Synthesis of Chiral Ionic Liquids
- 格式:pdf
- 大小:59.98 KB
- 文档页数:3
超声合成离子液体[BMIM][BF4]H061王永泽梅乐和林东强姚善泾朱自强(浙江大学化学工程与生物工程学系, 浙江杭州310027)摘要利用超声波处理的方法对离子液体[BMIM][BF4](1-丁基-3-甲基咪唑四氟硼酸盐)的合成过程进行了研究。
分别在两种合成方法:两步合成法及一锅煮法中,对超声波处理条件进行了摸索。
结果表明,使用超声波处理的合成方法具有合成时间短,方法简单等特点,可在实验室规模上合成离子液体[BMIM][BF4]。
关键词超声波合成离子液体[BMIM][BF4]SYNTHESIS OF [BMIM][BF4] BY ULTRASONIC WAVE W ANG Y ongze,MEI Lehe,LIN Dongqiang,YAO Shanjing and ZHU Zhiqiang(Department of Chem & Biochemical Engineering , Zhejiang University , Hangzhou310027 ,Zhejiang , China)Abstract Ultrasonic wave was applied to synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM][BF4]). Two-step method and one-pot method were experimented in ultrasonic treatment. The result shows that ultrasonic treatment can shorten reaction time and is a good choice in production of [BMIM][BF4] in laboratory scale.Keywords ultrasonic wave, synthesis, ionic liquids, [BMIM][BF4]引言近年来,离子液体作为绿色溶剂而引起广泛关注,除了能在化学反应方面能替代常规有机溶剂作为反应介质外,最近有发现很多酶类在离子液体中具有良好的催化性能。
制备液相法英文Liquid-Phase SynthesisLiquid-phase synthesis, also known as liquid-phase method, is a versatile technique used in the preparation of a wide range of materials with specific properties. This method involves the formation of materials in a liquid medium, allowing for precise control over the reaction conditions and the resulting product. Liquid-phase synthesis is commonly used in the synthesis of nanoparticles, thin films, and nanocomposites.One of the key advantages of liquid-phase synthesis is the ability to achieve high purity and homogeneity in the final product. By carefully controlling the reaction parameters such as temperature, pressure, and reaction time, researchers can produce materials with the desired size, shape, and composition. This level of control is essential for applications in fields such as catalysis, sensor technology, and nanomedicine.In liquid-phase synthesis, the starting materials are typically dissolved or suspended in a solvent, which acts as a reaction medium. The solvent not only provides a medium for the reaction to take place, but it also helps to control the rate of the reaction and the distribution of the reactants. Common solvents used in liquid-phase synthesis include water, ethanol, and organic solvents such as toluene and hexane.The choice of solvent is crucial in liquid-phase synthesis, as it can significantly impact the properties of the resulting material. For example, water is often used as a solvent for the synthesis of metal nanoparticles, as it can stabilize the particles and prevent agglomeration. Organic solvents, on the other hand, are commonly used in the synthesis of polymers and organic compounds, as they can dissolve a wide range of organic materials.In addition to the solvent, the choice of reagents and reaction conditions also play a critical role in the success of a liquid-phase synthesis. The concentration of the reactants, the temperature, the pH, and the presence of catalysts or surfactants can all influence theoutcome of the reaction. By carefully optimizing these parameters, researchers can tailor the properties of the final material to meet specific requirements.Liquid-phase synthesis is a versatile and powerful technique that has been widely used in the preparation of a diverse range of materials. From metal nanoparticles to organic polymers, this method offers a high degree of control over the properties of the final product, making it an essential tool for researchers in fields such as materials science, chemistry, and nanotechnology. By understanding the principles of liquid-phase synthesis and optimizing the reaction conditions, scientists can create materials with tailored properties and functionalities for a variety of applications.。
咪唑类离子液体的合成 (可以在查找有关咪唑类离子液体的合成作为文献综述的一部分)咪唑环是具有芳香性的五元含氮杂环,氮原子经烷基化反应后将烷基链引入咪唑环,使咪唑环成为带正电荷的阳离子。
该结构性质稳定,正电荷分布均匀。
所得手性离子液体稳定性好,熔点低。
是目前研究最多的手性离子液体。
1997年,Howarth [19]报道了第一例手性离了液体的合成,该离子液体是由三甲基硅咪唑和手性的(S)-1-溴-2-甲基丁烷反应制得,产率为21%。
并将它用于不对称Diels-Alder 反应中,手性离子液体作为Lewis 酸参与反应,而不仅仅是溶剂。
Diels-Alder 反应物为巴豆醛或异丁烯醛与环戊二烯,结果表明,对映体过量仅5%。
但是这项工作具有开拓性的意义,初步展现了手性离子液体的应用价值(图1-1)。
NNN N+Me 3Si(s)-1-bromo-2-methylbutane图1-1 溴代N,N-二(S-2-甲基丁基)咪唑的合成Fig.1-1 Synthesis of N,N-di(S-2-methyl butane)imidazolium bromide包伟良[20]研究小组,通过手性胺与乙二醛的成环反应,制得含有手性烷基的取代咪唑,再与卤代烷反应,最后进行阴离子交换合成手性离子液体。
这种手性离子液体熔点较高,90℃,常温下为固态,限制了它在手性催化,手性合成,手性分离中的应用(图1-2)。
图1-2 由手性胺合成手性离子液体Fig.1- 2 Synthesis of chiral ILs from a chiral amine考虑到手性胺和氨基酸的类似结构,包伟良研究小组从天然氨基酸出发,通过类似的合成方法,制备了一批手性离子液体(图1-3)。
图 1-3 由天然氨基酸合成手性离子液体Fig.1-3 Synthesis of chiral ILs from natural amino acids这些离子液体的产率在30~33%之间,熔点在5~16℃之间,这使它们成为不对称反应中的理想溶剂。
咪唑类离子液体分析测试方法汇总(1)反相高效液相色谱法测定离子液体及其中的高沸点有机物姜晓辉,孙学文,赵锁奇,等. 反相高效液相色谱法测定离子液体及其中的高沸点有机物[J]. 分析测试技术与仪器,2006,12(4):195-198摘要: 建立了反相键合相液相色谱分析离子液体咪唑类离子液体[bmim]PF6、[bmim]BF4、吡啶类离子液体[bupy]BF4的纯度及其中高沸点有机物的方法.以缓冲溶液控制流动相pH值,显著改善了峰形.保留时间定性,外标法定量.关键词: 离子液体;高沸点有机物;高效液相色谱法离子液体[1]也称室温融盐,是近年来新兴的溶剂.一些有关离子液体相平衡的基础数据[2~4],主要是通过紫外分光光度法[5]和折射率法测得的[6],这两种方法各有一定的局限性.另外,如何测定离子液体的纯度,目前也尚无简便可靠的方法.本文建立了在离子液体与杂质,高沸点有机物与离子液体完全分离的情况下测定离子液体及其中的高沸点有机物含量的高效液相色谱分析方法,比现有的两种方法具有更高的准确度,更短的分析时间.参考文献:[1] Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis[J]. Chem Rev, 1999, 99:2 071-2 083.[2] Blanchard L A, Hancu D, Beckman E J,etal. Green processing using ionic liquids and CO2[J]. Nature(London), 1999, 399: 28-29.[3] Huddleston J G, Willauer H D, Swatloski R P,et al. Room temperature ionic liquids as novel media for 'clean' liquid2liquidextraction[J]. Chem Commun,1998, (16): 1 765-1 766.[4] Blanchard L A, Hancu D, Beckman E J,etal. Green processing using ionic liquids and CO2[J]. Nature(London), 1999, 399: 28-29.[5] Lynnette A Blanchard, Joan F Brennecke. Recovery of organic products from ionic liquids using supercritical carbon dioxide[J].Ind Eng Chem Res,2001; 30: 287-437.[6] 叶天旭,张予辉,刘金河,等.烷基咪唑氟硼酸盐离子液体的合成与溶剂性质研究[J].石油大学学报(自然科学版),2004,28(4):105-107.(2)反相高效液相色谱法直接测定离子液体中咪唑杂质含量薛洪宝,马春辉,刘庆彬,等. 反相高效液相色谱法直接测定离子液体中咪唑杂质含量[J]广东化工,2006,33(12): 83-85 [摘要]研究了高效液相色谱法测定离子液体中的杂质(4-甲基咪唑)含量的测定方法。
文章编号:1673 5196(2010)04 0061 05以磺胺药物为阴离子的离子液体合成及其抑菌性能郭 术1,朱春节2,兰国强1,吴秀勇1(1.海南师范大学化学与化工学院,海南海口 571158; 2.海南师范大学生命科学学院,海南海口 571158)摘要:以磺胺醋酰药物为阴离子,合成7种离子液体,以1H N M R和IR确证其结构;低温差示扫描量热(DSC)测定熔点或玻璃化转变温度,结果较相应钠盐有较大程度降低;离子液体对大肠杆菌和金黄色葡萄球菌的抑菌性比较发现,大肠杆菌敏感度强于金黄色葡萄球菌,并且此类离子液体抑菌性主要由季铵阳离子种类决定,吡啶离子液体的抑菌力强于甲基咪唑,长链离子液体优于短链离子液体.关键词:磺胺醋酰;离子液体;合成;表征;抑菌性能中图分类号:O622 文献标识码:ASynthesis of ionic liquids with sulfacetamide asanions and their antimicrobial activityGUO Shu1,ZH U Chun jie2,LAN Guo qiang1,WU Xiu yong1(1.College of Chemistry an d Ch emical Engineerin g,H ain an Normal U niver sity,H aik ou 571158,Chin a; 2.College of Life Science,H ainan Norm al Un iversity,H aik ou 571158,China)Abstract:Sev en different ionic liquids(ILs)w er e synthesized w ith sulfacetamide as anions and their str uc tures w ere characterized w ith1H NM R and IR.The r esults of differ ential scanning calor im etry(DSC) show ed that sulfacetam ide ionic liquids(SAILs)ex hibited low er m elting po ints(T m)or glass tr ansition temperatures(T g)than that of sodium ionized liquid to some ex tent.T heir antim icrobial activity against Escherichia co li and staphylococcus aurous w ere studied and it w as found that the fo rmer ex hibited higher sensitiv ity to SAILs than the latter,and the anti m icrobial activity of the ser ies o f SAILs w as determined mainly by the kinds of po sitiv e io ns of ammo nium.T he antimicro bial efficacy of pyridinium ILs w as stron g er than that of imidazolium ILs,and long chain SAILS w as superior to short chain ones in antim icrobial activity.Key words:sulfacetam ide;ionic liquids;sy nthesis;characterizatio n;antimicrobial activity季铵盐类抗菌剂是研究较多的一类有机抗菌剂,自1935年德国人G.Do mark发现烷基二甲基氯化铵的杀菌作用并利用其处理军服以防止伤口感染以来,季铵盐类抗菌剂的研究一直是研究者关注的重点,目前该类抗菌剂已经发展到第五代[1].按离子液体定义,熔点低于100 下的有机盐就是离子液体(RTILs)[2],因此离子液体的抗菌能力已有研究.Per nak等[3]发现侧链为长链烷氧基的1 甲基咪唑离子液体有较强抗菌能力,阴离子对抑收稿日期:2010 01 07基金项目:国家自然科学基金(20863002),海南省自然科学基金(807053),海南省教育厅高等学校科研项目(H J200792)作者简介:郭 术(1968 ),男,山西原平人,博士,副教授.菌活性影响很小,而烷氧基链长对的抑菌活性具有重要影响.Docherty等[4]研究咪唑和吡啶ILs对不同微生物的毒性.Seddon小组[5]考察一系列烷基三己基季胺类ILs对球菌、棒菌、真菌和细菌的抑菌活性.还有人合成基于抗生药物miconazole的离子液体的[6],国内也有人合成离子液体抑菌剂并据此申请专利[7 8].磺胺类药物临床应用已有几十年的历史,它具有较广的抗菌谱,而且疗效确切、性质稳定、使用简便、价格便宜,又便于长期保存,目前仍是仅次于抗生素的一大类兽用药物.磺胺类药物能抑制革兰氏阳性菌及一些阴性菌,对其高度敏感的细菌有链球菌、肺炎球菌、沙门氏菌、化脓棒状杆菌、大肠杆菌.对葡萄球菌、肺炎杆菌、巴氏杆菌、炭疽杆菌、志贺氏第36卷第4期2010年8月兰 州 理 工 大 学 学 报Jo ur nal of L anzho u U niv ersity of T echno lo gyVo l.36No.4A ug.2010杆菌、亚利桑那菌等有抑制作用,其中磺胺醋酰钠(so dium sulfacetamide,NaSA),现在仍然作为治疗沙眼、结膜炎等眼部感染的有效药物.经过人们系统的研究发现,对氨基苯磺酰胺基团为磺胺药物的活性基团.本文以磺胺醋酰(SA)或乙酰化磺胺醋酰(Ace SA)为阴离子,结合氯化胆碱、吡啶和甲基咪唑衍生物等5种季铵盐为阳离子合成的7种新颖的功能化磺胺醋酰离子液体(SAILs)和乙酰化磺胺醋酰离子液体(Ace SAILs).用1H NMR 、IR 等手段对合成的化合物结构进行表征.由于此离子液体阴阳离子同时兼具抑菌性能,最后用抑菌环试验比较它们的抑菌性能.1 实验部分1.1 仪器和试剂大肠杆菌(ATCC25922)、金黄色葡萄球菌(ATCC25923)购于广东省微生物菌种保藏中心,普通肉汤琼脂培养基Nutrient agar 购于广东环凯微生物科技有限公司;N 甲基咪唑(浙江临海化工厂产品),使用前经重蒸;磺胺醋酰钠一水合物购于Sigm a Aldr ich,纯度为98%,其他试剂购于上海国药集团化学试剂有限公司,均为分析纯试剂.所用表征仪器为Q100差示扫描量热仪(T A 公司),Ava tar360FT IR 光谱仪(N icolet 公司),AV400400M H z 核磁共振波谱仪(Bruker 公司).1.2 离子液体的制备合成步骤如图1所示,磺胺醋酰钠一水合物(1)5.08g(0.02mo l)或乙酰基磺胺醋酰钠(3) 5.56g (0.02mol)溶于20m L 蒸馏水中,室温搅拌下加入20m L 蒸馏水溶解3.57g (0.021mol)硝酸银水溶液,立即出现磺胺醋酰银或乙酰基磺胺醋酰银白色沉淀.室温搅拌10min,抽滤,所得沉淀用60m L 蒸馏水洗涤三遍,洗掉硝酸钠和过量硝酸银,直到洗液用0.1mol/L 氯化钠水溶液检验无银离子存在.