北师大版八年级数学上山东省济南市长清区-上学期期中考试试题
- 格式:docx
- 大小:134.95 KB
- 文档页数:9
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是()A .227B C .-3.14D 2.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=2,b=3,c=4C .a=2,b=4,c=5D .a=3,b=4,c=53.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列计算错误的是()AB C D .5.若函数()15m y m x =--是一次函数,则m 的值是()A .±1B .1-C .1D .26.下列二次根式中,最简二次根式是()A .B CD 7.一次函数24y x =-+的图象与y 轴的交点坐标是()A .(4,0)B .(0,4)C .(2,0)D .(0,2)8.如图,在Rt ABC △中分别以三角形的三条边为边向外作正方形,面积分别记为1S ,2S ,3S ,若14S =,216S =,则3S 的值为()A .10B .6C .12D .209.一次函数23y x =-的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于()A .2和3之间B .3和4之间C .4和5之间D .5和6之间二、填空题11=________.12.已知点(),1A a 与点()4,B b -关于原点对称,则a-b 的值为________13有意义的x 的取值范围是14.点A(1,a)在直线y =-2x +3上,则a =_________15.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.16.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____.17.如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.三、解答题18.计算(1)-19.计算:(1(2)2(2(2-+.20.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?21.已知点P (a ,b )在第二象限,且|a|=3,|b|=8,求点P 的坐标.22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=,CD=BC=8,求四边形ABCD的面积.25.已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.26.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为1y(元),B套餐为2y(元),月通话时间为x分钟.(1)分别表示出1y与x,2y与x的函数关系式;(2)月通话时间多长时,A,B两种套餐收费一样?(3)某客户每月的通话时间大概是500分钟,他应该选择哪种套餐更省钱?(4)如果某公司规定员工的话费最多是200元,他应该选择哪种套餐?参考答案1.B【解析】【分析】根据有理数和无理数的定义直接求解,无限不循环小数是无理数.【详解】解:A.227是有理数,故本选项不符合题意;C. 3.14-是有理数,故本选项不符合题意;2=是有理数,故本选项不符合题意.故选:B【点睛】本题主要考查了有理数和无理数的判断,熟练掌握有理数和无理数的概念是解答此题的关键.2.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B.∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C.∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D.∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.【点睛】本题考查了勾股定理的逆定理.解题的关键是,验证两小边的平方和等于最长边的平方即可证明直角三角形.3.D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:∵点P (a 、b )在第二象限,∴a<0,b>0,∴点Q (b ,a )在第四象限,故选D .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).4.B 【解析】【分析】根据二次根式的运算直接进行计算化简判断即可.【详解】A,正确;BC =D故选:B .【点睛】本题主要考查二次根式的化简运算,熟练掌握二次根式的运算是解题的关键.5.B 【解析】【分析】函数()15my m x =--是一次函数,根据一次函数的定义,求出m 的值即可.【详解】∵函数()15m y m x =--是一次函数,∴1m =,且10m -≠,解得:1m =-,故答案选:B .【点睛】本题考查一次函数的定义:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,正确判断未知数的次数与系数是解答本题的关键.6.A 【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含分母,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选:A .【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.B 【解析】【分析】求一次函数图像与y 轴的交点坐标,令x=0,求出y 值即可.【详解】令x=0,得y=-2×0+4=4,∴一次函数与y 轴的交点坐标是(0,4),故选B.【点睛】本题考查一次函数与坐标轴的交点坐标问题,求图像与y 轴交点坐标时,令x=0,解出y 即可;求图像与x 轴交点坐标时,令y=0,解出x 即可.8.D【分析】根据勾股定理的验证计算即可;【详解】在Rt ABC △中,222AC AB BC +=,由正方形的面积公式可得21S AB =,222S AC =,223S BC =,∵14S =,216S =,∴31241620S S S =+=+=;故选D .【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.9.B 【解析】【分析】根据一次函数(0)y ax b a =+≠的a 、b 的符号判定该一次函数所经过的象限即可.【详解】解: 一次函数23y x =-的20k =>,30b =-<,∴一次函数23y x =-经过第一、三、四象限,即一次函数23y x =-不经过第二象限.故选:B .【点睛】本题考查了一次函数的图象,即直线y kx b =+所在的位置与k 、b 的符号有直接的关系.解题的关键是掌握当0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.10.C 【解析】【分析】因为△OAB 是一个直角三角形,且有OC=OB ,所以可求得OB 的长度即得C 点所表示的数,可判断其大小.解:∵AB ⊥OA∴在直角三角形OAB 中有OA 2+AB 2=OB 2∴.OB ==∴45又∵OC=OB∴点C 所表示的数介于4和5之间故选:C .【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案.11.2【解析】【分析】先根据二次根式的性质化简,再合并即可.【详解】22==,故答案为:2.12.5【分析】直接利用关于原点对称点的性质得出a ,b 的值,代入求解即可.【详解】解:∵点A (a ,1)与点B (﹣4,b )关于原点对称,∴4a =,1b =-,∴5a b -=,故答案为:5.13.x≥3【分析】根据二次根式有意义的条件,可推出30x -≥,然后通过解不等式,即可推出5x ≥【详解】解:若30x -≥,原根式有意义,3x ∴≥,故答案为3x ≥.14.1【详解】将点A 的坐标(1,a)代入直线的解析式y=-2x+3,得a=-2+3=1.故答案为:115.4【分析】少走的距离是AC+BC-AB ,在直角△ABC 中根据勾股定理求得AB 的长即可.【详解】解:如图,∵在Rt ABC 中,222AB AC BC =+,∴5AB ===米,则少走的距离为:3452AC BC AB +-=+-=米,∵2步为1米,∴少走了4步.故答案为:4.16.x=2【解析】由直线y=2x+b 与x 轴的交点坐标是(2,0),求得b 的值,再将b 的值代入方程2x+b=0中即可求解.【详解】把(2,0)代入y=2x+b,得:b=-4,把b=-4代入方程2x+b=0,得:x=2.故答案为:x=2.17.y=12x【详解】设该正比例函数的解析式为y=kx(k≠0).将点(2,1)的坐标代入该正比例函数的解析式y=kx,得2k=1,∴12k=,∴该正比例函数的解析式为12y x =.故答案为:12 y x =18.(1)-1(2)32-【分析】(1)根据平方差公式,结合二次根式的性质进行计算即可;(2)先根据二次根式的性质进行化简,然后再进行运算即可.(1)解:22=-56=-1=-(2)23==32=19.(1)(2)8﹣【分析】(1)先利用二次根式的乘除法则计算,然后化简后合并即可;(2)根据完全平方公式和平方差公式计算即可;【详解】解:(1+=(2)原式=4343-++-=8﹣20.0.8【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.21.(-3,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数确定出a 、b 的值,然后写出点的坐标即可.【详解】解:∵点P(a ,b)在第二象限,且|a|=3,|b|=8,∴a=−3,b=8,∴点P 的坐标为(−3,8).22.发生火灾的住户窗口距离地面14米【分析】在Rt △ACB 中,利用勾股定理求出BC 即可解答.【详解】解:由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得:12BC ===,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.23.(1)见解析;(2)A 2(-2,0),B 2(-1,3),C 2(1,2),(3)P (m-3,-n )【分析】(1)直接利用关于x 轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点2P 的坐标.