朝阳区初三数学一模试题及答案版
- 格式:docx
- 大小:2.68 MB
- 文档页数:19
北京市朝阳区九年级综合练习(一)数学试卷2018.5学校班级姓名考号一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.如图,直线a ∥b ,则直线a ,b 之间距离是 (A )线段AB 的长度 (B )线段CD 的长度 (C )线段EF 的长度 (D )线段GH 的长度2.若代数式12 x x有意义,则实数x 的取值范围是(A )x =0(B )x =1(C )x ≠0(D )x ≠13.若右图是某几何体的三视图,则这个几何体是 (A )球 (B )圆柱 (C )圆锥 (D )三棱柱4.已知l 1∥l 2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为 (A )90° (B )120° (C )150° (D )180°5.下列图形中,是中心对称图形但不是..轴对称图形的是 (A )(B )(C )(D )6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示, 下列结论①a <b ;②|b |=|d |;③a+c =a ;④ad >0中,正确的有 (A )4个(B )3个(C )2个 (D )1个7.“享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表 根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类 (B )两届相比较,所占比例增长最多的是剧情类 (C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类 8.如图,△ABC 是等腰直角三角形,∠A =90°,AB =6,点P 是AB 边 上一动点(点P 与点A 不重合),以AP 为边作正方形APDE ,设 AP =x ,正方形APDE 与△ABC 重合部分(阴影部分)的面积为y , 则下列能大致反映y 与x 的函数关系的图象是 二、填空题(本题共16分,每小题2分) 9.赋予式子“ab ”一个实际意义:.10.如果023≠=,那么代数式)2(422n m n m +⋅-的值是. 11.足球、篮球、排球已经成为北京体育的三张名片,越来越受到广大市民的关注.下表是北京两支篮球队在2017-2018赛季CBA 常规赛的比赛成绩:设胜一场积x 分,负一场积y 分,依题意,可列二元一次方程组为.12.如图,AB ∥CD ,AB=21CD ,S △ABO :S △CDO =.13.如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD =度.第13题图第14题图14.如图,在平面直角坐标系xOy 中,△O'A'B'可以看作是△OAB 经过若干次图形的变化 (平移、轴对称、旋转)得到的,写出一种由△OAB 得到△O'A'B'的过程:.15.下列随机事件的概率:①投掷一枚均匀的骰子,朝上一面为偶数的概率;②同时抛掷两枚质地均匀的硬币,两枚硬币全部正面朝上的概率;③抛一枚图钉,“钉尖向下”的概率;④某作物的种子在一定条件下的发芽率.既可以用列举法求得又可以用频率估计获得的是(只填写序号).:该尺规作图的依据是?.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.计算:2sin30°+.8)4()31(01+-+-π18.解不等式组:⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x19.如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.求证:∠DAB =∠ACE.20.已知关于x 的一元二次方程0)1(2=+++k x k x . (1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.21.如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形;(2)若∠FDB =30°,∠ABC =45°,BC = ,求DF 的长.22.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky 的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1.(1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.23.如图,在⊙O 中,C ,D 分别为半径OB ,弦AB 的中点,连接CD 并延长,交过点A 的切线于点E .(1)求证:AE ⊥CE .(2)若AE = ,sin ∠ADE =31,求⊙O 半径的长.24.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲整理、描述数据按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀) 分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论a .估计乙大棚产量优秀的秧苗数为?株;b .可以推断出?大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)25.如图,AB 是⊙O 的直径,AB =4cm ,C 为AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD =60°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF =x cm ,DE =y cm (当x 的值为0或3时,y 的值为2),探究函数y 随自变量x 的变化而变化的 规律.(1)通过取点、画图、测量,得到了x 与y 的几组对应值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点F 与点O 重合时,DE 长度约为cm (结果保留一位小数).26.在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)若方程()244=00ax ax a --≠有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.27.如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明.28.对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N ,且MN =求b 的取值范围; (2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2018.5一、选择题(本题共16分,每小题2分)9.答案不惟一,如:边长分别为a ,b 的矩形面积 10.4711.⎩⎨⎧=+=+.562018,631325y x y x 12.1:413.15 14.答案不唯一,如:以x 轴为对称轴,作△OAB 的轴对称图形,再将得到三角形沿向右平移4个单位长度 15.①②16.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.解:原式2213212+++⨯= (4)分225+=.…………………………………………………………………5分18.解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得5<x .………………………………………………………………………2分解不等式②,得21>x .………………………………………………………………………4分∴原不等式组的解集为521<<x .…………………………………………………………5分 19.证明:∵AC =BC ,CE 为△ACB 的中线,∴∠CAB =∠B ,CE ⊥AB .………………………………………………………………2分 ∴∠CAB +∠ACE =90°.…………………………………………………………………3分 ∵AD 为△ACB 的高线, ∴∠D =90°.∴∠DAB +∠B =90°.……………………………………………………………………4分 ∴∠DAB =∠ACE .………………………………………………………………………5分20.(1)证明:依题意,得k k 4)1(2-+=∆…………………………………………1分.)1(2-=k ……………………………………………………………2分∵0)1(2≥-k ,∴方程总有两个实数根.……………………………………………………………3分(2)解:由求根公式,得11-=x ,k x -=2.…………………………………………………4分∵方程有一个根是正数, ∴0>-k . ∴0<k .………………………………………………………………………………5分 21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形.………………………………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM .……………………………………3分 在Rt △EMD 中,42==EM DE .………………………………………………4分∴DF =8.……………………………………………………………………………………5分 22.解:(1)∵AO =2,OD =1,∴AD =AO+OD =3.……………………………………………………………………1分∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6).……………………………………………………………………………2分∴该反比例函数的表达式是xy 6-=.…………………………………………………3分(2)点M 的坐标为(-3,2)或(53,-10).……………………………………………5分23.(1)证明:连接OA ,∵OA 是⊙O 的切线,∴∠OAE =90o (1)∵C ,D 分别为半径OB ,弦AB 的中点,∴CD 为△AOB 的中位线.∴CD ∥OA . ∴∠E =90o. ∴AE ⊥CE .…………………………………2分(2)解:连接OD ,∴∠ODB =90o.………………………………………………………………………3分∵AE = ,sin ∠ADE =31,在Rt △AED 中,23sin =∠=ADEAEAD .∵CD ∥OA , ∴∠1=∠ADE .在Rt △OAD 中,311sin ==∠OA OD .………………………………………………4分设OD =x ,则OA =3x ,∵222OA AD OD =+, ∴()()222323x x =+.解得231=x ,232-=x (舍). ∴293==x OA .……………………………………………………………………5分即⊙O 的半径长为29. 24.解:整理、描述数据按如下分组整理、描述这两组样本数据…………………………………………………………………………………………………2分得出结论a .估计乙大棚产量优秀的秧苗数为84?株;…………………………3分b .答案不唯一,理由须支撑推断的合理性.…………………………5分25.解:本题答案不唯一,如:分 (2)……………………………………………………………………………………………4分 (3)3.5.……………………………………………………………………………………6分 26.解:(1)44)2(4422---=--=a x a ax ax y .∴A (0,-4),B (2,0).…………………………………………………………2分(2)当抛物线经过点(1,0)时,34-=a .……………………………………………4分当抛物线经过点(2,0)时,1-=a . (6)分结合函数图象可知,a 的取值范围为134<≤-a .…………………………………7分27.(1)补全的图形如图所示.……………………………………………………………………………………………1分 (2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°, ∴∠DAC=∠BAC=30°.........................................................................2分 ∴∠AGC=30°. ∴∠AFC =α+30°. (3)分(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AFAE 3=+.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°. ∴CA=CG.………………………………………………………………………………………5分∴HG=21AG. ∵∠ACE=∠GCF ,∠CAE=∠CGF , ∴△ACE ≌△GCF.……………………………………………………………………………6分∴AE=FG .在Rt △HCG 中,.23cos CG CGH CG HG =∠⋅= ∴AG =3CG .…………………………………………………………………………………7分即AF+AE =3CG .28.解:(1)①线段AB 的伴随点是:23,P P .…………………………………………2分 ②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………………………………………4分 如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值. …………………………………………………………………………5分 ∴b 的取值范围是3≤b ≤5.…………………………………………………6分(2)t 的取值范围是-12.2t ≤≤…………………………………………………………8分图1 图2。
