平行线与相交线知识总结与测验
- 格式:doc
- 大小:123.50 KB
- 文档页数:5
相交线与平行线知识点整理相交线和平行线是几何学中的基本概念,是研究点、直线、平面之间的关系的重要内容。
下面是关于相交线和平行线的详细知识整理。
一、相交线的定义和性质:1.相交线的定义:当两条线或两条线段在空间中共有一个交点时,我们称这两条线或线段为相交的。
2.相交线的性质:(1)两条相交线必有且只有一个交点。
(2)相交线的交点在两条相交线上。
(3)相交线可以分割平面为两个部分。
(4)相交线可以交换位置,即线的交点不变。
(5)相交线的角度和弧度可以相互转化。
二、平行线的定义和性质:1.平行线的定义:在同一个平面上,两条直线如果没有交点,则称这两条直线为平行线。
2.平行线的性质:(1)平行线永不相交。
(2)平行线的夹角为0度。
(3)平行线在任何一点上的垂直线也是平行线。
(4)如果两条直线分别与一条直线相交,且对应的内角或同旁内角互补,则这两条直线是平行线。
(5)平行线与一个截线相交,对应角相等。
三、相交线与平行线之间的关系:1.两条相交线切割出的平行线性质:(1)两条相交线切割出的平行线长度相等。
(2)两条相交线切割出的平行线夹角相等。
(3)两条相交线切割出的平行线互相垂直。
2.平行线夹角关系:(1)两条平行线被一条截线切割,对应角相等。
(2)两条平行线被两条截线交叉切割,对应角互补。
四、平行线的判断方法:1.距离判定法:两条直线上一点到另一直线上的距离相等,则这两条直线平行。
2.角度判定法:如果两条直线上的任意一组对应角相等,则这两条直线平行。
3.线段比较法:两条平行线上两对相交线段的比值相等。
五、相交线和平行线的应用:1.在建筑设计中,平行线用于调整房屋结构的直角度量。
2.在交通规划中,相交线和平行线用于规划道路的交叉口和分隔带。
3.在地理学中,相交线和平行线用于绘制地图上的经纬线和等高线。
4.在数学教学中,相交线和平行线可以帮助学生理解几何概念,并解决相关问题。
总结:相交线和平行线是几何学中的基本概念,对于点、直线、平面的研究具有重要意义。
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
相交线与平行线考点及题型总结第一节 相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l 十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A +∠B =180°,则∠A 、∠B 互补;反过来,若∠A 、∠B 互补,则∠A +∠B =180°.②同角或等角的补角相等.如果∠A +∠C =180°,∠A +∠B =180°,则∠B =∠C .6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。
1、经过直线外一点,作直线垂线,有且只有一条; 2、点到直线上各点的距离中,垂线段最短。
(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD 的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解 求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138、 B 、都是10 C 、42138、或4210、 D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。
相交线与平行线考点及题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII相交线与平行线考点及题型总结第一节相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。
1、经过直线外一点,作直线垂线,有且只有一条;2、点到直线上各点的距离中,垂线段最短。
(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138 、B 、都是10C 、42138 、或4210 、D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。
相交线与平行线知识点总结相交线和平行线是几何学中两个重要的概念和性质。
下面是对相交线和平行线的知识点的总结。
一、相交线的性质:1.相交线的定义:在平面上,两条不重合的线段(或直线)在某一点相交,那么称这两条线段(或直线)为相交线。