【详解】解:(1)如图所示:△111A B C 就是所要求作的图形;(2)如图所示:△222A B C 就是所要求作的图形,其顶点坐标为A 2(-2,0),B 2(-1,3),C 2(1,2);(3)如果AC 上有一点(,)P m n 经过上述两次变换,那么对应22A C 上的点2P 的坐标是:2(3,)P m n --.故答案为:(3,)m n --.【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.24.4+3【解析】【分析】先根据勾股定理求出BD的长,再根据勾股定理逆定理求得△BCD是直角三角形,四边形ABCD的面积是两个直角三角形的面积之和.【详解】∵AB=AD,∠BAD=90°,AB=22∴BD22AB AD=4,∵BD2+CD2=42+(432=64,BC2=64,∴BD2+CD2=BC2,∴△BCD为直角三角形,∴S四边形ABCD =S△ABD+S△BCD=12×2222+12×43=4+325.(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;让x=0时,∴y=-2×0+4=4,∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)S△AOB=11244 22AO BO⨯⨯=⨯⨯=【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.26.(1)y1=0.1x+15,y2=0.15x;(2)300分钟;(3)A套餐;(4)A套餐.【解析】【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)由当12y y <时A 套餐更省钱,即当x >300时,A 套餐优惠;否则B 套餐优惠,据此解答即可;(3)令y 1=200和y 2=200元,分别求得x ,选x 较大的实惠.【详解】解:(1)由题意可知,A 套餐的收费方式:10.115y x =+,B 套餐的收费方式为:20.15y x =.(2)由12y y =,得0.1150.15x x +=,解得300x =,即月通话时间为300分钟时,A ,B 两种套餐收费一样.(3)当12y y <时A 套餐更省钱,即0.1150.15x x +<,解得300x >因为500>300分钟时,所以他应选选A 套餐;(4)令y 1=200,有200=0.1x+15,解得:x=1850;令y 2=200,有200=0.15x ,解得:x≈1333;∵1850>1333∴应选择A 套餐.。
最新北师大新版八年级上学期数学期中试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、16的算术平方根是()A.4B.﹣4C.±4D.82、在2π,,﹣,,3.14,3.868668666…(相邻两个8之间6的个数逐次加1)中,无理数的数是()个A.2B.3C.4D.53、直线y=2x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4、方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限5、下列运算正确的是()A.B.C.D.=2 6、△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=137、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8、一个正数的两个平方根分别是2a﹣3和5﹣a,则这个数是()A.49B.25C.16D.79、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3 B.﹣3 C.3或﹣3 D.k的值不确定10、如图所示,直线y=x+4与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB,y轴上的动点,则△CDE周长的最小值是()A.3B.3C.2D.2二、填空题(每小题3分,满分18分)11、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是.12、计算:|3.14﹣π|=.13、函数y=2x﹣4+b是正比例函数,则b=.14、如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为.15、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为cm.16、如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E为BC上两点.∠DAE=45°,F为三角形ABC外一点,且FB⊥BC,F A⊥AE,则结论:①CE =BF;②BD2+CE2=DE2;③S△ADE=AD•EF;④CE2+BE2=2AE2,其中正确的有(横线上填写序号).第14题第15题第16题最新北师大新版八年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算18、已知2a﹣1的算术平方根是3,3a+b﹣1的立方根是2,求a﹣2b的平方根.19、如图,直角坐标系中,每个小正方形边长为单位1,△ABC的三个顶点分别在正方形格点上.(1)请在图中作出△ABC关于原点中心对称的△A′B′C′;(2)求△ABC的面积.20、已知y+4与x﹣3成正比例,且x=1时,y=0.(1)求y与x的函数表达式;(2)点M(m+1,2m)在该函数图象上,求点M的坐标.21、如图,矩形ABCD中,AB=10,BC=7,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.22、已知平面直角坐标系中一点P(m﹣4,2m+1);(1)当点P在y轴上时,求出点P的坐标;(2)当P A平行于x轴,且A(﹣4,﹣3),求出点P的坐标;(3)当点P到两坐标轴的距离相等时,求出m的值.23、小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?24、如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.25、在平面直角坐标系中,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y轴于点F,求点F的坐标。
八年级(上)期中数学试卷一、选择题(每小题4分,共48分)1.(4分)在实数中,无理数的个数为()A.1个B.2个C.3个D.4个2.(4分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.B.2,3,4C.D.3.(4分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)估算的值()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间5.(4分)函数中,自变量x的取值范围是()A.x>4B.x≥﹣2且x≠4C.x>﹣2且x≠4D.x≠46.(4分)若a>b,则下列各式正确的是()A.a+c2>b+c2B.﹣2a>﹣2b C.D.a﹣1>b7.(4分)若一次函数y=(k﹣1)x+1﹣k2经过原点,则k的值是()A.1B.±1C.﹣1D.任意实数8.(4分)一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在图象上,则()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y29.(4分)将直线y=kx﹣2向下平移6个单位后,正好经过点(2,4),则k的值为()A.3B.4C.5D.610.(4分)如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n>0)的图象是()A.B.C.D.11.(4分)不等式组的解集是x>2,则m的取值范围是()A.m≤2B.m≥2C.m≤1D.m≥112.(4分)如图,在平面直角坐标系上有个点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2019次跳动至点A2019的坐标是()A.(﹣505,1009)B.(505,1010)C.(﹣504,1009)D.(504,1010)二、填空题(每小题4分,共32分)13.(4分)的平方根是.14.(4分)比较大小:.(填“>、<、或=”)15.(4分)已知直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式kx+b>﹣2的解集为.16.(4分)若与的小数部分分别为a与b,则a+b=.17.(4分)如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点C′处,若AB=5,BC=3,则点C的坐标为.18.(4分)如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为.19.(4分)“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑500米,当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹的距离y (米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是米.20.(4分)某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为元.三、解答题(本大题8个小题,共70分)解答时每小题必须给出必要的演算过程或推理步骤.画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.(10分)计算:(1)(2)22.(10分)解下列不等式(组)(1)2﹣5x≥8﹣2x (2)23.(8分)先化简再求值,(﹣2a﹣b)(2a﹣b)+(a﹣2b)2﹣2a(3b﹣4a),其中.24.(8分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB的解析式为y=﹣x+16,CD的解析式为y=kx+b且AO=2CO,两直线的交点E(3,m).(1)求直线CD的解析式;(2)求四边形DEAO的面积;(3)当﹣x+16>kx+b时,直接写出x的取值范围.25.