2024北京陈经纶中学初三一模数学一、选择题(共8小题,共16分)1.(2分)如图是某个几何体的侧面展开图,则该几何体为()A.棱柱B.圆柱C.棱锥D.圆锥2.(2分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a+c>0B.|a|<|b|C.bc>1D.ac>03.(2分)如图,菱形ABCD的顶点A,B,C的坐标分别(0,2),(2,1),(4,2)()A.(2,2)B.(2,4)C.(3,2)D.(2,3)4.(2分)若一个多边形每一个内角都为144°,则这个多边形是()边形.A.6B.8C.10D.125.(2分)掷一枚质地均匀的硬币m次,正面向上n次,则的值()A.一定是B.一定不是C.随着m的增大,越来越接近D.随着m的增大,在附近摆动,呈现一定的稳定性6.(2分)以下图形绕点O旋转一定角度后都能与原图形重合,其中旋转角最小的是()A.B.C.D.7.(2分)下列图形中,对称轴条数最少的是()A.B.C.D.8.(2分)如图,在△ABC中,∠C=90°,BC=10.动点M,N分别从A,点M从点A开始沿边AC向点C以每秒1个单位长度的速度移动,点N从点C开始沿CB向点B以每秒2个单位长度的速度移动.设运动时间为t,C之间的距离为y,△MCN的面积为S,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.正比例函数关系,二次函数关系C.一次函数关系,正比例函数关系D.一次函数关系,二次函数关系二、填空题(本大题共8小题)9.(2分)函数y=的自变量的取值范围是.10.(2分)如果多项式ax2+by2只能因式分解为(3x+2y)(3x﹣2y),则ab=.11.(2分)写出一个比大且比小的整数是.12.(2分)如果3x2﹣x﹣1=0,那么代数式(2x+3)(2x﹣3)﹣x(x+1).13.(2分)如图,在Rt△ABC中,∠ACB=90°,AC=2,P是以斜边AB为直径的半圆上一动点,连接BM,则BM的最小值为.14.(2分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时.15.(2分)在平面直角坐标系xOy 中,已知点(n ﹣2,y 1),(n ﹣1,y 2),(n +1,y 3)在抛物线y =ax 2﹣2ax ﹣2(a <0)上,若0<n <1,则y 1,y 2,y 3的大小关系为 .(用“<”表示)16.(2分)如图,双骄制衣厂在厂房O 的周围租了三幢楼A 、B 、C 作为职工宿舍,每幢宿舍楼之间均有笔直的公路相连,且BC >AC >AB .已知厂房O 到每条公路的距离相等. (1)则点O 为△ABC 三条 的交点(填写:角平分线或中线或高线);(2)如图设BC =a ,AC =b ,AB =c ,OB =y ,OC =z ,返回厂房停放,那么最短路线长是 .三、解答惠(第17-22题各5分,第23-26题各6分,第27、28题各7分.共68分) 17.(5分)计算:.18.(5分)解不等式组:;19.(5分)关于x 的一元二次方程x 2﹣mx +2m ﹣4=0. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m 的取值范围.20.(5分)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.21.(5分)如图,四边形ABCD是平行四边形,AC、BD相交于点O,连接OE,过点E作EF⊥BC于点F (1)求证:四边形EFGO是矩形;(2)若四边形ABCD是菱形,AB=10,BD=1622.(5分)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=﹣x的图象平移得到(0,1).(1(2)当x<﹣1时,对于x的每一个值,函数y=mx(m≠0),直接写出m的取值范围.23.(6分)为进一步增强中小学生“知危险会避险“的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制)(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:b.这30名学生两次知识竞赛获奖情况相关统计表:c.第二次竞赛获卓越奖的学生成绩如下:90 9091 91 91 91 92 93 93  ; 94 94 94 95 95 96 9 8d.两次竞赛成绩样本数据的平均数、中位数、众数如下表:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“〇”圈出代表小松同学的点;(2)直接写出m,n的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).24.(6分)某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,若记水柱上某一位置与水管的水平距离为d米,与湖面的垂直高度为h米(1)在如下网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m=;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)(结果保留一位小数).25.(6分)如图,在矩形ABCD中,AB=6,点A在直线l上,AD与直线l相交所得的锐角为60°.点F 在直线l上,EF⊥直线l,垂足为点F且EF=6,在EF的左侧作半圆O,点M是半圆O上任一点.发现:AM的最小值为,AM的最大值为,OB与直线l的位置关系是.思考:矩形ABCD保持不动,半圆O沿直线l向左平移,当点E落在AD边上时26.(6分)如图,AB是⊙O的一条弦,E是AB的中点,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.27.(7分)在△ABC和△ADE中,BA=BC,DA=DE,点E在△ABC的内部,连接EC,设EC=k•BD(k ≠0).(1)当∠ABC=∠ADE=60°时,如图1,请求出k值;(2)当∠ABC=∠ADE=90°时:①如图2,(1)中的k值是否发生变化,如无变化;如有变化,请求出k值并说明理由;②如图3,当D,E,C三点共线,请求出tan∠EAC的值.28.(7分)如图,在平面直角坐标系xOy中,点S(﹣1,0),T(1,0)(0°<α≤180°),将一个图形先绕点S顺时针旋转α,再绕点T逆时针旋转α(1)点R在线段ST上,则在点A(1,﹣1),B(3,﹣2),C(2,﹣2),D(0,﹣2)中,有可能是由点R经过一次“90°对称旋转”后得到的点是;(2)x轴上的一点P经过一次“α对称旋转”得到点Q.①当α=60°时,PQ=;②当α=30°时,若QT⊥x轴,求点P的坐标;(3)以点O为圆心作半径为1的圆.若在⊙O上存在点M,使得点M经过一次“α对称旋转”后得到的点在x轴上,直接写出α的取值范围.参考答案一、选择题(共8小题,共16分)1.(2分)如图是某个几何体的侧面展开图,则该几何体为()A.棱柱B.圆柱C.棱锥D.圆锥【解答】解:由图可知展开侧面为三角形,则该几何体为棱锥故选:C.2.(2分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a+c>0B.|a|<|b|C.bc>1D.ac>0【解答】解:由数轴可以发现a<0<b<c,而|a|>|c|>|b|,∴a+c<0,|a|>|b| 又由数轴可发现2<b<2,2<c<4∴bc>1正确.故选:C.3.(2分)如图,菱形ABCD的顶点A,B,C的坐标分别(0,2),(2,1),(4,2)()A.(2,2)B.(2,4)C.(3,2)D.(2,3)【解答】解:如图,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,AE=CE,∵菱形ABCD的顶点A,B,C的坐标分别(0,(2,(5,∴AC⊥y轴,AC∥x轴,∴BD∥y轴,BE=DE=2﹣1=5,∴顶点D的坐标是(2,2+5),即(2,3),4.(2分)若一个多边形每一个内角都为144°,则这个多边形是()边形.A.6B.8C.10D.12【解答】解:∵一个多边形每一个内角都为144°,∴外角为180°﹣144°=36°,∴多边形的边数为360°÷36°=10,故选:C.5.(2分)掷一枚质地均匀的硬币m次,正面向上n次,则的值()A.一定是B.一定不是C.随着m的增大,越来越接近D.随着m的增大,在附近摆动,呈现一定的稳定性【解答】解:投掷一枚质地均匀的硬币m次,正面向上n次,的值会在,呈现出一定的稳定性,故选:D.6.(2分)以下图形绕点O旋转一定角度后都能与原图形重合,其中旋转角最小的是()A.B.C.D.【解答】解:A、最小旋转角度=;B、最小旋转角度=;C、最小旋转角度=;D、最小旋转角度=;7.(2分)下列图形中,对称轴条数最少的是()A.B.C.D.【解答】解:A、有1数条对称轴,B、有无数条对称轴,C、有2条对称轴,D、有4条对称轴,所以对称轴条数最少的是选项A.故选:A.8.(2分)如图,在△ABC中,∠C=90°,BC=10.动点M,N分别从A,点M从点A开始沿边AC向点C以每秒1个单位长度的速度移动,点N从点C开始沿CB向点B以每秒2个单位长度的速度移动.设运动时间为t,C之间的距离为y,△MCN的面积为S,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.正比例函数关系,二次函数关系C.一次函数关系,正比例函数关系D.一次函数关系,二次函数关系【解答】解:由题意得,AM=t,∴MC=AC﹣AM=5﹣t,即y=5﹣t,∴S=MC•CN=5t﹣t3,因此y是t的一次函数,S是t的二次函数,故选:D.二、填空题(本大题共8小题)9.(2分)函数y=的自变量的取值范围是x<.【解答】解:由题意得:1﹣2x>6,解得:x<,故答案为:x<.10.(2分)如果多项式ax2+by2只能因式分解为(3x+2y)(3x﹣2y),则ab=﹣36.【解答】解:根据题意可得,ax2+by2=(6x+2y)(3x﹣5y),ax2+by2=4x2﹣4y3,∴a=9,b=﹣4,∴ab=8×(﹣4)=﹣36.故答案为:﹣36.11.(2分)写出一个比大且比小的整数是2或3.【解答】解:∵,∴,∵,∴2<3,∴比大且比.12.(2分)如果3x2﹣x﹣1=0,那么代数式(2x+3)(2x﹣3)﹣x(x+1)﹣8.【解答】解:∵3x2﹣x﹣8=0,∴3x5﹣x=1,∴(2x+2)(2x﹣3)﹣x(x+3)=4x2﹣3﹣x2﹣x=3x8﹣x﹣9=1﹣5=﹣8.故答案为:﹣8.13.(2分)如图,在Rt△ABC中,∠ACB=90°,AC=2,P是以斜边AB为直径的半圆上一动点,连接BM,则BM的最小值为.【解答】解:取AB的中点O、AC的中点E,连接OC、OM、OF,如图,在Rt△ABC中,∠ACB=90°,AC=2,∴AB==4,∴OC=AB=2AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,当点P点在A点时,M点在E点,M点在F点,取OC的中点O′,连接BO′交⊙O′于M′,则BM′的长度即为BM的最小值,延长BO′交⊙O′于G,连接FM′,∵∠FBM′=∠GBC,∠FM′B=∠GCB,∴△BFM′∽△BGC,∴,即=,解得:BM′=﹣1(负值舍去),故BM的最小值为:﹣6,故答案为:﹣1.14.(2分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时.【解答】解:如图,∵∠ADC=∠HDF=90°,∴∠CDM=∠NDH,在△CDM和△HDN中,,∴△CDM≌△HDN(ASA),∴MD=ND,∴四边形DNKM是菱形,∴KM=DM,∵sinα=sin∠DMC=,∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a cm=BM,则CM=(8﹣a)(cm),∵MD2=CD8+MC2,∴a2=5+(8﹣a)2,∴a=,∴CM=(cm),∴tanα=tan∠DMC==.15.(2分)在平面直角坐标系xOy n﹣2,y1),(n﹣1,y2),(n+1,y3)在抛物线y=ax2﹣2ax ﹣2(a<0)上,若0<n<1,则y1,y2,y3的大小关系为y1<y2<y3.(用“<”表示)【解答】解:∵抛物线y=ax2﹣2ax﹣3(a<0),∴抛物线开口向下,对称轴为直线x=﹣,∵0<n<1,∴﹣7<n﹣2<﹣1,﹣4<n﹣1<0,∴点(n﹣6,y1)到对称轴的距离最大,(n+1,y6)到对称轴距离最短,∴y1<y2<y6,故答案为:y1<y2<y6.16.(2分)如图,双骄制衣厂在厂房O的周围租了三幢楼A、B、C作为职工宿舍,每幢宿舍楼之间均有笔直的公路相连,且BC>AC>AB.已知厂房O到每条公路的距离相等.(1)则点O为△ABC三条角平分线的交点(填写:角平分线或中线或高线);(2)如图设BC=a,AC=b,AB=c,OB=y,OC=z,返回厂房停放,那么最短路线长是y+c+b+z.【解答】解:(1)∵点O到每条公路的距离相等,∴点O是△ABC的角平分线的交点.故答案为:角平分线;(2)共有6条线路:d1=x+c+a+z,d5=x+b+a+y,d3=y+c+b+z,d4=y+a+b+x,d7=z+b+c+y,d6=z+a+c+x,在CB上截取CE=CA,连接OE,在△ACO和△ECO中,,∴△ACO≌△ECO(SAS),∴OA=OE,在△EBO中,y﹣x<a﹣b推出d3﹣d5<0,同理d3﹣d3<0,d3﹣d4<0,d3﹣d8<0,d3﹣d5<0,∴d3最短,故答案为:y+c+b+z.三、解答惠(第17-22题各5分,第23-26题各6分,第27、28题各7分.共68分)17.(5分)计算:.【解答】解:==.18.(5分)解不等式组:;【解答】解:,由①得:x<7,由②得:x>1,则不等式组的解集为1<x<7.19.(5分)关于x的一元二次方程x2﹣mx+2m﹣4=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m的取值范围.【解答】(1)证明:∵a=1,b=﹣m,∴Δ=b2﹣8ac=(﹣m)2﹣4(2m﹣4)=m2﹣6m+16=(m﹣4)2≥4,∴此方程总有两个实数根.(2)解:∵Δ=(m﹣4)2≥7,∴x==.∴x4=m﹣2,x2=4.∵此方程有一个根小于1.∴m﹣2<2.∴m<3.20.(5分)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.【解答】证明:方法一:∵DE∥BC,∴∠B=∠BAD,∠C=∠CAE,∵∠BAD+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°;方法二:∵CD∥AB,∴∠A=∠ACD,∠B+∠BCD=180°,∴∠B+∠ACB+∠A=180°.21.(5分)如图,四边形ABCD是平行四边形,AC、BD相交于点O,连接OE,过点E作EF⊥BC于点F (1)求证:四边形EFGO是矩形;(2)若四边形ABCD是菱形,AB=10,BD=16【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵点E是AB的中点,∴AE=BE.∴OE∥BC,∴OE∥FG,∵EF⊥BC于点F,OG⊥BC于点G,∴EF∥OG,∴四边形EFGO是平行四边形∵EF⊥BC,∴∠EFG=90°,∴四边形EFGO是矩形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC AC BD,∵AB=10,BD=16,∴OB=8,BC=10,在Rt△BOC中,OC=,∴,即,∴OG=4.6.22.(5分)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=﹣x的图象平移得到(0,1).(1)求这个一次函数的表达式;(2)当x<﹣1时,对于x的每一个值,函数y=mx(m≠0),直接写出m的取值范围.【解答】解:(1)∵一次函数y=kx+b的图象由函数y=﹣x的图象平移得到,∴k=﹣1,又∵一次函数y=﹣x+b的图象过点(0,4),∴b=1,∴这个一次函数的表达式为y=﹣x+1;(2)∵当x<﹣7时,对于x的每一个值,∴m≥﹣1且m≠0;故答案为:m≥﹣4且m≠0.23.(6分)为进一步增强中小学生“知危险会避险“的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制)(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:b.