载到数控车床控制器中,即可开始加工。
2.铜管数控车削加工铜管是一种常用的工程材料,常用于制作管道、接头等零部件。
使用CAXA CAM进行自动编程,可以先将铜管的CAD图形导入软件中。
然后,根据铜管的尺寸和形状,设置加工参数和切削路径。
CAXA CAM可以根据铜管的材料特性,自动生成适合的切削速度、进给速度和切削深度。
通过模拟仿真功能,可以更好地预测和控制切削过程中的变形和变色情况。
最后,将生成的加工程序下载到数控车床控制器中,即可开始加工。
3.轴套数控车削加工轴套是一种常见的机械零部件,常用于支撑和限位轴的运动。
使用CAXA CAM进行自动编程,可以根据轴套的CAD图形和加工要求,自动生成切削路径和刀具路径。
CAXA CAM可以根据轴套的加工特性,自动设置切削参数和刀具半径,并通过模拟仿真功能,验证和调整切削路径和刀具路径。
最后,将生成的加工程序下载到数控车床控制器中,即可开始加工。
4.螺纹加工螺纹是一种常见的机械连接方式,常用于螺栓、螺钉等零部件。
使用CAXA CAM进行自动编程,可以根据螺纹的CAD图形和加工要求,自动生成切削路径和刀具路径。
ICAM自动编程系统是一种先进的数控编程技术,能够帮助用户实现高效、精准的数控加工。
本使用手册将为您介绍ICAM自动编程系统的基本操作方法,帮助您快速上手并掌握其使用技巧。
一、ICAM自动编程系统简介ICAM自动编程系统是一种基于计算机辅助设计(CAD)和计算机辅助制造(CAM)技术的数控编程系统。
它能够将CAD系统生成的零件图形和工艺要求转化为数控程序,实现数控机床的自动加工。
ICAM 自动编程系统具有操作简便、编程高效、精度高等特点,广泛应用于航空航天、汽车制造、模具加工等领域。
二、ICAM自动编程系统的基本操作1. 登入系统打开ICAM自动编程系统的软件,输入用户名和密码进行登入。
2. 创建新项目在系统界面上选择“新建项目”,填写项目名称、图纸尺寸等基本信息,创建一个新的数控加工项目。
3. 导入CAD图形选择“导入CAD图形”,将CAD系统生成的零件图形导入到ICAM 自动编程系统中。
4. 设置加工参数根据零件的材料、加工工艺等要求,设置数控加工的参数,包括刀具类型、切削速度、进给速度等。
5. 生成加工路径系统根据导入的CAD图形,自动分析零件的几何形状,并生成数控加工路径。
6. 优化加工路径对于复杂的零件,用户可以对系统生成的加工路径进行优化,以提高加工效率和加工质量。
7. 生成数控程序系统根据生成的加工路径,自动编写数控加工程序,并可以进行手动调整和优化。
8. 模拟加工在确保数控程序没有错误的情况下,可以进行加工模拟,观察零件加工过程并进行验证。
9. 输出数控代码将生成的数控程序输出为机床所需的代码格式,如G代码、M代码等,以便于数控机床进行加工。
三、ICAM自动编程系统的使用技巧1. 熟练掌握CAD软件ICAM自动编程系统需要与CAD软件配合使用,熟练掌握CAD软件的操作方法对于使用ICAM自动编程系统至关重要。
2. 理解加工工艺对于不同的零件,需要根据其材料、几何形状等特点,合理设置加工参数,以确保加工质量和加工效率。
基于CAD/CAM的数控自动编程的基本步骤基于CAD/CAM的数控自动编程的基本步骤1.加工零件及其工艺分析加工零件及其工艺分析是数控编程的基础,和手工编程、APT语言编程一样,基于CAD/CAM的数控自动编程首先也要进行这项工作。
在目前计算机辅助工艺过程设计(CAPP)技术尚不完善的情况下,该项工作还需人工完成。
随着CAPP技术及机械制造集成(CAMS)技术的发展与完善,这项工作必然会被计算机所代替。