(6分)定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为“对称直线”,例如,直线y=x+2与直线y =2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x i,y i),B(x2,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率.若点A(﹣3,1)、B(2,4)在直线y=ax+c上.(1)a=;(2)直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,求△P AB的周长.26.(8分)开学初,为丰富教师们的业余生活,我校组织所有教师前往重庆大剧院观看演出.重庆大剧院的演出门票价格方案如下:1.票价根据座位区域不同定价不同,一区票价为120元/张,二区票价为100元/张;2.离退休教师各区均享受八折优惠.已知本次活动实到教师700人,若本次活动每人均购买二区票则需67200元.(1)求参加本次活动的在职教师、离退休教师分别有多少人;(2)为庆祝重阳节,重庆在大剧院调整了票价方案,将200张一区演出票票价每张降低了2a元,将全部二区演出票票价每张降低了a元,离退休教师可在降价后仍享受八折优惠.若学校决定将200张一区演出票全部购入并优先发放给离退休教师和部分在职教师,其余教师均购买二区票,且校方希望总门票费用不超过66420元,求a 的最小值.27.(10分)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,在△ABE中,∠AEB=90°,AE与BC交于点F.(1)若∠BAE=30°,BF=2,求BE的长;(2)如图2,D为BE延长线上一点,连接AD、FD、CD,若AB=AD,∠ACD=135°,求证:BD+BF=AF.28.(10分)如图,在平面直角坐标系中,已知直线BD:y=x﹣2与直线CE:y=﹣x+4相交于点A.(1)求点A的坐标;(2)点P是△ABC内部一点,连接P A、PB、PC,求PB+P A+PC的最小值;(3)将点D向下平移一个单位得到点D1,连接BD1,将△OD1B绕点O旋转至△OB1D2的位置,使B1D2∥x 轴,再将△OB1D2沿y轴向下平移得到△O1B2D3,在平移过程中,直线O1D3与x轴交于点K,在直线x=3上任取一点T,连接KT,O1T,△O1KT能否以O1K为直角边构成等腰直角三角形?若能,请直接写出所有符合条件的T点的坐标;若不能,请说明理由.参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:是分数,属于有理数;0,是整数,属于有理数;3.214是有限小数,属于有理数.无理数有:共1个.故选:A.2.【解答】解:∵()2+12=8,(2)2=8,∴()2+12=(2)2,∴能组成直角三角形的一组数是,1,2,故选:C.3.【解答】解:点P(2,﹣3)在第四象限.故选:D.4.【解答】解:∵<<,∴4<<5,故选:B.5.【解答】解:由题意得,x+2≥0且x﹣4≠0,解得x≥﹣2且x≠4.故选:B.6.【解答】解:A.根据不等式的性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;所以A选项正确;B.根据不等式性质③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以B选项错误;C.根据不等式性质②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以C选项错误;D.不符合不等式性质,所以D选项错误.故选:A.7.【解答】解:∵一次函数y=(k﹣1)x+1﹣k2经过原点,∴,解得:k=﹣1.故选:C.8.【解答】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0.∴y随x增大而减小,∵1<3,∴y1>y2,故选:A.9.【解答】解:直线y=kx﹣2向下平移6个单位后所得解析式为y=kx﹣8,∵平移后的直线经过点(2,4),∴4=2k﹣8,解得:k=6,故选:D.10.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.11.【解答】解:,由①得,x>2,∵不等式组的解集是x>2,∴m≤2.故选:A.12.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2019=504×4+3,∴A2015(504+1,504×2+2),即(505,1010).故选:B.二、填空题(每小题4分,共32分)13.【解答】解:∵(±)2=,∴的平方根是±.故答案为:±.14.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.15.【解答】解:∵y=kx+b经过A(2,1),B(﹣1,﹣2)两点,∴,解得:,∴不等式kx+b>﹣2变为x﹣1>﹣2,解得x>﹣1,故答案为:x>﹣1.16.【解答】解:由题意得:3=<=4,∴与的整数部分分别为12和5,则与的小数部分分别为﹣3与4,即a=﹣3,b=4﹣,∴a+b=1.故答案为:1.17.【解答】解:∵矩形纸片ABCD中,AB=5,BC=3,∴AD=3,CD=C'D=5,∴Rt△ADC'中,AC'==4,∴BC'=5﹣4=1,设BO=x,则CO=C'O=3﹣x,∵Rt△BOC'中,BO2+BC'2=C'O2,∴x2+12=(3﹣x)2,解得x=,∴CO=3﹣,又∵点C在x轴上,∴点C的坐标为(,0),故答案为:(,0).18.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+2中x=0,则y=2,∴点B的坐标为(0,2);令y=x+2中y=0,则x+2=0,解得:x=﹣3,∴点A的坐标为(﹣3,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣1.5,1),点D(0,1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣1.5,1),D′(0,﹣1),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,∴点P的坐标为(﹣,0).故答案为:(﹣,0).19.【解答】解:由图形可知:乌龟125分钟到达终点,∴乌龟的速度为:500÷125=4(米/秒),设螃蟹的速度为v米/秒,25v﹣25×4=300,v=16,故螃蟹的速度为16米/秒,300÷4=75(分),75+25=100,∴点P(100,0),螃蟹惊醒后到达终点的时间为:(500﹣25×16)÷16=6.25分钟,则螃蟹到达终点时,乌龟距终点的距离为:4×(125﹣100﹣6.25)=75(米).故答案为:7520.【解答】解:∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b元,∴=20%,∴b=60,∴甲产品的成本价格60元,∴1.5kgA原料与1.5kgB原料的成本和60元,∴A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,根据题意得:,∴xn=20n﹣250,设生产甲乙产品的实际成本为W元,则有W=60m+40n+xn,∴W=60m+40n+20n﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤5750;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;三、解答题(本大题8个小题,共70分)解答时每小题必须给出必要的演算过程或推理步骤.画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.【解答】解:(1)原式=﹣1﹣3+1﹣3=﹣6;(2)原式=3﹣2+﹣+13﹣4=3﹣﹣5+13.22.【解答】解:(1)移项得:2x﹣5x≥8﹣2,合并同类项得:﹣3x≥6系数化为1得:x≤﹣2;(2)解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.23.【解答】解:原式=b2﹣4a2+a2﹣4ab+4b2﹣6ab+8a2=5a2+5b2﹣10ab,当a=+,b=﹣时,原式=5(8+2+8﹣2)﹣20=80﹣20=60.24.【解答】解:(1)把E(3,m)代入y=﹣x+16,可得m=12,∴E(3,12),令y=0,则0=﹣x+16,解得x=12,∴A(12,0),即AO=12,又∵AO=2CO,∴CO=6,即C(﹣6,0),把E(3,12),C(﹣6,0)代入y=kx+b,可得,解得,∴直线CD的解析式为y=x+8;(2)在y=x+8中,令x=0,则y=8,∴D(0,8),∴四边形DEAO的面积=S△ACE﹣S△COD=(12+6)×12﹣×6×8=108﹣24=84;或四边形DEAO的面积=S△AOE﹣S△EOD=×12×12+×3×8=72+12=84;(3)当﹣x+16>kx+b时,由图可得x的取值范围为x<3.25.【解答】解:(1)把A(﹣3,1)、B(2,4)分别代入y=ax+c,得.解得.故答案为;(2)∵直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,∴点P(x,y)是直线y=2x+3与直线y=3x+2的交点.∴.解得.∴P(1,5),∴P A==4,PB==,AB==,∴△P AB的周长为:4++=5+.26.【解答】解:(1)设参加本次活动的在职教师有x人,离退休教师有y人,依题意,得:,解得:.答:参加本次活动的在职教师有560人,离退休教师有140人.(2)依题意,得:(120﹣2a)×140×0.8+(120﹣2a)×(200﹣140)+(100﹣a)×(700﹣200)≤66420,解得:a≥5.答:a的最小值为5.27.【解答】(1)解:如图1中,作FE⊥BA于E.∵CA=CB,∠C=90°,∴∠ABC=45°,∵∠BEF=90°,∴△BEF是等腰直角三角形,∵BF=2,∴BE=EF=2,在Rt△AEF中,∵∠EAF=30°,∴AE=EF=2,∴AB=2+2,在Rt△ABE中,∵∠BAE=30°,∴BE=AB=1+.(2)证明:如图2中,延长AC交BD的延长线于H.∵∠BEF=∠ACF=90°,∠BFE=∠AFC,∴∠HBC=∠CAF,∵CB=CA,∠BCH=∠ACF,∴△BCH≌△ACF,∴AF=BH,CF=CH,∵∠ACD=135°,∠ACB=90°,∴∠ECD=∠HCD=45°,∵CD=CD,∴△CDF≌△CDH,∴DF=DH,∵AB=AD,AE⊥BD,∴BE=ED,∴AE垂直平分线段BD,∴FB=FD=DH,∴AF=BH=BD+DH=BD+BF,∴BD+BF=AF.28.【解答】解:(1)直线,则点B、D的坐标分别为:(,0)、(0,﹣2);直线,则点C、E的坐标分别为:(4,0)、(0,4);联立BD、CE的表达式并解得:x=2,故点A(2,2);(2)如图,将△APB绕点B逆时针旋转60°得到△EFB,则△BFP是等边三角形,∠EBC=90°,BC=3,AB==BE,在Rt△EBC中,CE==,∵P A+PB+PC=EF+FP+PC≥CE,∴P A+PB+PC≥,∴P A+PB+PC的最小值为;(3)存在,理由:点D1(0,﹣3),点B(,0),则∠BD1O=30°,B1D2∥x轴,则直线OD2的倾斜角为30°,设直线O1K的表达式为:y=x+m,则点O1(0,m),点K(﹣m,0),则MO1=﹣m,MK=﹣m,KN=﹣m,TN=|﹣m﹣3|,则点T(3,﹣m)△O1KT能否以O1K为直角边构成等腰直角三角形,则O1K=TK,TK⊥O1K,过点K作y轴的平行线分别交过点O1、T与x轴的平行线于点M、N,∵∠NKT+∠NTK=90°,∠NKT+∠O1KM=90°,∴∠O1KM=∠NTK,∠KNT=∠O1MK=90°,O1K=TK,∴△KNT≌△O1MK(AAS),∴TN=KM,即:|﹣m﹣3|=﹣m,解得:m=,故点T(3,)或(3,).。