这30名学生两次知识竞赛获奖情况相关统计表:c.第二次竞赛获卓越奖的学生成绩如下:90 9091 91 91 91 92 93 93 94 94 94 95 95 96 9 8d.两次竞赛成绩样本数据的平均数、中位数、众数如下表:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“〇”圈出代表小松同学的点;(2)直接写出m,n的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【解答】解:(1)如图所示.(2)m==88,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90 91 91 92   ; 93 94 95 9 6 ,∴第一和第二个数是30名学生成绩中第15和第16个数,∴n=(90+90)=90,∴m=88,n=90;(3)可以推断出第二次竞赛中初三年级全体学生的成绩水平较高,理由是:第二次竞赛学生成绩的平均数、众数都高于第一次竞赛.24.(6分)某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,若记水柱上某一位置与水管的水平距离为d米,与湖面的垂直高度为h米(1)在如下网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m= 1.5;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)(结果保留一位小数).【解答】解:(1)以喷泉与湖面的交点为原点,喷泉所在的直线为纵轴建立平面直角坐标系(2)根据题意可知,该抛物线的对称轴为x=2,即m=1.4,故答案为:1.5;(3)根据图象可设二次函数的解析式为:h=a(d﹣5)2+1.7,将(0,0.4)代入h=a(d﹣2)2+3.5,得a=﹣,∴抛物线的解析式为:h=﹣d5+d+0.5,设调节后的水管喷出的抛物线的解析式为:h=﹣d2+d+7.5+n,由题意可知,当横坐标为2+=时,∴﹣×()2++0.5+n≥2,解得n≥,∴水管高度至少向上调节米,∴0.4+=(米),∴公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到米才能符合要求.25.(6分)如图,在矩形ABCD中,AB=6,点A在直线l上,AD与直线l相交所得的锐角为60°.点F 在直线l上,EF⊥直线l,垂足为点F且EF=6,在EF的左侧作半圆O,点M是半圆O上任一点.发现:AM的最小值为﹣3,AM的最大值为10,OB与直线l的位置关系是平行.思考:矩形ABCD保持不动,半圆O沿直线l向左平移,当点E落在AD边上时【解答】解:发现:由题意可知OM=OF=3,AF=8,∴OA===.当点M在线段OA上时,AM有最小值﹣4.当点M与点E重合时,AM有最大值=10.如图4所示:过点B作BG⊥l,垂足为G.∵∠DAF=60°,∠BAD=90°,∴∠BAG=30°.∴GB=AB=3.∴OF=BG=3,又∵GB∥OF,∴四边形OBGF为平行四边形,∴OB∥FG,即OB∥l.故答案为:﹣3;平行.思考:如图8所示:连接OG,过点O作OH⊥EG.∵∠DAF=60°,EF⊥AF,∴∠AEF=30°.∴∠GOE=120°.∴GE=2EH=2××3=7.∴半圆与矩形重合部分的周长=+7;S重合部分=S扇形GOE﹣S△GOE=.26.(6分)如图,AB是⊙O的一条弦,E是AB的中点,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,在Rt△EDF中,DE=BD=5,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O的半径为.27.(7分)在△ABC和△ADE中,BA=BC,DA=DE,点E在△ABC的内部,连接EC,设EC=k•BD(k ≠0).(1)当∠ABC=∠ADE=60°时,如图1,请求出k值;(2)当∠ABC=∠ADE=90°时:①如图2,(1)中的k值是否发生变化,如无变化;如有变化,请求出k值并说明理由;②如图3,当D,E,C三点共线,请求出tan∠EAC的值.【解答】解:(1)k=1,理由如下:如图1,∵∠ABC=∠ADE=60°,DA=DE,∴△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS)∴EC=DB,即k=2;(2)①k值发生变化,k=,∵∠ABC=∠ADE=90°,BA=BC,∴△ABC和△ADE都是等腰直角三角形,∴=,=,∠DAE=∠BAC=45°,∴=,∠DAB=∠EAC,∴△EAC∽△DAB,∴==,即EC=,∴k=;②作EF⊥AC于F,设AD=DE=a,则AE=a,∵点E为DC中点,∴CD=2a,由勾股定理得,AC==a,∵∠CFE=∠CDA=90°,∠FCE=∠DCA,∴△CFE∽△CAD,∴=,即=,解得,EF=a,∴AF==a,则tan∠EAC==.28.(7分)如图,在平面直角坐标系xOy中,点S(﹣1,0),T(1,0)(0°<α≤180°),将一个图形先绕点S顺时针旋转α,再绕点T逆时针旋转α(1)点R在线段ST上,则在点A(1,﹣1),B(3,﹣2),C(2,﹣2),D(0,﹣2)中,有可能是由点R经过一次“90°对称旋转”后得到的点是B,C;(2)x轴上的一点P经过一次“α对称旋转”得到点Q.①当α=60°时,PQ=2;②当α=30°时,若QT⊥x轴,求点P的坐标;(3)以点O为圆心作半径为1的圆.若在⊙O上存在点M,使得点M经过一次“α对称旋转”后得到的点在x轴上,直接写出α的取值范围.【解答】解:(1)如图,当点R与点O重合时,点R′绕点T逆时针旋转90°得到点C;当点R与点T重合时,点R绕点S顺时针旋转90°得到点R″;故答案为:B,C;(2)①当α=60°时,如图,∵x轴上的一点P经过一次“α对称旋转”得到点Q,∴△SPP′和△TQP′均为等边三角形,∴SP′=PP′,TP′=QP′,∴∠SP′T+∠TP′P=∠TP′P+∠PP′Q,∴∠SP′T=∠PP′Q,∴△P′ST≌△P′PQ(SAS),∴PQ=ST=2,故答案为:2;②当α=30°时,设点P绕点S顺时针旋转30°得到点P′,如图,将x轴作一次“α对称旋转”后得到直线y=﹣2,∵QT⊥x轴,点P经过一次“α对称旋转”得到点Q,∴点Q的坐标为Q(1,﹣1),∵点P′绕点T逆时针旋转30°得到点Q,∴P′T=QT=8,∠P′TQ=30°,∴∠STP′=90°﹣∠P′TQ=60°,∵∠TSP′=30°,∴∠SP′T=180°﹣∠STP′﹣∠TSP′=90°,∵ST=2,∴SP′==,∴SP=SP′=,∴点P的坐标为P(﹣8+,0).(3)点M在⊙O上,则M绕S顺时针旋转α度以后的M′的轨迹为O绕S顺时针旋转α度以后的⊙O′上,则N在O′关于T逆时针旋转α度以后的⊙O″上,只需⊙O′与x轴有交点O″在粉弧上,如图,⊙O″与x轴相切,在x轴上取点R,使O″R=8,″∴HR=,∴∠O″RH=30°,TR=O′S1,O″T=O′T,∴△O″TR≌△TO′S(SSS),∴∠TSO′=∠O″RT=30°,故5°<α≤30°;如图,⊙O″与x轴相切,在x轴上取点R,使O″R=2,∴∠HRO″=30°,ST=O″R,∴∠TRO″=150°,∵∠SO′T+∠STO′=∠STO′+∠RTO″,∴∠SO′T=∠RTO″,∵O′T=TO″,∴△O′ST≌△TRO″(SAS),∴∠O′ST=∠TRO″=150°,∴α=150°,∴150°≤α≤180°;综上所述,0°<α≤30°或150°≤α≤180°.。
北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。
北京市朝阳区九年级综合练习(一)数学试卷2023 4学校㊀班级㊀姓名㊀考号考生须知1 本试卷共8页ꎬ共三道大题ꎬ28道小题ꎬ满分100分ꎮ考试时间120分钟ꎮ2 在试卷和答题卡上认真填写学校名称㊁班级㊁姓名和考号ꎮ3 试题答案一律填涂或书写在答题卡上ꎬ在试卷上作答无效ꎮ4 在答题卡上ꎬ选择题㊁作图题用2B铅笔作答ꎬ其他试题用黑色字迹签字笔作答ꎮ5 考试结束ꎬ请将本试卷㊁答题卡和草稿纸一并交回ꎮ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀一㊁选择题(共16分ꎬ每题2分)第1-8题均有四个选项ꎬ其中符合题意的选项只有一个∙∙∙∙.1 右图是某几何体的三视图ꎬ该几何体是(A)长方体(B)三棱柱(C)圆锥(D)圆柱2 我国已建成世界上规模最大的社会保障体系㊁医疗卫生体系ꎬ基本养老保险覆盖1040000000人左右ꎬ将1040000000用科学记数法表示应为(A)1 04ˑ1010(B)1 04ˑ109(C)104ˑ109(D)0 104ˑ10113 如图ꎬ若数轴上的点A表示下列四个无理数中的一个ꎬ则这个无理数是(A)-2(B)2(C)3(D)π4 如图ꎬ直线ABꎬCD相交于点Oꎬ若øAOC=60ʎꎬøBOE=40ʎꎬ则øDOE的度数为(A)60ʎ(B)40ʎ(C)20ʎ(D)10ʎ5 经过某路口的汽车ꎬ只能直行或右转.若这两种可能性大小相同ꎬ则经过该路口的两辆汽车都直行的概率为(A)14(B)13(C)12(D)346 正六边形的外角和为(A)180ʎ(B)360ʎ(C)540ʎ(D)720ʎ7 某中学为了解学生对四类劳动课程的喜欢情况ꎬ从本校学生中随机抽取了200名进行问卷调查ꎬ根据数据绘制了如图所示的统计图.若该校有2000名学生ꎬ估计喜欢木工的人数为(A)64(B)380(C)640(D)7208 下面的三个问题中都有两个变量:①矩形的面积一定ꎬ一边长y与它的邻边长xꎻ②某村的耕地面积一定ꎬ人均耕地面积S与全村总人口nꎻ③汽车的行驶速度一定ꎬ行驶路程s与行驶时间t.其中ꎬ两个变量之间的函数关系可以用形如y=kx(k为常数ꎬkʂ0)的式子表示的是(A)①②(B)①③(C)②③(D)①②③二㊁填空题(共16分ꎬ每题2分)9 若x-5在实数范围内有意义ꎬ则实数x的取值范围是.10 分解因式:3a2-6a+3=.11 若关于x的一元二次方程x2+6x+m=0有两个相等的实数根ꎬ则实数m的值为.12 方程3x+2=2x的解为.13 在平面直角坐标系xOy中ꎬ若反比例函数y=6x的图象经过点A(2ꎬm)和点B(-2ꎬn)ꎬ则m+n=.14 如图ꎬ在әABC中ꎬDE是AC的垂直平分线ꎬAC=6.若әABD的周长为13ꎬ则әABC的周长为.第14题图㊀㊀㊀㊀第15题图15 如图ꎬ在矩形ABCD中ꎬ点E在AD边上ꎬ连接BE并延长ꎬ交CD的延长线于点F.若AB=2ꎬBC=4ꎬAEDE=2ꎬ则BF的长为.16 一个33人的旅游团到一家酒店住宿ꎬ酒店的客房只剩下4间一人间和若干间三人间ꎬ住宿价格是一人间每晚100元ꎬ三人间每晚130元.(说明:男士只能与男士同住ꎬ女士只能与女士同住.三人间客房可以不住满ꎬ但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元ꎬ则他们租住了间一人间ꎻ(2)若该旅游团租住了3间一人间ꎬ且共有19名男士ꎬ则租住一晚的住宿房费最少为元.三㊁解答题(共68分ꎬ第17-20题ꎬ每题5分ꎬ第21题6分ꎬ第22题5分ꎬ第23-24题ꎬ每题6分ꎬ第25题5分ꎬ第26题6分ꎬ第27-28题ꎬ每题7分)17 计算:π-3()0-2sin45ʎ+-2+8.18 解不等式组:x+1>7-2xꎬxɤ4+2x3.ìîíïïïï19 已知x2-x-3=0ꎬ求代数式(x+2)(x-2)-x(2-x)的值.20 下面是证明 等腰三角形的两个底角相等 的两种添加辅助线的方法ꎬ选择其中一种ꎬ完成证明.已知:如图ꎬ在әABC中ꎬAB=AC.求证:øB=øC.方法一证明:如图ꎬ作әABC的中线AD.方法二证明:如图ꎬ作әABC的角平分线AD.21 如图ꎬ在平行四边形ABCD中ꎬ对角线ACꎬBD相交于点Oꎬ点EꎬF在BD上ꎬAEʊCFꎬ连接AFꎬCE.(1)求证:四边形AECF为平行四边形ꎻ(2)若øEAO+øCFD=180ʎꎬ求证:四边形AECF是矩形.22 在平面直角坐标系xOy中ꎬ一次函数y=kx+b(kʂ0)的图象经过点(0ꎬ1)ꎬ(-2ꎬ2)ꎬ与x轴交于点A.(1)求该一次函数的表达式及点A的坐标ꎻ(2)当xȡ2时ꎬ对于x的每一个值ꎬ函数y=2x+m的值大于一次函数y=kx+b(kʂ0)的值ꎬ直接写出m的取值范围.23 如图ꎬAB是☉O的弦ꎬ过点O作OCʅABꎬ垂足为Cꎬ过点A作☉O的切线ꎬ交OC的延长线于点Dꎬ连接OB.(1)求证:øB=øDꎻ(2)延长BO交☉O于点Eꎬ连接AEꎬCEꎬ若AD=25ꎬsinB=55ꎬ求CE的长.24 某校为了解读书月期间学生平均每天阅读时间ꎬ在该校七㊁八㊁九年级学生中各随机抽取了15名学生ꎬ获得了他们平均每天阅读时间(单位:min)ꎬ并对数据进行了整理㊁描述ꎬ给出部分信息.a 七㊁八年级学生平均每天阅读时间统计图:七年级学生平均每天阅读时间八年级学生平均每天阅读时间b 九年级学生平均每天阅读时间:212225333636373739394142464850c 七㊁八㊁九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息ꎬ回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是ꎻ(2)求三个年级抽取的45名学生平均每天阅读时间的平均数ꎻ(3)若七㊁八㊁九年级抽取的学生平均每天阅读时间的方差分别为s21ꎬs22ꎬs23ꎬ则s21ꎬs22ꎬs23之间的大小关系为.25 一位滑雪者从某山坡滑下并滑完全程ꎬ滑行距离s(单位:m)与滑行时间t(单位:s)近似满足 一次函数 ㊁ 二次函数 或 反比例函数 关系中的一种.测得一些数据如下:滑行时间t/s01234滑行距离s/m0261220(1)s是t的函数(填 一次 ㊁ 二次 或 反比例 )ꎻ(2)求s关于t的函数表达式ꎻ(3)已知第二位滑雪者也从该山坡滑下并滑完全程ꎬ且滑行距离与第一位滑雪者相同ꎬ滑行距离s(单位:m)与滑行时间t(单位:s)近似满足函数关系s=52t2+2t.记第一位滑雪者滑完全程所用时间为t1ꎬ第二位滑雪者滑完全程所用时间为t2ꎬ则t1t2(填 < ꎬ = 或 > ).26 在平面直角坐标系xOy中ꎬ抛物线y=ax2+(2m-6)x+1经过点(1ꎬ2m-4). (1)求a的值ꎻ(2)求抛物线的对称轴(用含m的式子表示)ꎻ(3)点(-mꎬy1)ꎬ(mꎬy2)ꎬ(m+2ꎬy3)在抛物线上ꎬ若y2<y3ɤy1ꎬ求m的取值范围.27 如图ꎬøMON=αꎬ点A在ON上ꎬ过点A作OM的平行线ꎬ与øMON的平分线交于点Bꎬ点C在线段OB上(不与点OꎬB重合)ꎬ连接ACꎬ将线段AC绕点A顺时针旋转180ʎ-αꎬ得到线段ADꎬ连接BD.(1)直接写出线段AO与AB之间的数量关系ꎬ并证明øMOB=øDBAꎻ(2)连接DC并延长ꎬ分别交ABꎬOM于点EꎬF.若α=60ʎꎬ用等式表示线段EF与AC之间的数量关系ꎬ并证明.28 在平面直角坐标系xOy中ꎬ对于点PꎬCꎬQ(点P与点C不重合)ꎬ给出如下定义:若øPCQ=90ʎꎬ且CQCP=1kꎬ则称点Q为点P关于点C的 k-关联点 .已知点A(3ꎬ0)ꎬ点B(0ꎬ33)ꎬ☉O的半径为r.(1)①在点D(0ꎬ3)ꎬE(0ꎬ-1.5)ꎬF(3ꎬ3)中ꎬ是点A关于点O的 1-关联点 的为ꎻ②点B关于点O的 3-关联点 的坐标为ꎻ(2)点P为线段AB上的任意一点ꎬ点C为线段OB上任意一点(不与点B重合).①若☉O上存在点P关于点O的 3-关联点 ꎬ直接写出r的最大值及最小值ꎻ②当r=321时ꎬ☉O上不存在点P关于点C的 k-关联点 ꎬ直接写出k的取值范围:.。
