无梁长冲程抽油机设计
- 格式:doc
- 大小:1.08 MB
- 文档页数:45
本科毕业设计(论文)通过答辩摘要无梁长冲程抽油机是一种大载荷、长冲程、低冲次及自动化程度高、方便节能的抽油机。
因此,研究它对于提高采油效率,降低采油成本有相当重要的作用。
本次设计采用双电机轮流工作,从而控制抽油杆的上升和下降。
所选用的两个电磁调速电机之间用同步齿形带连接。
由于电机空载启动,其启动电流较小,减小了电机对电网的冲击,抗电网电流波动能力增强,功率因数提高。
电机输出的功率通过V带轮传递给减速器,并且通过减速器对电机输出功率进行调整,然后通过链轮链条传递给抽油杆,最终把电机的旋转运动转化为抽油杆的上升和下降运动。
因此,本次设计的主要内容有换向装置方案的选取,电磁调速电机的选取,以及同步齿形带和减速器的设计:其主要包括V带设计、齿轮设计和轴的设计。
并且通过以上设计达到最终提高采油效率,降低采油成本的目的。
所以,本次设计的无梁长冲程抽油机是目前较为理想的机电一体化产品。
关键字:无梁长冲程抽油机;电磁调速电机;同步齿形带;减速器;机电一体化I本科毕业设计(论文)通过答辩ABSTRACTThe beamless long stroke pumping unit is a big load, long stroke a nd low times and high degree of automation, energy-saving convenience of the pumping unit. Therefore, the study has helped to raise production efficiency, lower production costs are an important role.This case is that two motors work alter natively. Then,they can control rod up and down. Selected two electromagnetic speed synchronous motors with toothed belts connected. As empty motor launch, starting current smaller, reducing the electrical power grid for the impact Anti - Electricity grid fluctuations capacity and improve power factor. Exports of electrical power through the V-pulley transmission to the reducer, and by the motor reducer output adjustment then transmitted to the sprocket chain rod and eventually motor rotating rod into the rise and fall c ampaign. Therefore, the current design of the main contents of the program for device selection, speed electromagnetic motor selection, and the synchronous belt and gear reducer design : its main V-belt design, the design and gear shaft design and calculation. Through the above, design and enhance the ultimate recovery efficiency and lower production cost. Therefore, the current design of the beam without long stroke pumping unit is the ideal integration of mechatronic products.Keywords:beamless long-stroke pumping unit; solenoid operated speed regulating motor; timing belt; Reducer; Mechatronic.II本科毕业设计(论文)通过答辩目录摘要 (I)ABSTRACT (II)1.绪论 ····························································································· - 1 - 1.1无梁长冲程抽油机设计的背景及目的 ······································ - 1 - 1.2无梁长冲程抽油机设计的必要性 ············································· - 2 - 1.3无梁长冲程抽油机国内外现状和发展趋势 ······························· - 3 -1.4无梁长冲程抽油机的特点························································ - 4 -2.