北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()A B.πC.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5B.1,1,2C.1,2,3D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0B.1C.2D.0或﹣25的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,CD⊥AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足y=5x-5x-,则2x﹣y=___.三、解答题19.计算:(1)﹣(π﹣3.14)02|(22﹣1)(3)()(3)220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:x/kg0123⋯y/cm14.51515.516⋯(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且AB=5(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】3=,∴无理数是π-13、5;故选B .【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A 的坐标为(﹣4,﹣3),∴点A 在第三象限;故选C .【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题的关键.3.A【解析】【分析】根据勾股定理的逆定理:若a 、b 、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A 、∵2220.30.40.5+=,∴能构成直角三角形,故此选项符合题意;B 、∵2221122+=≠,∴不能构成直角三角形,故此选项不符合题意;C 、∵2221253+=≠,∴不能构成直角三角形,故此选项不符合题意;D 、∵22291633725+=≠,∴不能构成直角三角形,故此选项不符合题意;故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.4.C【解析】【分析】根据正比例函数的概念:形如y=kx ,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】解:由题意得:11,0m m -=≠,∴2m =;故选C .【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】∵4<5<9,∴23,∴2+11<3+1,即31<4.故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.6.D【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:∵圆柱的高等于12cm,底面上圆的周长等于18cm,∴AC=9cm,BC=12cm,AB==,∴15cm∴蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:∵正比例函数y=kx中,y的值随着x值的增大而减小,∴k<0,∴一次函数y=kx+k与y轴的交点在y轴的负半轴,∴一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:∵3>0,﹣4<0,∴点P(3,﹣4)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,∴这个正数为()222125⨯+=或(-15)²=225,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,∴y 随x 的增大而增大,∵点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上,∴12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.14.(2,3)【解析】【分析】由题意易证BC ∥AD ,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC ∥AD ,∴点B 与点C 的纵坐标相等,设点(),3C x ,∵AD =5,∴BC =5,∴352x =-+=,∴C (2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BC CD AB⋅=,由此即可得到答案.【详解】解:∵在△ABC 中,∠ACB =90°,AB =10,BC =6,∴8AC ==,∵CD ⊥AB ,∴11=22ABC S AC BC AB CD ⋅=⋅△,∴ 4.8AC BC CD AB⋅==,故答案为:4.8.16.45°【分析】如图,连接EF ,由题意易得△AHE ≌△EGF ,则有∠AEH=∠EFG ,AE=EF ,然后可得∠AEH+∠FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF ,∵AH=EG=2,∠AHE=∠EGF=90°,EH=FG=1,∴△AHE ≌△EGF ,∴∠AEH=∠EFG ,AE=EF ,∵∠EFG+∠FEG=90°,∴∠AEH+∠FEG=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴∠EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A1B1=1,∵△B1A1A2为等腰直角三角形,∴A1A2=1,A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,A2019的横坐标为22018,纵坐标为0,即点A2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:∵实数x ,y 满足y =,且50,50x x -≥-≥,∴50x -=,解得:5x=,∴y=8,∴22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1-【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:∵AB =5,BD =3,AD =4,∴22225,9,16AB BD AD ===,∴222AB BD AD =+,∴90ADB ADC ∠=∠=︒,在Rt △ADC 中,AC=8,∴DC ==【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键.21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,由题意得:14.515b k b =⎧⎨+=⎩,∴0.514.5k b =⎧⎨=⎩,∴一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,∴0.5614.517.5y =⨯+=,∴当所挂物体的质量为6千克时弹簧的长度为17.5cm .【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式.22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P 【解析】(1)分别作出点A 、B 、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,∴设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩,∴直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,∴()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,∴12y y >,∴当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,先利用勾股定理求出15AC ==,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,∴=180=90CB D AB D ''-o o∠∠∵∠B=90°,AB=9,BC=12,∴15AC ==,∴6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,∴()222126x x -=+,解得92x =,∴92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB ≌△COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,∴()0,4B ,∴OB=4,在Rt △AOB 中,AB =2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB ≌△COP (AAS ),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【解析】【分析】(1)根据图象可直接求出A 、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】21解:(1)由图象可知:A 、B 两地的相距20km ;乙骑车的速度为(30-20)÷2=5km/h ;故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,∴甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,∴乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y xy x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,∴甲追上乙用了4小时的时间.。