2024年北京市朝阳区中考数学一模试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.(2分)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10112.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.等腰直角三角形C.正五边形D.正六边形3.(2分)如图,直线AB,CD相交于点O,若∠AOC=50°,∠DOE=15°,则∠BOE 的度数为()A.15°B.30°C.35°D.65°4.(2分)如果一个几何体的三视图都是矩形,那么这个几何体可能是()A.三棱柱B.长方体C.圆柱D.圆锥5.(2分)若a<b,则下列结论正确的是()A.﹣a<﹣b B.2a<a+b C.1﹣a<1﹣b D.2a+1>2b+1 6.(2分)正十边形的内角和为()A.144°B.360°C.1440°D.1800°7.(2分)掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,向上一面的点数为5的概率是()A.B.C.D.8.(2分)如图,四边形ABCD是正方形,点E,F分别在AB,BC的延长线上,且BE=CF,设AD=a,AE=b,AF=c.给出下面三个结论:①a+b>c;②2ab<c2;③>2a.上述结论中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③二、填空题(共16分,每题2分)9.(2分)若式子在实数范围内有意义,则x的取值范围是.10.(2分)分解因式:3x2+6xy+3y2=.11.(2分)方程=的解为.12.(2分)关于x的一元二次方程x2+5x+m=0有两个不相等的实数根,则实数m的取值范围是.13.(2分)某种植户种植了1000棵新品种果树,为了解这1000棵果树的水果产量,随机抽取了50棵进行统计,获取了它们的水果产量(单位:千克),数据整理如下:水果产量x<5050≤x<7575≤x<100100≤x<125x≥125果树棵数11520122根据以上数据,估计这1000棵果树中水果产量不低于75千克的果树棵数为.14.(2分)在数学活动课上,小南利用镜子、尺子等工具测量学校教学楼高度(如图所示),当他刚好在点C处的镜子中看到教学楼的顶部D时,测得小南的眼睛与地面的距离AB =1.6m,同时测得BC=2.4m,CE=9.6m,则教学楼高度DE=m.15.(2分)如图,⊙O是Rt△ABC的外接圆,OE⊥AB于点D,交⊙O于点E,若AB=8,DE=2,则BC的长为.16.(2分)甲、乙两位同学合作为班级联欢会制作A、B、C、D四个游戏道具,每个道具的制作都需要拼装和上色两道工序,先由甲同学进行拼装,拼装完成后再由乙同学上色.两位同学完成每个道具各自的工序需要的时间(单位:分钟)如表所示:A B C D甲9568乙7793(1)如果按照A→B→C→D的顺序制作,两位同学合作完成这四个道具的总时长最少为_________分钟;(2)两位同学想用最短的时间完成这四个道具的制作,他们制作的顺序应该是.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:+|1﹣|+(2﹣π)0﹣2sin45°.18.(5分)解不等式组:.19.(5分)已知x+2y+2=0,求代数式(x﹣)•的值.20.(6分)如图,在▱ABCD中,AB=AC,过点D作AC的平行线与BA的延长线相交于点E.(1)求证:四边形ACDE是菱形;(2)连接CE,若AB=5,tan B=2,求CE的长.22.(5分)在平面直角坐标系xOy中,正比例函数y=mx(m≠0)的图象和反比例函数y =(k≠0)的图象都经过点A(2,4).(1)求该正比例函数和反比例函数的解析式;(2)当x>3时,对于x的每一个值,函数y=mx+n(m≠0)的值都大于反比例函数y =(k≠0)的值,直接写出n的取值范围.23.(5分)某广场用月季花树做景观造型,先后种植了两批各12棵,测量并获取了所有花树的高度(单位:cm),数据整理如下:a.两批月季花树高度的频数:131135136140144148149第一批1304220第二批0123501 b.两批月季花树高度的平均数、中位数、众数(结果保留整数):平均数中位数众数第一批140140n第二批141m144(1)写出表中m,n的值;(2)在这两批花树中,高度的整齐度更好的是(填“第一批”或“第二批”);(3)根据造型的需要,这两批花树各选用10棵,且使它们高度的平均数尽可能接近.若第二批去掉了高度为135cm和149cm的两棵花树,则第一批去掉的两棵花树的高度分别是cm和cm.24.(6分)如图,AB是⊙O的直径,点C在⊙O上,D是的中点,AD的延长线与过点B的切线交于点E,AD与BC的交点为F.(1)求证:BE=BF;(2)若⊙O的半径是2,BE=3,求AF的长.25.(5分)某款电热水壶有两种工作模式:煮沸模式和保温模式,在煮沸模式下将水加热至100℃后自动进入保温模式,此时电热水壶开始检测壶中水温,若水温高于50℃水壶不加热;若水温降至50℃水壶开始加热,水温达到100℃时停止加热…此后一直在保温模式下循环工作.某数学小组对壶中水量a(单位:L),水温T(单位:℃)与时间t(单位:分)进行了观测和记录,以下为该小组记录的部分数据.表1从20℃开始加热至100℃水量与时间对照表a0.51 1.52 2.53t 4.5811.51518.522表21L水从20℃开始加热,水温与时间对照表煮沸模式保温模式t036m101214161820222426…T205080100898072666055505560…对以上实验数据进行分析后,该小组发现,水壶中水量为1L时,无论在煮沸模式还是在保温模式下,只要水壶开始加热,壶中水温T就是加热时间t的一次函数.(1)写出表中m的值;(2)根据表2中的数据,补充完成以下内容:①在图中补全水温与时间的函数图象;②当t=60时,T=;(3)假设降温过程中,壶中水温与时间的函数关系和水量多少无关.某天小明距离出门仅有30分钟,他往水壶中注入2.5L温度为20℃的水,当水加热至100℃后立即关闭电源.出门前,他(填“能”或“不能”)喝到低于50℃的水.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx(a>0)上有两点(x1,y1),(x2,y2),它的对称轴为直线x=t.(1)若该抛物线经过点(4,0),求t的值;(2)当0<x1<1时,①若t>1,则y10;(填“>”“=”或“<”)②若对于x1+x2=2,都有y1y2>0,求t的取值范围.27.(7分)如图,在菱形ABCD中,∠BAD=120°,E是CD边上一点(不与点C,D重合).将线段AE绕点A逆时针旋转60°得到线段AF,连接DF,连接BF交AC于点G.(1)依据题意,补全图形;(2)求证:GB=GF;(3)用等式表示线段BC,CE,BG之间的数量关系.28.(7分)在平面直角坐标系xOy中,⊙O的半径为1,对于直线l和线段PQ,给出如下定义:若线段PQ关于直线l的对称图形是⊙O的弦P′Q′(P′,Q′分别为P,Q的对应点),则称线段PQ是⊙O关于直线l的“对称弦”.(1)如图,点A1,A2,A3,B1,B2,B3的横、纵坐标都是整数.线段A1B1,A2B2,A3B3中,是⊙O关于直线y=x+1的“对称弦”的是;(2)CD是⊙O关于直线y=kx(k≠0)的“对称弦”,若点C的坐标为(﹣1,0),且CD=1,求点D的坐标;(3)已知直线y=﹣x+b和点M(3,2),若线段MN是⊙O关于直线y=﹣x+b 的“对称弦”,且MN=1,直接写出b的值.2024年北京市朝阳区中考数学一模试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】直接根据轴对称图形与中心对称图形的定义逐一判断即可.【解答】解:A、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;B、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;C、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;D、该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D.【点评】此题考查的是轴对称图形与中心对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【分析】根据对顶角的性质得∠BOD=∠AOC=50°,再根据∠BOE=∠BOD﹣∠DOE 可得出答案.【解答】解:∵直线AB,CD相交于点O,∠AOC=50°,∴∠BOD=∠AOC=50°,∵∠DOE=15°,∴∠BOE=∠BOD﹣∠DOE=50°﹣15°=35°.故选:C.【点评】此题主要考查了对顶角的性质,角的计算,准确识图,熟练掌握对顶角的性质,角的计算是解决问题的关键.4.【分析】依题意,一个几何体的三视图都是矩形,故长方体符合条件.【解答】解:三棱柱的两个底面是三角形,所以不可能三视图都是矩形,故选项A不符合题意;长方体的三视图都是矩形,故选项B符合题意;圆柱的两个底面是三角形,所以不可能三视图都是矩形,故选项C不符合题意;正立的圆锥的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,故选项D不符合题意.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对几何体的认识.5.【分析】根据不等式的基本性质逐项判定即可.【解答】解:对于A:若a<b,则﹣a>﹣b,故A不合题意;对于B:若a<b,则2a<a+b,故B符合题意;对于C:若a<b,则1﹣a>1﹣b,故C不合题意;对于D:若a<b,则2a+1<2b+1,故D不合题意,故选:B.【点评】本题主要考查不等式的基本性质,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6.【分析】利用多边形的内角和公式进行计算即可.【解答】解:正十边形的内角和为180°×(10﹣2)=180°×8=1440°.故选C.【点评】本题主要考查多边形的内角和外角,解题的关键是熟练掌握多边形的内角和公式.7.【分析】根据概率公式求解即可.【解答】解:∵骰子的六个面上分别刻有1到6的点数,向上一面的点数为5的概率是,故选:D.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.8.【分析】由“SAS”可证△ADE≌△BAF,可得DE=AF=c,由三角形的三边关系可得a+b >c,故①正确;由勾股定理可得c2=a2+b2,由完全平方公式可求2ab<c2,故②正确;由E是动点,可得DE的长不是定值,故③错误,即可求解.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABC=∠DAB=90°,∵BE=CF,∴BF=AE,∴△ADE≌△BAF(SAS),∴DE=AF=c,∵AD+AE>DE,∴a+b>c,故①正确;∵DE2=DA2+AE2,∴c2=a2+b2,∵AE>AB,∴b﹣a>0,∴(b﹣a)2>0,∴a2+b2﹣2ab>0,∴2ab<c2,故②正确;∵E是动点,∴DE=不是定值,且≥a,∴③错误,故选:A.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是解题的关键.二、填空题(共16分,每题2分)9.【分析】根据被开方数不小于零的条件进行解题即可.【解答】解:由题可知,x﹣14≥0,解得x≥14.故答案为:x≥14.【点评】本题考查二次根式有意义的条件,掌握被开方数不小于零的条件是解题的关键.10.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.【分析】方程两边都乘3x(4x﹣5)得出2(4x﹣5)=3x,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘3x(4x﹣5),得2(4x﹣5)=3x,8x﹣10=3x,8x﹣3x=10,5x=10,x=2,检验:当x=2时,3x(4x﹣5)≠0,所以分式方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.12.【分析】由方程有两个不相等的实数根得出Δ=52﹣4m>0,解之即可.【解答】解:根据题意得:Δ=52﹣4m>0,解得m<.故实数m的取值范围是m<.故答案为:m<.【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.13.【分析】用1000乘以水果产量不低于75千克的果树的百分比即可.【解答】解:估计这1000棵果树中水果产量不低于75千克的果树棵数为1000×=680(棵).故答案为:680.【点评】本题考查了频数(率)分布表和用样本估计总体,解题的关键是利用样本估计总体思想的运用.14.【分析】根据题意得出△ABC∽△DEC,得出比例式求出DE的值即可.【解答】解:由题意可知,AB∥DE,∴△ABC∽△DEC,∴,∴,解得DE=6.4,则教学楼高度DE=6.4m,故答案为:6.4.【点评】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.15.【分析】设OE=OA=r,由OE⊥AB于点D,AB=8,得AD=DB=4,由直角三角形得r2=(r﹣2)2+42,得r=5,故BC=2OD=2×3=6.【解答】解:设OE=OA=r,由OE⊥AB于点D,AB=8,得AD=DB=4,得r2=(r﹣2)2+42,得r=5,故BC=2OD=2×3=6.故答案为:6.【点评】本题主要考查了圆的相关计算,解题关键是垂径定理及勾股定理的应用.16.【分析】根据题目所给条件合理安排各部分工作分配对象,即可得出最短时间.【解答】解:(1)甲先拼接A用9分钟,然后乙再给A上色7分钟,这7分钟甲可以给B拼接,7﹣5﹣2(分),还剩下的时间给C拼接2分钟,C这时还需要6﹣2=4(分),乙开始给B上色又花了7分钟,这7分钟甲给C拼接,还留有7﹣4=3(分),这3分钟甲给D拼接,在乙完成B的上色时甲给口拼接还需要8﹣3=5(分),此时乙给C上色9分钟,甲就能把D拼接完了,最后乙再给D上色.综上所述,总时长为9+7+7+9+3=35(分).(2)要用最短的时间完成这四个道具的制作,开始的时候要让甲给道具拼接的时间最短,且先拼接时间短的道具,所以制作的顺序应该是B﹣C﹣D﹣A.【点评】本题考查了实数的计算,读懂题目即可得出正确答案,较为简单.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.18.【分析】先求出每一个不等式的解集,再确定不等式组的解集.【解答】解:,由①得:x>﹣1,由②得:x<2,故不等式组的解集为:﹣1<x<2.【点评】本题考查了解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】先化简所求式子,再根据x+2y+2=0,可以得到x+2y=﹣2,再将x+2y=﹣2代入化简后的式子计算即可.