将准备好的各种氯代盐(0.018m ol)溶解于40mL 蒸馏水,加入上面制备好的磺胺醋酰银白色沉淀.搅拌20m in,然后在50 水浴中继续加热搅拌30min,得到的氯化银沉淀抽滤除去.滤液在旋转蒸发仪上蒸出大部分水份,剩余微量水在90 ,20m mH g,抽真空8h 下除去.图1 SAILs 和Ace SAILs 的合成步骤Fig.1 Synthesis procedure of SAILs and Ace SAILs62 兰州理工大学学报 第36卷1.3 1H NMR和FT IR数据1 甲基 3 丁基咪唑 磺胺醋酰盐(2a):白色晶体,产率95%,1H NM R(400M H z,DM SO d6)0.90(t,J=7.2H z,!CH2CH2CH2CH3,3H),1.26(m,!CH2CH2CH2CH3,2H),1.59(s,!COCH3, 3H), 1.75(m,!CH2CH2CH2CH3,2H), 1.92 (s,!COCH3,3H),3.86(s,!NCH3,3H),4.16(t, J=7.2H z,!CH2CH2CH2CH3,2H),5.34(s, !NH2,2H),6.43(m,pheny l,2H),7.37(m,phen y l,2H),7.70(t,J=1.6H z,imidazo le,1H),7.77 (t,J=1.6H z,im idazole,1H),9.15(s,im idazole, 1H);IR(KBr,film)537,680,1090,1132,1322, 1368,1502,1595,1640,3380cm-1.N 丁基吡啶 磺胺醋酰盐(2b):棕色透明液体,产率95%,1H NM R(400M H z,DMSO d6) 0.86 (t,J=7.2H z,!CH2CH2CH2CH3,3H),1.23 (m,!CH2CH2CH2CH3,2H),1.58(s,!COCH3, 3H),1.85(m,!CH2CH2CH2CH3,2H),4.59(t, J=7.2H z,!CH2CH2CH2CH3,2H), 5.37(s, !NH2,2H),6.42(m,pheny l,2H),7.36(m,phen y l,2H),8.11(t,J=7.2H z,py ridine,2H),8.58(t, J=7.6H z,py ridine,1H),9.12(d,J=5.6H z,pyr idine,2H);IR(KBr,film)533,684,834,1024, 1085,1128,1241,1310,1366,1502,1595, 1633,3341cm-1.1 甲基 3 乙基 (2 羟基)咪唑-磺胺醋酰盐(2c):白色晶体,产率94%,1H NM R(400M H z, DM SO d6) 1.67(s,!COCH3,3H),3.72(t,J= 4.8H z,!NCH2CH2OH,2H),3.83(s,!NCH3, 3H),4.22(t,J=4.8H z,!NCH2CH2OH,2H), 5.46(s,!NH2,2H),6.50(tt,J=8.5,2.6H z, pheny l,2H),7.41(dd,J=8.5,2.6H z,phenyl, 2H),7.66(t,J=2.0H z,im idazole,1H),7.71(t, J= 1.6H z,imidazole,1H),9.16(s,im idazole, 1H);IR(KBr,film)551,685,844,1084,1132, 1243,1315,1368,1562,1597,1630,3344 cm-1.N 乙基 (2 羟基)吡啶 磺胺醋酰盐(2d):棕色透明液体,产率92%,1H NM R(400M H z,DMSO d6) 1.69(s,!COCH3,3H),3.86(t,J= 4.8 H z,!NCH2CH2OH,2H),4.67(t,J= 4.8H z, !NCH2CH2OH,2H),5.46(s,!NH2,2H),6.47 (m,phenyl,2H),7.42(m,phenyl,2H),8.15(t, J=6.8H z,pyridine,2H),8.61(tt,J=7.9,1.3 H z,pyridine,1H),9.02(dd,J=6.6,1.2H z,pyri dine,2H);IR(KBr,film)551,684,837,1082, 1129,1243,1309,1368,1495,1592,1630,3344 cm-1.2 羟乙基三甲胺 磺胺醋酰盐(2e):无色粘稠液体,产率92%,1H NM R(400MH z,DM SO d6) 1.63(s,!COCH3,3H),3.10(s,3∀!N CH3, 9H),3.41(t,J= 5.2H z,!NCH2CH2OH,2H), 3.82(t,J=5.2H z,!NCH2CH2OH,2H),5.43(s, !NH2,2H),5.64(s,!CH2OH,1H),6.48(d,J= 8.6H z,phenyl,1H),7.40(d,J=8.5H z,pheny l, 2H);IR(KBr,film)533,687,842,1085,1130, 1241,1313,1370,1502,1596,3235cm-1.1 甲基 3 丁基咪唑 乙酰基磺胺醋酰盐(4a):无色粘稠液体,产率92%,1H NM R(400MH z, DMSO d6) 0.90(t,J=7.4H z,!CH2CH2CH2CH3, 3H), 1.26(m,!CH2CH2CH2CH3,2H), 1.62 (s,!COCH3,3H),1.73(m,!CH2CH2CH2CH3, 2H),2.06(s,!NHCOCH3,3H),3.84(s,!NCH3, 3H),4.15(t,J=7.2H z,!CH2CH2CH2CH3, 2H),7.52(d,J=8.8H z,pheny l,2H),7.62(dt, J=8.8,2.0H z,pheny l,2H),7.70(t,J=2.0H z, imidazole,1H),7.77(t,J= 1.6H z,imidazole, 1H),9.14(s,imidazole,1H),10.06(s,!NHCOCH3, 1H);IR(KBr,film)549,650,829,1087,1134, 1251,1313,1368,1538,1593,3105cm-1.N 丁基吡啶 乙酰基磺胺醋酰盐(4b):无色粘稠液体,产率92%,1H NM R(400M H z,DM SO d6) 0.91(t,J=7.2H z,!CH2CH2CH2CH3, 3H),1.29(m,!CH2CH2CH2CH3,2H),1.63(s, !COCH3,3H),1.89(m,!CH2CH2CH2CH3, 2H),2.04(s,!NH COCH3,3H),4.60(t,J=7.4 H z,!CH2CH2CH2CH3,2H),7.52(d,J=8.8 H z,phenyl,2H),7.63(dt,J=8.8,2.0H z,phen yl,2H),7.64(m,phenyl,1H),8.16(t,J=7.0 H z,pyridine,2H),8.60(t,J=7.8H z,pyridine, 1H),9.11(d,J=5.6H z,pyridine,2H),10.05(s, !NH COCH3,1H);IR(KBr,film)551,651,831, 1088,1135,1254,1315,1370,1536,1593 cm-1.1.4 抑菌环实验参照中华人民共和国卫生部2002版#消毒技术规范∃,第二部分%消毒产品检验技术规范&中%2.1.8.2抑菌环试验&进行.1.4.1 抑菌溶液配制1为市售磺胺醋酰钠滴眼液水溶液(NaSA)(湖63第4期 郭 术等:以磺胺药物为阴离子的离子液体合成及其抑菌性能北潜江制药股份公司),含量为15%(150mg /mL,5.9mm ol/10mL);其他抑菌试样配制为称取相应的离子液体0.59m mol 溶于无菌蒸馏水配制而成.1.4.2 抑菌环实验步骤抑菌剂载体为直径6mm 无菌并干燥的滤纸片,经压力灭菌后,120 烘干2h 备用.抑菌载体滴加20 L 离子液体,平放于无菌平皿中,37 烘干后,分别贴放于大肠杆菌、金黄色葡萄球菌染菌平板中,每个平板贴放4片试验样片,中间1片阴性对照样片,共5片.各样片中心之间相距25m m 以上,与平板的周缘相距15mm 以上.置37 温箱,培养18h 观察结果.选均匀而完全无菌生长的抑菌环,用卡尺测量抑菌环的直径.2 结果与讨论2.1 1H NMR 分析如图2所示,由SA 阴离子组成的5个离子液体氢谱中,化学位移 在6.41~6.50之间有两对双多重峰,分别对应着苯环上的四个氢;而在2个乙酰基磺胺醋酰(ace SA)阴离子离子液体中,上述苯环上的氢化学位移 在7.50~7.64之间,显示由于苯环胺基乙酰化导致极性增加,去屏蔽效应增大, 向低场位移.同时 在5.34左右的苯胺氢消失,在低场10.0出现酰胺的信号.图2 SAILs 和Ace SAILs 的1H NMR 低场化学位移比较Fig.2 Comparison of chemical shift of 1H NMR in low fieldbetween SAILs and Ace SAILs2.2 FT IR 分析如图3所示,红外吸收峰1080cm -1对应S O 键的伸缩振动,1130cm -1和1310cm -1对应着SO 2对称伸缩和不对称伸缩振动;1241cm -1为苯环的C !N 伸缩振动,酰胺化后移到1251cm -1;1370cm -1为甲基C !H 弯曲振动;1630cm -1左右对应C O 双键伸缩振动;1500、1600cm -1左右为苯环骨架伸缩振动;3341cm -1为苯胺N !H 伸缩振动,在酰胺化后消失,同时在1537cm -1出现酰胺基团N !H 弯曲振动峰;1683cm -1处出现酰胺基团CO 的伸缩振动吸收峰.图3 BPy SA(上)和Ace BPy SA (下)的FT IR Fig.3 FT IR of BPy SA(top)and Ace BPy SA(bottom)2.3 熔点T m 或玻璃化转变温度T g磺胺醋酰钠为白色结晶粉末,熔点179~184 .经有机铵盐取代Na 后,熔点大幅下降,其中有两种为白色结晶,BM IM SA (m.p.129 )和EM I M OH SA(m.p.107 ),从表1看出,吡啶环的要比甲基咪唑环的低,BPy SA (T g -16.6 )和EPy OH SA(T g ,-21.5 )其余离子液体玻璃化转变温度T g 均在0 以下.胆碱阳离子作为脂肪族化合物有适中的T g (-27.5 ).经乙酰化后,B MIM SA表1 磺胺醋酰离子液体的玻璃转化温度及抑菌圈直径Tab.1 Glass transition temperature T m or T g and diameter ofbacteristatic ring of SA ILs and Ace SAILs序号化合物T m 或T g/大肠杆菌抑菌圈直径/mm金黄色葡萄球菌抑菌圈直径/mm11(NaS A)!11!22a(Bmim S A)12913832b(BPy SA)-16.614842c(EmimOH S A)1079852d(EPyOH SA)-22.512!62e(Ch oline SA)-27.510973(Ace NaSA)!!!84a(Ace Bmim SA)-42.9138 64 兰州理工大学学报 第36卷和BPy SA的T g均有较大降低,分别为-42.9 和-38.5 ,这可能是由于乙酰化后使苯胺氢键减弱,使其熔点降低.2.4 抑菌性实验结果分析抑菌圈实验结果见表1.NaSA对大肠杆菌(Escher ichia coli,E c)的抑菌圈直径为11m m,有较强的抑菌能力,而乙酰化后的Ace NaSA对Ec不敏感,这是由于对氨基苯磺酰胺基团为磺胺药物的基本活性基团所致.对Ec的抑菌效果以BPy SA最佳(抑菌圈直径14m m),Bmim SA(抑菌圈直径13 mm)次之,而其他三种短链离子液体抑菌能力有一定程度降低(EPy OH SA,12mm)、(Em imOH SA, 9m m)(Choline SA,10mm),从中可以发现吡啶离子液体的抑菌力强于甲基咪唑,长链离子液体优于短链,这均跟文献报道符合[4].两种Ace SA离子液体也有很好的抑菌性能(抑菌圈直径13mm),进一步表明此类离子液体的抑菌能力主要由阳离子所决定.对金黄色葡萄球菌(Stap hy lococcus aureus, Sa),NaSA和Ace NaSA均未观察到抑菌性,这可能为Sa对N aSA产生耐药性所致[9 10].各种离子液体的Sa的抑菌圈直径在8~9mm之间,其中EPyOH SA对Sa不敏感,说明磺胺醋酰阴离子离子液体对Sa的敏感度不及Ec.3 结论合成7种新颖的以磺胺醋酰药物及衍生物为阴离子的离子液体,并以1H NM R、IR进行结构表征,低温差示扫描量热测试发现季铵盐离子液体熔点或玻璃化转变温度均较相应钠盐有较大程度降低,其中5种为液体.乙酰化的磺胺醋酰由于减小氢键的影响有更低的T g.对大肠杆菌和金黄色葡萄球菌的抑菌性比较发现,离子液体对大肠杆菌抑菌能力强于金黄色葡萄球菌,并且此类离子液体抑菌性主要由季铵阳离子决定,吡啶离子液体的抑菌力强于甲基咪唑,长链离子液体优于短链.用于实验的菌株对此类离子液体的耐药性表现较明显,有待进一步研究.致谢:本文得到海南师范大学博士科研启动项目的资助,在此表示感谢.参考文献:[1] FRANKLIN T J,S NOW G A.Biochemistry of antimicrobialaction[M].L on don:Chapman and H all,1981.[2] WE LTON T.Room tem perature ionic liquids synthesis and cataly sis[J].Chem Rev,1999,99:2071 2102.[3] PERNAK J,SOBASZKIE WICZ K,M IRSKA I.An ti microbialactivities of ionic liqu ids[J].Green Ch emis try,2003,5:52 56.[4] DOCH ERTY K M,KU LPA C F.T oxicity and antimicrobialactivity of imidazolium and pyridinium ionic liquid s[J].Gr een Chem,2005,7:185 189.[5] CIENIECKA ROSLONKIEWICZ A,PERNAK J,SEDDON KR,et al.S yn thes is,an ti microbial activities and anti electrostat ic pr operties of phosph onium bas ed ionic liquids[J].Gr een Chem,2005,7:855 862.[6] FORREST ER K J,M ERRIGAN T L,DAVIS J H.Novel organ ic ionic liquids(OILs)incor porating cations derived fr om the antifu ngal drug miconaz ole[J].Tetrah edron Letters, 1998,39:8955 8958.[7] 陈素艳,宋凌生,周常义,等.新型水溶性抑菌剂咪唑季铵型反丁烯二酸单辛酯的合成及其抑菌活性研究[J].漳州师范学院学报:自然科学版,2008(2):78 82.[8] 欧光南,周常义,何碧烟,等.离子液体抑菌杀菌剂及其合成方法和应用[P].CN200810071633.2009 01 14.[9] 陈晓玲.102株金黄色葡萄球菌的生物学特性及药敏分析[J].华西医学,2009,24(10):2649 2650.[10] 龙 辉,张广清.金黄色葡萄球菌的耐药性分析[J].检验医学与临床,2008,5(17):1034 1035.65第4期 郭 术等:以磺胺药物为阴离子的离子液体合成及其抑菌性能。
离子液体在天然药物活性成分提取中的应用汪雁,宋航,贾春梅,张薇,谢彩芸,王旅超,姚舜四川大学化工学院,成都 610065摘要:目的 概述近年来离子液体在提取天然药物领域的研究进展情况。
方法 以国内外近年来研究文献为基础,对文献进行分析、归纳与总结。
结果与讨论 离子液体在天然药物领域的应用越来越广泛,从而为实现绿色化学和天然药物化学的结合,进而为进一步推动天然活性物质的现代化研究及开发提供了一条新的思路和有效途径。
关键词:离子液体 天然药物 活性成分 提取1 离子液体的概述离子液体(ionic liquid),又被称为室温熔融盐,是指在室温或者是室温附近呈液态,并由大体积的有机阳离子与有机或无机阴离子构成的熔盐(图1)。
与常见的有机溶剂不同,离子液体中存在强大的静电吸引作用,使其多项理化性质都与传统的有机溶剂十分不同[1],作为绿色溶剂其最主要的优势就是它的可设计性。
迄今为止的研究已经证明,设计适合特殊使用要求的功能化离子液体是完全可行的[2]。
譬如,通过调整离子液体中阳离子的极性和阴离子的水溶性,我们可以设计出一定极性的离子液体。
近年来,绿色试剂离子液体因其独特性质成为了化学药物合成和天然药物提取领域的热点,常被用为有机溶剂的替代溶剂使用,也有研究将离子液体作为催化剂运用到有机反应中。
图1 组成离子液体的常见阳、阴离子作者简介:汪雁(1988-),女,安徽人,博士,主要从事天然产物的提取与水解研究。
通讯作者:姚舜(1980-),男,湖北人,博士,讲师,研究方向:天然药物研究与综合开发。
通信地址:(610065)成都市四川大学化工学院经过近二十多年的研究,离子液体的种类逐渐增多,现在已经有了两百多种离子液体,并且越来越多的离子液体已经商业化。
离子液体是国际科技前沿和热点,当前,随着可持续发展战略的实施,“循环经济”,“集约型社会”,“节能减排”等概念和政策的提出极大地促进绿色化学在中国的发展。
反观目前天然药物有效成分的基础研究及实际生产中,普遍并大量地使用对人与环境不友好的有机溶剂,此现状亟待改观,绿色化学和天然药物化学的结合令人期盼。
第24期 收稿日期:2020-09-08基金项目:2017年辽宁省高等学校基本科研项目(项目批准号:LFW201706);沈阳师范大学大学生创新创业训练计划项目作者简介:孙思娜(1995—),女,辽宁沈阳人,硕士研究生;通信作者:田 鹏(1967—),辽宁沈阳人,教授,博士,硕士研究生导师檿檿檿檿檿檿檿檿檿檿檿檿檿檿殨殨殨殨。
专论与综述离子液体的性质和在萃取技术中的应用孙思娜1,刘书彤1,陈庆阳1,洪 羽1,黄 涛1,田 鹏 1,段纪东3(1.沈阳师范大学化学化工学院能源与环境催化研究所,辽宁沈阳 110034;2.沈阳师范大学物理科学与技术学院,辽宁沈阳 110034;3.沈阳师范大学实验中心,辽宁沈阳 110034)摘要:离子液体是一种室温熔盐,其体系中由阴阳离子以一定配比形成,整体不带电显电中性,且在室温或近似于室温下为液态的一种熔盐体系。
本文阐述了离子液体的性质,包括离子液体的密度,熔点,粘度,电导率,极性,溶解性,稳定性和毒性。
离子液体在萃取技术方面的应用。
关键词:离子液体;性质;萃取技术中图分类号::O645;4O645.16 文献标识码:A 文章编号:1008-021X(2020)24-0061-03PropertiesandApplicationinExtractionTechnologyofIonicLiquidsSunSina1,LiuShutong1,ChenQingyang1,hongYu1,HuangTao1,TianPeng 1,DuanJidong3(1.InstituteofCatalysisforEnergyandEnvironment,CollegeofChemistryandChemicalEngineering,ShenyangNormalUniversity,Shenyang 110034,China;2.CollegeofPhysicsScienceandTechnology,ShenyangNormalUniversity,Shenyang110034,China;3.LaboratoryCentreofShenyangNormalUniversity,Shenyang110034,China)Abstract:Ionicliquidisakindofmoltensaltatroomtemperature,inwhichthesystemisformedbyanionandanioninacertainratio,thewholesystemhasnochargeandisneutral,andisliquidatornearroomtemperature.Thispaperdescribesthepropertiesofionicliquids,includingdensity,meltingpoint,viscosity,conductivity,polarity,solubility,stability,toxicityofionicliquidsandapplicationofionicliquidsinextractiontechnology.Keywords:ionicliquids;properties;extractiontechnology 离子液体是一种室温熔盐,其体系中由阴阳离子以一定配比形成,整体不带电显电中性,且在室温或近似于室温下为液态的一种熔盐体系。