八年级上册数学期中考试试题一、单选题。
(共15小题,每小题4分)1、在﹣2,6,√5,13中,无理数是()A、﹣2B、6C、√5D、132、4的算术平方根是()A、﹣2B、2C、±2D、√23、一个学生方队,B的位置是第8列第7行,记作(8,7),则学生在第2列第3行的位置可以表示为()A、(2,3)B、(3,2)C、(2,2)D、(3,3)4、正比例函数y=3x的图象经过(1,m),则m的值为()A、13B、3 C、﹣13D、﹣35、64的立方根是()A、4B、±4C、8D、±86、在平面直角坐标系中,点P(2,﹣3)在()A、第一象限B、第二象限C、第三象限D、第四象限7、下列一次函数中,y随x的增大而减小的是()A、y=2x+1B、y=2x-1C、y=1-2xD、y=1+12x8、估测√10+1的值在()A、2和3之间B、3和4之间C、4和5之间D、5和6之间9、已知{x=2y=1是方程kx+y=3的一个解,则k的值是()A、﹣2B、2C、﹣1D、110、下列各式中,为最简二次根式的是()A、√16B、√11C、√8D、√1511、点P(m+1,m-2)在x轴上,则m是()A、1B、﹣1C、2D、﹣212、若实数a、b满足a<0<b,则函数y=ax+b的图象可能是()A 、B 、C 、D 、13、用加减消元法解二元一次方程组{{x -y =7①3x -2y =9②时,下列方法中能消元的是( )A 、①×2+②B 、①×2-②C 、①×3+②D 、①×(﹣3)-② 14、若实数m 、n 满足|2m -n -3|+√(m +4n -6)2=0,则m+n 的值是( ) A 、0 B 、1 C 、2 D 、3 15、已知点A (a+1,3-a ),下列说法正确的是( ) A 、若点A 在y 轴上,则a=3B 、若点A 在第四象限,则a 的值可以为﹣2C 、若点A 到x 轴的距离是3,则a=±6D 、若点A 在一三象限角平分线上,则a=1 二、填空题。
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.在 1.4144-,,227,3π,2,0.3∙,2.121112*********...中,无理数的个数()A .1B .2C .3D .42.在Rt ABC ∆中,90C ∠=︒,9AC =,12BC =,则点C 到斜边AB 的距离是()A .365B .125C .9D .63.a 、b 在数轴上的位置如图所示,那么化简a b -)A .2a b -B .bC .b-D .2a b -+4的取值范围是()A .x 0>B .x 2≥-C .x 2≥D .x 2≤5.下列四个数中,是负数的是()A .2-B .2(2)-C .D6.在平面直角坐标系中,点P (﹣1,1)关于x 轴的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限7.若点(,1)P m 在第二象限内,则点Q (,0m -)在()A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上8.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .29.已知一次函数y kx b =+,若0k <,0b >,则该函数的图象可能是()A .B .C .D .10.如图,一根垂直于地面的旗杆在离地面5m 的B 处撕裂折断,旗杆顶部落在离旗杆底部12m 的A 处,则旗杆折断部分AB 的高度是()A .5mB .12mC .13mD .18m二、填空题11.4的平方根是_____,-8的立方根是_____.121112|13()23--+的值是_____13.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______.14.已知正比例函数y=(k-1)x ,函数值y 随自变量x 的值增大而减小,那么k 的取值范围是_______.15.油箱中有油20L ,油从油箱中均匀流出,流速为0.2L/min ,则油箱中剩余油量Q (L )与流出时间t(min)的关系式为_________________.16.如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短路程为________cm.(π取3)17.如图,已知直线l :y 33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.三、解答题18.计算:11318505219.如图,四边形ABCD 中,90ABC ∠=︒,AB =4,BC =3,CD =12,AD =13,求四边形ABCD 的面积.20.徐老师骑共享自行车保持匀速从家到超市,到达超市买完物品后以相同的速度原路骑自行车返回家中.徐老师离家的距离y (m )与时间x (min )之间的函数图象如图所示.(1)a =;(2)求徐老师从超市返回家的过程中,y 与x 之间的函数关系式;(3)在徐老师从家出发的同时,小明以100m/min 的速度从超市步行去徐老师家,到徐老师家停止,当小明与徐老师之间的距离为200m 时,直接写出x 的值.21.如图,Rt △ABO 的直角顶点在原点,OA=6,AB=10,∠AOx=30°,求(1)A 、B 两点的坐标,(2)求△ABO 的面积.22.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E .(1)试判断△BDE 的形状,并说明理由;(2)若AB =4,AD =8,求△BDE 的面积.23.阅读下面问题:阅读理解:2221(21)(21)=++-1;323232(32)(32)==++-;(55252(52)(52)==-++-.应用计算:(176+(21n n++n 为正整数)的值.归纳拓展:(3122334989999100+++++++ 24.如图,直线L :122y x =-+与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点()0,4C ,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.()1求A 、B 两点的坐标;()2求COM ∆的面积S 与M 的移动时间t 之间的函数关系式;()3当t为何值时COM∆≌AOB∆,并求此时M点的坐标.25.某农场急需氨肥8t,在该农场南北方向分别有A,B两家化肥公司,A公司有氨肥3t,每吨售价750元;B公司有氨肥7t,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输质量a(单位:t)的关系如图所示.(1)根据图象求出b关于a的函数表达式(写出自变量的取值范围).(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m(km),设农场从A公司购买x(t)氨肥,购买8t氨肥的总费用为y元(总费用=购买铵肥的费用+运输费用),求出y关于x的函数表达式(m为常数),并向农场建议总费用最低的购买方案.参考答案1.D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数;0.3∙,无限循环小数,是有理数,不是无理数;,3π,2, 2.121112*********...是无理数,共4个,故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.A【分析】设点C 到斜边AB 的距离是h ,根据勾股定理求出AB 的长,再根据三角形的面积公式即可得出结论.【详解】设点C 到斜边AB 的距离是h ,∵在Rt ABC ∆中,90C ∠=︒,9AC =,12BC =,∴15AB =,∴12936155h ⨯==.故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.C【分析】根据差的绝对值是大数减小数,二次根式的性质,可化简代数式,根据整式的加减,可得答案.【详解】解:原式=a-b-a=-b .故选:C.【点睛】本题考查了实数与数轴,利用差的绝对值是大数减小数、二次根式的性质化简整式是解题关键.4.D【详解】-≥⇒≤.2x0x2故选D.5.C【分析】先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.6.C【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求出点的坐标,再根据各象限内点的坐标特征解答.【详解】解:点P(-1,1)关于x轴的对称点为(-1,-1),在第三象限.故选C.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.A【分析】先根据纵坐标为0判断点在x 轴上,再根据第二象限内点的坐标的特征得到m -的范围,即可作出判断.【详解】∵点(),1P m 在第二象限,∴0m <,则0m ->,∴点()0Q m -,在x 轴正半轴上,故选A .【点睛】本题主要考查直角坐标系中点所在的象限.当纵坐标为0时点在x 轴上,横坐标为正再x 轴正半轴.8.B【分析】根据一次函数的概念可直接进行求解.【详解】解:由关于x 的函数||(1)5m y m x =--是一次函数,可得:10,1m m -≠=,∴1m =-,故选B .【点睛】本题主要考查一次函数的概念,熟练掌握一次函数的概念是解题的关键.9.A根据一次函数y =kx +b 中的k 、b 的取值范围,确定该函数图象所经过的象限即可.【详解】解:∵一次函数y =kx +b 中,k <0,b >0,∴该函数图象必经过二、一、四象限.故选:A .【点睛】主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.10.C【分析】直接利用勾股定理即可得.【详解】由题意得:5,12,90BC m AC m ACB ==∠=︒则13()AB m =故选:C .