【解答】解:(x﹣)•=•=•=2(x+2y)=2x+4y,∵x+2y+2=0,∴x+2y=﹣2,∴原式=2(x+2y)=2×(﹣2)=﹣4.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.20.【分析】(1)由平行四边形的性质得AB=CD,AB∥CD,再证明四边形ACDE是平行四边形,进而证明CD=AC,然后由菱形的判定即可得出结论;(2)设AD与CE交于点F,证明∠FAC=∠ACB=∠B,再由菱形的性质得AF=DF,CF=EF,AD⊥CE,进而由锐角三角函数定义得CF=2AF,设CF=x,则CF=2x,然后在Rt△AFC中,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵DE∥AC,∴四边形ACDE是平行四边形,∵AB=AC,∴CD=AC,∴平行四边形ACDE是菱形;(2)解:如图,设AD与CE交于点F,∵AB=AC=5,∴∠B=∠ACB,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAC=∠ACB=∠B,由(1)可知,四边形ACDE是菱形,∴AF=DF,CF=EF,AD⊥CE,∴∠AFC=90°,∴tan∠FAC==tan B=2,∴CF=2AF,设CF=x,则CF=2x,在Rt△AFC中,由勾股定理得:x2+(2x)2=52,解得:x=,∴CF=2,∴CE=2CF=4,即CE的长为4.【点评】本题考查了菱形的判定与性质、平行四边形的判定与性质、锐角三角函数定义以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.22.【分析】(1)将A点坐标代入两个函数解析式求出mk值即可;(2)当x=3时,y=mx+n=2x+n=6+n,y==,根据题意6+n>,解出不等式解集即可.【解答】解:(1)∵正比例函数y=mx(m≠0)的图象和反比例函数y=(k≠0)的图象都经过点A(2,4),∴m=2,k=8,∴正比例函数解析式为:y=2x;反比例函数解析式为:y=;(2)当x=3时,y=mx+n=2x+n=6+n,y==,∵当x>3时,对于x的每一个值,函数y=mx+n(m≠0)的值都大于反比例函数y=(k ≠0)的值,∴6+n>,解得n>﹣.【点评】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是关键.23.【分析】(1)根据众数和中位数的定义直接进行解答即可;(2)从平均数,众数和中位数三个方面进行分析,即可得出答案;(3)根据表中给出的数据,分别进行分析,即可得出答案.【解答】解:(1)∵在第一批中,140出现了4次,出现的次数最多,∴众数是140cm,即n=140;把第二批花的高度从小到大排列,中位数是第6、第7个数的平均数,则中位数是=142(cm),即m=142;(2)第一批的平均数,众数和中位数均为140cm,整齐度更好;故答案为:第一批;(3)去掉的两棵且使高度尽可能接近平均高度,148cm距离平均差距最大,所以去掉两颗148cm的花.故答案为:148,148;【点评】本题主要考查数据集中趋势中的平均数、众数、中位数在实际问题中的正确应用.24.【分析】(1)由切线的性质得BE⊥AB,而AB是⊙O的直径,则∠ABE=∠C=90°,所以∠E+∠BAE=90°,∠AFC+∠CAE=90°,由=,得∠BAE=∠CAE,所以∠E=∠AFC=∠BFE,即可证明BE=BF;(2)连接BD,则∠ADB=90°,由⊙O的半径是2,得AB=4,所以AE==5,由==cos E,求得DE=,则DF=DE=,所以AF=AE﹣DF﹣DE=.【解答】(1)证明:∵BE与⊙O相切于点B,∴BE⊥AB,∵AB是⊙O的直径,∴∠ABE=∠C=90°,∴∠E+∠BAE=90°,∠AFC+∠CAE=90°,∵D是的中点,∴=,∴∠BAE=∠CAE,∴∠E=∠AFC,∵∠AFC=∠BFE,∴∠E=∠BFE,∴BE=BF.(2)解:连接BD,则∠ADB=90°,∵⊙O的半径是2,BE=3,∴AB=4,∴AE===5,∵∠BDE=∠ABE=90°,∴==cos E,∴DE===,∵BE=BF,BD⊥EF,∴DF=DE=,∴AF=AE﹣DF﹣DE=5﹣﹣=,∴AF的长为.【点评】此题重点考查切线的性质定理、圆周角定理、直角三角形的两个锐角互余、等角的余角相等、等腰三角形的判定与性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.【分析】(1)在煮沸模式下,加热时间每增加3分钟,水温就上升30℃,从而计算出每增加1分钟水上升的温度,据此列方程并求解即可;(2)①描点并连线即可;②当时间从26分开始,设时间为t时,水温加热到100℃.在这个过程中每2分钟,水温升高5℃,从而求出每增加1分钟水上升的温度,据此列方程求出t,再计算出剩下的时间,根据表2,得到在剩下的时间内水温可以变化到多少;(3)由表1可知,2.5L的水从20℃加热到100℃需要8.5分,此时离出门还剩30﹣8.5=21.5(分);根据表2,计算水温从100℃降到50℃需要的时间,将这个时间与21.5分比较,在关闭电源的基础上即可得到结论.【解答】解:(1)在煮沸模式下,加热时间每增加3分钟,水温就上升30℃,30÷3=10(℃),∴在煮沸模式下,加热时间每增加1分钟,水温就上升10℃,∴10(m﹣6)=100﹣80,∴m=8.(2)①补全水温与时间的函数图象如图所示:②当时间从26分开始,设时间为t时,水温加热到100℃.在这个过程中每2分钟,水温升高5℃,则每1分钟水温升高5÷2=2.5(℃),由此得2.5(t﹣26)=100﹣60,解得t=42,60﹣42=18(分),根据表2的数据可知,T=100℃经过18分后水温降到了60℃,∴当t=60时,T=60℃.故答案为:60℃.(3)由表1可知,2.5L的水从20℃加热到100℃需要8.5分,30﹣8.5=21.5(分),由表2可知,水温从100℃降到50℃需要22﹣m=22﹣8=13(分),∵21.5>13,且电源已关闭,∴出门前,他能喝到低于50℃的水.故答案为:能.【点评】本题考查一次函数的应用,理解题意并分析表格中数据变化的规律是解题的关键.26.【分析】(1)把点(4,0)代入解析式求得b=﹣4a,然后利用对称轴公式即可求得t 的值;(2)①根据图象上点的坐标特征即可得到y1<0;②由题意可知点(x1,y1),(x2,y2)在x轴的同一侧,根据0<x1<1,1<x2<2,即可得到t的取值范围.【解答】解:(1)∵抛物线经过点(4,0),∴0=16a+4b,∴b=﹣4a,∴t=﹣=2;(2)∵a>0,∴抛物线y=ax2+bx(a>0)开口向上,∵x=0时,y=0,∴抛物线y=ax2+bx(a>0)过原点,①∵0<x1<1,t>1,∴y1<0,故答案为:<;②∵x1+x2=2,∴x1=2﹣x2,∵0<x1<1,∴0<2﹣x2<1,∴1<x2<2,∵y1y2>0,∴点(x1,y1),(x2,y2)在x轴的同一侧,∴t≥1或t≤0.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.27.【分析】(1)依据题意画出图形即可;(2)连接BD,与AC相交于点O,利用菱形的性质和旋转的性质得到∠CAD=∠EAF =60°,则∠CAE=∠DAF,利用全等三角形的判定与性质得到∠ADF=∠ACD=60°,利用同旁内角互补,两直线平行得到DF∥AC,再利用平行线分线段成比例定理和菱形的性质解答即可得出结论;(3)利用平行线的性质和勾股定理得到BD2+DF2=4BG2,利用等边三角形的性质,直角三角形的边角关系定理得到BC=OB,则,3BC2=4BO2=(2BO)2=BD2,利用(2)的结论和等量代换的性质解答即可得出结论.【解答】(1)解:依据题意,补全图形,如图:(2)证明:连接BD,与AC相交于点O,如图,∵线段AE绕点A逆时针旋转60°得到线段AF,∴∠EAF=60°,AE=AF,∵在菱形ABCD中,∠BAD=120°,∴AB=BC,,BO=OD,AC⊥BD,∴△ABC,△ACD是等边三角形,∴AC=AD,∠ACD=60°.∴∠CAD=∠EAF=60°,∴∠CAE=∠DAF,在△ACE和△ADF中,,∴△ACE≌△ADF(SAS),∴∠ADF=∠ACD=60°,∴∠ACD+∠FDC=180°,∴DF∥AC,∴,∵BO=OD,∴GB=GF;(3)解:3BC2+CE2=4BG2,理由如下:∵DF∥AC,BD⊥AC,∴DF⊥BD,在Rt△BFD中,由勾股定理得:BD2+DF2=BF2,由(2)知:GB=GF=BF,∴BF2=(2BG)2=4BG2,∴BD2+DF2=4BG2.∵△ABC是等边三角形,BO⊥AC,∴,∴,∴BC=OB,∴,则3BC2=4BO2=(2BO)2=BD2,∵CE=DF,∴3BC2+CE2=BD2+DF2=4BG2,即3BC2+CE2=4BG2.【点评】本题主要考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,平行线的判定与性质,三角形的中位线,熟练掌握菱形的性质和连接菱形的对角线是解题的关键.28.【分析】(1)画出三条线段关于y=x+1的对称线段即可判断;(2)因为对称直线过圆心O,C在圆上,它们的对称点也在圆上,所以D也在圆上,因为CD是定值,所以D在以C为圆心,半径为1的圆上,所以两个圆的交点就是D点;(3)因为M关于直线的对称点在⊙O上,所以M在⊙O关于直线的对称圆上,据此写出点O关于直线的对称点坐标,然后根据两点距离公式求解即可.【解答】解:(1)如图所示:∴⊙O关于直线y=x+1的“对称弦”的是A1B1,故答案为:A1B1;(2)设点C,D关于直线y=kx(k≠0)的对称点为C′,D′,∴直线y=kx垂直平分CC′和DD′,∵C′D′是⊙O关于直线y=kx(k≠0)的“对称弦”,∴C′,D′在⊙O上,∵点C的坐标为(﹣1,0),∴点C在⊙O上,∵直线y=kx经过圆心O,∴D′也在⊙O上,∵CD=1,∴D在以C为圆心,半径为1的圆上,∴⊙O与⊙C的交点即为D点,如图:∵OC=CD=OD=1,∴△COD为等边三角形,∴D(﹣,±);(3)设点M关于直线y=﹣x+b的对称点为M1,由“对称弦”的定义可知,M1在⊙O上,∴OM1=1,设点O关于直线y=﹣x+b的对称点为O1,由对称的性质可知,O1M=1,设直线y=﹣x+b与x,y轴交于P,Q两点,连接OO1交PQ于点F,过O1作O1E⊥x轴于E,如图:令x=0,则y=b,令y=0,则x=b,∴P(b,0),Q(0,b),∴OQ=b,OP=b,∴PQ==2b,由对称的性质可知,OF=FO1,OO1⊥PQ,根据等积变换可得:OF==b,∴OO1=2OF=b,∵∠O1OE+∠QPO=90°,∠OO1E+∠O1OE=90°,∴∠OO1E=∠QPO,∵sin∠QPO==,∴∠QPO=30°,∴∠OO1E=30°,∴OE=OO1=b,O1E=OE=b,∴O1(b,b),∴O1M==1,解得:b=或.【点评】本题主要考查了圆的综合题,根据新给的定义,结合轴对称的性质、等边三角形的性质、特殊角的三角函数值等知识来解答是本题解题的关键。
2022年北京市朝阳区九年级数学中考模拟试题(一模)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 长方体C. 圆锥D. 圆柱2. 2022年3月5日,国务院总理李克强代表国务院,向十三届全国人大五次会议作政府工作报告.报告中指出过去一年是党和国家历史上具有里程碑意义的一年,“十四五”实现良好开局,我国发展又取得新的重大成就.2021年国内生产总值达114万亿元,增长8.1%.将1140000用科学记数法表示应为( )A. 0.114×107B. 1.14×105C. 1.14×106D. 11.4×1043. 实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是( )A. a+b>0B. ab>0C. a−b>0D. |a|>|b|4. 将一副三角尺(厚度不计)如图摆放,使有刻度的两条边互相平行,则图中∠1的大小为( )A. 100°B. 105°C. 115°D. 120°5. 下列多边形中,内角和与外角和相等的是A. B.C. D.6. 不透明的袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次摸到相同颜色的小球的概率是A. 14B. 13C. 12D. 237. 下图是国家统计局公布的2021年居民消费价格月度涨跌幅度,月度同比和月度环比的平均数分别为x同,x环,方差分别为s2同,s2环,则A. x同>x环,s2同>s2环B. x同>x环,s2同<s2环C. x同<x环,s2同>s2环D. x同<x环,s2同<s2环8. 点A(x1,y1),B(x2,y2)在反比例函数y=1x的图象上,下列推断正确的是( )A. 若x 1<x 2,则y 1<y 2B. 若x1<x2,则y1>y2C. 若x 1+x 2=0,则y 1+y 2=0D. 存在x1=x2,使得y1≠y2二、填空题(本大题共8小题,共24.0分)9. 若代数式1x−1有意义,则实数x的取值范围是___.10. 分解因式:2a2−4ab+2b2=.11. 写出一个比4大且比5小的无理数:_____.12. 如图,AC,BC是⊙O的弦,PA,PB是⊙O的切线,若∠C=60°,则∠P=_____°.13. 如图,在△ABC中,AB=AC,点D在AC上(不与点A,C重合),只需添加一个条件即可证明△ABC和△BDC相似,这个条件可以是(写出一个即可).14. 如图,2022年北京冬奥会上,一些可看作正六边形的“小雪花”对称地排列在主火炬周围,中间空出了13个“小雪花”的位置来突出主火炬.在其中91个“小雪花”上面写有此次参会的国家或地区的名称,此外还有几个“小雪花”上面只有中国结图案.这些只有中国结图案的“小雪花”共有个.15. 若关于x的一元二次方程(a−1)x2+a2x−a=0有一个根是x=1,则a=_____.16. 尊老敬老是中华民族的传统美德,某校文艺社团的同学准备在“五一”假期去一所敬老院进行慰问演出,他们一共准备了6个节目,全体演员中有8人需参加两个或两个以上的节目演出,情况如表:演员1演员2演员3演员4演员5演员6演员7演员8节目A√√√√√节目B√√√节目C√√√节目D√√节目E√√节目F√√从演员换装的角度考虑,每位演员不能连续参加两个节目的演出,从节目安排的角度考虑,首尾两个节目分别是A,F,中间节目的顺序可以调换,请写出一种符合条件的节目先后顺序(只需按演出顺序填写中间4个节目的字母即可).三、计算题(本大题共2小题,共12.0分)17. 计算:2cos30∘+|−√3|−(π−√3)0−√12.18. 解不等式组:{x−3(x−2)≥4, x−1<1+2x3.四、解答题(本大题共10小题,共80.0分。
北京市朝阳区九年级综合练习(一)语文试卷 2008.5第Ⅰ卷(共60分)一、选择题,完成第1—5题。
下面各题均有四个选项,其中只有一个符合题意,请将该答案的字母序号填在题干后的括号内。