2.相交线的分类:-相交线:两条线段在一点相交,但不共线。
-交叉线:两条线段在两个不同的点处相交。
-夹角线:两条直线之间形成的夹角称为夹角线。
3.相交线的性质:-相交线的交点是两条线段(或直线)共同的点,也是相交线上所有点的唯一共同点。
-相交线上的点在两条线段(或直线)上都有,而且在相交点上的两条线段(或直线)上都有。
-相交线的交点可以分为内点、外点和边上点。
4.相交线的判定:-直观法:两条线段(或直线)在平面上画出来,如果有交点,则存在相交线。
-代数法:通过方程组来求解两条线段(或直线)的交点,如果存在实数解,则存在相交线。
二、平行线的性质:1.平行线的定义:两条线段(或直线)在平面上没有交点,则称这两条线段(或直线)为平行线。
2.平行线的判定:-直观法:通过观察两条线段(或直线)之间是否平行来判断。
-几何法:利用两条平行线的性质,如平行线与平面关系、等角定理、相等短整数、全等三角形等来判定平行线。
-代数法:通过线段(或直线)的方程来计算斜率,如果两条线段(或直线)的斜率相等,则它们是平行的。
3.平行线的性质:-平行线的斜率相等。
-平行线的任意两条直线之间的夹角相等。
-平行线与平行线之间的距离相等。
-平行线与平行线之间可以通过平移相互转化。
4.平行线的性质的应用:-平行线的性质可以用于解决几何问题,如证明两个线段(或直线)平行、证明三角形相似等。
-平行线的性质还可以用于解决实际问题,如测量两条平行线之间的距离、设计平行线街道等。
总结:相交线和平行线是几何学中的重要概念和性质。
相交线的性质包括相交线的定义、分类和性质等,而平行线的性质包括平行线的定义、判定和性质等。
相交线和平行线的性质可以应用于解决几何问题和实际问题。
相交线与平行线知识点总结相交线和平行线是几何学中的重要概念,它们在解决平面几何问题中起着重要作用。
本文将对相交线和平行线的基本概念、性质以及相关定理进行总结。
通过深入理解这些知识点,我们可以更好地应用它们解决几何问题。
1. 相交线的基本概念和性质相交线是指在平面上有一个或多个公共点的线段。
对于两条相交线,有以下基本性质:- 相交线的交点称为交点,两条相交线的交点只有一个。
- 相交线之间不存在夹角大小的关系,夹角的大小取决于相交线的具体角度。
2. 平行线的基本概念和性质平行线是指在同一个平面内不相交且永远也不会相交的两条直线。
对于平行线,有以下基本性质:- 平行线之间的距离始终保持相等。
- 平行线之间不存在夹角,夹角大小为0°。
- 平行线的斜率相等。
3. 相交线与平行线的关系相交线与平行线之间存在一些重要的关系:- 若两条线段相交于一点,并且这两条线段中至少有一条是平行线,则其他线段也必然是平行线。
- 若两条直线与同一条直线相交而呈同侧内角,且这两条直线之一与另一条平行线,则这两条直线也必然平行。
- 若两条直线都与同一条直线相交,并且两直线的内角和为180°,则这两条直线是平行线。
4. 相关定理在相交线与平行线的研究中,存在一些重要的定理:- 同一侧内角定理:如果一条直线与另外两条直线相交,形成的两个内角,那么这两个内角要么同时是锐角,要么同时是钝角。
- 交叉线定理:如果两条平行线分别与某一第三条直线相交,那么这两条交线的内外角之和为180°。
- 锐角平分线定理:如果射线是一条直线的角平分线且与这条直线的另一射线相交,那么这两条交线将构成一对平行线。
5. 解决几何问题的应用相交线与平行线的知识在解决几何问题时起着重要作用,常见的应用包括:- 判断两条线段是否相交,并找到相交点的坐标。
- 判断两条线段是否平行或垂直。
- 证明两条线段的平行性、垂直性等。
总之,相交线与平行线是解决平面几何问题的基础概念。
相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
平行线与相交线知识点总结在几何学中,平行线与相交线是一种基本的图形关系。
它们在解决几何问题、证明定理以及应用数学知识等方面具有重要的作用。
本文将对平行线与相交线的相关知识点进行总结,并分析其应用。
1. 平行线的性质:两条平行线在平面上永不相交,它们具有以下性质:- 平行线上的任意两点之间的距离保持不变。
- 平行线上的任意角相等。
- 平行线与直线的交点与平行线的任意一点连线所形成的角是相等的。
2. 平行线的判定方法:判定两条直线是否平行有多种方法,常用的有以下几种:- 通过向量法判断:若两条直线的方向向量相等或成比例,则它们平行。
- 通过斜率判断:若两条直线的斜率相等,则它们平行。
- 通过对应角相等判断:当两条直线被一条横截线所切割时,如果对应角相等,则它们平行。