【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题关键.11.±2-2【分析】根据平方根以及立方根的定义即可求解.【详解】4的平方根是:±2;-8的立方根是:-2.故答案是:±2;-2.【点睛】本题主要考查了平方根和立方根的概念,正确理解定义是解题的关键.【分析】直接利用二次根式的性质,绝对值以及负整数指数幂的性质分别化简得出答案.【详解】11|1()2--+21=+3=.故答案为:3.【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质,正确掌握相关运算法则是解题关键.13.60cm 2【详解】试题分析:设另一条直角边为x ,由勾股定理得x15,直角三角形的面积是12×8×15=60,故直角三角形的面积是60cm 2.故答案为60.14.k <1【解析】根据正比例函数的性质与图像,可由函数值y 随x 的增大而减小,可知k-1<0,解得k <1.故答案为k <1.15.Q=20-0.2t【分析】根据存油量减去用油量,可得答案.【详解】解:由题意,得Q=20-0.2t ,故答案为Q=20-0.2t.【点睛】本题考查了函数关系式,利用存油量减去用油量是解题关键.16.15cm.【详解】本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.解:如图所示,圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得=15cm.故蚂蚁经过的最短距离为15cm.(π取3)“点睛”解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.17.(0,256)【分析】,A A的坐标,利用规律直接得到答案.利用锐角三角函数分别计算得到12【详解】解:∵l:y x∴l与x轴的夹角为30°∵AB∥x轴∴∠ABO=30°∵OA=1∴AB ∵A 1B ⊥l ∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.18.【分析】先将各二次根式化成最简二次根式后再合并后即可得解.【详解】==【点睛】本题考查了二次根式的加减运算:先把各二次根式化成最简二次根式,再合并同类二次根式即可得解.19.四边形ABCD 的面积为36.【分析】连接AC ,在直角三角形ABC 中,由AB 及BC 的长,利用勾股定理求出AC 的长,再由AD 及CD 的长,利用勾股定理的逆定理得到△ACD 为直角三角形,根据四边形ABCD 的面积=Rt △ABC 的面积+Rt △ACD 的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又AB=4,BC=3,∴根据勾股定理得:5==,又AD=13,CD=12,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=12AB•BC+12AC•CD=12×3×4+12×12×5=36.答:四边形ABCD的面积为36.【点睛】本题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及逆定理是解本题的关键.20.(1)14;(2)y=﹣200x+4800;(3)小明与徐老师之间的距离为200m时,x为6min或223min或23min.【分析】(1)由图象直接求出a的值;(2)设y与x之间的函数关系式为y kx b=+,用待定系数法求函数解析式;(3)分徐老师和小明相遇前、相遇后和徐老师从超市返回家时三种情况讨论即可.【详解】解:(1)由题意和图象可知,徐老师从家到超市用时10min ,从超市到家用时10min ,徐老师从离家到回家总共用时24min ,∴徐老师在超市买物品用时4min ,14a min ∴=,故答案为:14;(2)徐老师从超市返回家的过程中,y 与x 之间的函数关系式是一次函数,∴设y 与x 之间的函数关系式为y kx b =+,把(14,2000)和(24,0)代入解析式得:200014024x b k b=+⎧⎨=+⎩,解得:2004800k b =-⎧⎨=⎩,y ∴与x 之间的函数关系式为2004800y x =-+;(3)由图象可知,徐老师家距超市2000m ,徐老师的速度为200010200(/)m min ÷=,①小明和徐老师相遇前相距200m ,则2001002002000x x ++=,解得:6x =;②小明和徐老师相遇后相距200m ,则2001002002000x x +-=,解得:223x =;③徐老师从超市返回距家200m ,则2004800200x -+=,解得:23x =.综上,小明与徐老师之间的距离为200m 时,x 为6min 或223min 或23min .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.21.(1)点A 的坐标为(,3),点B 的坐标为(4,.(2)24【分析】(1)根据已知和勾股定理求出OB ,作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据直角三角形的性质求出AC 、OC 得到点A 的坐标,求出OB 、OD 得到点B 的坐标.(2)根据三角形的面积公式求出△ABO 的面积.【详解】解:(1)作AC ⊥x 轴于C ,BD ⊥x 轴于D ,∵OA=6,∠AOC=30°,∴AC=12OA=3,∴点A 的坐标为(3),∵∠AOB=90°,∠AOC=30°,∴∠OBD=30°,OB=8,∴OD=4,∴点B 的坐标为(4,.(2)在Rt △ABO 中,OA=6,AB=10,由勾股定理得,OB=8,∴△ABO 的面积为:12×OA×OB=24.【点睛】本题考查的是直角三角形的性质和坐标与图形的性质,掌握直角三角形的性质和勾股定理是解题的关键.22.(1)△BDE 是等腰三角形;(2)10.【详解】试题分析:(1)由折叠可知,∠CBD=∠EBD ,再由AD ∥BC ,得到∠CBD=∠EDB ,即可得到∠EBD=∠EDB ,于是得到BE=DE ,等腰三角形即可证明;(2)设DE=x ,则BE=x ,AE=8﹣x ,在Rt △ABE 中,由勾股定理求出x 的值,再由三角形的面积公式求出面积的值.解:(1)△BDE 是等腰三角形.由折叠可知,∠CBD=∠EBD ,∵AD ∥BC ,∴∠CBD=∠EDB ,∴∠EBD=∠EDB ,∴BE=DE ,即△BDE 是等腰三角形;(2)设DE=x ,则BE=x ,AE=8﹣x ,在Rt △ABE 中,由勾股定理得:AB 2+AE 2=BE 2即42+(8﹣x )2=x 2,解得:x=5,所以S △BDE =DE×AB=×5×4=10.考点:翻折变换(折叠问题).23.应用计算:(1(2归纳拓展:(3)9.【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】(1(2(3+ ,++,=10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.24.(1)A (0,4),B (0,2);(2)()()8-2t 0t 4S 2t-8t 4<≤⎧⎪=⎨>⎪⎩;(3)当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【分析】(1)由直线L 的函数解析式,令y =0求A 点坐标,x =0求B 点坐标;(2)由面积公式S =12OM•OC 求出S 与t 之间的函数关系式;(3)若△COM ≌△AOB ,OM =OB ,则t 时间内移动了AM ,可算出t 值,并得到M 点坐标.【详解】(1)∵y =﹣12x+2,当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t ,S △OCM =12×4×(4﹣t )=8﹣2t ;当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM =12×4×(t ﹣4)=2t ﹣8;∴COM ∆的面积S 与M 的移动时间t 之间的函数关系式为:()()8-2t 0t 4S 2t-8t 4<≤⎧⎪=⎨>⎪⎩(3)∵OC =OA ,∠AOB =∠COM =90°,∴只需OB =OM ,则△COM ≌△AOB ,即OM =2,此时,若M 在x 轴的正半轴时,t =2,M 在x 轴的负半轴,则t =6.故当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.25.(1)b =3(04)58(4)a a a a ≤≤⎧⎨-≥⎩;(2)当m >507时,到A 公司买3t ,到B 公司买5t 费用最低;当m =507时,到A 公司或B 公司买费用一样;当m <507时,到A 公司买1t ,到B 公司买7t ,费用最低.【详解】试题分析:(1)利用待定系数法分别求出当0≤a≤4和当a >4时,b 关于a 的函数解析式;(2)由于1≤x≤3,则到A 公司的运输费用满足b=3a ,到B 公司的运输费用满足b=5a ﹣8,利用总费用=购买铵肥费用+运输费用得到y=750x+3mx+(8﹣x )×700+[5(8﹣x )﹣8]•2m ,然后进行整理,再利用一次函数的性质确定费用最低的购买方案.试题解析:(1)当0≤a≤4时,设b=ka ,把(4,12)代入得4k=12,解得k=3,所以b=3a ;当a >4,设b ma n =+,把(4,12),(8,32)代入得:412{832m n m n +=+=,解得:5{8m n ==-,所以58b a =-;∴3 (04){58 (4)a ab a a ≤≤=->;(2)∵1≤x≤3,∴y=750x+3mx+(8﹣x )×700+[5(8﹣x )﹣8]•2m ,∴(507)560064y m x m =-++,当m >507时,到A 公司买3吨,到B 公司买5吨,费用最低;当m <507时,到A 公司买1吨,到B 公司买7吨,费用最低.考点:1.一次函数的应用;2.应用题;3.分段函数;4.最值问题;5.分类讨论;6.综合题.。