(共10分)1.下面加点字读音有误的是( )(2分)A. 忌讳.(hu ì) 干涸.(h é) 谆.谆教诲(zh ūn )B. 游弋.(y ì) 自诩.(y ǔ) 言简意赅.(g āi )C. 蹒.跚(pán) 修葺.(q ì) 断壁残垣.(yu án )D. 侥.幸(ji ǎo ) 执拗.(ni ù) 载.歌载舞(z ài )2.根据成语解说,在横线处填写的汉字不正确的是( ) (2分)A .完 归赵蔺相如到秦国献美玉时,见秦王无意给赵国城池,便派人把美玉完好无损地送回赵国。
比喻将原物完好无损地归还原主。
横线处应填“璧”字。
B .守 待兔一农夫见一只兔子撞在树桩上死了,便捡回家。
以后他便每天守着树桩,希望再捡到兔子。
比喻心存侥幸,不劳而获。
横线处应填“株”字。
C .闻鸡起东晋时,祖逖和刘琨互相勉励,立志为国效力,半夜听到鸡鸣就起床练剑。
形容有志之士及时发奋,刻苦自励。
横线处应填“武”字。
D.破沉舟项羽跟秦兵打仗,过河后把锅都打破,船都沉弃,营房烧毁,表示不再回来。
现比喻下决心,不顾一切干到底。
横线处应填“釜”字。
3.下面文字是对“微笑北京”主题活动的介绍。
在横线处填入恰当的词语,正确的是()(2分)在开展“微笑北京”主题活动中,北京团市委推出了佩戴奥运志愿五色“微笑圈”的活动。
随着红、黑、绿、黄、蓝五色“微笑圈”越来越为人们所熟知并佩戴,整个活动的知晓率和参与率都在不断上升。
志愿服务奥运也是我们中学生的责任,我们将用微笑迎接八方来客。
A. 首当其冲B.不言而喻C. 义不容辞D.当之无愧4.填入下列文字横线处的语句,与上文衔接最恰当的是()(2分)精读之外,还需要略读。
北京市朝阳区九年级综合练习(一)数 学 试 卷 2009.5第Ⅰ卷(选择题32分)一、选择题(共8道小题,每小题4分,共32分) 1.3-的绝对值是A .3B .3-C .13D .13-2.为积极转化奥运会、残奥会志愿者工作成果,完善和健全志愿者服务体系及长效机制,北京市将力争实现每年提供志愿服务时间11000万小时. 11000万小时用科学记数法表示为 A .61011.0⨯万小时B .5101.1⨯万小时C .4101.1⨯万小时D .31011⨯万小时 3. 方程x x 62=的解是A .6=xB .6=xC .6=x 或0x =D .0x =4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是A. 13和11B. 12和13C. 11和12 C. 13和125. 如图,圆锥的高AO 为12,母线AB 长为13,则该圆锥的侧面积等于 A .π36 B .π27 C .π18D .π9(第5题) 6. 如图,△ABC 内接于⊙O ,∠C =45°,AB =2,则⊙O 的半径为A .1B .2C .2 7.把4张形状完全相同的卡片的正面分别写上数字1,2,3,4,洗匀后正面朝下放在桌子上,随机从中抽取一张卡片,记下数字 后放回,再随机从中抽取一张卡片,则两次抽取的卡片上的数字AOB之和等于5的概率是A .21 B .31C .41D . 158. 如图,在直角梯形ABCD 中,AD ∥BC ,90C ∠=, 6cm CD =,AD =2cm ,动点P 、Q 同时从点B 出发,点P沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,两点运动时的速度都是1cm/s ,而当点P 到达点A 时,点Q正好到达点C .设P 点运动的时间为(s)t ,BPQ △的面积为y 2(cm ).下图中能正确表示整个运动中y 关于t 的函数关系的大致图象是A .B .C .D .第Ⅱ卷 (填空题和解答题,共88分)二、填空题(共4个小题,每小题4分,共16分) 9.计算:xy x322⋅= . 10. 因式分解:=+-x x x 4423 .11.如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,若CD=6,则点D 到AB 的距离为 . 12. 已知抛物线22)1(2m x m x y ++-=与x 轴的两个交点的 横坐标均为整数,且m <5,则整数m 的值为 . 三、解答题(共13个小题,共72 分) 13.(本小题5分)计算:32-— tan30° ÷31+8.14.(本小题5分)解方程:xx 321=-.15.(本小题5分)先化简,再求值:4)122(22--÷+-a a a a ,其中1-=a .解:16. (本小题5分)已知:如图,AD ∥BC ,AD =BC ,E 为BC 上 一点,且AE =AB . 求证:DE =AC .17. (本小题5分)如图,点A 在反比例函数xky =的图象与直线2-=x y 交于 点A ,且A 点纵坐标为1,求该反比例函数的解析式.19. (本小题5分)通常情况居民一周时间可以分为常规工作日 (周一至周五)和常规休息日(周六和周日). 居民一天的时间可以划分为工作时间、个人生活 必须时间、家务劳动时间和可以自由支配时间等 四部分. 2008年5月,北京市统计局在全市居民 家庭中开展了时间利用调查,并绘制了统计图:活动方式,其中平均每天上网占可自由支配时间的12%,比读书看报的时间多8分钟. 请根据以上信息补全图②;图①北京市居民人均常规工作日时间利用情况(3)由图②,调查表明,我市居民在可自由支配时间中看电视的时间最长. 根据这一信息,请你在可自由支配时间的利用方面提出一条建议:___ ____________.19. (本小题5分)如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,CD =4, ∠ACB =∠D ,32tan =∠B ,求梯形ABCD 的面积.20. (本小题5分)改革开放30年来,我国的文化事业得到了长足发展,以公共图书馆和博物馆为例, 1978年全国两馆共约有1550个,至2008年已发展到约4650个. 2008年公共图书馆的数量比1978年公共图书馆数量的2倍还多350个,博物馆的数量是1978年博物馆数量的5倍. 2008年全国公共图书馆和博物馆各有多少个?21. (本小题5分)响应“绿色环保,畅通出行”的号召,越来越多的市民选择 乘地铁出行,为保证市民方便出行,我市新建了多条地铁线路, 与旧地铁线路相比,新建地铁车站出入口上下楼梯的高度普遍 增加,已知原楼梯BD 长20米,在楼梯水平长度(BC )不发生 改变的前提下,楼梯的倾斜角由30°增大到45°,那么新修建 的楼梯高度将会增加多少米?(结果保留整数,参考数据:414.12≈,732.13≈)22. (本小题7分)已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使∠FCA =∠AOE ,交 AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O半径的长;(3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.23. (本小题5分)将图①,将一张直角三角形纸片ABC 折叠,使点A 与点C 重合,这时DE 为折痕, △CBE 为等腰三角形;再继续将纸片沿△CBE 的对称轴EF 折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC 能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕; (2)如图③,在正方形网格中,以给定的BC 为一边,画出一个斜三角形ABC ,使其顶点A 在格点上,且△ABC 折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 ; (4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是 .24. (本小题7分)抛物线与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,-3),抛物线顶点为M ,连接AC 并延长AC 交抛物线对称轴于点Q ,且点Q 到x 轴的距离为6. (1)求此抛物线的解析式;(2)在抛物线上找一点D ,使得DC 与AC 垂直,求出点D 的坐标;(3)抛物线对称轴上是否存在一点P ,使得S △PAM =3S △ACM ,若存在,求出P 点坐标;若不存在,请说明理由.25. (本小题8分)B图①图②(1)已知:如图①,Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°. 求证:线段DE、AD、EB总能构成一个直角三角形;(2)已知:如图②,等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数;(3)在(1)的条件下,如果AB=10,求BD·AE的值.北京市朝阳区九年级综合练习(一)数学试卷评分标准及参考答案 2009.5二、填空题(共4个小题,每小题4分,共16分)三、解答题(共13个小题,共72 分) 13. (本小题5分)解:原式=2233323+⨯-- ……………………………………………4分 2=. ……………………………………………………………………5分14. (本小题5分)解: )2(3-=x x . ……………………………………………………………………2分 63-=x x . ……………………………………………………………………3分解得 3=x . ………………………………………………………………………4分经检验,3=x 是原分式方程的解. …………………………………………………5分15. (本小题5分)解:原式=)1()2)(2(222--+⋅--+a a a a a a ………………………………………………3分12-+=a a . ……………………………………………………………………4分 当1-=a 时,原式211121-=--+-=.…………………………………………5分 16. (本小题5分)证明:∵AD ∥BC ,∴∠DAE =∠1. …………………… 1分 ∵AE =AB ,∴∠1=∠B. ……………………… 2分 ∴∠B =∠D A E. …………………………………………………………… 3分又AD =BC ,∴△A B C ≌△A E D. …………………………………………………… 4分 ∴D E =A C. ………………………………………………………………… 5分17. (本小题5分)解:把1=y 代入2-=x y ,得3=x .∴点A 的坐标为(3,1). ……………………………………………………2分 把点A (3,1)代入xky =,得3=k . ……………………………………4分 ∴该反比例函数的解析式为xy 3=. …………………………………………5分18. (本小题5分)解:(1)31.6%;………………………………………………………………………1分(2)补全统计图;……………………………………………………………………4分 (说明:本问共3分,①补全“上网”给1分;②补全“健身游戏”给2分.)(35分19. (本小题5分)解:在梯形ABCD 中,AB ∥CD , ∴∠1=∠2.∵∠ACB =∠D =90°. ∴∠3=∠B.∴32tan 3tan =∠=∠B . ………………………………………………………… 1分 在Rt △ACD 中,CD =4, ∴63tan =∠=CDAD . ……………………………………………………………… 2分∴13222=+=CD AD AC .…………………………………………………… 3分在Rt △ACB 中,32tan =B ,∴132sin =B .∴13sin ==BACAB . ……………………………………………………………… 4分 ∴51)(21=⋅+=AD CD AB S ABCD 梯形.…………………………………………… 5分20. (本小题5分)解:设1978年全国有公共图书馆x 个,博物馆y 个,………………………………1分由题意,得⎩⎨⎧=++=+.465053502,1550y x y x …………………………………………………3分解得⎩⎨⎧==.400,1150y x …………………………………………………………………4分则26503502=+x ,20005=y .答:2008年全国有公共图书馆2650个,博物馆2000个. …………………………5分21. (本小题5分)解:由题意,可得△ABC 和△BDC 都是直角三角形, 在Rt △BDC 中,BD =20,∠DBC =30°, ∴1021==BD CD ,31022=-=CD BD BC .………………………………2分 在Rt △ABC 中,∠ABC =45°, ∴310==BC AC . ………………………………………………………………3分∴10310-=-=CD AC AD .……………………………………………………4分 ∴7≈AD (米). ……………………………………………………………………5分答:新修建的楼梯高度会增加7米.22. (本小题7分)证明:(1)连接OC (如图①), ∵OA =OC ,∴∠1=∠A.∵OE ⊥AC ,∴∠A +∠AOE =90°. ∴∠1+∠AOE =90°.又∠FCA =∠AOE ,∴∠1+∠FCA =90°. 即∠OCF =90°.∴FD 是⊙O 的切线. ……………………………………………………2分(2)连接BC (如图②),∵OE ⊥AC ,∴AE =EC. 又AO =OB ,∴OE ∥BC 且BC OE 21=.……………3分∴△OEG ∽△CBG. 图② ∴21==CB OE CG OG . ∵OG =2,∴CG =4.∴OC =6. ………………………………………………………………5分 即⊙O 半径是6.(3)∵OE =3,由(2)知BC =2OE =6.∵OB =OC =6,∴△OBC 是等边三角形.∴∠COB =60°. ………6分 在Rt △OCD 中,3660tan =︒⋅=OC CD .∴O BC O CD S S S 扇形阴影-=∆360660366212⨯-⨯⨯=π π6318-=. ………………………………………………7分23. (本小题5分)(1)…………………………………………………………………1分.)(2) …………………………………………………………………2分(说明:只需画出满足条件的一个三角形;答案不惟一,所画三角形的一边长与该边上的高相等即可.)(3)三角形的一边长与该边上的高相等. …………………………………………3分 (4)对角线互相垂直.(注:回答菱形、正方形不给分)………………………5分24. (本小题7分)解:(1)设直线AC 的解析式为3-=kx y ,把A (-1,0)代入得3-=k .∴直线A C 的解析式为33--=x y . ………………………………………………1分 依题意知,点Q 的纵坐标是-6.把6-=y 代入33--=x y 中,解得1=x ,∴点Q (1,6-). ………………2分∵点Q 在抛物线的对称轴上,∴抛物线的对称轴为直线1=x .设抛物线的解析式为n x a y +-=2)1(,由题意,得⎩⎨⎧-=+=+304n a n a ,解得⎩⎨⎧-==.4,1n a ∴抛物线的解析式为4)1(2--=x y .………………………………………………3分(2)如图①,过点C 作AC 的垂线交抛物线于点D , 交x 轴于点N ,则ANC ACO ∠=∠∴ACO ANC ∠=∠tan tan ,∴OCOAON OC =. ∵1=OA ,3=OC ,∴9=ON .∴点N 的坐标为(9,0) 可求得直线CN 的解析式为331-=x y . 图① 由⎪⎩⎪⎨⎧--=-=4)1(3312x y x y ,解得⎪⎩⎪⎨⎧-==92037y x ,即点D 的坐标为(37,920-).