Journal of Chromatography A,1155(2007)134–141Evaluation of chiral ionic liquids as additives to cyclodextrinsfor enantiomeric separations by capillary electrophoresis Yannis Franc¸ois a,Anne Varenne a,Emilie Juillerat a,Didier Villemin b,Pierre Gareil a,∗a Laboratory of Electrochemistry and Analytical Chemistry,UMR CNRS7575,ENSCP,11rue Pierre et Marie Curie,75231Paris Cedex05,Franceb Laboratory of Molecular and Thio-organic Chemistry,UMR CNRS6507,ENSI Caen,6,Boulevard du Mar´e chal Juin,14050Caen Cedex,FranceAvailable online23December2006AbstractA great interest has been drawn these last years towards ionic liquids in analytical chemistry,especially for separation methods.Recent synthesis of chiral ILs opened the way of the evaluation of new potential selectors for enantiomeric separations.This work focused on the evaluation of two chiral ILs(ethyl-and phenylcholine of bis(trifluoromethylsulfonyl)imide)by CE.Particular selectivities are awaited by exploiting unique ion–ion or ion–dipole interactions and by tailoring the nature of the cation and the anion.To evaluate such phenomena,a study was carried out with anti-inflammatory drugs2-arylpropionic acids as model compounds.The results show that these chiral ILs did not present direct enantioselectivity with regard to these model analytes.The influence of chiral ILs in the electrolytes was then studied in the presence of classical chiral selectors(di-or trimethyl--cyclodextrin).Although no general trend could be established,an increase in separation selectivity and resolution was observed in some cases,suggesting synergistic effects.The complementary determination of apparent inclusion constant values of these IL cations in the used cyclodextrins by affinity CE provided support to the understanding of the phenomena involved.©2006Elsevier B.V.All rights reserved.Keywords:Ionic liquids;Capillary electrophoresis;Chiral separations;Choline-based ionic liquids;Neutral cyclodextrins;Arylpropionic acids1.IntroductionThe high proportion of chiral compounds of biological or pharmacological interest has aroused a considerable need for the determination of the enantiomeric purities in the last20 years.Since the pioneering works by Zare and co-workers[1] and Fanali[2]and as testified by the very important amount of literature and a number of comprehensive reviews[3–11], capillary electrophoresis(CE)has proven to be an excellent alternative to classical chromatographic techniques in thisfield. The use in very small quantity and in free form of the chiral selector makes it possible to compare the effects of various selectors and afterwards perform routine analyses at lower cost.A great interest is being triggered by ionic liquids(IL)as alternatives for conventional molecular solvents used in organic synthesis and catalytic reactions[12].They supplement the fam-ily of“green solvents”including water and supercriticalfluids.∗Corresponding author.Tel.:+33155426371;fax:+33144276750.E-mail address:pierre-gareil@enscp.fr(P.Gareil).Among these,room temperature ionic liquids are defined as materials containing only ionic species and having a melting point lower than298K.They exhibit many interesting proper-ties such as negligible vapor pressure,low melting point,large liquid range,unique solvation ability and overall,the versa-tility of their physico-chemical properties makes them really attractive.They have been proposed as solvents for chemical reactions[13–15],multiphase bioprocess operations[16]and liquid–liquid separations[17,18],as electrolytes for batteries and fuel cells[19],stationary phases in gas chromatography [20–23]and mobile phase additives in liquid chromatography [24–26].During these last years,a great attention has been paid to the relevance of these new media for capillary electrophoresis(CE) [27–37]and many efforts have been directed toward the under-standing of the separation mechanisms involved in IL-containing background electrolytes(BGE).Concerning chiral separations, two applications only have been reported so far.Thefirst one was with achiral ILs[38],1-ethyl-and1-butyl-3-methylimidazolium cations,associated with BF4−or PF6−anions.The enantiose-lectivity for binaphtyl derivatives was produced by a polymeric surfactant,whereas the presence of the ILs only modified the0021-9673/$–see front matter©2006Elsevier B.V.All rights reserved. doi:10.1016/j.chroma.2006.12.076Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141135retention times and peak efficiency.Nevertheless,little was elucidated about the separation mechanism.Recent synthe-sis of chiral ILs[39,40]opened the way of the evaluation of new potential selectors for enantiomeric separations.Rizvi and Shamsi[41]realized thefirst chiral separation of several anionic compounds by micellar electrokinetic chromatography using two new synthetic chiral ionic liquids,undecenoxycarbonyl-l-pryrrolidinol bromide and undecenoxycarbonyl-l-leucinol bromide.This work was focused on the separation performances of two chiral ILs(ethyl-and phenylcholine of bis(trifluoromet-hylsulfonyl)imide)by CE.In a previous work,a nonaqueous capillary electrophoresis(NACE)study on the electrophoretic behavior of2-arylpropionic acids(profens),which were often selected as model chiral anionic compounds[42]in the pres-ence of an achiral imidazolium-based IL evidenced peculiar ion-pairing interactions between these analytes and the achi-ral IL[43].In the present work,the electrophoretic behavior of the same model analytes wasfirst studied in the presence of one of both chiral choline-based ILs in nonaqueous media. As these chiral ILs alone did not present any enantioselectivity with regard to these model analytes under the conditions tested, the influence of the chiral ILs was then studied in aqueous and hydro-organic electrolytes containing classical chiral cyclodex-trin selectors(di-or trimethyl--cyclodextrin).Thefigures of merit(effective enantioselectivity and resolution)of the chiral separations of the six arylpropionic acids were systematically determined,depending on the nature and the concentration of the chiral IL and cyclodextrin,ionic strength and hydro-organic composition of the electrolyte,to investigate for possible syner-gistic effects between the two chiral selectors.In addition to this study,apparent inclusion constant values for the used chiral ILs cations and neutral cyclodextrin derivatives were determined by affinity CE to provide support to the understanding of phenom-ena involved.2.Experimental2.1.Chemicals and reagentsLithium bis(trifluoromethylsulfonyl)imide(LiNTf2)(≥99%) was a gift from Institut Franc¸ais du P´e trole(Solaize,France). (R)(−)2-Hydroxy-N,N,N-trimethyl-1-phenylethanaminium (PhChol NTf2)and(R)(−)1-hydroxy-N,N,N-trimethylbutan-2-aminium bis(trifluoromethylsulfonyl)imide(EtChol NTf2) were synthesized(see Section2.2)in Villemin’s group(Caen, France).Methanol(GC grade,99.9%purity)and sodium acetate were purchased from Prolabo(Fontenay-sous-Bois,France). Formamide(>99%)and hexadimethrin bromide(polybrene) were supplied by Aldrich(St.Louis,MO,USA).Glacial acetic acid(>99%),heptakis-(2,6-di-O-methyl)--cyclodextrin (DM--CD)(>90%)and heptakis-(2,3,6-tri-O-methyl)--cyclodextrin(TM--CD)(>90%)were obtained from Sigma (St.Louis,MO,USA).2-Arylpropionic acids(carprofen,supro-fen,naproxen,ketoprofen,indoprofen and ibuprofen)were donated by Rhone-Poulenc-Rorer(Vitry-sur-Seine,France).2.2.Synthesis of chiral ionic liquidsWasserscheid et al.have been thefirst to propose the use of choline derivatives as chiral ionic liquid[44].These chiral ammonium ions can be easily obtained from pure enantiomeric aminoalcohol coming from the“chiral pool”as starting product.The syntheses of the chiral ionic liquids were achieved in two steps:(i)permethylation of amine group into ammonium group and(ii)the metathesis exchange of anion.In a typical procedure of permethylation,the R(−)2-ami-nobutan-1-ol(0.44g,5mmol)[respectively,R(−)or S(+) phenylglycin-1-ol(0.5g, 3.6mmol)]and the iodomethane (2.13g,15mmol)were refluxed in diethyl ether(30ml)under argon atmosphere and were protected from the light.After6 days’reflux,the solvent was removed by distillation under reduced pressure.The reactional mixture was solubilized in water(6mL)and extracted three times(3×5mL)with CH2Cl2. The aqueous phase was evapored under vacuum.For the anion exchange step,the ammonium iodide (25mmol)was dissolved in water(35mL)and an aqueous saturated solution of lithium bis(trifluoromethylsulfonyl)imide (7.2g,25mmol)was added.The liquid obtained was centrifuged and the ionic liquid and water were separated.The ionic liquid was washed with water(3×10mL)andfinally vacuum-dried.2.3.Characterization of chiral ionic liquidsThe structures of the chiral ionic liquids were characterized by1H,13C and19F NMR spectroscopy.2.3.1.