北师大版八年级(上)数学期中试卷(含答案)一、选择题(共30分,每小题3分)1.81的平方根是()A.3B.±3C.9D.±92.下列各图象中,不是y关于x的函数图象的是()A.B.C.D.3.下列二次根式中,是最简二次根式的是()A.B.C.D.4.点P的坐标是(﹣2,a2+1),则点P一定在第()象限A.一B.二C.三D.四5.下列计算正确的是()A.=1B.C.D.=26.已知M(a,3)和N(4,b)关于x轴对称,则(a+b)2019的值为()A.1B.﹣1C.72019D.﹣720197.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2)和(﹣m,4﹣2m),则m的值为()A.﹣1B.﹣2C.1D.28.已知一次函数y=(m+1)x+2m的图象必过第二,四象限,则m的值可能是()A.2B.﹣2C.﹣1D.09.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)10.如果关于x,y的方程组无解,那么直线y=﹣(k+3)x﹣k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共21分,每小题3分)11.比较大小:23.(填“>”“<”或“=”)12.在实数中,无理数有.13.已知点(﹣4,y1),(2,y2)都在直线y=﹣2x+b上,则y1,y2的大小关系是y1y2.(填“>”“<”或“=”)14.如图,在一次“寻宝”游戏中,寻宝人找到了两个标志点A(2,1),C(0,1).则“宝藏”点B的坐标是.15.已知直线AB平行于y=﹣x,交x轴于点A,且过点B(0,﹣4),则线段AB的长度为.16.已知直线y=2x+1与y=﹣x+b的交点为(﹣1,a),则方程组的解为.17.在平面直角坐标系中,已知点A(1,4),点B(3,1),点M的坐标为(﹣1,m),当MA+MB的值最小时m的值是.三、解答题(共49分)18.计算:(1)﹣2×;(2).19.如图,在平面直角坐标系中,△ABC的三个顶点都在边长为1的正方形方格的格点上.(1)写出点A,B,C的坐标:A,B,C.(2)画出△ABC关于y轴对称的△A1B1C1.(3)△A1B1C1的面积为.20.如图,直线l1的解析式为y1=﹣2x+2,且l1与x轴交于点D,直线经过点A(4,0),B(0,﹣1),两直线交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积.21.甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且都有一定的优惠,甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%,设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.22.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长为;(2)直接写出当点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式的最小值.23.甲、乙两人相约周末登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题.(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.(2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?四、附加题(共20分)24.(1)如图,Rt△MBC中,∠MCB=90°,点M在数轴﹣1处,点C在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是.(2)如图,点M是直线y=2x+3上的动点,过点M作MN垂直x轴于点N,点P是y轴上的动点,当以M,N,P为顶点的三角形为等腰直角三角形时,点M的坐标为.26.如图,直线y=kx+2与x轴、y轴分别交于A、B两点,OB=2OA.以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(1)求点A的坐标和k的值;(2)求点C坐标;(3)直线y=x在第一象限内的图象上是否存在点P使得△ABP的面积与△ABC的面积相等?如果存在,求出点P坐标;如果不存在,请说明理由.北师大版八年级(上)数学期中试卷答案一、选择题二、填空题三、解答题18.(1)113-;(2)561-19.(1)点A (-1,3)、点B (2,0)、点C (-3,-1);(2)作图略;(3)920.(1)直线2l 的表达式为:141-=x y A ;(2)1=∆ADC S . 21.(1)90021001+=x y ,x y 22502=;(2)6;(3)选择乙商场更优惠.22.(1)()14822+++-=+x x CE AC ;(2)当A 、C 、E 三点共线时,AC+CE 的值最小;(3)最小值为1323.(1)10,30(2)函数关系式为:()()⎩⎨⎧≤≤-≤≤=11230302015x x x x y (3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.四、附加题24.(1)点A 对应的数为51+-;(2)符合条件的点M 的坐标为(-3,-3)或(-1,1)或(43-,23) 25.(1)点A 的坐标为(-1,0);K 的值为2.(2)点C 的坐标为(-3,1)(3)存在,点P 的坐标为(2,1)。
北师大版八年级上学期数学期中考试卷一、 选择题(每小题3分,共24分) 1、下列四个数中,是无理数的是A.2-B.83 C.1.732 D.2-2、已知直角三角形的两边长分别为3和4,则此三角形的周长为A.12B.77+C.12或77+D.以上都不对3、已知一次函数k kx y --=,若y 随x 的增大而增大,则该函数图像经过A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 4、已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为A.(-1,0)B.(1,0)C.(-2,0)D.(2,0) 5、要使二次根式有意义,字母x 必须满足的条件是( )x-2A.x≤2 B.x<2 C.x≤﹣2 D.x<﹣26、有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()C.cm D.7、如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3,则 S1、 S2、S3之间的关系是A.232221SSS=+ B.321SSS>+ C.321SSS<+ D.321SSS=+8、已知:5=a,72=b,且baba+=+,则a-b的值为A.2或12B.-2或-12C.2或-12D.-2或12二、填空题(每小题3分,共21分)9、9的算术平方根是10、在△ABC中,a、b、c分别为三边,给出下列各组条件:①∠A:∠B:∠C=3:4:5;②a:b:c=3:4:5;③a=16,b=63,c=65;④C B A ∠=∠=∠3121; 其中,能判定△ABC 是直角三角形的有 个。
11、若直线y=kx+b 平行于直线y=-2x+3,且经过点(5,-9)关于x 轴的对称点,则b= 12、若函数82)3(--=m x m y 是正比例函数,则m=13、直角坐标系中,在坐标轴上且到点(-3,-4)的距离等于5的点有 个。
济南市长清区2022年八年级上学期《数学》期中试题与参考答案一、选择题本大题共12个小题,每小题4分,共48分。
1.实数16的平方根是( )A.8B.±8C.4D.±4【分析】根据平方根的性质:正数a有两个平方根,它们互为相反数,计算.解:16的平方根是±4;故选:D.2.在平面直角坐标系中,点(0,﹣2)在( )A.x轴上B.y轴上C.第三象限D.第四象限【分析】根据在y轴上的点的横坐标为0判断即可.解:在平面直角坐标系中,点(0,﹣2)在y轴上.故选:B.3.下列二次根式中,是最简二次根式的是( )A.B.C.D.【分析】根据最简二次根式的定义逐个判断即可.解:A.的被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;B.是最简二次根式,故本选项符合题意;C.的被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;D.的被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;4.平面直角坐标系内,点P(﹣3,﹣4)到y轴的距离是( )A.3B.4C.5D.﹣3或7【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.解:点P(﹣3,﹣4)到y轴的距离是3,故选:A.5.函数y=2x﹣1的图象不经过的点是( )A.(1,1)B.(2,3)C.(﹣1,﹣1)D.(﹣2,﹣5)【分析】将A,B,C,D选项中的点的坐标分别代入y=2x﹣1,根据图象上点的坐标性质即可得出答案.解:A.将(1,1)代入y=2x﹣1.当x=1时,y=1,此点在图象上;B.将(2,3)代入y=2x﹣1.当x=2时,y=3,此点在图象上;C.将(﹣1,﹣1)代入y=2x﹣1.当x=﹣1时,y=﹣3,此点不在图象上;D.将(﹣2,﹣5)代入y=2x﹣1.当x=﹣2时,y=﹣5,此点在图象上.故选:C.6.已知是方程x﹣my=3的解,那么m的值为( )A.2B.﹣2C.4D.﹣4【分析】把代入原方程得关于m的一元一次方程,解出即可.解:因为把代入原方程得,1+m=3,故选:A.7.下列各式中,正确的是( )A.﹣=B.÷=9C.(+1)(﹣1)=4D.()2=5【分析】利用二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据平方差公式对BC进行判断;根据完全平方公式对D进行判断.解:A.原式=2﹣=,所以A选项不符合题意;B.原式===3,所以B选项不符合题意;C.原式=5﹣1=4,所以C选项符合题意;B.原式=3+2+2=5+2,所以D选项不符合题意.故选:C.8.如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是( )A.(2,2)B.(1,2)C.(1,1)D.(2,1)【分析】直接利用已知点坐标确定平面直角坐标系,进而得出答案.解:如图所示:点C的坐标为(2,1).故选:D.9.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x场,负y场,则根据题意,下列方程组中正确的是( )A.B.C.D.【分析】设该班胜x场,负y场,根据八年级一班在16场比赛中得26分,即可得出关于x,y 的二元一次方程组,此题得解.解:设该班胜x场,负y场,依题意得:.故选:D.10.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x﹣k的图象大致是( )A.B.C.D.【分析】根据正比例函数的性质可得出k>0,进而可得出﹣k<0,由1>0,﹣k<0利用一次函数图象与系数的关系,可找出一次函数y=x﹣k的图象经过第一、三、四象限,此题得解.