3. 相交线的性质:两条直线相交于一点时,它们具有以下性质:- 相交线所形成的角称为相交角,相交角的两个边上的对应角相等。
- 相交线上的任意一点与给定点之间只有一条直线。
- 相交线将平面分为四个角,相邻角互补,对角互补。
4. 相交线的判定方法:判定两条直线是否相交也有多种方法,常用的有以下几种:- 通过方程判断:将两条直线的方程联立,若方程组有解,则它们相交。
- 通过斜率判断:若两条直线的斜率不相等,则它们相交。
- 通过角度判断:通过直线的角度关系来判定是否相交。
5. 平行线与相交线的应用:平行线与相交线的运用广泛,包括以下几个方面:- 证明几何定理:在几何证明过程中,平行线与相交线的性质常常用来推导证明。
- 解决几何问题:在解决平面几何问题时,根据平行线与相交线的关系,可以得到问题的解答。
- 应用于平面图形:如在绘制建筑平面图时,利用平行线与相交线的知识,可以保证图纸的准确性。
总结:平行线与相交线是几何学中重要的概念,掌握了它们的性质和判定方法,可以更好地理解和解决几何问题。
在证明定理、解决几何问题以及应用到实际情境中,平行线与相交线的知识都具有重要的价值。
相交线和平行线知识点总结及试题知识点一:线与线之间的关系1.直线、射线、线段区别和联系:(1)直线是向__________无限延伸的,直线没有端点。
(2)经过两点有且只有一条__________。
(3)直线上一点和它一旁的部分叫做__________,这个点叫做射线的端点,射线只有一个端点。
(4)直线上两点之间的部分叫做__________,__________有两个端点.(5)两点之间,__________最短。
(6)把一条线段分成两条相等线段的点,叫做线段的__________。
2.相交线:垂直是相交的一种特殊形式。
(1)垂线:当两条直线相交所构成的四个角中有一个角是__________时,叫做两条直线互相垂直;其中一条直线叫做另一条直线的垂线,它们的交点叫做__________。
(2)垂线的性质:A经过直线外一点,有且只有__________条直线和已知直线垂直;B 直线外一点与直线上各点连结的所有线段中,__________最短。
(3)两点间的距离:连结__________的线段的长度。
(4)点到直线的距离:从直线外一点到__________的垂线段的长度。
(5)两条平行线间的距离:两条平行线中一条直线上__________到另一条直线的距离;两平行线间的距离相等。
3.平行线:(1)平行线:在同一平面内,__________的两条直线叫做平行线。
(2)在同一平面内,两条直线的位置关系只有两种:__________。
(3)平行(或垂直)于同一直线的两直线__________。
垂直于同一直线的两直线平行。
(4)平行线的性质:经过直线外一点,有且只有________条直线与这条直线平行。
一条直线和两条平行线中的一条垂直(或平行),这条直线也和__________知识点二:角与角之间的关系1.角:有公共端,点的两条__________组成的图形叫做角。
这个公共端点叫做角的顶点,这两条__________叫做角的边。
平行线与相交线知识点总结平行线与相交线是几何学中的重要概念,它们在解决几何问题和证明几何定理中起着重要作用。
在本文中,我将对平行线与相交线的知识点进行总结,希望能够帮助读者更好地理解和应用这些概念。
一、平行线的定义和性质平行线是指在同一个平面内永远不相交的直线。
根据平行线的定义,我们可以得到以下性质:1. 平行线具有传递性,即如果两条直线分别与一条第三条直线平行,则这两条直线也平行。
2. 平行线具有对称性,即如果一条直线与另一条直线平行,则另一条直线也与第一条直线平行。
3. 平行线与同一条直线相交的两条直线,被称为平行线的转角线,转角线上的两个内角互为对应角,且对应角相等。
二、相交线的定义和性质相交线是指在同一个平面内交于一点的两条直线。
相交线的性质如下:1. 相交线的交点被称为交点,交点所在的直线称为交线。
2. 相交线的两个内角互为对应角,且对应角相等。
3. 相交线的两个外角互为对应角,且对应角相等。
4. 相交线的两个内角和等于180度,即它们是补角。
三、平行线与相交线的关系平行线与相交线之间存在着一些重要的关系:1. 两条平行线被一条交线相交时,所成的对应角、内错角、同旁内角都相等。
2. 两条平行线被一条交线相交时,所成的同旁外角互为补角。
3. 平行线与同一条直线相交时,所成的内错角互为补角。