(R)(−)1-Hydroxy-N,N,N-trimethylbutan-2-aminiumbis(trifluoromethylsulfonyl)imide(EtChol NTf2)Colorless oil;1H NMR(400MHz,MeOD)CD3CN/TMS δ(ppm):0.97(t,3J HH=7Hz,3H,C H3-CH2),1.93(quint, 3J HH=2Hz,2H,CH3-C H2-CH),3.24(s,10H,CH3-CH2-C H-(N-(C H3)3)-CH2-OH),3.73(dq,3J HH=14Hz,4J HH=4Hz,1H, CH3-CH2-CH-(N-(CH3)3)-C H2-OH), 3.95(d,3J HH=14Hz, 1H,CH3-CH2-CH-(N-(CH3)3)-C H2-OH),4.68(s,1H,CH3-CH2-CH-(N-(CH3)3)-CH2-O H);13C NMR(62.9MHz,MeOD) CD3CN/TMSδ(ppm):11.93(s,1C,C H3),19.38(s,1C, CH3-C H2-CH),53.55(s,3C,N-(C H3)3),58.36(s,1C,CH-C H2-OH),78.77(s,1C,CH3-CH2-C H-(N-(CH3)3)-CH2-OH), 121.60(quad,1J CF=1273Hz,2C,N-(SO2-C F3)2);19F NMR (235.3MHz,MeOD),CD3CN/CCl3Fδ(ppm):−81.08(s,6F, N-(SO2-C F3)2).2.3.2.(R)(−)2-Hydroxy-N,N,N-trimethyl-1-phenylethanaminiumbis(trifluoromethylsulfonyl)imide(PhChol NTf2)Colorless oil;1H NMR(400MHz,MeOD)CD3CN/TMSδ(ppm):2.79(s,1H,O H),3.19(s,9H,Ph-CH-(N-(C H3)3)-CH2-OH),4.22(d,3J HH=13Hz,1H,Ph-CH-(N-(CH3)3)-C H2-OH), 4.45(dd,3J HH=13Hz,3J HH=7Hz,1H,Ph-C H-(N-(CH3)3)-CH2-OH), 4.61(dd,3J HH=7Hz,3J HH=4Hz,Ph-CH-(N-(CH3)3)-C H2-OH),7.49–7.56(m,3C,1H para and2H ortho), 7.62–7.65(m,2H,2H meta);13C NMR(62.9MHz,MeOD) CD3CN/TMSδ(ppm):53.90(s,3C,Ph-CH-(N-(C H3)3)-CH2-136Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141OH),62.04(s,1C,Ph-CH-(N-(CH3)3)-C H2-OH),80.35(s,1C, Ph-C H-(N-(CH3)3)-CH2-OH),121.64(q,1J CF=1273Hz,2C, N-(SO2-C F3)2),130.88(s,3C,1C para,2C meta),132.35(s,2C, 2C ortho),132.91(s,1C,C);19F NMR(235.3MHz,MeOD), CD3CN/CCl3Fδ(ppm):−81.06(s,6F,N-(SO2-C F3)2.2.4.Capillary electrophoresis and proceduresAll experiments were performed with a HP3D CE(Agilent Technologies,Waldbronn,Germany)capillary electrophoresis system.This apparatus automatically realized all the steps of the measurement protocols,including capillary conditioning,sam-ple introduction,voltage application and diode array detection, and allows to run unattended method sequences.A CE Chemsta-tion(Agilent Technologies,Waldbronn,Germany)was used for instrument control,data acquisition and data handling.Polymi-cro bare fused-silica capillaries of50m i.d.were obtained from Photonlines(Marly-le-Roi,France).They were used in 35cm total length(26.5cm to detection).Background elec-trolytes(BGE)were made up with acetic acid/sodium acetate at two different concentrations(5and60mM)to a pH of5.0.The methanol–water mixtures were prepared by volumic mixing in0, 10and25%(v/v)methanol proportions.Analytes were detected by UV absorbance at200,230,240,254and300nm,according to cases.Formamide(0.001%,v/v,in the BGE)was used as neu-tral marker to determine the electroosmotic mobility.The sample solutions were prepared by dissolving each analyte at a concen-tration of ca.0.5mM in methanol.Samples were introduced hydrodynamically by successively applying a30mbar pressure for3s(approximately,4nL)to the neutral marker,BGE and sample vials.New capillaries were conditioned by successive flushes with1and0.1M NaOH and then with water under a pressure of935mbar for10min each.The temperature in the capillary cartridge was set at25◦C.The acquisition rate was 10points/s.Capillaries were rinsed with water and dried by air when not in use.2.5.Capillary coatingCapillaries were dynamically coated with polybrene as described in the literature[45–47].Briefly,a new fused-silica capillary wasfirstflushed with1M NaOH for20min and rinsed with water.Next,the capillary wasflushed with a poly-brene solution at3g/100mL in water for15min.Finally, the capillary was rinsed with water for5min and condi-tioned with BGE for5min,all these steps being performed under a pressure of935mbar.Recoating of the capillary with the cationic polymer was accomplished by using a similar method.plexation constant determinationThe apparent formation constant K for the inclusion com-plexes between chiral PhChol cations and neutral CDs of interest,was determined by mobility shift affinity capillary electrophoresis(ACE)according to a method similar to that developed for a series of imidazolium based ILs cations[48].Briefly,PhChol NTf2was dissolved at a concentration of 2mM and electrophoresed in BGEs(ionic strength:5mM) containing increasing concentrations of DM--CD or TM--CD(0–100mM).Each injection with a given electrolyte was repeated twice.Effective mobilities(μep)of PhChol cation were calculated from migration time measurement at peak apex.The obtained values were corrected to compensate for change in electrolyte viscosity due to increasing CD concentrations.The corrected valuesμep,coor werefitted to non-linear and linear forms(linearized isotherm,x-reciprocal,y-reciprocal,double reciprocal)of the1:1stoichiometry complexation isotherm [49,50]to determine the K-value.2.7.Calculation of the performance parameters for thechiral separationsThe effective electrophoretic selectivity[51],αeff,was cal-culated according to Eq.(1):αeff=μep1μep2(1) whereμep1,μep2are the effective mobilities for enantiomers1 and2.The chiral resolution,R s,between two enantiomers,1and2, was calculated according to:R s=1.177t2−t1δ1+δ2(2) where t1,t2are the migration times andδ1,δ2are the temporal peak widths at half height.3.Results and discussionIn a previous work,interactions between an achiral IL(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and a series of2-arylpropionic acids were studied in nonaqueous capillary electrophoresis(NACE)[43].The results indicated a quadratic effect of the concentration of the achiral IL in the BGE on profen electrophoretic mobilities due to antagonistic interac-tions between anionic analytes and imidazolium cations either adsorbed to the capillary wall or free in the BGE electrolyte.With a view to evaluate a new family of chiral selectors,the same con-ditions have been investigated with two chiral choline-based ILs (ethyl-and phenylcholine bis(trifluoromethylsulfonyl)imide). No enantioselectivity has been shown in these conditions for this family of compounds.This work was then directed to the study of the association of a chiral IL to the best chiral selectors,reported previously for the enantiorecognition of profens,DM--CD and TM--CD[52,53],to search for possible synergistic effects. The use of CDs nevertheless is poorly compatible with that of nonaqueous BGEs,to preserve adequate CD solubilization and partial formation of inclusion complexes.This study was there-fore realized in water and90:10and75:25(v/v)water–MeOH mixtures.The choice of MeOH as molecular solvent in hydro-organic mixtures was based on its favorable anion-solvating properties and ion-pairing and its ability to dissolve the tested CD.Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141137Fig.1.Schematic description of the interaction system between anionic profen A−,chiral IL+cation,free in the BGE or adsorbed onto the capillary wall,and -CD derivatives.The aim of this work was then to determine if a synergistic effect may exist between the chiral IL cation and the CD,and possibly to elucidate the interaction system bringing into play the three different entities:analyte,chiral IL and-CD derivative (Fig.1).The main parameters expected to impact this complex system were the nature and concentration of the IL,the nature and concentration of the CD,the concentration of the buffer and the hydro-organic composition of the BGE.The influence of adding LiNTf2to the separation electrolyte in place of the chiral ILs was tested under the same conditions to discriminate specific chiral cation effect from a mere salt effect.Also,the study was conducted either with bare fused-silica capillaries or polybrene-coated capillaries,to assess the influence of IL cation adsorbed to the capillary wall.Owing to the number of parameters to be studied,only three model profens(naproxen,carprofen and suprofen,Fig.2)were investigated for the part of the experiments realized with bare silica capillaries.For the experiments performed with polybrene-coated capillaries,which were only realized in aqueous media, the following six profens were selected:naproxen,carpro-fen,suprofen,ketoprofen,indoprofen and ibuprofen(Fig.2). The retained parameters for discussion were effective elec-trophoretic chiral selectivity,αeff(thermodynamic parameter, independent of electroosmoticflow variation)and chiral resolu-tion,R s(global parameter).It is to note that no enantioselectivity was obtained for naproxen under all conditions tested and for suprofen under all DM--CD conditions.The results obtained for carprofen and suprofen with bare silica capillaries are given in Table1,while those obtained for thefive profens showing enantioselectivity with polybrene-coated capillaries are pre-sented in Table2.In a number of cases,an increase in resolution R s and a decrease in selectivityαeff were observed for the experiments with chiral ILs,as compared to the experiments without salt,but no general trend on the evolution of R s andαeff can be traced.3.1.Influence of electroosmoticflow and total salt concentration on R sThe two chiral choline IL derivatives,EtChol and PhChol, were used in this work at a concentration of10mM and at two buffer salt concentrations(5and60mM),in keeping with the preliminary study realized with achiral imidazolium-based IL cation by NACE[43].Indeed,the chiral IL addition in solution caused a change of system properties such as a possible varia-tion of the electrolyte viscosity,a marked increase in the total salt concentration,especially when the buffer salt concentration is5mM,and a modification of the capillary wall.These three parameters could mask a specific effect of the chiral IL on the enantiomeric separation.The viscosity of each solution was measured using CE instru-mentation by the method described in the literature[54].The results showed no difference upon adding an IL or LiNTf2salt to a solution already containing a CD.So,there was no viscosity effect due to the IL addition on enantiomeric separation.As the addition of the chiral IL was changing the total salt con-centration of the solution,the same experiments were realized with LiNTf2salt in place of chiral IL to discriminate between a mere salt effect and a specific effect due to the chiral nature of IL cations.In effect,in a lot of cases,Table1shows an increase in R s upon chiral IL addition,but also upon LiNTf2addition.Salt addition caused a decrease in electroosmotic mobility(μeo)and under these counter-electroosmoticflow condition an increase in R s values[55].As expected,a more importantμeo variation and hence R s increase was observed at the lower starting level of buffer salt concentration(5mM),for which the relative variation in concentration was higher(Fig.3).It was also noted that,with bare silica capillaries,in the major-ity of cases the addition of a chiral IL caused a more important decrease inμeo than LiNTf2did.This decrease was likely due to the adsorption of the IL cation to the capillary wall,as already mentioned by Stalcup and co-workers[27,28].To further dis-criminate between IL cation wall adsorption and salt effect,the same experiments were resumed with polybrene-coated capil-laries which are anticipated to eliminate the IL cation interaction with capillary wall.Table2shows that in a majority of cases, an increase in R s for the experiments with chiral IL and LiNTf2 was still observed as compared to CD-alone experiments.In all these cases,a decrease inμeo was also observed,due to the increase in salt concentration.These experiments with positively charged capillaries highlighted the significance of salt effects on the chiral resolution of thefive model profens.3.2.Influence of chiral IL onαeffFinally,effective electrophoretic selectivity,αeff,designed to be independent of electroosmotic mobility,was the only param-eter able to indicate a possible synergistic effect between the two selectors.In some cases,when the initial buffer salt con-centration was5mM,an increase inαeff was observed upon adding10mM LiNTf2salt.This behavior can only be under-stood in considering that the apparent inclusion constants for profens into the CDs,which controlαeff,can be depending on electrolyte ionic strength.Apart from this,an increase inαeff, with a difference of more than3%,in the presence of a chiral IL additive as compared to the experiments with the same con-centration of LiNTf2was noted infive cases with bare silica capillaries(Table1)and in four cases with the polybrene-coated138Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141Table1Electroosmotic mobility(μeo),enantiomer electrophoretic mobilities(μep1andμep2),chiral effective selectivity(αeff)and resolution(R s)for carprofen and suprofen obtained under various aqueous and hydroorganic BGE conditions in bare silica capillaries50m i.d.×35cm(effective length,26.5cm)capillaries.Applied voltage:25kV.Temperature:25◦C.UV absorbance at230nm.See Fig.3for electrolyte additive concentrations.The ovoid circle highlight cases of synergistic effects.Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141139Fig.2.Structures of(A)the studied arylpropionic acids and(B)ionic liquids ethylcholine and phenylcholine bis(trifluoromethylsulfonyl)imide(EtCholNTf2, PhCholNTf2).p K a values at26–27◦C from Ref.[53].capillaries(Table2).Such a relative difference was consid-ered as the limit of significance based on a mean3%error for experimental electrophoretic values of chiral compounds (Tables1and2).Among these nine cases,eight were obtained with5mM buffer salt concentration and allfive cases identi-fied in the experiments reported in Table1were obtained with aqueous and hydroorganic media.It is to note that the exper-iments with polybrene-coated capillaries were performed with both5mM(results shown in Table2)and60mM(results not shown)buffer salt concentrations,but no case of synergy was observed at the higher concentration.In spite of the lack of general trend,this behavior suggests that the synergistic effect observed between the two selectors may be due to specific ion-pairing interaction between the analyte and the chiral IL cation.The presence of the phenyl group in the chiral choline cation did not appear to be of importance in the observation of apparent synergistic effects,whereas most cases were observed with TM--CD.For a better understanding of the interactions brought into play and to assess a possible competition between the analyte and the IL cation for inclusion complex forma-tion with the CD,a study on possible inclusion complexation between chiral IL cation and-CD derivatives was under-taken.Concerning EtChol NTf2,a recent study realized by our group on inclusion constant determination between quite a large number of neutral CDs and alkyl(methyl)methylimidazolium140Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–141Table2Electroosmotic mobility(μeo),enantiomer electrophoretic mobilities(μep1andμep2),chiral effective selectivity(αeff)and resolution(R s)obtained for model profens under various aqueous BGE conditions with5mM buffer salt concentration in polybrene-coatedcapillariesOther conditions:see Table1.cations[48],revealed that the inclusion of IL cation almostexclusively depends on the alkyl chain length.For1-ethyl-3-methylimidazolium cation,no inclusion was measured with any tested CD.On analogy,it seems reasonable to conclude that there is no inclusion between EtChol cation and the two-CD derivatives of the present study.The previously used mobility shift affinity CE method was adapted to determine the apparent inclusion constant for PhChol cation and DM-and TM--CD in a acetic acid/sodium acetate buffer at pH5.0(ionic strength, 30mM).The results obtained in this work showed that there was no inclusion of PhChol cation into TM--CD cavity but that this cation formed a complex with DM--CD having an apparent constant of144±3at25◦C.This difference in behav-ior could be explained by the more important steric hindrance of TM--CD as compared to DM--CD.Eventually,the study of inclusion phenomena between chiral IL cations and used CDs showed that there was an influence of the CD nature on the competition between the analyte and the IL cation with the CD.Nevertheless,the two thirds of apparent synergistic cases were observed with TM--CD with respect to DM--CD for EtChol as well as PhChol ILs,which does not allow to further clarify which factor is the mostinfluent.Fig.3.Enantioseparation of carprofen in the presence of TM--CD and chiral ILs.Bare fused-silica capillary,50m i.d.×35cm(effective length,26.5cm). Electrolyte:2.63mM acetic acid,5.0mM sodium acetate buffer,pH5.0con-taining(a)30mM TM--CD,(b)30mM TM--CD+10mM EtCholNTf2, (c)30mM TM--CD+10mM PhCholNTf2,(d)30mM TM--CD+10mM LiNTf2in(90:10,v/v)H2O–MeOH mixture.Applied voltage:25kV.Tempera-ture:25◦C.UV absorbance at230nm.Hydrodynamic injection(30mbar,3s). EOF:electroosmoticflow.Y.Fran¸c ois et al./J.Chromatogr.A1155(2007)134–1411414.ConclusionThis work focused on the evaluation of two chiral ILs(ethyl-and phenylcholine of bis(trifluoromethylsulfonyl)imide)by CE. No direct enantioselectivity was observed for these two chi-ral IL cations with respect to a series of arylpropionic acids, selected as model compounds,in various nonaqueous BGE con-ditions.BGEs containing both a chiral IL cation and a classical chiral selector(di-or trimethyl--cyclodextrin)in water and water–MeOH mixtures were subsequently investigated to look for a compromise between the selective formation of inclusion complexes,favored in aqueous electrolyte,and of ion-pairs, favored in nonaqueous media.In most cases,an increase in res-olution was observed upon adding one of the chiral IL,but this variation was most often due to a decrease in electroosmoticflow, resulting from the increase in salt concentration and a possible wall adsorption.In nine cases,however,simultaneous increase inαeff and R s was observed as compared to a simple salt effect, which suggests a synergistic effect of the two selectors.Appar-ent inclusion constant for EtChol and PhChol cations and the used cyclodextrins were evaluated,demonstrating an influence of the CD nature on the competition between the analyte and the IL cation with respect to CD complexation.Nevertheless,the presence of the phenyl group in the IL cation appeared to be of less importance in promoting these synergistic effects than that of methanol and of a low salt concentration in the BGE,which suggests that specific ion-pairing interactions may be involved. AcknowledgementsThe authors thank Julie du Mazaubrun and Estelle Dav-esne for their collaboration in this work,Jean-Marc Busnel and Thomas Le Saux for very fruitful discussions.References[1]E.Gassmann,J.E.Kuo,R.W.Zare,Science230(1985)813.[2]S.Fanali,J.Chromatogr.494(1989)441.[3]B.Chankvetadze,Capillary Electrophoresis in Chiral Separation,Wileyand Sons,Chichester,1997.[4]M.I.Jimidar,W.Van Ael,P.Van Nyen,M.Peeters,D.Redlich,M.DeSmet,Electrophoresis25(2004)2772.[5]B.Chankvetadze,G.Blaschke,J.Chromatogr.A906(2001)309.[6]H.Nishi,S.Terabe,J.Chromatogr.A875(2000)1.[7]G.Vigh,A.D.Sokolowski,Electrophoresis18(1997)2305.[8]G.G¨u bitz,M.G.Schmid,Electrophoresis25(2004)3981.[9]M.L¨a mmerhofer,J.Chromatogr.A1068(2005)3.[10]M.L¨a mmerhofer,J.Chromatogr.A1068(2005)31.[11]A.Van Eeckhaut,Y.Michotte,Electrophoresis27(2006)2880.[12]P.Wasserscheidt,T.Weldon,Ionic Liquids in Synthesis,Wiley-VCH,NewYork,2003.[13]J.Dupont,R.F.de Souza,P.A.Z.Suarez,Chem.Rev.102(2002)3667.[14]P.Wasserscheidt,W.Keim,Angew.Chem.Int.Ed.39(2000)3772.[15]M.J.Earle,K.R.Seddon,Pure Appl.Chem.72(2000)1391.[16]S.G.Cull,J.D.Holbrey,V.Vargas-Mora,K.R.Seddon,G.J.Lye,Biotech-nol.Bioeng.69(2000)227.[17]J.G.Huddleston,H.D.Willauer,R.P.Swatloski,A.E.Visser,R.D.Rogers,m.(1998)1765.[18]A.G.Fadeev,M.M.Meagher,mun.(2001)295.[19]A.E.Visser,R.P.Swatloski,R.D.Rogers,Green Chem.2(2000)1.[20]F.Pachole,H.T.Butler,C.F.Poole,Anal.Chem.54(1982)1938.[21]D.W.Armstrong,J.L.Andersen,J.Ding,T.Welton,J.Am.Chem.Soc.124(2002)14247.[22]A.Berthod,L.He,D.W.Armstrong,Chromatographia53(2001)63.[23]A.Heintz,D.W.Kulikov,S.P.Verevkin,J.Chem.Eng.Data47(2002)894.[24]M.J.Ruiz-Angel,S.Carda-Broch,A.Berthod,J.Chromatogr.A1119(2006)202.[25]M.P.Marszall,T.Baczek,R.Kaliszan,J.Sep.Sci.29(2006)1138.[26]X.Xiao,L.Zhao,X.Liu,S.Jiang,Anal.Chim.Acta519(2004)207.[27]E.G.Yanes,S.R.Gratz,A.M.Stalcup,Analyst125(2000)1919.[28]E.G.Yanes,S.R.Gratz,M.J.Baldwin,S.E.Robinson,A.M.Stalcup,Anal.Chem.73(2001)3838.[29]M.Vaher,M.Koel,M.Kaljurand,Chromatographia53(2001)S-302.[30]M.Vaher,M.Koel,M.Kaljurand,Electrophoresis23(2002)426.[31]M.Vaher,M.Koel,M.Kaljurand,J.Chromatogr.A979(2002)27.[32]R.Kuldvee,M.Vaher,M.Koel,M.Kaljurand,Electrophoresis24(2003)1627.[33]M.Vaher,M.Koel,J.Chromatogr.A990(2003)225.[34]K.Tian,S.Qi,Y.Cheng,X.Chen,Z.Hu,J.Chromatogr.A1078(2005)181.[35]S.Qi,Y.Li,Y.Deng,Y.Cheng,X.Chen,Z.Hu,J.Chromatogr.A1109(2006)300.[36]M.P.Marszall,M.J.Markuszewski,R.Kaliszan,J.Pharm.Biomed.Anal.41(2006)329.[37]M.E.Yue,Y.P.Shi,J.Sep.Sci.29(2006)272.[38]S.M.Mwongela,A.Numan,N.L.Gill,R.A.Agbaria,I.M.Warner,Anal.Chem.75(2003)6089.[39]J.Ding,D.W.Armstrong,Chirality17(2005)281.[40]C.Baudequin,D.Br´e geon,J.Levillain,F.Guillen,J.-C.Plaquenvent,A.-C.Gaumont,Tetrahedron:Asymm.16(2005)3921.[41]S.A.A.Rizvi,S.A.Shamsi,Anal.Chem.78(2006)7061.[42]B.K.Patel,M.Hanna-Brown,M.R.Hadley,A.J.Hutt,Electrophoresis25(2004)2625.[43]Y.Francois,A.Varenne,E.Juillerat,A.-C.Servais,P.Chiap,P.Gareil,J.Chromatogr.A1138(2007)268.[44]P.Wasserscheid,A.Bosman,C.Bolm,mun.(2002)200.[45]Y.J.Yao,S.F.Y.Li,J.Chromatogr.A680(1994)431.[46]E.Cordova,J.Gao,G.M.Whitesides,Anal.Chem.69(1997)1337.[47]A.Macia,F.Borrull,M.Calull,C.Aguilar,Electrophoresis25(2004)3441.[48]Y.Francois,A.Varenne,J.Sirieix,P.Gareil,J.Sep.Sci.,in press.[49]K.A.Connors,Binding Constants.The Measurements of Molecular Com-plex Stability,John Wiley&Sons,New York,1987.[50]K.L.Rundlett,D.W.Armstrong,J.Chromatogr.A721(1996)173.[51]F.Leli`e vre,P.Gareil,A.Jardy,Anal.Chem.69(1997)385.[52]S.Fanali,Z.Aturki,J.Chromatogr.A694(1995)297.[53]F.Leli`e vre,P.Gareil,J.Chromatogr.A735(1996)311.[54]Y.Francois,K.Zhang,A.Varenne,P.Gareil,Anal.Chim.Acta562(2006)164.[55]C.Schwer,E.Kenndler,Chromatographia33(1992)331.。
收稿:2007年6月,收修改稿:2007年8月 3通讯联系人 e 2mail :gaoge @手性离子液体的合成孙洪海1,2 高 宇3 翟永爱1 张 青1 刘凤岐1 高 歌13(11吉林大学化学学院 长春130023;21大庆师范学院化学系 大庆163712;31北京大学医学部 北京100083)摘 要 近年来,研究者对室温离子液体极为关注,因为这些离子液体可以作为潜在的替代试剂用于有机合成、提取与分离、电化学和材料科学等方面。
在离子液体中,手性离子液体由于可用在手性识别、不对称合成、消旋体的拆分、立体选择聚合、气相色谱、NMR 位移试剂和液晶等方面而受到特别注意。
尽管手性离子液体由于合成困难和费用昂贵而限制了其广泛应用,但其在不对称合成中可作为手性诱导物的应用前景促使研究者不断地去开发新型的手性离子液体。
手性离子液体的制备既可以使用手性源(如氨基酸、胺、氨基醇以及生物碱类),也可以利用不对称合成的手段,其所具有的手性可位于分子的中心、轴或者平面上。
本文综述了手性离子液体合成的最新进展,并按照阴离子或阳离子的种类将其分为咪唑类、吡啶类、铵类和噻唑啉盐类,同时简要介绍了一些新的合成技术。
关键词 手性 离子液体 合成中图分类号:O62113,O64514 文献标识码:A 文章编号:10052281X (2008)0520698215Synthesis of Chiral Ionic LiquidsSun Honghai1,2 Gao Yu 3 Zhai Yongai 1 Zhang Qing 1 Liu Fengqi 1 Gao G e13(1.C ollege of Chemistry ,Jilin University ,Changchun 130023,China ;2.Department of Chemistry ,Daqing NormalUniversity ,Daqing 163712,China ;3.Health Science Center ,Peking University ,Beijing 100083,China )Abstract The interest in using room tem perature ionic liquids (RTI Ls )as potential replacement s olvents for organic synthesis ,extraction ,electrochemistry ,and materials science has increased tremendously in the recent years.Am ong them ,chiral ionic liquids are particularly attractive due to their potential for chiral discrimination ,asymmetric synthesis ,optical res olution of racemates ,stereoselective polymerization ,gas chromatography ,NMR shift reagents and liquid crystals.Even though the difficult syntheses of chiral ionic liquids and their high cost often precluded their use ,the possibility to use chiral ionic liquids as inducers for asymmetric reactions has greatly prom pted researchers to continuely synthesize new chiral s olvents.The chiral ionic liquids are designed either from the chiral pool (aminoacids ,amines ,aminoalcohols ,and alkaloids )or by asymmetric synthesis ;they can bear central ,axial or planar chirality.This review deals mainly with recent advances in synthesis of chiral ionic liquids.Based on the species of cation or anion ,they are classified into imidazolium 2based ,pyridinium 2based ,amm onium 2based ,and thiazolinium 2based etc.In addtion ,s ome new synthesis techniques are als o introduced.K ey w ords chirality ;ionic liquids ;synthesis 以离子液体(I Ls )为溶剂进行有机合成反应是近年来的新兴研究领域之一。
不对称氢化反应碱活化催化剂English Answer:Asymmetric hydrogenation is a powerful tool for the synthesis of chiral compounds, which are essential in many fields such as pharmaceuticals and agrochemicals. In recent years, there has been a growing interest in the development of碱活化 catalysts for asymmetric hydrogenation.碱活化 catalysts are typically composed of a metal complex and a chiral ligand. The metal complex is responsible for the catalytic activity, while the chiral ligand provides the chirality to the catalyst. 碱活化catalysts can be used to hydrogenate a variety of substrates, including ketones, alkenes, and imines.The mechanism of asymmetric hydrogenation involves the coordination of the substrate to the metal complex, followed by the transfer of hydrogen from the chiral ligand to the substrate. The chirality of the ligand controls thestereochemistry of the hydrogenation reaction, resulting in the formation of a chiral product.碱活化 catalysts have several advantages over传统asymmetric hydrogenation catalysts. First, they are typically more active and selective than traditional catalysts. Second, they can be used to hydrogenate a wider range of substrates. Third, they are often more stable and reusable than traditional catalysts.As a result of these advantages,碱活化 catalysts are becoming increasingly popular for the synthesis of chiral compounds. They are expected to play a major role in the development of new and improved pharmaceuticals and agrochemicals.中文回答:不对称氢化反应是一种合成手性化合物的有力工具,手性化合物在制药和农用化学品等许多领域中至关重要。
收稿:2008年9月,收修改稿:2008年12月 3云南省应用基础研究计划(N o.2005E008Q )和云南省教育厅科学研究基金项目(N o.08Y 0041)资助33C orresponding author e 2mail :huangqiang @以季 盐离子液体为反应介质的绿色有机反应3黄 强133 王丽丽2 郑保忠1 隆 泉3(1.云南大学材料科学与工程系 昆明650091;2.云南师范大学生命科学学院 昆明650092;3.云南大学化学科学与工程学院 昆明650091)摘 要 与铵盐类离子液体比较,季 盐离子液体具有挥发性更低,物理、化学性质更加稳定,兼具催化功能等优点。
近年来,季 盐离子液体作为一种绿色反应介质日益受到重视,很多类型的有机反应在季 盐离子液体中得到应用,收到了很好的效果。
本文主要以2000年以来的文献报道为线索,对季 盐离子液体的制备方法以及以其作为反应介质的绿色有机反应进行了综述。
这些反应主要包括Diels 2Alder 反应、Heck 反应、Suzuki 反应、Buchwald 2Hartwig 反应、Friedel 2Crafts 反应、K ornblum 取代反应、G rignard 反应、羰基化反应、氢甲酰化反应、转移氢化反应、酯化反应等多种类型。
特别是对于一些涉及强碱性反应条件或亲电取代的反应类型,季 盐离子液体具有特殊的优势。
关键词 季 盐 离子液体 有机反应 绿色化学中图分类号:O645.4;O621.3 文献标识码:A 文章编号:10052281X (2009)0921782210G reen Organic R eactions in Phosphonium Salt Ionic Liquid MediaHuang Qiang133 Wang Lili 2 Zheng Baozhong 1 Long Quan3(1.Departemnt of Materials Science and Engineering ,Y unnan University ,K unming 650091,China ;2.School of Life Science ,Y unnan N ormal University ,K unming 650092,China ;3.School of Chemical Science and Engineering ,Y unnan University ,K unming 650091,China )Abstract C om pared with the amm onium 2type ionic liquids ,phosphonium 2based ionic liquids (PI Ls )have the advantages as less v olatility ,m ore stable physical and chemical properties ,and combining s olvent and catalytic function.Recently ,PI Ls are considered with a growing em phasis as green reactive media.Many types of organic reactions are performed in PI Ls and s ome g ood effects are exhibited.This article focuses mainly on the preparation of PI Ls and the green organic reactions carried out in PI Ls ,m ostly adopting the pioneering w ork and s ome selected journal ’s exam ples since the year of 2000.These reactions include Diels 2Alder ,Heck ,Suzuki ,Buchwald 2Hartwig ,Friedel 2Crafts ,K ornblum substitution ,G rignard ,carbonylation ,trans fer hydrogenation ,hydroformylation ,esterification reactions ,etc.PI Ls media takes on a number of express advantages especially for s ome reactions which inv olve strong base conditions or electrophilic substitutions.K ey w ords quaternary phosphonium salt ;ionic liquids ;organic reactions ;green chemistryContents1 Introduction2 Preparation of phosphonium 2based ionic liquids2.1 Quaternary phosphonium salt with haloid anions 2.2 Quaternary phosphonium salt withnon 2haloidanions2.3 Chiral phosphonium ionic liquids第21卷第9期2009年9月化 学 进 展PROG RESS I N CHE MISTRYV ol.21N o.9 Sep.,20092.4 Others3 G reen organic reactions in PI Ls3.1 Diels2Alder reaction3.2 Hydroformylation3.3 E lectrophilic substitution3.4 K ornblum substitution3.5 C—C coupling reaction3.6 Buchwald2Hartwig reaction3.7 Carbonylation3.8 G rignard reaction3.9 Reduction3.10 Miscellaneous reactions4 C oncluding remarks1 引言室温离子液体(room tem perature ionic liquids, RTI Ls)又称为低温熔盐,特指在室温附近(0—100℃)呈液态的离子型液体,具有物理化学稳定性好、液态温度范围宽、蒸气压低而不易挥发、对有机和无机物皆有良好的溶解性能以及极性可调控等独特的物理化学性质[1—3]。
一种光学状态可由电场控制的液晶复合材料的制备与表征胡望;宋黎【摘要】液晶材料对电、热、磁、光等外界物理量的变化具有不同的响应特性,向其中添加具有一定特性的化合物,可以得到具备一定响应特性的液晶复合材料.利用所制备的液晶复合材料对于电场变化具有响应特性的特点,制备出具有信息记录功能的复合材料.合成手性离子液体,按一定配比将其加入手征向列相液晶(N*-LC)中,得到反射波段可电控的手征向列相液晶/手性离子液体复合材料.实验结果表明:材料初始状态为光透射状态;对材料施加直流电压40 V时,样品表现为光散射状态,透过率低于10%;施加高频交流电压40 V时,样品表现为半透明镜面反射,反射范围覆盖400~750 nm,透射率为45%左右;撤去电场后,可恢复至初始状态,并且每种状态都具有一定的记忆效应.该种液晶复合材料制备简单,无需紫外辐射工艺,且具有电场响应特性,可以通过电场控制在可见光范围内表现出光透射、强烈光散射、半透明镜面反射3种不同状态,具有记忆效应,操作简单方便.【期刊名称】《液晶与显示》【年(卷),期】2018(033)010【总页数】7页(P870-876)【关键词】信息记录;液晶;反射【作者】胡望;宋黎【作者单位】宁夏计量质量检验检测研究院,宁夏银川750200;中国质量认证中心,北京100070;新兴际华集团有限公司,北京100020【正文语种】中文【中图分类】TP394.1;TH691.91 引言信息记录材料种类较多,电子纸作为其中一种,具有对信息的可重复擦写能力、对图形信息的记忆能力以及轻便、节能等特点。
目前,电子纸张按照所使用材料分类,可大致分为非液晶型材料以及液晶型材料两大类。
在非液晶型材料领域,较知名者为E-ink公司的电子墨水监视器,以及Sony的电解析型电子监视器,其主要贡献为麻省理工学院的Barrett C发明的黑白电子墨水[1]。
Chen Y在此基础上,引入了TFT面板阵列,研制了电控黑白显示柔性电子纸张样品,现在已经产品化[2]。
Synthesis of Chiral Ionic Liquids fromNatural Amino AcidsWeiliang Bao,*Zhiming Wang,and Yuxia LiZhejiang University,Xi Xi Campus,Department ofChemistry,Hangzhou,Zhejiang310028,P.R.Chinawbao@Received July29,2002Abstract:For the first time,chiral imidazolium ionic liquids containing one chiral carbon(10a-c)were synthe-sized from the natural amino acids by a simple and straight-forward procedure.The characteristics of the chiral ILs are very similar to the popular ionic liquids.One of the prime concerns of industry and academia is the search for replacements to the environmentally damaging solvents used on a large scale,especially those that are volatile and difficult to contain.In the recent years,considerable attention has been focused on the use of the room-temperature ionic liquids(RTIL)as new clean media.These solvents possess a number of interesting properties,such as lack of significant vapor pressure,ease of reuse,absence of flammability,and tolerance for large temperature variations.One of the main expected ap-plications of ionic liquids is to replace volatile organic solvents traditionally used in industry.There are many reports concerning the applications of ionic liquids in organic reactions,such as Friedel-Crafts reactions,1,2 Diels-Alder reactions,3-5Heck Reactions,6,7Pechmann condensations,8Biginelli reactions,9and Beckmann rearrangements.10-11There has been also a great deal of interest in the application of the ionic liquids as novel biphasic catalysts,12extraction solvents,13and stationary phase for chromatography.14Asymmetric synthesis is one of the most important areas in organic chemistry,biochemistry,and ually,asymmetric induction is achieved by use of optically active substrates and/or reagents,chiral catalysts,enzymes or chiral solvents.15Now that the room-temperature ionic liquids have gained more and more popularity,synthesis and characterization of chiral IL are underway.Some of the chiral anions as sodium salts are readily available.For example,Seddon et al. investigated Diels-Alder reactions in lactate ILs.16Howar-th and co-workers described the use of chiral imidazolium cations(1)in Diels-Alder reactions(Scheme1).17How-ever,the synthesis of these systems required an expen-sive chiral alkylating agent;furthermore,two symmetri-cal chiral centers may not be favorable to chiral induce-ment.Wasserscheid and co-workers synthesized three different groups of chiral ionic liquids(2-4).18However, under acidic conditions,the oxazoline ring of2has lower stability than the imidazole ring,and3and4are not very similar to the popular ionic liquids encompassing imidazolium cations,which are favorable species for investigation because of their facile and inexpensive preparation,their air and water stability,their wide liquids range,and their relatively favorable viscosity and density characteristics.19,20Chiral imidazolium ionic liq-uids with one chiral center have not been reported until now.Herein,we report for the first time the synthesis of chiral imidazolium ionic liquids(10a-c)derived from natural amino acids.First,we used the chiral amine as the starting material.Because the aromatic chiral amine is easilier resoluted than the aliphatic chiral amine,we chose the R-phenylethylamine as the starting substrate.We synthesized D-1-ethyl-2-(R-phenylethyl)-imidazolium tetrafluoroborate,5,according to the route*To whom correspondence should be addressed.(1)Adams,C.J.;Earle,M.J.;Roberts,G.;Seddon,K.R.Chem. Commun.1998,2097.(2)Stark,A.;Maclean,B.L.;Singer,R.D.J.Chem.Soc.,Dalton Trans.1999,63.(3)Fischer,T.;Sethi,A.;Welton,T.;Woolf,J.Tetrahedron Lett. 1999,40,793.(4)Lee,C.W.Tetrahedron Lett.1999,40,2461.(5)Ludley,P.;Karodia,N.Tetrahedron Lett.2001,42,2011.(6)Carmichael,A.J.;Earle,M.J.;Holbrey,J.D.;McCormac,P.B.; Seddon,.Lett.1999,1,997.(7)Calo`,V.;Nacci,A.;Lopez,L.;Mannarini,N.Tetrahedron Lett. 2000,41,8973.(8)Potdar,M.K.;Mohile,S.S.;Salunkhe,M.M.Tetrahedron Lett. 2001,42,9285.(9)Peng,J.;Deng,Y.Tetrahedron Lett.2001,42,5917.(10)Ren,R.X.;Zueva,L.D.;Ou,W.Tetrahedron Lett.2001,42, 8441.(11)Peng,J.;Deng,Y.Tetrahedron Lett.2001,42,403.(12)Aqueous-Phase Organometallic Catalysis:Concepts and Ap-plications;Cornils,B.,Herrmann,W.A.,Eds.;Wiley-VCH:Weinheim, 1998.(13)Huddleston,J.G.;Willauer,H.D.;Swatloski,R.P.;Visser,A.E.;Rogers,mun.1998,1765.(14)Armstrong,D.W.;He,L.;Lin,Y.S.Anal.Chem.1999,71,3873.(15)March,J.Advanced Organic Chemistry;McGraw-Hill Book Co.:New York,1977;pp106-108.(16)Earle,M.J.;McCormac,P.B.;Seddon,K.R.Green Chem.1999, 1,23.(17)Howarth,J.;Hanlon,K.;Fayne,D.;McCormac,P.Tetrahedron Lett.1997,38,3097.(18)Wasserscheid,P.;Bo¨smann,A.;Bolm,mun.2002, 200.(19)Wilkes,J.S.;Zaworotko,M.J.J.Chem.Soc.,mun. 1992,965.(20)Fuller,J.;Carlin,R.T.;DeLong,H.C.;Haworth,D.J.Chem. Soc.,mun.1994,299.S CHEME110.1021/jo020503i CCC:$25.00©2003American Chemical Society.Chem.2003,68,591-593591 Published on Web12/17/2002of Scheme 2.21-23Unfortunately,its melting point is about 90°C,and this is not ideal for the chiral induce-ment,for chiral inducement in many asymmetric reac-tions at lower reaction temperatures is better than at higher ones.In addition,optical purity of R -phenylethy-lamine is not ideal by resolution(ee 95%).Thus,our studies have focused on the natural amino acids,which are optically pure and commercially available.We used L -alanine,L -valine,and L -leucine as the starting materi-als,which are not very expensive.There are two ways to obtain imidazolium rings from amino acids.Amino acids can be first reduced to amino alcohols and the amino alcohols then condensed with aldehydes to form imidazoline rings.However,the hy-droxy group may interfere with the condensation of amino group with aldehydes.So we chose the second route,that is,to allow the amino acids to condense with aldehydes to form imidazole rings under basic conditions.We put amino acids,formaldehyde,glyoxal,and aqueous ammonia together and regulated the pH with NaOH solution,and the crude products,sodium L -2-(1-imida-zolyl)alkanoic acids (7),were obtained.21The ethyl acetic esters (8)were prepared by refluxing 7in anhydrous ethyl alcohol saturated with dry hydrogen chloride ac-cording to known procedures.24The yields of the above two steps were 65-79%.The alcohols (9)was prepared by the reduction of 8using LiAlH 4in anhydrous Et 2O under reflux (yield 57-60%).25Finally,the objective products (10)were obtained by the substitution reaction of 9and bromoethane in CH 3CCl 3.22The yields of the reaction were good (80-82%).Thus,the chiral ionic liquids (10)were prepared in four steps from optically pure amino acids (6)in 30-33%overall yields (Scheme 3).The chiral ionic liquids are miscible with water,methanol,acetone,and other strong polar organic sol-vents and immiscible with ether,1,1,1-trichloroethane,and other weakly polar organic solvents.In conclusion,we could demonstrate that chiral imi-dazolium ILs with one chiral center can readily be prepared from the natural amino paring with the criteria proposed by Wasserscheid 18(easy preparation by direct synthesis in enantiopure form;melting point <80°C;thermal stability up to 100°C;good chemical stability vs water and common organic substrates and relatively low viscosity),our chiral ILs are more satis-factorily meet it.Furthermore,there are other merits in this synthesis:(a)the characterization of the chiral ILs (mp 5-16°C)are very similar to the popular ionic liquids encompassing imidazolium cations;(b)good thermal stability (do not decompose up to 180°C);(c)the starting materials are commercially available and synthetic pro-cedures are simple and straightforward.Experimental SectionGeneral Methods.All reagents and solvents were pure analytical grade materials purchased from commercial sources and were used without further purification,if not stated otherwise.Et 2O was distilled from sodium benzophenone ketyl prior to used.Ethyl alcohol was purified by standard procedure.All melting points are uncorrected.The NMR spectra were recorded in CDCl 3on a 400MHz instrument with TMS as internal standard.IR spectra were taken as KBr plates.TLC was carried out with 0.2mm thick silica gel plates (GF 254).Visualization was accomplished by UV light or I 2staining.The columns were handpacked with silica gel 60(200-300).All reactions were carried out under atmosphere,if not stated otherwise.The products were further purified by column chro-matography.L -Ethyl 2-(1-Imidazolyl)propanoate (8a).26Formaldehyde water solution (36%,16.7g)and glyoxal water solution (32%,36.2g)were added to a 250mL,three-necked flask provided with a stirrer and reflux condenser.While the mixture was heated at 50°C with stirring,a mixture of alanine (6a )(17.8g,0.2mol),ammonia solution (28%,12.1g),and sodium hydroxide solution (10%,80g)was added in small portions during 0.5h.After the mixture was stirred for an additional 4h at 50°C,the water was removed under reduced pressure.The residue was absolutely dried in a vacuum desiccator with P 2O 5.The crude product,sodium l-2-(1-imidazolyl)propanoic acid (7a ),was ob-tained.21L -Ethyl 2-(1-imidazolyl)propanoate (8a )was prepared by refluxing 7a in anhydrous ethyl alcohol saturated with dry hydrogen chloride.After the reaction was complete,excess hydrogen chloride and alcohol were removed under reduced pressure.24Saturated Na 2CO 3solution was added to the residue until pH 8-9.The resultant product was extracted with ethyl acetate and dried with Na 2SO 4.The product was further purified(21)Hofmann,K.The Chemistry of Heterocyclic Compounds :Imi-dazole and Its Derivatives Part ;Interscience Publisher:Inc.:New York,1956;p 33.(22)Bonhote,P.;Dias,A.P.;Papageoriou,N.Inorg.Chem.1996,35,1168.(23)Fuller,J.;Carlin,R.T.;Osteryoung,R.A.J.Electrochem.Soc .1997,144,3881.(24)Alexander,P.T.E.;Frank,L.P.J.Chem.Soc.1932,1806.(25)Jnoes,R.G.;Mclaughlin,K.C.J.Am.Chem.Soc.1949,71,2444.S CHEME2S CHEME3.Chem.,Vol .68,No .2,2003by column chromatography(1:4petroleum ether/ethyl acetate): yield24g;70%(two steps overall);oil(bp122-123/7mmHg); [R]25D)+8.8(c2.0,CH3OH);1H NMRδ1.24-1.28(t,J)7.14 Hz,3H),1.73-1.75(d,J)7.30Hz,3H),4.17-4.23(q,J)7.12 Hz,2H),4.85-4.90(q,7.29Hz,1H),7.03(s,1H),7.07(s,1H), 7.59(s,1H);13C NMRδ13.41,17.88,54.48,61.42,117.33, 128.76,135.87,169.55;IR3386,3114,2986,1742cm-1.Anal. Calcd for C8H12N2O2:C,57.13;H,7.19;N,16.66;Found:C, 57.36;H,7.31;N,16.46.L-2-(1-Imidazolyl)propanol(9a).26Lithium aluminum hy-dride(11.4g)was added to300mL of anhydrous ether in a500 mL three-necked flask with a stirrer and reflux condenser.With stirring,33.6g of8a was added in small portions during1h.25 After the mixture was stirred for1h at room temperature,more lithium aluminum hydride(11.4g)was added.The mixture was stirred for an additional2h,and then70mL of water was very carefully added dropwise.The resulting suspension of white granular solid in ether was filtered.The solid was suspended in methanol,and the mixture was saturated with carbon dioxide under reflux for1h and then filtered.The combined ether and methanol filtrates were evaporated to dryness,and the resultant product was further purified by column chromatography(1:4, methanol/ethyl acetate):yield17g,59%;mp114-115°C;[R]25D)+8.4(c2.0,CH3OH);1H NMR1.37-1.39(d,J)6.80Hz,3H), 3.59-3.69(m,2H),4.14-4.18(m,1H),5.84(br,OH),6.82(s, 1H),6.90(s,1H),7.37(s,1H);13C NMRδ17.30,55.77,65.81, 117.29,127.79,135.93;IR3116,2980,2938,1578cm-1;Anal. Calcd for C6H10N2O:C,57.12;H,7.99;N,22.20.Found:C, 56.99;H,7.85;N,22.02.L-1-Ethyl-3-(1′-hydroxy-2′-propanyl)imidazolium Bro-mide(10a).Under vigorously stirring,76.3g of bromoethane was added dropwise to a solution of25.2g of9a in200mL of 1,1,1-trichloroethane over0.5h.22The mixture was stirred for an additional5h under reflux and then evaporated to dryness. The resultant product was further purified by column chroma-tography(1:2,methanol/ethyl acetate):yield43g,80%;mp5-6°C;[R]25D)+3.7(c2.0%,CH3OH);1H NMR1.56-1.71(m,6H), 1.92(br,OH),3.43-3.48(m,2H),3.73-3.78(m,1H),4.36-4.38 (m,2H),4.87(br,1H),7.35(s,1H),7.45(s,1H),9.86(s,1H);13C NMR15.21,16.63,45.37,58.92,64.54,120.60,121.05,136.09. IR3444,2078,1634cm-1;Anal.Calcd for C8H15BrN2O:C,40.87; H,6.43;N,11.91.Found:C,40.62;H,6.56;N,11.79.L-Ethyl2-(1-Imidazolyl)-3-methylbutanoate(8b).This compound was prepared by a procedure similar to that for the preparation of8a and was further purified by column chroma-tography(1:4petroleum ether/ethyl acetate):yield27g,68% (two steps overall);oil(bp137-138°C/7mmHg);[R]25D)+9.9 (c2.0%,CH3OH);1H NMRδ0.79-0.80(d,J)6.71Hz,3H),1.00-1.02(d,J)6.69Hz,3H),1.26-1.30(t,J)7.14Hz,3H),2.39-2.44(m,1H),4.17-4.25(m,2H),4.31-4.33(d,J)9.58 Hz,1H),7.06(s,1H),7.11(s,1H),7.59(s,1H);13C NMR13.91, 18.38,19.12,31.98,61.59,66.45,118.38,129.16,137.02,169.30; IR3386,3114,2971,2878,1742cm-1.Anal.Calcd for C10H16N2O2:C,61.20;H,8.22;N,14.27.Found:C,61.45;H, 8.31;N,14.06.L-2-(1-Imidazolyl)-3-methylbutanol(9b).This compound was prepared by a procedure similar to that for the preparation of9a and was further purified by column chromatogramphy(1: 10methanol/ethyl acetate):yield22g,60%;mp95-97°C;[R]25D)-20.5(c2.0,CH3OH);1H NMR0.73-0.74(d,J)6.70Hz, 3H),1.02-1.03(d,J)6.66Hz,3H),2.08-2.13(m,1H),3.66-3.71(m,1H),3.88-3.90(m,1H),4.46(br,OH),6.92(m,2H), 7.37(s,1H);13C NMRδ19.22,19.88,29.96,62.76,67.04,118.05, 128.13,136.73;IR3113,2965,2876,1598cm-1.Anal.Calcd for C8H14N2O:C,62.31;H,9.15;N,18.17.Found:C,62.12;H,9.36; N,18.31.L-1-Ethyl-3-(1′-hydroxy-3′-methyl-2′-butanyl)imidazoli-um Bromide(10b).This compound was prepared by a proce-dure similar to that for the preparation of10a and was further purified by column chromatography(1:5CH3OH/ethyl acetate): yield48g,y82%;mp11-12°C;[R]25D)-10.0(c2.0%,CH3OH); 1H NMRδ0.82-0.84(d,J)6.68Hz,3H),1.06-1.08(d,J) 6.65Hz,3H),1.58-1.62(t,J)7.35Hz,3H),2.21-2.28(m,1H), 3.75(br,OH),3.95-4.02(m,2H),4.29-4.34(m,1H),4.34-4.42 (m,2H),7.54(m,2H),9.72(s,1H);13C NMRδ15.42,19.35, 19.37,29.68,45.28,61.08,69.47,121.37,122.01,135.88;IR3356, 3134,3080,2968,2878,1637,1560cm-1.Anal.Calcd for C10H19-BrN2O:C,45.64;H,7.28;N,10.64.Found:C,45.55;H,7.43; N,10.44.L-Ethyl2-(1-Imidazolyl)-4-methylpentanoate(8c).This compound was prepared by a procedure similar to that for the preparation of8a and was further purified by column chroma-tography(1:1petroleum ether/ethyl acetate):yield28g,65% (two steps overall);oil(bp144-145°C/7mmHg);[R]25D)+4.4 (c2.0%,CH3OH);1H NMRδ0.92-0.93(d,J)6.73Hz,3H),0.94-0.95(d,J)6.66Hz,3H),1.25-1.29(t,J)7.10Hz,3H),1.35-1.45(m,1H),1.94-1.97(t,J)7.51Hz,2H),4.18-4.23 (q,J)7.12Hz,2H),4.76-4.80(t,J)7.86Hz,1H),7.06(s, 1H),7.11(s,1H),7.68(s,1H);13C NMR14.03,21.46,22.63, 24.54,41.53,58.45,62.06,118.06,128.59,136.73,170.08;IR 3385,3133,2959,1735cm-1.Anal.Calcd for C11H18N2O2:C, 62.83;H,8.63;N,13.32.Found:C,62.59;H,8.51;N,13.48.L-2-(1-Imidazolyl)-4-methylpentanol(9c).This compound was prepared by a procedure similar to that for the preparation of9a and was further purified by column chromatography(1:5 petroleum ether/ethyl acetate):yield22g,57%;mp53°C;[R]25D)-10.8(c2.0%,CH3OH);1H NMRδ0.85-0.87(d,J)6.40 Hz,3H),0.88-0.89(d,J)6.80Hz,3H),1.28-1.40(m,1H), 1.50-1.57(m,1H),1.67-1.75(m,1H),3.71-3.77(m,2H),4.11-4.16(m,1H),4.33(br,OH),6.90(m,2H),7.37(s,1H);13C NMR δ21.73,22.97,24.46,40.11,59.03,65.67,117.24,128.38,136.43; IR3115,2958,2871,1659cm-1.Anal.Calcd for C9H16N2O:C, 64.25;H,9.59;N,16.66.Found:C,64.45;H,9.40;N,16.39.L-1-Ethyl-3-(1′-hydroxy-4′-methyl-2′-pentanyl)imidazo-lium Bromide(10c).This compound was prepared by a procedure similar to that for the preparation of10a and was further purified by column chromatography(1:10methanol/ethyl acetate):yield50g,81%;mp15-16°C;[R]25D)+9.2(c2.0%, CH3OH);1HNMRδ0.92-0.93(d,J)6.40Hz,3H),0.94-0.96 (d,J)6.40Hz,3H),1.42-1.50(m,1H),1.57-1.61(t,J)7.00 Hz,3H),1.64-1.72(m,1H),1.75-1.83(m,1H),2.93(br,OH), 3.74-3.77(m,1H),3.90-3.93(m,1H),4.33-4.39(q,J)7.20 Hz,2H),4.70(br,1H),7.40(s,1H),7.42(s,1H),9.67(s,1H); 13C NMRδ15.10,22.07,22.67,24.76,39.32,45.32,62.00,63.77, 120.94,121.36,136.36;IR3385,2959,2873,1636cm-1.Anal. Calcd for C11H21BrN2O:C,47.66;H,7.64;N,10.11.Found:C, 47.70;H,7.84;N,10.00.Supporting Information Available:1H NMR,13CNMR, and IR spectra of compounds8a-c,9a-c,and10a-c.This material is available free of charge via the Internet at .JO020503I(26)Stuart,C.M.;Christine,S.;Tancarn,L.;Murray,M.A.;John,M.K.PCT Int.WO9719073..Chem,Vol.68,No.2,2003593。