总体设计 ····················································································· - 5 - 2.1方案优选 ················································································ - 5 - 2.2换向装置方案的选取 ······························································ - 5 -2.2.1无梁长冲程抽油机的换向方式的分类 ······························· - 5 -2.2.2在选取方案时主要考虑的问题·········································· - 6 -2.2.3换向方案·········································································· - 7 - 2.3总体方案设计········································································· - 9 -2.3.1总体方案·········································································· - 9 -2.3.2抽油机的工作原理(控制路线) ·····································- 11 -3.结构设计 ····················································································- 12 - 3.1电磁调速电动机 ····································································- 12 -3.1.1概论················································································- 12 -3.1.2电磁转差离合器的结构 ···················································- 12 -3.1.3电磁转差离合器的工作原理 ············································- 13 -3.1.4电磁调速电动机的机械特性 ············································- 14 -3.1.5传递效率·········································································- 17 - 3.2电机的选择 ···········································································- 18 - 3.3传动比分配 ···········································································- 20 - 3.4同步齿带设计········································································- 20 - 3.5计算传动轴的运动和动力参数 ···············································- 24 -III本科毕业设计(论文)通过答辩3.6V带设计·················································································- 25 - 3.7齿轮设计 ···············································································- 28 - 3.8轴的设计计算········································································- 33 -3.9链传动选择 ···········································································- 38 -4.结论 ···························································································- 39 - 谢辞 ·····························································································- 40 - 参考文献························································································- 41 -IV本科毕业设计(论文)通过答辩1.绪论1.1无梁长冲程抽油机设计的背景及目的抽油机是构成“三抽”(抽油机、抽油杆、抽油泵)设备体系的重要组成部分。
中国石化无游梁式抽油机采购技术规范目录1.总则 (1)2.执行标准 (1)3.命名规则 (1)4.基本参数 (2)5.技术要求 (2)6.产品试验方法及检验规则 (7)7.标志、包装和贮存 (8)8.产品质量保证 (9)9.特殊要求 (10)10.技术服务 (10)1.总则为做好中国石化无游梁式抽油机的采购工作,统一中国石化无游梁式抽油机采购技术要求,特制订本技术规范。
本技术规范规定了无游梁式抽油机的结构型式、产品分类、基本参数、技术要求、试验方法和检验规则、标志、包装、质量要求等。
本技术规范适用于中国石化集团公司各下属企业及中国石化股份公司各分子公司的相关无游梁式抽油机采购。
2.执行标准SY/T 6729-2008无游梁式抽油机API spec 11E 抽油机规范JB/T 5000.1~5000.15 重型机械通用技术条件GB/T 15753 圆弧圆柱齿轮精度GB/T 2828 逐批检查计数抽样程序及抽样表GB/T 13306 标牌以上标准不能覆盖的其它结构形式无游梁式抽油机的基本技术参数:额定悬点载荷、冲程、冲次、减速箱额定扭矩应符合SY/T 6729-2008 《无游梁式抽油机》规定,并且该机型应包含在生产企业取得的全国工业产品生产许可证所列范围之内。
3.命名规则根据SY/T 6729-2008的代号规则,本规范的代号依据见表1。
表1无游梁式抽油机代号无游梁抽油机中机械换向方式抽油机按照额定载荷+抽油机类别+换向方式进行命名,电机换向抽油机按照额定载荷+换向方式进行命名,见表2,对于无现场应用类型暂不进行命名规范。