………5分 (3)设抛物线的对称轴交x 轴于点E , 依题意,得2=AE ,4=EM ,=AMB∵1=-+=∆∆∆AME O CME AO C ACM S S S S 梯形, 且PM AE PM S PAM =⨯=∆21, 又ACM PAM S S ∆∆=3,∴3=PM .设P (1,m ), 图②①当点P 在点M 上方时,PM =m +4=3,∴1-=m ,∴P (1,-1). …………………………………………………………6分 ②当点P 在点M 下方时,PM =-4-m =3,∴7-=m ,∴P (1,-7). …………………………………………………………7分综上所述,点P 的坐标为1P (1,-1),2P (1,-7).25. (本小题8分)(1)证明:如图①,∵∠ACB =90°,AC=BC ,∴∠A =∠B =45°.以CE 为一边作∠ECF =∠ECB ,在CF 上截取CF=CB ,则CF=CB=AC .连接DF 、EF ,则△CFE ≌△CBE. ………………………………………………1分∴FE=BE ,∠1=∠B =45°.∵∠DCE =∠ECF +∠DCF =45°,∴∠DCA +∠ECB =45°.∴∠DCF =∠DCA.∴△DCF ≌△DCA. ……………………………………………………………2分∴∠2=∠A =45°,DF =AD.∴∠DFE =∠2+∠1=90°.∴△DFE 是直角三角形.又AD=DF ,EB=EF ,∴线段DE 、AD 、EB 总能构成一个直角三角形. ……………………………4分(2)当AD=BE 时,线段DE 、AD 、EB 能构成一个等腰三角形.如图②,与(1)类似,以CE 为一边,作∠ECF=∠ECB ,在CF 上截取CF=CB ,可得△CFE ≌△CBE ,△DCF ≌△DCA.∴AD=DF ,EF=BE. ∴∠DFE =∠1+∠2=∠A +∠B =120°.若使△DFE 为等腰三角形,只需DF=EF ,即AD=BE.∴当AD=BE 时,线段DE 、AD 、EB 能构成一个等腰三角形. ……………6分且顶角∠DFE 为120°.(3)证明:如图①,∵∠ACE =∠ACD +∠DCE ,∠CDB =∠ACD +∠A.又∠DCE =∠A =45°,∴∠ACE =∠CDB.又∠A =∠B ,∴△ACE ∽△BDC. ∴BDAC BC AE =. ∴BC AC AE BD ⋅=⋅. ∵Rt △ACB 中,由222210==+AB BC AC ,得5022==BC AC .∴502==⋅=⋅AC BC AC AE BD .…………………………………………8分说明:各解答题不同的正确解法参照以上标准给分.。
北京市朝阳区九年级综合练习(一)数学试卷学校班级姓名考号考1.本试卷共 8 页,共三道大题,29 道小题,满分120 分.考试时间120 分钟.生 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.须4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.知5.考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30 分,每小题3 分)下面各题均有四个选项,其中只有一个是符合题意的.1.实数 a, b, c,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是A . aB. bC.c D. d2. 京津冀一体化是由京津唐工业基地的概念发展而来,涉及到的人口总数约为90 000 000 人 .将 90 000 000 用科学记数法表示应为A .0.9 108 B.9 107 C.90 106 D.9 1063.右图是某个几何体的三视图,该几何体是A.棱柱B.圆锥C.球D.圆柱4.如图,直线 l1∥ l2,若∠ 1=70°,∠ 2=60°,则∠ 3 的度数为A.40°B. 50°C. 60°D. 70°5.一个试验室在0:00— 4:00 的温度T(单位:℃)与时间t (单位:h) 的函数关系的图象如图所示,在0:00—2:00 保持恒温,在2:00— 4:00匀速升温,则开始升温后试验室每小时升高的温度为A.5℃B.10℃C. 20℃D.40℃6. 《九章算术》是我国古代的数学名着,书中的“折竹抵地”问题: 今有竹高一丈,末折抵地,去本三尺 . 问折者高几何?意思是:一根竹子,原高一丈(一丈=10 尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部 3 尺远, 问折断处离地面的高度是多少?设折断后离地面的高度为x 尺,则可列方程为A .x2 3 (10 x) 2 B.x2 32 (10 x) 2C.x2 3 (10 x)2 D.x2 32 (10 x)27 . 小军为了解同学们的课余生活,设计了如下的调查问卷(不完整):调查问卷年月你平时最喜欢的一项课余活动是()(单选)( A )( B )( C)( D)其他他准备在“①看课外书,②体育活动,③看电视,④踢足球,⑤看小说”中选取三个作为该问题的备选答案,选取合理的是A. ①②③B. ①④⑤C.②③④D.②④⑤8如图,广场中心的菱形花坛ABCD的周长是40米,∠A=60 A C两点之间的距离为. °,则,米 B. 5 3 米米 D. 10 3 米9. 某班 25 名同学在一周内做家务劳动时间如图所示,则做家务劳动时间的众数和中位数分别是A.2和B .和C.2和D.和210 . 如图 1,在△ ABC 中, AB=BC, AC=m, D ,E 分别是 AB, BC 边的中点,点P 为 AC 边上的一个动点,连接PD ,PB, PE . 设 AP=x,图 1 中某条线段长为y,若表示y 与 x 的函数关系的图象大致如图2 所示,则这条线段可能是图1图2A. PDB.PBC. PED.PC二、填空题(本题共18 分,每小题3 分)11. 因式分解:3m26m+3 =.12. 某水果公司购进10 000kg 苹果,公司想知道苹果的损坏率, 从所有苹果中随机抽取若干进行统计,部分结果如下表:苹果总质量 n(kg) 100 200 300 400 500 1000损坏苹果质量m(kg)苹果损坏的频率mn(结果保留小数点后三位)估计这批苹果损坏的概率为(结果保留小数点后一位),损坏的苹果约有kg.13. 如图,⊙ O 是△ ABC 的外接圆,∠ACO=45 °,则∠ B 的度数为.14.某同学看了下面的统计图说:“这幅图显示,从2015年到2016年A市常住人口大幅增加.”你认为这位同学的说法是否合理?答:(填“合理”或“不合理”),你的理由是.第 14题图第15题图15. 如图,图中的四边形都是矩形,根据图形,写出一个正确的等式:.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作 : 线段 AB 的垂直平分线 .小红的作法如下:如图,①分别以点A 和点B 为圆心,大于1 AB 2的长为半径作弧,两弧相交于点C;②再分别以点 A 和点 B 为圆心,大于于①中的半径)作弧,两弧相交于点1AB 的长为半径(不同2D,使点 D 与点 C 在直线AB 的同侧;③作直线 CD .所以直线CD 就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是_________________________ .三、解答题(本题共72 分,第 17-26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题8 分)17.计算:(1)1 ( 2)0 3 2 2sin 60 . 218. 已知x2 2x 1 0 . 求代数式 ( x 1)2 x(x 4) ( x 2)(x 2) 的值.3x 1≤2( x1),19. 解不等式组x3x 1.220.如图, 四边形 ABCD 中,AB∥DC,AE,DF 分别是∠ BAD , ∠ADC的平分线, AE , DF 交于点 O.求证: AE ⊥DF .21. , 知小明家到公园的路程为15km,小东家到公园的路程为12km , 小明骑车的平均速度比小东快h, 结果两人同时到达公园.求小东从家骑车到公园的平均速度.22.在平面直角坐标系xOy 中,直线y 1 x b 与双曲线y 4的一个交点为A(m,2),2x与 y 轴分别交于点 B. (1)求 m 和 b 的值;y (2)若点 C 在 y 轴上,且△ ABC 的面积是 2,请直接写出点C 的坐标 .4 3 2 1–3 –2 –1O1 2 3 4x–1 –2 –323.如图,在△ ABC 中, AB = AC ,AD 是 BC 边的中线,过点 A 作 BC 的平行线,过点 B 作 AD 的平行线,两线交于点 E. ( 1)求证:四边形 ADBE 是矩形 ; ( 2)连接 DE, 交 AB 于点 O, 若 BC=8,AO= 5,2求 cos ∠ AED 的值 . 24. 阅读下列材料 :2017 年 3 月 29 日,习主席来到了北京市朝阳区将台乡参加首都义务植树活动,他指出爱 绿护绿是每个公民的职责,造林绿化是功在当代、利在千秋的事业.首都北京一直致力于创造绿色低碳的良好生态环境,着力加大城区规划建绿. 2013 年,城市绿化覆盖率达到 %,森林覆盖率为 40%,园林绿地面积 67048 公顷 . 2014 年,城市绿化覆盖 率比上年提高个百分点,森林覆盖率为41%. 2015 年,城市绿化覆盖率达到 %,森林覆盖率为%, 生态环境进一步提升,园林绿地面积达到 81305 公顷 . 2016 年,城市绿化覆盖率达到 %, 森林覆 盖率为 % ,园林绿地面积比上年增加408 公顷 . 根据以上材料解答下列问题:(1)2016 年首都北京园林绿地面积为公顷;(2) 用统计表将 2013-2016 年首都北京城市绿化覆盖率、森林覆盖率表示出来.25.如图,在Rt △ ABC 中,∠ ACB=90 °,∠ A=30 °,点 D 在 AB 上,以 BD 为直径的⊙ O 切 AC于点 E,连接 DE 并延长,交BC 的延长线于点F .(1)求证:△ BDF 是等边三角形;(2)连接 AF 、DC,若 BC=3,写出求四边形 AFCD 面积的思路.26. 有这样一个问题:探究函数y6的图象与性质.2x 2小华根据学习函数的经验,对函数 y6 2的图象与性质进行了探究.x2下面是小华的探究过程,请补充完整:(1) 函数y6的自变量 x 的取值范围是;2x 2(2)下表是 y 与 x 的几组对应值 .x -3 -2 -1 0 1174 5 67 232y6 3 2 3 868 3 2 38 3 2 362 3m25 3 8求 m 的值;( 3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;( 4)结合函数的图象,写出该函数的一条性质:.27.在平面直角坐标系中 xOy 中,抛物线y 1 x2 mx 1 m2 m 2 的顶点在x轴上.2 2( 1)求抛物线的表达式;( 2)点 Q 是 x 轴上一点,①若在抛物线上存在点P,使得∠ POQ=45 °,求点P 的坐标;②抛物线与直线y=2 交于点 E, F(点 E 在点 F 的左侧),将此抛物线在点E, F(包含点E 和点 F)之间的部分沿使得∠ POQ=45 °,求x 轴平移 n 个单位后得到的图象记为n 的取值范围.G,若在图象G 上存在点P,28 . 在△ ABC 中,∠ACB=90°,AC< BC,点 D 在 AC 的延长线上,点 E 在 BC 边上,且 BE=AD ,(1)如图 1,连接 AE, DE ,当∠ AEB=110°时,求∠ DAE 的度数;(2)在图 2 中,点D是AC延长线上的一个动点,点E在BC边上(不与点C重合),且BE =AD,连接 AE ,DE,将线段 AE 绕点 E 顺时针旋转 90°得到线段 EF,连接 BF, DE.①依题意补全图形;②求证: BF=DE .图1图229.在平面直角坐标系 xOy 中,点 A 的坐标为 (0, m),且 m≠0,点 B 的坐标为 (n, 0),将线段 AB 绕点 B 旋转 90°,分别得到线段 B P1,B P2,称点 P1,P2为点 A 关于点 B 的“伴随点”,图 1 为点 A 关于点 B 的“伴随点”的示意图.图 1(1)已知点 A(0, 4),①当点 B 的坐标分别为 (1,0),(-2,0)时,点 A 关于点 B 的“伴随点” 的坐标分别为;②点( x, y)是点 A 关于点 B 的“伴随点” ,直接写出y 与 x 之间的关系式;(2) 如图 2,点 C 的坐标为 (-3 , 0),以 C 为圆心, 2 为半径作圆,若在⊙ C 上存在点点 BA 关于的“伴随点” ,直接写出点 A 的纵坐标 m 的取值范围.备用图图 2。
人大附中朝阳学校初三年级数学学科一模模拟一.选择题(共16分,每小题2分)1.右图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱2.2023年我国规模以上内容创作生产营业收入累计值前三个季度分别约为6500亿元,13000亿元,20000亿元,合计约39500亿元.将39500用科学记数法表示应为(A )395×102(B )3.95×104(C )3.95×103(D )0.395×1053.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是(A )23(B )34(C )25(D )354.如图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60°(B )40°(C )20°(D )10°5.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是(A )1-(B )0(C )1(D )27.如下图1是变量y 与变量x 的函数关系的图象,图2是变量z 与变量y 的函数关系的图象,则z 与x 的函数关系的图象可能是图1图2(A)(B)(C)(D)8.如图,正方形边长为a,点E是正方形ABCD内一点,满足90AEB∠=°,连接CE.给出下面四个结论:①AE+CE≥a2;②CE≤a215-;③∠BCE的度数最大值为60°;④当CE=a时,tan∠ABE=21.上述结论中,所有正确结论的序号为(A)①②(B)①③(C)①④(D)①③④二.填空题(共16分,每小题2分)9.若1x-在实数范围内有意义,则实数x的取值范围是__________.10.分解因式:2312x-=_______________.11.方程322x x=+的解为____________.12.在平面直角坐标系xOy中,若反比例函数6yx=的图象经过点()2A m,和点()2B n-,,则m+n =__________.13.如图,树AB在路灯O的照射下形成树影AC.已知灯杆PO高为5m,树影AC长为3m,树AB与灯杆PO的水平距离AP为4.5m,则树AB的高度为m.14.如图,AB是⊙O的直径,CD是弦,连接AC,AD.若∠BAC=40°,则∠D=°.15.用一组a,b,m的值说明“若a b<,则ma mb>”是错误的,这组数可以是a=______,b=______.m=_______.16.