解:因为正比例函数y=kx(k≠0)的函数值y随x的增大而增大,所以k>0,所以﹣k<0.又因为1>0,所以一次函数y=x﹣k的图象经过第一、三、四象限.故选:B.11.某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )A.23cm B.24cm C.25cm D.26cm【分析】先设出函数解析式,用待定系数法求出函数解析式,再把x=38代入求出y即可.解:因为鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系,所以设函数解析式为:y=kx+b(k≠0),由题意知,x=22时,y=16,x=44时,y=27,所以,解得:,所以函数解析式为:y=x+5,当x=38时,y=×38+5=24(cm),故选:B.12.东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中正确的是( )①两人前行过程中的速度为200米/分;②m的值是15,n的值是3000;③东东开始返回时与爸爸相距1500米;④运动18分钟或30分钟时,两人相距900米.A.①②B.①②③C.①②④D.①②③④【分析】根据题意和图象中的数据可以判断各个小题中的说法是否正确,从而可以解答本题.解:由图可得,两人前行过程中的速度为4000÷20=200(米/分),故①正确;m的值是20﹣5=15,n的值是200×15=3000,故②正确;爸爸返回时的速度为:3000÷(45﹣15)=100(米/分),则东东开始返回时与爸爸相距:4000﹣3000+100×5=1500(米),故③正确;运动18分钟时两人相距:200×(18﹣15)+100×(18﹣15)=900(米),东东返回时的速度为:4000÷(45﹣20)=160(米/分),则运动30分钟时,两人相距:1500﹣(160﹣100)×(30﹣20)=900米,故④正确,所以结论中正确的是①②③④.故选:D.二、填空题本大题共6个小题,每小题4分,共24分。
北师大版山东省济南市八年级数学上册期中测试卷及答案一、选择题(每小题3分,共36分)1. 附图为八个全等的正六边形紧密排列在同一平面上的情形.根据 图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( ) A .△ACF, B .△ADE, C .△ABC, D .△BCF 2.下列性质中,等腰三角形具有而直角三角形不一定具有的是( ) A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°3.如下图,在△ABC 中,AB=AC ,∠A=36°,AB 的中垂线DE 交AC 于D ,交AB 于E ,下列结论错误的是( )A .点D 是线段AC 的中点B .BD 平分∠ABCC .AD=BD=BCD .△BDC 的周长等于AB+BC4.下列因式分解正确的是( )A .)1(222--=--y x x x xy x B .)32(322---=-+-x xy y y xy xy C .2)()()(y x y x y y x x -=---D .3)1(32--=--x x x x5.某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )A .x x 8.136003600=B .x x 3600208.13600=- C .208.136003600=-xxD .208.136003600=+xx 6.下列各数3,0.31,22,3π,71,0.90108,416+中,无理数有( )A .2个B .3个C .4个D .5个7.某课外小组的同学在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 用电量(千瓦·时)120 140 160 180 200户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是( )A .180,160B .160,180C .160,160D .180,1808.已知a ,b 为两个连续整数,且a <31<b ,则a +b 值分别为( )A .7B .9C .11D .139.如下图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME=MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( )A .3一1B .3一5C .5+1D .5一110.若正数a 的平方根为一(x +3)和29x-,则4a 的立方根是( ) A .±2B .34C .316D .411.下列说法错误的是( ) A .0是不等式41->x >的一个解 B .不等21<x 的整数解有无数个 C .-2是不等式x <-2的一个解D .2x <5的正整数解只有两个12.若不等式组⎩⎨⎧>+>-010x x a 无解,则a 的取值范围是( )A .a ≤一1B .a ≥一lC .a <一1D .a >一1二、填空题(每小题3分,共15分) 13.16的平方根是__________,立方根是__________。
北师大八年级数学上册期中测试卷一、选择题(共10小题;共40分)1. 在实数,,,(相邻两个之间的个数逐渐增加)中,无理数有A. 个B. 个C. 个D. 个2. 下列四组数据不能作为直角三角形的三边长的是A. ,,B. ,,C. ,,D. ,,3. 下列各式中,正确的是A. B.D.4. 下列函数关系式:① ;② ;③ ;④.其中一次函数的个数是A. 个B. 个C. 个D. 个5. 点在轴的上侧,距离轴个单位长度,距离轴个单位长度,则点的坐标为A. B. 或C. 或6. 若,为实数,且,则的值为A. B. C. D.7. 点在第象限.A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 关于的一次函数图象上有两个点和,若,则A. B. C. D. 无法判定9. 下面哪个点不在函数的图象上C. D.10. 如图所示,在平行四边形中,已知,,平分交于点,则的长为二、填空题(共6小题;共30分).12. 直线不经过第象限.13. 已知,则关于轴对称的点的坐标为.14. 如图,在三角形纸片中,,,.折叠三角形纸片,使点在边上的点处,则.15. 平面直角坐标系中,已知点,线段轴,且,则点的坐标为.16. 一次函数图象上有两点和,若,,则的值为.三、解答题(共8小题;共80分)17. 计算.(1;(2);(3).18. 已知关于的一次函数表达式为.(1)若函数图象经过坐标原点,求的值;(2)若函数图象与轴的交点为,且随的增大而减小,求的值.19. 在如图的正方形网格中,每个小正方形的边长为,格点三角形(顶点是网格线的交点的三角形)的顶点,的坐标分别为.(1)请在网格平面内画出平面直角坐标系;(2)请作出关于轴对称的;(3)分别写出点,,的坐标.20. 有一只小鸟在一棵高的小树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,它立刻以的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?21. 在平面直角坐标系中,已知点,点,三角形的面积为,点在轴上方,点到轴的距离为,求点的坐标.22. 若,正数的两个平方根分别是和,求平方根.23. 已知函数.(1)作出这个一次函数的图象;(2)若该函数的图象与轴、轴分别交于,两点,求面积;(3)求原点到直线的距离.24. 如图,为线段上的一个动点,分别过点,作,,连接,.已知,,,设.(1)用含的代数式表示的长;(2)请问:点满足什么条件时,的值最小?求出这个最小值.(3)根据()中的规律和结论,请构图求出代数式的最小值.答案1. C2. D3. D4. B5. D6. D7. C8. C9. C 10. B12. 二13.14.15. 或16.17. (1)(2)(3)18. (1)一次函数的图象经过坐标原点,且,解得;(2)函数图象与轴的交点为,,整理,得,解得,,又随的增大而减小,,即,故符合题意.19. (1)如图所示:(2)如图所示:(3)由图可知,,,.20. 如图所示,根据题意,得,.根据勾股定理,得.则小鸟所用的时间是.21. 设点的坐标为,因为点,点,所以,,,因为点,点,所以,解得:.所以点的坐标为或.22. 正数的两个平方根分别是和,,解得,,,解得,,的平方根是.23. (1)这个一次函数的图象为:(2)面积为.(3)原点到直线的距离为.24. (1),,;(2)当,,三点共线时,的值最小,过作交的延长线于,,,的最小值是;(3)如图所示,作,过点作,过点作,使,,连接交于点,设,则的长即为代数式的最小值.过点作交的延长线于点,得矩形,则,,,所以,即的最小值为.。
山东省济南市长清区期中阶段性测试
八年级数学试题
注意事项:
本试题分第I 卷(选择题)和第II 卷(非选择题)两部分。
本试题共6页,满分120分,考试时间为90分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上。
考试结束后,将本试卷和答题卡一并交回。
第I 卷 选择题(共45分)
一、选择题:(本大题共15个小题.每小题3分,共45分。
在每小题给出的四个选项
中,只有一项是符合题目要求的,把正确的选择填在答题卡中。
)
1.计算:
= A .3 B .﹣3 C .±3 D .9
2.在平面直角坐标系中,点(2,﹣4)在
A .第一象限
B .第二象限
C .第三象限
D .第四象限 3.下列实数,0,π,,,中是无理数的有 A . 1个 B . 2个
C . 3个
D . 4个 4.以下列各组数为三角形的边长,能构成直角三角形的是
A .1,2,3
B .5,6,9
C . 5,12,13
D .8,10,13
5.下列化简正确的是
A .
B .
C .
D .
6.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为
A .2212100x y x y +=⎧⎨-=⎩
B .226100x y x y +=⎧⎨-=⎩
C .2224100x y x y +=⎧⎨-=⎩
D .2212200x y x y +=⎧⎨-=⎩
7.点(2,6)关于x 轴对称点坐标为
A .(2,﹣6)
B .(﹣2,﹣6)
C . (﹣2,6)
D . (6,2)
8.如图,一圆柱高8 cm ,底面半径为
π6 cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是 A.6 cm B.8 cm C.10 cm D.12 cm。