加工零件及其工艺分析的主要任务如下。
(1)零件几何尺寸、公差及精度要求的核准。
(2)确定加工方法,工具、夹具、量具及刀具。
(3)确定编程原点及编程坐标系。
(4)确定走刀路线及其工艺参数。
2.加工部位建模加工部位建模是利用CAD/CAM集成数控编程软件的图形绘制、编辑修改、曲线曲面及实体造型等功能将零件被加工部位的几何形状准确绘制在计算机屏幕上,同时在计算机内部以一定的数据结构对该图形加以记录。
加工部位建模实质上是人将零件加工部位的相关信息提供给计算机的一种手段,它是数控自动编程系统进行自动编程的依据和基础。
随着建模技术和机械制造集成技术的发展,将来的数控编程软件可直接从CAD模块获得相关信息,无须对加工部位再进行建模。
3.工艺参数输入在本步骤中,将利用编程系统的相关菜单与对话框等把第一步分析的一些与工艺有关的参数输入到系统中。
需要输入的工艺参数有刀具类型、尺寸与材料,切削用量(主轴转速、进给速度、切削深度及加工余量),毛坯信息(尺寸、材料等),其他信息(安全平面、线性逼近误差、刀具轨迹间的残留高度、进退刀方式、走刀方式、冷却方式等)。
对于某一种加工方式而言,可能只要求其中的部分工艺参数。
随着CAPP技术的发展,这些参数可以直接由CAPP系统给出,这时也就可以省掉工艺参数输入这一步了。
4.刀具轨迹生成与编辑完成上述操作后,编辑系统将根据这些参数进行分析判断,自动完成有关基点、节点的计算,并对这些数据进行编排,形成刀位数据,存入指定的刀位文件中。
MasterCAM软件进行自动编程的应用一、概述随着现代机械的发展,数控技术是当今先进制造技术和装备最核心的技术,计算机辅助设计(CAD)和计算机辅助制造(CAM)已显的尤为重要,并广泛应用于航空、航天等国防产品机械制造中。
使用CAD/CAM系统产生的NC程序代码可以替代传统的手工编程,可以提高加工效率与质量,缩短生产周期,降低产品成本,从而取得良好的经济效益。
MaterCAM软件是一种功能强大CAD/CAM软件,广泛应用于机械加工、模具制造、汽车工业和航天工业等领域,它具有二维几何图形设计、三维曲面设计、刀具路径模拟以及加工实体模拟等功能,并提供友好的人机交互,从而实现了从产品的几何设计到加工制造的CAD/CAM一体化。
下面结合实例介绍MaterCAM软件在数控铣削加工自动编程中的使用。
二、MaterCAM软件数控编程一般过程MaterCAM软件数控编程一般过程如下:零件加工工艺分析→CAD几何造型→刀位轨迹生成→CAM→生成最终加工代码。
1.零件加工工艺分析在运用MaterCAM软件对零件进行数控加工自动编程前,首先要对零件进行加工工艺分析,确定合理的加工顺序,在保证零件的加工精度的同时,要尽量减少换刀次数,提高加工效率,并充分考虑零件的形状、尺寸、加工精度,刚度和变形等因素,做到先粗加工后精加工,先加工主要表面后加工次要表面,先加工基准面后加工其他表面。
如图1所示,零件可通过虎钳装夹,先用键槽刀或钻头加工下刀孔,再用铣刀进行铣削加工。
该零件在数控设备上加工的工艺流程为:加工下刀孔→轮廓半精粗加工→轮廓精加工→清轮廓角。
2.CAD几何造型建立零件的几何模型是实现数控加工的基础,MaterCAM软件具有进行二维或三维的设计功能,具有较强CAD绘图功能。
可以运用Deign模块建模,也可以根据加工要求使用Mill模块绘图功能来直接造型。
由于MaterCAM软件系统内设置了许多数据转换档功能,可以将各种类型的图形文件(如AutoCAD、CA某A等软件上的图形)转换至MaterCAM系统上使用,如图2所示。