从甲地到乙地有A,B,C三条不同的公交路线,为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:(第14题图)(第13题图)线路公交车用时频率公交车时间30≤t ≤3535<t ≤4040<t ≤4545<t ≤50合计A 59151166124500B 5050122278500C4526516723500早高峰期间,乘坐________(填“A ”,“B ”或“C ”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.三.解答题(共68分)17.计算:06cos 45185(2)-+--π-°.18.解不等式组:22135.2x x x x +<-⎧⎪⎨-<⎪⎩,19.已知230x x --=,求代数式(2)(2)(2)x x x x +---的值.20.如图,在△ABC 中,AB =AC .(1)使用直尺和圆规,作AD ⊥BC 交BC 于点D (保留作图痕迹);(2)以D 为圆心,DC 的长为半径作弧,交AC 于点E ,连接BE ,DE .①∠BEC =°;②写出图中一个..与∠CBE 相等的角.21.如图,在四边形ABCD 中,∠ACB =∠CAD =90°,点E 在BC 上,AE ∥DC ,EF ⊥AB ,垂足为点F .(1)求证:四边形AECD 是平行四边形;(2)若AE 平分∠BAC ,BE =5,54cos =B ,求BF 和AD 的长.22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(0,1),(-2,2),与x轴交于点A.(1)求该一次函数的表达式及点A的坐标;(2)当x>2时,对于x的每一个值,函数y=2x+m的值大于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.23.列方程解应用题无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件?24.如图,AB是⊙O的直径,点E是OB的中点,过点E作弦CD⊥AB,连接AC,AD.(1)求证:△ACD是等边三角形;(2)若点F是的中点,过点C作CG⊥AF,垂足为点G.若⊙O的半径为2,求CG的长.25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A和场景B下做对比实验,设实验过程中,该试剂挥发时间为x分钟时,在场景A,B 中的剩余质量分别为y1,y2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y1,y2与x的几组对应值如下:x(分钟)05101520…y1(克)2523.52014.57…y2(克)252015105…(1)在同一平面直角坐标系xOy中,描出上表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(2)进一步探究发现,场景A的图象是抛物线的一部分,y1与x之间近似满足二次函数:y1=-0.04x2+bx+c.场景B的图象是直线的一部分,y2与x之间近似满足一次函数y2=kx+c(k≠0).则b=_______,c=_______,k=_______;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用,在上述实验中,记该化学试剂在场景A,B中发挥作用的时间分别为x A,x B,则x A_______x B(填“>”,“=”或“<”).26.在平面直角坐标系xOy中,点M(x1,y1),N(x2,y2)是抛物线y=ax2-2ax+c(a>0)上任意两点.(1)直接写出抛物线的对称轴;(2)若x1=a+1,x2=a+2,比较y1与y2的大小,并说明理由;(3)若对于m<x1<m+1,m+1<x2<m+2,总有y1<y2,求m的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=2α(45°<α<90°),点D是BC的中点,点E是BD的中点,连接AE,将射线AE绕点A逆时针旋转α得到射线AM,过点E作EF⊥AE交射线AM于点F.(1)①依题意补全图形;②求证:∠B=∠AFE;(2)连接CF,DF,用等式表示CF,DF之间的数量关系,并证明.28.在平面直角坐标系xOy 中,⊙O 的半径为1,点P 是⊙O 外一点,给出如下定义:若在⊙O 上存在点T ,使得点P 关于某条过点T 的直线对称后的点Q 在⊙O 上,则称点Q 为点P 关于⊙O 的“关联对称点”.(1)若点P 在直线y =2x 上;1若点P 的坐标为(1,2),则Q 1(0,1),Q 2(1,0),Q 3(22-,22-)中,是点P 关于⊙O 的“关联对称点”的是____________;2若存在点P 关于⊙O 的“关联对称点”,求点P 的横坐标P x 的取值范围;(2)已知点A (2,23),动点M 满足AM ≤1,若点M 关于⊙O 的“关联对称点”N 存在,直接写出MN 的取值范围.参考答案一、选择题:1. A2.B3.D4.C5.B6.C7.D8.C二、填空题:9.x≥1 10. 3(x+2)(x-2) 11.4 12.0 13.2 14.50° 15.2 3 4(答案不唯一)16.C三.解答题17.计算:6cos45°﹣+|﹣5|﹣(π﹣2)0.解:6cos45°﹣+|﹣5|﹣(π﹣2)0=6×﹣3+5﹣1=3﹣3+5﹣1=4.18.解不等式组:.解:,解不等式①得:x>3,解不等式②得:x<5,则不等式组的解集为3<x<5.19.已知x2﹣x﹣3=0,求代数式(x+2)(x﹣2)﹣x(2﹣x)的值.解:(x+2)(x﹣2)﹣x(2﹣x)=x2﹣4﹣(2x﹣x2)=x2﹣4﹣2x+x2=2x2﹣2x﹣4,∵x2﹣x﹣3=0,∴x2﹣x=3,则原式=2(x2﹣x)﹣4=2×3﹣4=2.20.如图,在△ABC中,AB=AC.(1)使用直尺和圆规,作AD⊥BC交BC于点D(保留作图痕迹);(2)以D为圆心,DC的长为半径作弧,交AC于点E,连接BE,DE.①∠BEC=90°;②写出图中一个与∠CBE相等的角∠BCF(答案不唯一).解:(1)如图,AD为所作;(2)①∵AB=AC,AD⊥BC,∴DB=DC,AD平分∠BAC,∴BC为⊙O的直径,∴∠BEC=90°;故答案为:90;②∵AB=AC,∴∠ABC=∠ACB,∴BC为⊙O的直径,∴∠CFB=∠BEC=90°,∴∠CBE=∠BCF,∵∠CBE+∠BCE=90°,∠CAD+∠ACD=90°,∴∠CBE=∠CAD,∴∠CBE=∠CAD=∠BAD=∠BCF.故答案为:∠BCF(答案不唯一).21.如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;,求BF和AD的长.(2)若AE平分∠BAC,BE=5,cosB=45(1)证明:∵∠ACB=∠CAD=90°,∴AD∥CE,∵AE//DC,∴四边形AECD是平行四边形;(2)解:由(1)可得四边形AECD是平行四边形,∴CE=AD,∵EF⊥AB,AE平分∠BAC,∠ACB=90°,∴EF=CE,∴EF=CE=AD,,∵BE=5,cosB=45=4,∴BF=BE⋅cosB=5×45∴EF=√BE2−BF2=3,∴AD=EF=3.22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(0,1),(﹣2,2),与x轴交于点A.(1)求该一次函数的表达式及点A的坐标;(2)当x>2时,对于x的每一个值,函数y=2x+m的值大于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.解:∵一次函数y=kx+b(k≠0)的图象经过点(0,1),(﹣2,2),∴,解得,该一次函数的表达式为y=﹣x+1,令y=0,得0=﹣x+1,∴x=2,∴A(2,0);(2)当x>2时,对于x的每一个值,函数y=2x+m的值大于等于一次函数y=kx+b(k≠0)的值,∴2x+m≥﹣x+1,∴m≥﹣4.23.列方程解应用题:无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件?解:设1名快递员平均每天可配送包裹x件,则1辆无人配送车平均每天可配送包裹5x件,根据题意得:﹣=2,解得:x=150,经检验,x=150是所列方程的解,且符合题意.答:1名快递员平均每天可配送包裹150件.24.如图,AB是⊙O的直径,点E是OB的中点,过E作弦CD⊥AB,连接AC,AD.(1)求证:△ACD是等边三角形;(2)若点F是的中点,连接AF,过点C作CG⊥AF,垂足为G,若⊙O的半径为2,求线段CG的长.(1)证明:连接OC,如图:∵AB是⊙O的直径,弦CD⊥AB,∴AB是CD的垂直平分线,∴AC=AD,∴∠DAE=∠CAE,∵OC=OB,点E为OB的中点,∴OE=OB=OC,在Rt△OCE中,cos∠COE==,∴∠COE=60°,∴∠CAE=∠COE=30°,∴∠DAE=∠CAE=30°,∴∠CAD=∠DAE+∠CAE=60°,∴△ABC为等边三角形.(2)解:由(1)可知:△ACD是等边三角形,∠CAE=30°,∴∠D=60°,∵点F为弧AC的中点,∴∠CAF=30°,∵⊙O的半径为2,∴OA=OB=2,∵点E为OB的中点,∴OE=1,∴AE=OA+OE=2+1=3,在Rt△ACE中,cos∠CAE=,∴AC===,在Rt△ACG中,AC=,∠CAF=30°,∴CG=AC=.25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A和场景B下做对比实验,设实验过程中,该试剂挥发时间为x分钟时,在场景A,B中的剩余质量分别为y1,y2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y1,y2与x的几组对应值如下:(1)在同一平面直角坐标系xOy中,描出上表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(2)进一步探究发现,场景A的图象是抛物线的一部分,y1与x之间近似满足二次函数:.场景B的图象是直线的一部分y2与x之间近似满足一次函数y2=kx+c(k≠0).则b=﹣0.1,c=25,k=﹣1;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用,在上述实验中,记该化学试剂在场景A,B中发挥作用的时间分别为x A,x B,则x A>x B(填“>”,“=”或“<”).解:(1)由题意,作图如下.(2)由题意,场景A的图象是抛物线的一部分,y1与x之间近似满足函数关系y1=﹣0.04x2+bx+c.又点(0,25),(10,20)在函数图象上,∴.解得:.∴场景A函数关系式为y1=﹣0.04x2﹣0.1x+25.对于场景B的图象是直线的一部分,y2与x之间近似满足函数关系y2=kx+c.又(0,25),(10,15)在函数图象上,∴,解得:,∴场景B函数关系式为y2=﹣x+25.故答案为:﹣0.1,25,﹣1;(3)由题意,当y=4时,场景A中,x A≈21.7,场景B中,4=﹣x B+25,解得:x B=21,∴x A>x B.故答案为:>.26.在平面直角坐标系xOy中,点M(x1,y1),N(x2,y2)是抛物线y=ax2﹣2ax+c(a>0)上任意两点.(1)直接写出抛物线的对称轴;(2)若x1=a+1,x2=a+2,比较y1与y2的大小,并说明理由;(3)若对于m<x1<m+1,m+1<x2<m+2,总有y1<y2,求m的取值范围.解:(1)抛物线y=ax2﹣2ax+c(a>0)的对称轴为:x=﹣=1,∴抛物线的对称轴为直线x=1;(2)∵a>0,抛物线开口向上,对称轴为直线x=1;∴M(x1,y1),N(x2,y2)都在对称轴右侧,∵当x>1时,y随x的增大而增大,且x1<x2,∴y1<y2;(3)∵m<x1<m+1,m+1<x2<m+2,∴<,∵y1<y2,a>0,∴M(x1,y1)距离对称轴更近,x1<x2,则MN的中点在对称轴的右侧,∴解得:m.27.如图,在△ABC中,AB=AC,∠BAC=2α(45°<α<90°),D是BC的中点,E是BD的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF ⊥AE 交射线AM 于点F .(1)①依题意补全图形;②求证:∠B =∠AFE ;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.答案.(1)①依题意补全图形.②∵AB AC =,2BAC α∠=, ∴1802902B C αα︒−∠=∠==︒−.∵EF AE ⊥, ∴90AEF ∠=︒. ∵EAF α∠=, ∴90AFE α∠=︒−.∴B AFE ∠=∠.(2) 线段CF 与DF 的数量关系为CF =DF .证明:延长FE 至点G ,使EG =EF ,连接AG ,BG . ∵AE ⊥EF , ∴AE 垂直平分GF . ∴AG =AF .∴∠GAE =∠EAF =α.∴∠GAF =∠GAE +∠EAF =2α. ∵∠BAC =2α, ∴∠GAF =∠BAC . ∴∠GAB =∠F AC .BC∠°∠°M C∵AB=AC,AG=AF,∴△AGB≌△AFC(SAS).∴GB=FC.∵E为BD中点,∴BE=DE.∵∠GEB=∠DEF,∴△GBE≌△FDE(SAS).∴GB=DF.∴DF=CF.28.(2024•朝阳区校级一模)在平面直角坐标系xOy中,⊙O的半径为1,点P是⊙O外一点,给出如下定义:若在⊙O上存在点T,使得点P关于某条过点T的直线对称后的点Q在⊙O上,则称点Q为点P关于⊙O的“关联对称点”.(1)若点P在直线y=2x上;①若点P的坐标为(1,2),则Q1(0,1),Q2(1,0),中,是点P关于⊙O的“关联对称点”的是Q2,Q3.;②若存在点P关于⊙O的“关联对称点”,求点P的横坐标x P的取值范围;(2)已知点,动点M满足AM≤1,若点M关于⊙O的“关联对称点”N存在,直接写出MN的取值范围.解:(1)解:如图所示,PQ3连线的中点在⊙O的内部,PQ1的中点的纵坐标为1,则点P,Q1关于y=1对称,点P关于⊙O的关联点是Q3,Q2,故答案为:Q2,Q3.②如图所示,点P在线段RS和UW上,设R(m,2m),在Rt△OHR中,m2+(2m)2=32,解得m=或m=﹣(舍),∴x R=;同理x S=,x U=﹣,x W=﹣,∴﹣≤p<﹣或<p≤;(2)依题意,关于⊙O的关联点在半径为3的圆内,如图所示,∵AM≤1,则M在半径为1的⊙A上以及圆内,M关于⊙O的关联点N,∴MN的最大值为OM+ON=3+1=4,如图所示,当M在线段OA上时,MN取最小值,∴OA==,设MN=GH=x,则GT=HT=x,∴MH2=()2﹣(1+x)2,∴NG2=12﹣(1﹣x)2,∴()2﹣(1+x)2=12﹣(1﹣x)2,解得x=,∴≤MN≤4.。
北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2022.4一、选择题(共16分,每题2分)三、解答题(共68分,第17-21题,每题5分,第22-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分) 17.解:原式 21=−………………………………………………………………4分 1=−. ……………………………………………………………………………………5分18.解:原不等式组为3(2)4, 121. 3x x xx −−≥⎧⎪⎨+−<⎪⎩①② 解不等式①得,1x ