2016广东 中考数学押题7(含答案)
- 格式:doc
- 大小:2.21 MB
- 文档页数:9
2016年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C. D.﹣2.(3分)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a3.(3分)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形4.(3分)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C. 2.77×107 D.2.77×1085.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+16.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元7.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.9.(3分)已知方程x﹣2y+3=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.1510.(3分)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)9的算术平方根是.12.(4分)分解因式:m2﹣4= .13.(4分)不等式组的解集是.14.(4分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).15.(4分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .16.(4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PA、PC,若PA=a,则点A到PB 和PC的距离之和AE+AF= .三、解答题(共3小题,每小题6分,满分18分)17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.18.(6分)先化简,再求值:•+,其中a=﹣1.19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.四、解答题(共3小题,每小题7分,满分21分)20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(共3小题,每小题9分,满分27分)23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q();(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.2016年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•黔东南州)﹣2的相反数是()A.2 B.﹣2 C. D.﹣【考点】相反数.菁优网版权所有【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(3分)(2016•广东)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a【考点】有理数大小比较.菁优网版权所有【分析】根据数轴判断出a,b与零的关系,即可.【解答】根据数轴得到a<0,b>0,∴b>a,故选A【点评】此题是有理数大小的比较,主要考查了识别数轴上的点表示的数,也是解本题的难点.3.(3分)(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形【考点】中心对称图形.菁优网版权所有【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2016•广东)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C. 2.77×107 D.2.77×108【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27700000用科学记数法表示为2.77×107,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2016•广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【考点】正方形的性质.菁优网版权所有【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.6.(3分)(2016•广东)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元【考点】中位数.菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2016•广东)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)8.(3分)(2016•广东)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.【考点】锐角三角函数的定义;坐标与图形性质.菁优网版权所有【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可.【解答】解:由勾股定理得OA==5,所以cosα=.故选D.【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出OA的长度是解题的关键.9.(3分)(2016•广东)已知方程x﹣2y+3=8,则整式x ﹣2y的值为()A.5 B.10 C.12 D.15【考点】等式的性质.菁优网版权所有【分析】根据等式的性质1:等式两边同时加上﹣3,可得x ﹣2y=5.【解答】解:由x﹣2y+3=8得:x﹣2y=8﹣3=5,故选A【点评】本题考查了等式的性质,非常简单,属于基础题;熟练掌握等式的性质是本题的关键,也运用了整体的思想.10.(3分)(2016•广东)如图,在正方形ABCD中,点P 从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.菁优网版权所有【专题】动点型;函数思想.【分析】分P在AB、BC、CD、AD上四种情况,表示出y 与x的函数解析式,确定出大致图象即可.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax;当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;当P在AD边上运动时,y=a(4a﹣x)=﹣ax﹣2a2,大致图象为:故选C.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2016•广东)9的算术平方根是 3 .【考点】算术平方根.菁优网版权所有【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.(4分)(2016•广东)分解因式:m2﹣4= (m+2)(m﹣2).【考点】因式分解-运用公式法.菁优网版权所有【专题】计算题.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.13.(4分)(2016•广东)不等式组的解集是﹣3<x≤1.【考点】解一元一次不等式组.菁优网版权所有【专题】计算题.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(4分)(2016•广东)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是10πcm(计算结果保留π).【考点】圆锥的计算;弧长的计算.菁优网版权所有【分析】根据的长就是圆锥的底面周长即可求解.【解答】解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为:10π.【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长,难度不大.15.(4分)(2016•广东)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .【考点】矩形的性质;翻折变换(折叠问题).菁优网版权所有【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE 得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.16.(4分)(2016•广东)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PA、PC,若PA=a,则点A 到PB和PC的距离之和AE+AF= a .【考点】圆周角定理;勾股定理;解直角三角形.菁优网版权所有【分析】如图,连接OB、OC.首先证明∠AOB=∠BOC=∠COD=60°,推出∠APB=∠AOB=30°,∠APC=∠AOC=60°,根据AE=AP•sin30°,AF=AP•sin60°,即可解决问题.【解答】解:如图,连接OB、OC.∵AD是直径,AB=BC=CD,∴==,∴∠AOB=∠BOC=∠COD=60°,∴∠APB=∠AOB=30°,∠APC=∠AOC=60°,在Rt△APE中,∵∠AEP=90°,∴AE=AP•sin30°=a,在Rt△APF中,∵∠AFP=90°,∴AF=AP•sin60°=a,∴AE+AF=a.故答案为a.【点评】本题考查圆周角定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用直角三角形解决问题,属于中考常考题型.三、解答题(共3小题,每小题6分,满分18分)17.(6分)(2016•广东)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.菁优网版权所有【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1的值是多少即可.【解答】解:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1=3﹣1+2=2+2=4.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.(6分)(2016•广东)先化简,再求值:•+,其中a=﹣1.【考点】分式的化简求值.菁优网版权所有【专题】计算题;分式.【分析】原式第一项约分后两项通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•+=+==,当a=﹣1时,原式===+1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2016•广东)如图,已知△ABC中,D为AB 的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.【考点】三角形中位线定理;作图—基本作图.菁优网版权所有【分析】(1)作线段AC的垂直平分线即可.(2)根据三角形中位线定理即可解决.【解答】解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.【点评】本题考查基本作图、三角形中位线定理等知识,解题的关键是掌握线段垂直平分线的作法,记住三角形的中位线定理,属于中考常考题型.四、解答题(共3小题,每小题7分,满分21分)20.(7分)(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【考点】分式方程的应用.菁优网版权所有【分析】(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.(7分)(2016•广东)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.【考点】勾股定理;含30度角的直角三角形.菁优网版权所有【分析】在Rt△ACD中,利用30度角的性质和勾股定理求CD的长;同理在Rt△ECD中求FC的长,在Rt△FCG 中求CH的长;最后在Rt△HCI中,利用30度角的性质和勾股定理求CI的长.【解答】解:在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°﹣30°=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,在Rt△ACD中,AC=a,∴AD=a,由勾股定理得:CD==,同理得:FC=×=,CH=×=,在Rt△HCI中,∠I=30°,∴HI=2HC=,由勾股定理得:CI==,答:CI的长为.【点评】本题考查了勾股定理和直角三角形含30°角的性质,在直角三角形中,30°角所对的直角边等于斜边的一半,这一性质经常运用,必须熟练掌握;同时在运用勾股定理和直角三角形含30°角的性质时,一定要书写好所在的直角三角形,尤其是此题多次运用了这一性质.22.(7分)(2016•广东)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108 度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480 人.【考点】条形统计图;用样本估计总体;扇形统计图.菁优网版权所有【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1)这次活动一共调查学生:80÷32%=250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),补全条形图如图:(3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);故答案为:(1)250;(3)108;(4)480.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(共3小题,每小题9分,满分27分)23.(9分)(2016•广东)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q(2,1 );(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.【考点】反比例函数与一次函数的交点问题;待定系数法求二次函数解析式.菁优网版权所有【分析】(1)直接利用图象上点的坐标性质进而代入求出即可;(2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,于是得到PA=1,OA=2,根据点Q与点P关于直线y=x 成轴对称,得到直线y=x垂直平分PQ,根据线段垂直平分线的性质得到OP=OQ,根据全等三角形的性质得到QB=PA=1,OB=OA=2,于是得到结论;(3)设抛物线的函数解析式为y=ax2+bx+c,把P、Q、N (0,)代入y=ax2+bx+c,解方程组即可得到结论.【解答】解:(1)∵直线y=kx+1与双曲线y=(x>0)交于点A(1,m),∴m=2,把A(1,2)代入y=kx+1得:k+1=2,解得:k=1;(2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,则PA=1,OA=2,∵点Q与点P关于直线y=x成轴对称,∴直线y=x垂直平分PQ,∴OP=OQ,∴∠POA=∠QOB,在△OPA与△OQB中,,∴△POA≌△QOB,∴QB=PA=1,OB=OA=2,∴Q(2,1);故答案为:2,1;(3)设抛物线的函数解析式为y=ax2+bx+c,∵过P、Q二点的抛物线与y轴的交点为N(0,),∴,解得:,∴抛物线的函数解析式为y=﹣x2+x+,∴对称轴方程x=﹣=.【点评】本题考查了一次函数和反比例函数的交点问题,全等三角形的判定和性质,解题需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,熟练掌握待定系数法求函数的解析式是解题的关键.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.【考点】相似形综合题.菁优网版权所有【分析】(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;(2)根据S△AOC=,得到S△ACF=,通过△ACF∽△DAE,求得S△DAE=,过A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴=,∵△ACF∽△DAE,∴=()2=,∴S△DAE=,过A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DE•AH=וDE2=,∴DE=;(3)∵∠EOF=∠AOB=120°,在△AOF与△BOE中,,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,切线的判定和性质,圆周角定理,直角三角形的性质,证得△ACF∽△DAE是解题的关键.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.【考点】四边形综合题.菁优网版权所有【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQOPQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2;【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.。
绝密★启用前广东省2016年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的相反数是( )A .2B .2-C .12D .12- 2.如图,a 与B 的大小关系是( )A .a b <B .a b >C .a b =D .2b a =3.下列所述图形中,是中心对称图形的是( )A .直角三角形B .平行四边形C .正五边形D .正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( ) A .70.27710⨯B .80.27710⨯ C .72.710⨯D .82.7710⨯5.如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为 ( ) A .2B .22C .21+D .221+6.某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( )A .4000元B .5000元C .7000元D .10000元 7.在平面直角坐标系中,点()2,3P --所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------________________ _____________8.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )A .34 B .43 C .35D .459.已知方程238x y -+=,则整式2x y -的值 为( )A .5B .10C .12D .1510.如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,则APC △的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是( )ABCD第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.9的算术平方根是 .12.分解因式:24m -= .13.不等式组122,2132x x x x --⎧⎪-⎨⎪⎩≤>的解集是 .14.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12cm ,13cm OA =,则扇形AOC 中»AC 的长是 cm (计算结果保留π).15.如图,矩形ABCD 中,对角线23AC =,E 为BC 边上一点,3BC BE =.将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的'B 处.则AB = .16.如图,点P 是四边形ABCD 外接圆O e 上任意一点,且不与四边形顶点重合.若AD 是O e 的直径,AB BC CD ==,连接PA ,PB ,PC .若PA a =,则点A 到PB 和PC 的距离之和AE AF += .三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:011|3|(2016sin30)()2---+--o .18.(本小题满分6分) 先化简,再求值:223626699a a a a a a +-+++-g ,其中31a =-.19.(本小题满分6分)如图,已知ABC △中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法); (2)在(1)条件下,若4DE =,求BC 的长.20.(本小题满分7分)某工程队修建一条长1200m 的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务. (1)求这个工程队原计划每天修道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(本小题满分7分)如图,Rt ABC △中,30B ∠=o ,90ACB ∠=o ,CD AB ⊥交AB 于点D .以CD 为较短的直角边向CDB △的同侧作Rt DEC △,满足30E ∠=o ,90DCE ∠=o ,再用同样的方法作Rt FGC △,90FCG ∠=o ,继续用同样的方法作Rt HIC △,90HCI ∠=o .若AC a =,求CI 的长.22.(本小题满分7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了 名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度; (4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人.23.(本小题满分9分)如图,在直角坐标系中,直线1(0)y kx k =+≠与双曲线2y x=(0)x >相交于点(1,)P m . (1)求k 的值;(2)若点Q 与点P 关于直线y x =成轴对称,则点Q 的坐标是Q ( );(3)若过P ,Q 两点的抛物线与y 轴的交点为5(0,)3N ,求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(本小题满分9分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------如图,O e 是ABC △的外接圆,BC 是O e 的直径,30ABC ∠=o .过点B 作O e 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E .过点A 作O e 的切线AF ,与直径BC 的延长线交于点F . (1)求证:ACF DAE △∽△; (2)若3=4AOC S △,求DE 的长; (3)连接EF ,求证:EF 是O e 的切线.25.(本小题满分9分)如图,BD 是正方形ABCD 的对角线,2BC =.边BC 在其所在的直线上平移,将通过平移得到的线段记为PQ ,连接PA ,QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA ,OP .图1图2(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形? (2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设OPB y S ∆=,BP x =(02)x ≤≤,求y 与x 之间的函数关系式,并求出y 的最大值.广东省2016年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】-2的绝对值是2,故选A. 【考点】相反数 2.【答案】A【解析】数轴上从左往右的点表示的数是从小往大的顺序,由图可知b a >,选A . 【考点】数轴,会由数轴上点的位置判断相应数的大小 3.【答案】B【解析】直角三角形既不是中心对称图形也不是轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形.【考点】中心对称图形与轴对称图形 4.【答案】C【解析】科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,727 700000 2.7710⨯ =.故选C. 【考点】科学记数法 5.【答案】B【解析】连结BD ,由勾股定理,得BD =E 、F 为中点,所以,2EF =,所以,正方形EFGH的周长为【考点】三角形的中位线,勾股定理 6.【答案】B【解析】数据由小到大排列,最中间或最中间的两个数的平均数为中位数,所以,中位数为5000元. 【考点】中位数 7.【答案】C【解析】因为点P 的横坐标与纵坐标都是负数,所以,点P 在第三象限. 【考点】平面直角坐标 8.【答案】D【解析】过点A 作AB 垂直x 轴与B ,则3AB =,4OB =,由勾股定理,得5OA =,所以,4cos 5OB OA α==,选D.【考点】三角函数,勾股定理 9.【答案】A【解析】把2x y -看成一个整体,移项,得2=83=5x y --. 【考点】整体思想 10.【答案】C【解析】设正方形的边长为a ,当点P 在AB 上时,2111()222y a a a x ax =-⨯⨯-=,是一次函数,且0a >,所以,排除A 、B 、D ,选C ;当点P 在BC 、CD 、AD 上时,同理可求得是一次函数.【考点】三角形的面积,函数图象第Ⅱ卷二、填空题 11.【答案】3【解析】9的算术平方根为3,注意与平方根概念的区别. 【考点】算术平方根的概念 12.【答案】(2)(2)m m +-【解析】由平方差公式,得22242(2)(2)m m m m -=-=+- 【考点】因式分解,平方差公式 13.【答案】31x -<≤【解析】由122x x -≤-,得1x ≤,由2132x x ->,得3x >-,所以,原不等式组的解集为31x -<≤ 【考点】不等式的解法,不等式组的解法 14.【答案】10π5, 扇形的弧长=圆锥的底面圆周长=2π510π⨯= 【考点】勾股定理,圆锥的侧面展开图,弧长公式15.【解析】由折叠知,三角形ABE 与三角形'E AB 全等,所以,'AB AB =,'BE E B =,9'0A E A B BE ∠=∠=︒,又3BC BE =,有2EC BE =,所以,'2EC E B =,所以,30ACE ∠=︒,60?BAC ∠=,又由折叠知30'AE B B AE ∠=∠=︒,所以,30EAC ECA ∠=∠=︒,所以,EA EC =,又9'0A E B ∠=︒,由等腰三角形性质,知'B 为AC 中点,所以,12B AC AB A '===【考点】三角形的全等的性质,等腰三角形的判定与性质16.【答案】12a 【解析】连结OB 、OC ,因为AB BC CD ==,所以,弧AB 、弧BC 、弧CD 相等,所以,60AOC BOC COD ∠=∠=∠=︒,所以,30CPB APB ∠=∠=︒,所以,1122AE PA a ==,60APC ∠=︒,在直角三角形APF 中,可求得AF =所以,E A AF =+【考点】三角函数,圆的性质定理 三、解答题 17.【答案】4【解析】3124=-+=原式 【考点】实数运算 18.1 【解析】原式=()()()()22336333a a a a a a -+++-+g ()()6233aa a a a =+++2(a 3)(a 3)2a a +=+=当1a =时, 原式1=.【考点】分式的化简与求值 19.【答案】(1)如图DE 即为所求.(2)由三角形中位线定理,知:28BC DE == 【考点】尺规作图,三角形的中位线定理 20.【答案】100米【解析】设(1)这个工程队原计划每天修建道路x 米,得:120012004(150%)x x=++,解得100x = 经检验,100x =是原方程的解答:这个工程队原计划每天修建100米. 【考点】列方程解应用题,分式方程 21.【答案】98a【解析】由题意,知60A EDC GFC IHC ∠=∠=∠=∠=o ,因为AC a =,故sin60DC AC =︒=,同理3sin604CF DC a =︒=,sin60CH CF =︒=,9sin608CI CH a =︒=【考点】三角形的内角和,三角函数的应用 22.【答案】(1)由题意8025032%=人,总共有250名学生. (2)篮球人数25080405575---=人,作图如下(3)依题意得75360108250⨯︒=︒ (4)依题意得15000.32480⨯=(人) 【考点】条形统计图,扇形统计图,统计知识 23.【答案】(1)把P (1,m )代入2y x=,得2m =, ∴P (1,2)把(1,2)代入1y kx =+,得1k =. (2)(2,1)(3)设抛物线的解析式为2y ax bx c =++,得2421421a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得23a =-,1b =,53c = ∴22533y x x =-++, ∴对称轴方程为23132x =÷=.11 / 13【考点】一次函数,反比例函数,二次函数24.【答案】(1)∵BC 为⊙O 的直径,∴90BAC ∠=︒又30ABC ∠=︒,∴60ACB ∠=︒,又OA OC =,∴△OAC 为等边三角形,即60OAC AOC ∠=∠=︒,∵AF 为⊙O 的切线,∴90OAF ∠=︒,∴30CAF AFC ∠=∠=︒,∵DE 为⊙O 的切线,∴90DBC OBE ∠=∠=︒,∴30D DEA ∠=∠=︒,∴D CAF ∠=∠,DEA AFC ∠=∠,∴ACF DAE △∽△;(2)∵△AOC 为等边三角形,∴2AOC S =△, ∴1OA =,∴2BC =,1OB =,又30D BEO ∠=∠=︒,∴BD =,BE =∴DE =(3)如图,过O 作OM ⊥EF 于M ,∵OA OB =,90OAF OBE ∠=∠=︒,BOE AOF ∠=∠,∴OAF OBE △≌△,∴OE OF =,∵120EOF ∠=︒,∴30OEM OFM ∠=∠=︒,∴30OEB OEM ∠=∠=︒,即OE 平分BEF ∠,又90OBE OME ∠=∠=︒,∴OM OB =,12 / 13 ∴EF 为⊙O 的切线.【考点】三角形的相似,三角形的全等,圆的切线的性质与判定定理,三角形的面积公式25.【答案】(1)四边形APQD 为平行四边形;(2)OA OP =,OA ⊥OP ,理由如下:∵四边形ABCD 是正方形,∴AB BC PQ ==,45ABO OBQ ∠=∠=︒,∵OQ ⊥BD ,∴45PQO ∠=︒,∴45ABO OBQ PQO ∠=∠=∠=︒,∴OB OQ =,∴AOB OPQ △≌△,∴OA OP =,AOB POQ ∠=∠∴90AOP BOQ ∠=∠=︒,∴OA ⊥OP ;(3)如图,过O 作OE ⊥BC 于E①如图1,当点P 在点B 右侧时,则2BQ x =+,22x OE +=, ∴1222x y x +=⨯⨯,即()211144y x =+-,又∵02x ≤≤,∴当2x =时,y 有最大值为2;②如图2,当点P 在B 点左侧时,则2BQ x =-,22xOE -=, ∴1222xy x -=⨯⨯,即()211144y x =--+,又∵02x ≤≤,∴当1x =时,y 有最大值为14;综上所述,∴当2x =时,y 有最大值为2;【考点】特殊四边形的判定与性质,三角形的全等,二次函数13/ 13。
九年级数学试卷 第1页(共4页) 九年级数学试卷 第2页(共4页)九年级数学考试试题一、选择题(每小题3分,共30分)1.计算 23+- 的结果是( )A .1 B .1- C . 5 D . 5-2.下列计算正确的是( )A .3362x x x += B .236x x x ⋅=C .632x x x ÷=D .326()x x -=3.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这六次数学测验成绩的众数和中位数分别为( ) A .91,88 B .85,88 C .85,85 D .85,84.5 4.下列交通标志图案是轴对称图形的是( )A .B .C .D .5.一条排水管的截面如图所示,已知排水管的截面圆半径OB =5, 截面圆圆心O 到水面的距离OC 是3,则水面宽AB 是( ) A .3B .4C .5D .86.二元一次方程组⎩⎨⎧=-=+521y x y x 的解是( )A .⎩⎨⎧=-=21y x B .⎩⎨⎧-==12y x C .⎩⎨⎧==12y x D .⎩⎨⎧=-=32y x7.如图,AB 是⊙O 的直径,若10=AB ,6=BC ,则CAB ∠cos 的值为(A .54B .34C .53 D .438.要使式子x -2有意义,则x 的取值范围是( )A .0>xB .2-≥xC .2≤xD .2≥x 9.如图,已知的周长是20cm ,若△ADC 的周长是16cm , 则对角线AC 的长为( ) A .6 cm B .4 cm C .3 cmD .无法计算10.在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是( )二.填空题(每小题4分,共24分)11.分解因式:=-1232x .12.如图所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为BC 边的中点,菱形ABCD 的周长为24 cm ,则OE 的长等于 cm .13.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为___________(结果保留π)14.计算: 2a (a+2b )+(a ﹣2b )2_________.15.如下图,用同样大小的黑色棋子按如图所示的规律摆放:第________图形有2013颗黑色棋子。
绝密★启用前广东省2016年初中毕业生学业考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的相反数是( )A.2B.2-C.12D.12-2.如图,a与B的大小关系是( )A.a b<B.a b>C.a b=D.2b a=3.下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( )A.70.27710⨯B.80.27710⨯C.72.710⨯D.82.7710⨯5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为( )AB.C1D.16.某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( )A.4000元B.5000元C.7000元D.10000元7.在平面直角坐标系中,点()2,3P--所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A.34B.43C.35D.459.已知方程238x y-+=,则整式2x y-的值为( )A.5B.10C.12D.1510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则APC△的面积y与点P运动的路程x之间形成的函数关系图象大致是 ( )A BC D第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)11.9的算术平方根是.12.分解因式:24m-=.13.不等式组122,2132x xx x--⎧⎪-⎨⎪⎩≤>的解集是.毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共22页)数学试卷第2页(共22页)数学试卷 第3页(共22页) 数学试卷 第4页(共22页)14.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12cm ,13cm OA =,则扇形AOC 中AC 的长是 cm (计算结果保留π).15.如图,矩形ABCD 中,对角线AC =,E 为BC 边上一点,3BC BE =.将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的'B 处.则AB = .16.如图,点P 是四边形ABCD 外接圆O 上任意一点,且不与四边形顶点重合.若AD 是O 的直径,AB BC CD ==,连接PA ,PB ,PC .若PA a =,则点A 到PB 和PC的距离之和AE AF += .三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:011|3|(2016sin30)()2---+--.18.(本小题满分6分) 先化简,再求值:223626699a a a a a a +-+++-,其中1a .19.(本小题满分6分)如图,已知ABC △中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法);(2)在(1)条件下,若4DE =,求BC 的长.20.(本小题满分7分)某工程队修建一条长1200m 的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(本小题满分7分)如图,Rt ABC △中,30B ∠=,90ACB ∠=,CD AB ⊥交AB 于点D .以CD 为较短的直角边向CDB △的同侧作Rt DEC △,满足30E ∠=,90DCE ∠=,再用同样的方法作Rt FGC △,90FCG ∠=,继续用同样的方法作Rt HIC △,90HCI ∠=.若AC a=,求CI 的长.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)22.(本小题满分7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了 名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度; (4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人.23.(本小题满分9分)如图,在直角坐标系中,直线1(0)y k x k =+≠与双曲线2y x=(0)x >相交于点(1,)P m .(1)求k 的值;(2)若点Q 与点P 关于直线y x =成轴对称,则点Q 的坐标是Q ( );(3)若过P ,Q 两点的抛物线与y 轴的交点为5(0,)3N ,求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(本小题满分9分) 如图,O 是ABC △的外接圆,BC 是O 的直径,30ABC ∠=.过点B 作O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E .过点A 作O 的切线AF ,与直径BC 的延长线交于点F .(1)求证:ACF DAE △∽△;(2)若AOC S △求DE 的长;(3)连接EF ,求证:EF 是O 的切线.25.(本小题满分9分)如图,BD 是正方形ABCD 的对角线,2BC =.边BC 在其所在的直线上平移,将通过平移得到的线段记为PQ ,连接PA ,QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA ,OP .图1图2(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)(2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设OPB y S ∆=,BP x =(02)x ≤≤,求y 与x 之间的函数关系式,并求出y 的最大值.5 / 11广东省2016年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】-2的绝对值是2,故选A. 【考点】相反数 2.【答案】A【解析】数轴上从左往右的点表示的数是从小往大的顺序,由图可知b a >,选A . 【考点】数轴,会由数轴上点的位置判断相应数的大小 3.【答案】B【解析】直角三角形既不是中心对称图形也不是轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形. 【考点】中心对称图形与轴对称图形 4.【答案】C【解析】科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,727 700000 2.7710⨯ =.故选C. 【考点】科学记数法 5.【答案】B【解析】连结BD,由勾股定理,得BD =E 、F为中点,所以,2EF =EFGH的周长为【考点】三角形的中位线,勾股定理 6.【答案】B【解析】数据由小到大排列,最中间或最中间的两个数的平均数为中位数,所以,中位数为5000元. 【考点】中位数 7.【答案】C【解析】因为点P 的横坐标与纵坐标都是负数,所以,点P 在第三象限. 【考点】平面直角坐标 8.【答案】D数学试卷 第11页(共22页)数学试卷 第12页(共22页)【解析】过点A 作AB 垂直x 轴与B ,则3AB =,4OB =,由勾股定理,得5OA =,所以,4cos 5OB OA α==,选D.【考点】三角函数,勾股定理 9.【答案】A【解析】把2x y -看成一个整体,移项,得2=83=5x y --. 【考点】整体思想 10.【答案】C【解析】设正方形的边长为a ,当点P 在AB 上时,2111()222y a a a x ax =-⨯⨯-=,是一次函数,且0a >,所以,排除A 、B 、D ,选C ;当点P 在BC 、CD 、AD 上时,同理可求得是一次函数. 【考点】三角形的面积,函数图象第Ⅱ卷二、填空题 11.【答案】3【解析】9的算术平方根为3,注意与平方根概念的区别. 【考点】算术平方根的概念 12.【答案】(2)(2)m m +-【解析】由平方差公式,得22242(2)(2)m m m m -=-=+- 【考点】因式分解,平方差公式 13.【答案】31x -<≤【解析】由122x x -≤-,得1x ≤,由2132x x ->,得3x >-,所以,原不等式组的解集为31x -<≤ 【考点】不等式的解法,不等式组的解法 14.【答案】10π5=, 扇形的弧长=圆锥的底面圆周长=2π510π⨯= 【考点】勾股定理,圆锥的侧面展开图,弧长公式 15.【解析】由折叠知,三角形ABE 与三角形'E AB 全等,所以,'AB AB =,'BE E B =,9'0A E A B BE ∠=∠=︒,又3BC BE =,有2EC BE =,所以,'2EC E B =,所以,30ACE ∠=︒,60?BAC ∠=,又由折叠知7 / 1130'AE B B AE ∠=∠=︒,所以,30EAC ECA ∠=∠=︒,所以,EA EC =,又9'0A E B ∠=︒,由等腰三角形性质,知'B 为AC中点,所以,12B AC AB A '===【考点】三角形的全等的性质,等腰三角形的判定与性质 16.【解析】连结OB 、OC ,因为A B B C C D ==,所以,弧AB 、弧BC 、弧CD 相等,所以,60AOC BOC COD ∠=∠=∠=︒,所以,30CPB APB ∠=∠=︒,所以,1122AE PA a ==,60APC ∠=︒,在直角三角形APF中,可求得AF =所以,E A AF =+ 【考点】三角函数,圆的性质定理 三、解答题 17.【答案】4【解析】3124=-+=原式 【考点】实数运算 18.1 【解析】原式=()()()()22336333a a a a a a -+++-+ ()()6233aa a a a =+++2(a 3)(a3)2a a +=+=当1a 时, 原式1=. 【考点】分式的化简与求值 19.【答案】(1)如图数学试卷 第15页(共22页)数学试卷 第16页(共22页)DE 即为所求.(2)由三角形中位线定理,知:28BC DE == 【考点】尺规作图,三角形的中位线定理 20.【答案】100米【解析】设(1)这个工程队原计划每天修建道路x 米,得:120012004(150%)x x=++,解得100x = 经检验,100x =是原方程的解 答:这个工程队原计划每天修建100米. 【考点】列方程解应用题,分式方程 21.【答案】98a【解析】由题意,知60A EDC GFC IHC ∠=∠=∠=∠=,因为AC a =,故sin60DC AC =︒,同理3sin604CF DC a =︒=,sin60CH CF =︒=,9sin608CI CH a =︒= 【考点】三角形的内角和,三角函数的应用 22.【答案】(1)由题意8025032%=人,总共有250名学生. (2)篮球人数25080405575---=人,作图如下(3)依题意得75360108250⨯︒=︒9 / 11(4)依题意得15000.32480⨯=(人) 【考点】条形统计图,扇形统计图,统计知识 23.【答案】(1)把P (1,m )代入2y x=,得2m =, ∴P (1,2)把(1,2)代入1y kx =+,得1k =. (2)(2,1)(3)设抛物线的解析式为2y ax bx c =++,得2421421a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得23a =-,1b =,53c = ∴22533y x x =-++, ∴对称轴方程为23132x =÷=. 【考点】一次函数,反比例函数,二次函数24.【答案】(1)∵BC 为⊙O 的直径,∴90BAC ∠=︒ 又30ABC ∠=︒, ∴60ACB ∠=︒, 又OA OC =,∴△OAC 为等边三角形,即60OAC AOC ∠=∠=︒, ∵AF 为⊙O 的切线, ∴90OAF ∠=︒, ∴30CAF AFC ∠=∠=︒, ∵DE 为⊙O 的切线, ∴90DBC OBE ∠=∠=︒, ∴30D DEA ∠=∠=︒,∴D CAF ∠=∠,DEA AFC ∠=∠, ∴ACF DAE △∽△;(2)∵△AOC 为等边三角形,∴2AOC S ==△, ∴1OA =,数学试卷 第19页(共22页)数学试卷 第20页(共22页)∴2BC =,1OB =, 又30D BEO ∠=∠=︒,∴BD =,BE∴DE =(3)如图,过O 作OM ⊥EF 于M ,∵OA OB =,90OAF OBE ∠=∠=︒,BOE AOF ∠=∠, ∴OAF OBE △≌△, ∴OE OF =, ∵120EOF ∠=︒,∴30OEM OFM ∠=∠=︒,∴30OEB OEM ∠=∠=︒,即OE 平分BEF ∠, 又90OBE OME ∠=∠=︒, ∴OM OB =, ∴EF 为⊙O 的切线.【考点】三角形的相似,三角形的全等,圆的切线的性质与判定定理,三角形的面积公式 25.【答案】(1)四边形APQD 为平行四边形; (2)OA OP =,OA ⊥OP ,理由如下: ∵四边形ABCD 是正方形,∴AB BC PQ ==,45ABO OBQ ∠=∠=︒, ∵OQ ⊥BD , ∴45PQO ∠=︒,∴45ABO OBQ PQO ∠=∠=∠=︒, ∴OB OQ =, ∴AOB OPQ △≌△, ∴OA OP =,AOB POQ ∠=∠ ∴90AOP BOQ ∠=∠=︒, ∴OA ⊥OP ;(3)如图,过O 作OE ⊥BC 于E ①如图1,当点P 在点B 右侧时,11 / 11则2BQ x =+,22x OE +=, ∴1222x y x +=⨯⨯,即()211144y x =+-, 又∵02x ≤≤,∴当2x =时,y 有最大值为2;②如图2,当点P 在B 点左侧时,则2BQ x =-,22x OE -=, ∴1222x y x -=⨯⨯,即()211144y x =--+, 又∵02x ≤≤,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为2;【考点】特殊四边形的判定与性质,三角形的全等,二次函数。
2016年广东省中考数学压轴题1.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?2.如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1。
7m的小明站在大堤A点,测得髙压电线杆顶端点D 的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).3.如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA﹣2|+(OC﹣6)2=0.(1)求A、B、C三点的坐标.(2)把△ABC沿AC对折,点B落在点B1处,AB1与x轴交于点D,求直线BB1的解析式.(3)在直线AC上是否存在点P使PB1+PD的值最小?若存在,请找出点P的位置,并求出PB1+PD的最小值;若不存在,请说明理由.(4)在直线AC上是否存在点P使|PD﹣PB|的值最大?若存在,请找出点P的位置,并求出|PD﹣PB|最大值.4.如图,抛物线y=ax 2+bx+1经过点(2,6),且与直线y=x+1相交于A ,B 两点,点A 在y 轴上,过点B 作BC ⊥x 轴,垂足为点C (4,0).(1)求抛物线的解析式;(2)若P 是直线AB 上方该抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交AB 于点E ,求线段PE 的最大值;(3)在(2)的条件,设PC 与AB 相交于点Q,当线段PC 与BE 相互平分时,请求出点Q 的坐标.5.(本题满分9分)如图,已知直线x y 21=与双曲线xk y =交于A 、B 两点, 点B 的坐标为(-4,—2),C 为第一象限内双曲线xk y =上一点,且点C 在 直线x y 21=的上方. (1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.y xO B A C第5题图参考答案:1。
2015年中考数学试卷及参考答案一、选择题(本大题10小题,每小题3分,共30分) 1.2-=( ) A.2 B.2- C.12 D.12- 2.据国家统计局2014年12月4日发布消息,2014年省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( ) A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=( )A.28x -B.28xC.216x -D.216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C. 0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值围是( ) A.2a ≥ B.2a ≤ C.2a > D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)11. 正五边形的外角和等于 (度). 12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .13. 分式方程321x x=+的解是 . 14. 若两个相似三角形的周长比为2:3,则它们的面积比是 .15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2) 求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1) 求k的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.24. ⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1) 如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点 运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)2015年省初中毕业生学业考试参考答案一、选择题1.【答案】A.2.【答案】B.3.【答案】B.4.【答案】C.5.【答案】A.6.【答案】D.7. 【答案】B.8.【答案】C.9.【答案】D. 【略析】显然弧长为6,半径为3,则16392S =⨯⨯=扇形. 10.【答案】D.二、填空题11. 【答案】360. 12.【答案】6. 13.【答案】2x =. 14.【答案】4:9.15.【答案】1021. 16.【答案】4.【略析】由中线性质,可得AG =2GD , 则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17.【答案】解:(1)(2)0x x --=∴10x -=或20x -=∴11x =,22x =18. 【答案】解:原式=1(1)(1)x x x x x-⋅+-=11x + 当21x =+时,原式=122211=-+. 19. 【答案】(1) 如图所示,MN 为所作; (2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB ,由折叠的性质可知AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF ,∴∠AFG =∠B ,又AG =AG ,∴△ABG ≌△AFG ;(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元;(2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥ 答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 【答案】(1) ∵A (1,3),∴OB =1,AB =3,又AB =3BD ,∴BD =1,∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3);(3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-,当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. 【答案】(1) ∵AB 为⊙O 直径,»»BPPC =, ∴PG ⊥BC ,即∠ODB =90°,∵D 为OP 的中点,∴OD =1122OP OB =, ∴cos ∠BOD =12OD OB =, ∴∠BOD =60°,∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACB =∠ODB ,∴AC ∥PG ,∴∠BAC =∠BOD =60°;(2) 由(1)知,CD =BD ,∵∠BDP =∠CDK ,DK =DP ,∴△PDB ≌△CDK ,∴CK =BP ,∠OPB =∠CKD ,∵∠AOG =∠BOP ,∴AG =BP ,∴AG =CK∵OP =OB ,∴∠OPB =∠OBP ,又∠G =∠OBP ,∴AG ∥CK ,∴四边形AGCK 是平行四边形;(3) ∵CE =PE ,CD =BD ,∴DE ∥PB ,即DH ∥PB∵∠G =∠OPB ,∴PB ∥AG ,∴DH ∥AG ,∴∠OAG =∠OHD ,∵OA =OG ,∴∠OAG =∠G ,∴∠ODH =∠OHD ,∴OD =OH ,又∠ODB =∠HOP ,OB =OP ,∴△OBD ≌△HOP ,∴∠OHP =∠ODB =90°,∴PH ⊥A B.25.【答案】(1) 26;22; (2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°,∴sin 15°=FC NC ,又NC =x , ∴624FC x -=, ∴NE =DF =62224x -+. ∴点N 到AD 的距离为62224x -+cm ; (3) ∵sin 75°=FN NC,∴624FN x +=, ∵PD =CP =2,∴PF =6224x -+, ∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·。