表2 无游梁式抽油机命名如10型塔架钢丝绳型重力平衡无游梁抽油机按照简化命名要求可简化为10型钢丝绳链条换向抽油机;600型塔架宽带型重力平衡无游梁抽油机按照简化命名要求可简化为10型宽带链条换向抽油机;10型塔架直线电机型重力平衡无游梁抽油机按照简化命名要求可简化为10型直线电机换向抽油机;10型塔架变频调速电机型重力平衡无游梁抽油机按照简化命名要求可简化为10型旋转电机换向抽油机。
无梁长冲程抽油机设计一.题目来源及类型题目来源:教师科研课题题目类型:毕业设计二.研究目的及意义随着油田的开发和铸、注水,使得下泵深度和排液量不断增加,同时经常出现较为复杂的开采条件:稠油、高粘、多蜡、多砂、水淹和强烈腐蚀等情况,因此,采油工艺对有杆抽油设备提出了低冲次大泵深抽的要求,游梁式抽油机由于其四连杆机构的传动形式,显示它不能适应上述要求。
第一,游梁式抽油机减速器输出轴扭矩和抽油机冲程长度成正比,冲程长度大,减速器输出轴扭矩大,生产制造成本上升。
第二,游梁式抽油机四连杆传动机构,决定了驴头运动的不均匀性,抽油机工作时悬点有较大的加速度。
为了避免加速度过大,四连杆机构的游梁摆角以及曲柄—连杆比都不能太大,整机的轮廓尺寸和重量显著增大。
为了减小抽油机的轮廓尺寸和重量,改善技术性能和提高技术经济指标,满足低冲次长冲程的要求,早在50年代各国就已开始研制无游梁抽油机。
无梁长冲程抽油机是一种无游梁,带有链条增程机构的长冲程抽油机,属于石油开采生产设备。
其运动性能优,整机重量小,调整平衡容易、节约用电、结构紧凑、减速器小等优点。
因此,如何从增大抽油机的冲程和无梁的设计,提高工作效率,设计的合理性、可靠性入手,同时在设计时考虑如何在允许的情况下简化结构设计,提高工作可靠性等方面来对机械设计是现代机械设计理论的重要内容之一,也是本次设计的重要内容之一。
而且在当今社会正面临着资源紧张,能源短缺的现实问题,所以此次设计也必须考虑设计的经济性和对环境的保护等问题。
三.国内外现状和发展趋势与研究的主攻方向。
国内外现状:(1)近几年来,我国抽油井数量逐年增多,用常规游梁抽油机开发抽油,采油量、泵消耗能、采油成本等各项技术的经济指标较差,因而阻碍了常规游梁抽油机的技术发展.为了更经济更合理地开发我国储油资源,必须大力开发我国的无游梁长冲程抽油机。
(2)对于低压油田,可用小泵深抽的方法提高原油产量。
胜利油田十年前实施深抽的油井有好几百口,增产原油选几十万吨.此外,江苏、中原、华北等油田应用深抽技术也取得了较好的经济效益.为满足小泵深抽的需要,我国急需发展无游梁长冲程抽油机。
无游梁长冲程抽油机控制系统世界石油资源开发至今,机械采油方式仍占有主导地位,而有杆抽油机井又占机械采油井的90 %以上。
就目前国内油田而言, 在机械采油井中, 游梁抽油机仍为主要机型。
它以结构简单、使用维护简便、宜于在全天候状态下工作等优点而被广泛应用。
然而,常规游梁式抽油机冲程短,冲次快,而且冲程不可调,载荷小,能耗大,不能适应油井深抽工艺的需要, 已成为困扰油田生产及增效节支的一大问题。
长冲程抽油机具有较好的抽油性能,能提高产量、降低采油成本、提高经济效益等优点,是抽油机发展的主流和方向。
无游梁长冲程抽油机介绍无游梁长冲程抽油机是一种无游梁式塔架结构长冲程抽油机,没有游梁、不采用曲柄连杆机构换向,不采用增大冲程机构,利用抽油机本身的机构特性,实现长冲程抽油和超长冲程抽油。
除了保持游梁抽油机原有的诸多优点外,还具有长冲程、低冲次、节能、大载荷、适应性强、抽油杆磨损小、排量稳定、动载荷小等特点。
采用电动机直接驱动滚筒缠绕或放开皮带实现抽油杆的上下抽油运动,克服了链条式抽油机链条易磨损需润滑密封等问题,也解决了机械换向和液压换向抽油机换向机构易损坏的问题,具有传动结构简单,效率高,系统可靠性高的优点。
无游梁长冲程抽油机控制系统采用可编程控制器(PLC)为控制核心,通过控制变频器实现电动机正反转的直接驱动方案,有效简化了机械结构,大大提高了总体效率。
利用PLC 实现长冲程、低冲次,冲程、冲次、上下行速比可调、节能、大载荷和适应性强、可靠性高等特点。
图1 现场图片图2 系统框图1—抽油杆;2—悬绳器;3—换向轮;4—传感器;5—配重;6—电控系统;7—基础;8—电缆;9—电动机及减速机构;模型及控制系统结构(CompactLogix )无游梁长冲程抽油机模型采用了与实际系统相同机械结构,包括电动机、电控刹车、滚筒、皮带、换向轮、零位开关、软件及硬件行程开关,并设计了独特的负载,利用汽缸和活塞真实地模拟了井下的负载。
长冲程节能液压抽油机的创新设计李振河;宋锦春;黄裘俊【摘要】由于长冲程液压抽油机具有采油效率高、运行平稳和经济效益高等优点,在国内外均得到重视。
基于此,创新地设计了一种新型长冲程节能液压抽油机,该机采用了双井平衡结构,使得一侧抽油杆下降的重力势能和动能直接为另一侧抽油杆的上升提供动力,从而减小了装机功率,实现了系统的连续性抽油;同时利用比例流量调速控制原理,使压力和流量同时满足负载的要求,并实时做出适应调节,达到较高的控制精度,产生了显著的节能效果。
%Long-stroke hydraulic pumping units have been valued at home and abroad because of the merits such as high efficiency of exploiting oil, steady running, good economic benefits and so on. A new long-stroke energy-sav-ing hydraulic pumping unit was designed innovatively based on this. Adopting balanced structure of Double Wells makes the potential energy of the downward sucker rod at one side supply power for rising of the sucker rod at the other side, which decreases the power of installation and realizes continuous pumping oil. At the same time, utilizing the technology of proportional flow control principle for adjusting speed makes the pressure and flow meet the re-quirement of load simultaneously and makes real-time adaptive adjustment, which reaches higher precision of con-trol and brings remarkable effect of energy-saving.【期刊名称】《流体传动与控制》【年(卷),期】2016(000)001【总页数】4页(P24-27)【关键词】液压抽油机;长冲程;双井平衡;节能【作者】李振河;宋锦春;黄裘俊【作者单位】东北大学机械工程与自动化学院液压与气动研究所辽宁沈阳110004;东北大学机械工程与自动化学院液压与气动研究所辽宁沈阳 110004;东北大学机械工程与自动化学院液压与气动研究所辽宁沈阳 110004【正文语种】中文【中图分类】TH137与常规游梁式抽油机相比,液压抽油机具有结构较紧凑、重量较轻、成本低、运行平稳、易于实现长冲程及冲次调节和安全保护,以及节能效果明显等优点,特别适合于滩涂、海上平台和山区的采油作业。
基于Rockwell PLC的无游梁长冲程抽油机模型控制系统的
设计
刘慧芳;谌海云;刘慧芬;林丽君
【期刊名称】《中国仪器仪表》
【年(卷),期】2010(000)008
【摘要】设计一套以Rockwell公司生产的Compact Logix5332E控制器为核心,利用PowerFlex40变频器进行变频控制实现电动机正反转的无游梁长冲程抽油机模型控制系统,具有冲程和冲次可调、节能、载荷大、适应性强和可靠性高等特点.【总页数】4页(P56-58,61)
【作者】刘慧芳;谌海云;刘慧芬;林丽君
【作者单位】西南石油大学,四川成都,610500;西南石油大学,四川成都,610500;中国石油四川石化有限责任公司,四川,彭州,611930;西南石油大学,四川成都,610500【正文语种】中文
【相关文献】
1.基于Rockwell PLC-5温度控制系统实验设计与实现 [J], 徐荣华;谢育德;宋亚男
2.基于Rockwell PLC的电梯模型控制系统的设计 [J], 谌海云;刘晓伟;武占奎;李俊兰
3.基于Rockwell PLC的输煤控制系统设计 [J], 王俊橙;郭剑
4.无游梁长冲程抽油机变频控制系统设计 [J], 杨道锴;谌海云;吉宁
5.基于PLC的无游梁长冲程抽油机变频控制系统 [J], 林景波;叶雪荣;梁慧敏;翟国富
因版权原因,仅展示原文概要,查看原文内容请购买。
摘要无梁长冲程抽油机是一种大载荷、长冲程、低冲次及自动化程度高、方便节能的抽油机。
因此,研究它对于提高采油效率,降低采油成本有相当重要的作用。
本次设计采用双电机轮流工作,从而控制抽油杆的上升和下降。
所选用的两个电磁调速电机之间用同步齿形带连接。
由于电机空载启动,其启动电流较小,减小了电机对电网的冲击,抗电网电流波动能力增强,功率因数提高。
电机输出的功率通过V带轮传递给减速器,并且通过减速器对电机输出功率进行调整,然后通过链轮链条传递给抽油杆,最终把电机的旋转运动转化为抽油杆的上升和下降运动。
因此,本次设计的主要内容有换向装置方案的选取,电磁调速电机的选取,以及同步齿形带和减速器的设计:其主要包括V带设计、齿轮设计和轴的设计。
并且通过以上设计达到最终提高采油效率,降低采油成本的目的。
所以,本次设计的无梁长冲程抽油机是目前较为理想的机电一体化产品。
关键字:无梁长冲程抽油机;电磁调速电机;同步齿形带;减速器;机电一体化ABSTRACTThe beamless long stroke pumping unit is a big load, long stroke a nd low times and high degree of automation, energy-saving convenience of the pumping unit. Therefore, the study has helped to raise production efficiency, lower production costs are an important role.This case is that two motors work alter natively. Then,they can control rod up and down. Selected two electromagnetic speed synchronous motors with toothed belts connected. As empty motor launch, starting current smaller, reducing the electrical power grid for the impact Anti - Electricity grid fluctuations capacity and improve power factor. Exports of electrical power through the V-pulley transmission to the reducer, and by the motor reducer output adjustment then transmitted to the sprocket chain rod and eventually motor rotating rod into the rise and fall c ampaign. Therefore, the current design of the main contents of the program for device selection, speed electromagnetic motor selection, and the synchronous belt and gear reducer design : its main V-belt design, the design and gear shaft design and calculation. Through the above, design and enhance the ultimate recovery efficiency and lower production cost. Therefore, the current design of the beam without long stroke pumping unit is the ideal integration of mechatronic products.Keywords:beamless long-stroke pumping unit; solenoid operated speed regulating motor; timing belt; Reducer; Mechatronic.目录摘要 (I)ABSTRACT (II)1.绪论 ··········································································· - 1 - 1.1无梁长冲程抽油机设计的背景及目的 ······························· - 1 - 1.2无梁长冲程抽油机设计的必要性····································· - 2 - 1.3无梁长冲程抽油机国内外现状和发展趋势 ························· - 3 -1.4无梁长冲程抽油机的特点 ············································· - 4 -2.总体设计 ····································································· - 5 - 2.1方案优选································································· - 5 - 2.2换向装置方案的选取 ·················································· - 5 -2.2.1无梁长冲程抽油机的换向方式的分类 ························· - 5 -2.2.2在选取方案时主要考虑的问题 ·································· - 6 -2.2.3换向方案···························································· - 7 - 2.3总体方案设计 ··························································· - 9 -2.3.1总体方案···························································· - 9 -2.3.2抽油机的工作原理(控制路线) ······························- 11 -3.结构设计 ···································································- 12 - 3.1电磁调速电动机 ······················································- 12 -3.1.1概论 ·······························································- 12 -3.1.2电磁转差离合器的结构·········································- 12 -3.1.3电磁转差离合器的工作原理···································- 13 -3.1.4电磁调速电动机的机械特性···································- 14 -3.1.5传递效率··························································- 17 - 3.2电机的选择····························································- 18 - 3.3传动比分配····························································- 20 - 3.4同步齿带设计 ·························································- 20 - 3.5计算传动轴的运动和动力参数 ·····································- 24 -3.6V带设计 ································································- 25 - 3.7齿轮设计·······························································- 28 - 3.8轴的设计计算 ·························································- 33 -3.9链传动选择····························································- 38 -4.结论·········································································- 39 - 谢辞 ··········································································- 40 - 参考文献······································································- 41 -1.绪论1.1无梁长冲程抽油机设计的背景及目的抽油机是构成“三抽”(抽油机、抽油杆、抽油泵)设备体系的重要组成部分。