四、平行线与相交线的应用平行线与相交线的概念在几何学中有广泛的应用,下面举几个例子:1. 平行线的应用:在建筑设计中,我们常常需要根据已知的平行线来确定墙体、地板等的位置。
此外,在计算机图形学中,平行线的概念也被广泛应用于线的渲染和显示算法中。
2. 相交线的应用:在交通规划中,我们常常需要通过相交线来确定道路的交叉口、转弯处等位置。
此外,在计算机图形学中,相交线的概念也被广泛应用于多边形的裁剪和填充算法中。
平行线与相交线是几何学中的重要概念,它们具有一些特定的定义和性质。
了解和掌握这些知识点,对于解决几何问题和证明几何定理具有重要的意义。
相交线与平行线知识点总结相交线和平行线是几何学中重要的概念,对于线的性质以及图形的性质有着重要的影响。
相交线和平行线的性质和应用在实际生活和工程中也有很广泛的应用。
本文将就相交线和平行线的定义、性质和应用进行总结。
1.相交线的定义和性质相交线是指在平面中不共线的两条线段或射线或直线相交的现象。
相交线有以下几个性质:(1)相交线的交点只有一个;(2)相交线的交点将原来的两条线段或射线或直线分成了四个角;(3)相交线上的点与其中一条线段或射线或直线上的点同时存在。
2.平行线的定义和性质平行线是指在平面中不相交的两条直线,它们的方向始终保持一致,互不相交。
平行线有以下几个性质:(1)平行线之间的距离始终相等;(2)平行线没有交点;(3)平行线的夹角为零度。
3.相交线与平行线的关系(1)两条平行线不可能相交。
(2)两条相交线不可能平行。
4.平行线的判定方法(1)垂直线判定法:如果两条直线互相垂直,那么它们肯定是平行线。
(2)夹角相等法:如果两条直线分别与一条直线相交,而且两对夹角相等,那么这两条直线是平行线。
(3)平行线之间的距离相等法:如果两条直线与第三条直线相交,在同一侧的两条直线与第三条直线的距离相等,那么这两条直线是平行线。
(4)平行线之间的夹角相等法:如果两条直线分别与第三条直线相交,在同一侧的两个夹角相等,那么这两条直线是平行线。
5.平行线的性质(1)平行线之间的夹角相等;(2)平行线与一条横截线的夹角相等;(3)两条平行线与一条横截线的对应角相等;(4)平行线与平行线的交线是平行线。
6.平行线的应用(1)平行线的性质可以用于证明两条线段的平行关系,这在三角形中的平行线定理中有广泛的应用。
(2)平行线的性质可以用于计算一个图形的面积,例如在梯形中,底边平行的两条边可以帮助计算梯形的面积。
(3)在工程建设中,平行线的性质被广泛应用于制图、平面设计和结构设计中,以确保工程的准确性和稳定性。
总结:相交线和平行线是几何学中的基本概念,掌握相交线和平行线的定义、性质和判定方法,对于解决各种几何问题和应用于实际生活和工程中是十分重要的。
相交线与平行线第一节相交线一:相交线对顶角与邻补角二:垂线垂线段最短点到直线的距离第二节平行线及其判定一:平行线平行线平行线公理及推论二:平行线的判定同位角、内错角同旁内角平行线的判定第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等平行线的判定及性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角平行线之间的距离(1)平行线之间的距离从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.(2)平行线间的距离处处相等第四节平移生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离平移的性质②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等作图----平移变换。
相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。
1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。
例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。
2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。
3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。
【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。
相交线与平行线最全知识点1.平行线的定义:在平面上,如果两条直线在平面内没有交点,那么它们就是平行线。
记作AB,CD。
2.平行线性质:-平行线朝向差:平行线的两个方向向量相等。
-平行线对应角相等:如果两条平行线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-平行线的内错性:如果一条直线与一对平行线相交,那么对这两条平行线上的任意一点A及其在第一条直线上的任意一点B,有AB,CD。
-平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行。
3.相交线的定义:在平面上,如果两条直线的方向向量不相等,那么它们就是相交线。
4.相交线性质:-相交线对应角相等:如果两条相交线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-相交线的交点:两条相交线的交点是它们的唯一交点。
-相交线的截距恒等:如果两条相交线与同一直线相交,那么它们在这条直线上的截距相等。
5.平行线与垂直线:-平行线与垂直线的性质:平行线与同一直线的垂线垂直;平行线的两个垂线方向向量相等。
-平行线的判定:如果两条直线的垂直方向向量相等,那么它们是平行线。
-直线倾斜角度和斜率:平行线的倾斜角度相等,斜率(如果存在)相等;垂直线的倾斜角度之和为90度,其中一个倾斜角度为负倾斜角度的倒数。
6.平行线的判定:-两条直线判定法:如果两条直线的倾斜角度相等,那么它们是平行线。
-点斜式判定法:如果一条直线的斜率k和一点在直线上,那么直线的方程为y-y1=k(x-x1);如果两条直线的斜率相等且截距不相等,那么它们是平行线。
- 截距式判定法:如果一条直线的方程为y = kx + b,那么它与直线y = kx + b1平行当且仅当b = b17.平行线的应用:-常见图形的平行线特性:矩形的对边平行,对角线相等;平行四边形的对边平行且相等,对角线互相平分。
-平行线在解题中的应用:根据平行线的性质,可以解决一些几何问题,如求证两条线段平行、证明一个四边形是平行四边形等。
《相交线与平行线》知识点总结一: 相交线(1)相交线旳定义两条直线交于一点, 我们称这两条直线相交.相对旳, 我们称这两条直线为相交线.(2)两条相交线在形成旳角中有特殊旳数量关系和位置关系旳有对顶角和邻补角两类.(3)在同一平面内, 两条直线旳位置关系有两种: 平行和相交(4)对顶角: 有一种公共顶点, 并且一种角旳两边分别是另一种角旳两边旳反向延长线, 具有这种位置关系旳两个角, 互为对顶角.∠1和∠3, ∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们旳另一边互为反向延长线,具有这种关系旳两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角旳性质:对顶角相等.(如图∠1=∠3, ∠2=∠4)(7)邻补角旳性质:邻补角互补, 即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现, 在相交直线中, 一种角旳邻补角有两个. 邻补角、对顶角都是相对与两个角而言, 是指旳两个角旳一种位置关系. 它们都是在两直线相交旳前提下形成旳。
二、垂线(1)、垂线旳定义: 当两条直线相交所成旳四个角中, 有一种角是直角时, 就说这两条直线互相垂直, 其中一条直线叫做另一条直线旳垂线, 它们旳交点叫做垂足.如图, OD⊥AB, 垂足为O(2)、垂线旳性质过一点有且只有一条直线与已知直线垂直.注意: “有且只有”中, “有”指“存在”, “只有”指“唯一”“过一点”旳点在直线上或直线外都可以。
(3)、垂线段: 从直线外一点引一条直线旳垂线, 这点和垂足之间旳线段叫做垂线段.(4)垂线段旳性质: 垂线段最短.对旳理解此性质, 垂线段最短, 指旳是从直线外一点到这条直线所作旳垂线段最短. 它是相对于这点与直线上其他各点旳连线而言.(如图, PA,PB,PC等线段中, PO最短)(4)、点到直线旳距离(如图, PO旳长)(1)点到直线旳距离:直线外一点到直线旳垂线段旳长度, 叫做点到直线旳距离.(2)点到直线旳距离是一种长度, 而不是一种图形, 也就是垂线段旳长度, 而不是垂线段.它只能量出或求出, 而不能说画出, 画出旳是垂线段这个图形.三、平行线1.在同一平面内, 两条直线旳位置关系有两种: 平行和相交.(1)平行线旳定义:在同一平面内,不相交旳两条直线叫平行线.记作: a∥b;读作: 直线a平行于直线b.(2)同一平面内, 两条直线旳位置关系: 平行或相交, 对于这一知识旳理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说, 指旳是它们所在旳直线.(3)平行公理:通过直线外一点, 有且只有一条直线与这条直线平行.如图, 过点P只有直线a 与直线b 平行(4)平行公理中要精确理解“有且只有”旳含义.从作图旳角度说, 它是“能但只能画出一条”旳意思.(5)平行公理旳推论:假如两条直线都与第三条直线平行, 那么这两条直线也互相平行.如图, 假如a∥c, b∥c, 那么a∥c2.同位角、内错角、同旁内角(1)同位角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳同侧, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳两旁, 则这样一对角叫做内错角. 例如∠3和∠5, ∠4和∠6.(3)同旁内角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同旁内角。
平行线与交叉线知识点总结
平行线与交叉线是平面几何中的重要概念,对于解题和证明都有着重要作用。
本文将对平行线与交叉线的相关知识点进行总结和概述。
1. 平行线的定义与性质
- 平行线定义:在同一平面内,两条直线如果不相交,且永远保持相同的方向,这两条直线就称为平行线。
- 平行线符号:常用符号"∥"表示两条线段平行的关系。
- 平行线性质:平行线之间的距离是恒定的,平行线与同一条直线相交的两条直线所成的内角和为180度。
2. 平行线判定定理
- 异侧内角定理:如果两条平行线被一条直线切割,那么同侧的内角互补。
- 夹角平分线定理:如果两条直线的夹角被一条直线平分,那么两条直线平行。
- 平行线判定定理:如果两条直线上的任意一对内角互补,则这两条直线是平行线。
3. 交叉线的定义与性质
- 交叉线定义:在同一平面内,两条直线相交于一点,则这两条直线称为交叉线。
- 交叉线性质:交叉线所成的垂直角相等,交叉线与同一条直线相交所成的内角和为180度。
4. 平行线与交叉线的应用
- 平行线应用:在解题中,可以利用平行线的性质判断两条线是否平行,进而求解问题或证明定理。
- 交叉线应用:在解题中,可以利用交叉线的性质求解问题,如利用垂直角的性质求解三角形内角的问题等。
以上是对平行线与交叉线的知识点进行的总结和概述。
了解和掌握这些知识点,有助于我们在平面几何中的问题解决和证明过程中更加灵活和准确地运用相关概念和定理。
平行线与相交线的交点坐标计算所有知识点总结和常考题型练习题本文档旨在总结平行线与相交线的交点坐标计算的相关知识点,并提供常见考题类型的练题。
以下是总结的内容:知识点总结1. 平行线与相交线的关系:当两条直线平行时,它们没有交点;当两条直线相交时,它们有且只有一个交点。
2. 平行线与相交线的交点坐标计算方法:- 方法一:利用平行线性质和相交线性质来计算交点坐标- 方法二:利用向量法计算交点坐标- 方法三:利用解方程组的方法计算交点坐标3. 利用平行线性质和相交线性质计算交点坐标的步骤:- 确定已知条件,例如已知两条直线的斜率和截距- 判断两条直线是否平行或相交- 如果两条直线平行,则无交点;如果两条直线相交,则进行下一步计算- 根据已知条件利用平行线性质和相交线性质计算交点坐标4. 利用向量法计算交点坐标的步骤:- 确定已知条件,例如已知两条直线上的两个点- 利用已知条件构建向量方程- 解向量方程得到交点坐标5. 利用解方程组的方法计算交点坐标的步骤:- 确定已知条件,例如已知两条直线的方程式- 将两条直线的方程式联立成一个方程组- 解方程组得到交点坐标常考题型练题1. 题目:已知直线L1过点A(2, 3)和点B(5, 7),直线L2过点C(1, -4)和点D(3, 1),求直线L1和直线L2的交点坐标。
答案:直线L1的斜率为(7-3)/(5-2)=4/3,直线L2的斜率为(1-(-4))/(3-1)=5/2。
由于两条直线的斜率不相等,所以它们相交。
利用斜率和已知点得到直线L1的方程为3x-2y=-3,直线L2的方程为2x-5y=14。
将两条直线的方程式联立,解方程组得到交点坐标为(3, 1)。
2. 题目:已知直线L1过点A(2, -1)和点B(6, 3),直线L2过点C(-1, 4)和点D(5, -2),求直线L1和直线L2的交点坐标。
答案:直线L1的斜率为(3-(-1))/(6-2)=1,直线L2的斜率为(-2-4)/(5-(-1))=-1。
平行线与相交线
知识要点
一.余角、补角、对顶角
1,余角:如果两个角的和是直角,那么称这两个角互为余角.
2,补角:如果两个角的和是平角,那么称这两个角互为补角.
3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.
4,互为余角的有关性质:
①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;
②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.
5,互为补角的有关性质:
①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.
②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.
6,对顶角的性质:对顶角相等.
二.同位角、内错角、同旁内角的认识及平行线的性质
7,同一平面内两条直线的位置关系是:相交或平行.
8,“三线八角”的识别:
三线八角指的是两条直线被第三条直线所截而成的八个角.
正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同位”;
内错角要抓住“内部,两旁”;
同旁内角要抓住“内部、同旁”.
三.平行线的性质与判定
9,平行线的定义:在同一平面内,不相交的两条直线是平行线.
10,平行线的性质:
两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.
11,如果两条直线都与第三条直线平行,那么这两条直线互相平行.
12,平行线的判定:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
如果内错角相等.那么这两条直线平行;
如果同旁内角互补,那么这两条直线平行.
这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.
15,常见的几种两条直线平行的结论:
(1)两条平行线被第三条直线所截,一组同位角的角平分线平行;
(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.
四.尺规作图
16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.
考点例析:
题型一 互余与互补
例1(内江市)一个角的余角比它的补角的1
2少20°.则这个角为( )
A.30°
B.40°
C.60°
D.75°
题型二 平行线的性质与判定
例2(盐城市)已知:如图1,l 1∥l 2,∠1=50°,则∠2的度数是( )
A.135°
B.130°
C.50°
D.40°
例3(重庆市)如图2,已知直线l 1∥l 2,∠1=40°,那么∠2= 度.
例4(烟台市)如图3,已知AB ∥CD ,∠1=30°,∠2=90°,则∠3等于( )
A.60°
B.50°
C.40°
D.30°
例5(南通市)如图4,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于( )
A.36°
B.54°
C.72°
D.108°
题型三 尺规作图
例7(长沙市)如图7,已知∠AOB 和射线O ′B ′,用尺规作图法作∠A ′O ′B ′=∠AOB (要求保留作图痕迹).
相交线与平行线测试题
一、选择题(本大题共12小题,每小题3分,共36分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)
1.下列说法中,正确的是( )
A .一条射线把一个角分成两个角,这条射线叫做这个角的平分线;
B .P 是直线L 外一点,A 、B 、
C 分别是L 上的三点,已知PA=1,PB=2,PC=3,则点P•到L 的距离一定是1;
C .相等的角是对顶角;
D .钝角的补角一定是锐角.
2.如图1,直线AB 、CD 相交于点O ,过点O 作射线OE ,则图中的邻补角一共有( )
A .3对
B .4对
C .5对
D .6对 A
O B 图
7
D C 图2 图1 F F E
(1) (2) (3)
3.若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()
A.40° B.140° C.40°或140° D.不确定
4.如图,哪一个选项的右边图形可由左边图形平移得到()
5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()
A.a∥b,b∥c; B.a⊥b,b⊥c;
C.a⊥c,b∥c; D.c截a,b所得的内错角的邻补角相等
6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;
(4)∠4=∠7,其中能判定a∥b的条件的序号是()
A.(1)、(2) B.(1)、(3) C.(1)、(4) D.(3)、(4)
7.如图3,若AB∥CD,则图中相等的内错角是()
A.∠1与∠5,∠2与∠6; B.∠3与∠7,∠4与∠8;
C.∠2与∠6,∠3与∠7; D.∠1与∠5,∠4与∠8
8.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°
(4) (5) (6)
9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为() A.1 B.2 C.3 D.4
10.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°
11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()
A.1个 B.2个 C.3个 D.4个
12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()
A.30° B.70° C.30°或70° D.100°
二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)
13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是
________.
14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:
(1)∵∠1=∠ABC(已知),
∴AD∥______
(2)∵∠3=∠5(已知),
∴AB∥______,
(_______________________________)
(3)∵∠ABC+∠BCD=180°(已知),
∴_______∥________,
(________________________________)
16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.
17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为_________.
(7) (8) (9)
18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度.
19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43
°,
•则∠2=_______度.
20.如图,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是
________.
三、解答题(本大题共6小题,共40分,解答应写出文字说明,•证明过程或演算步骤)
22.(7分)如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.(6分)如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).
24.(6分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.
25.(7分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.
26.(8分)如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.。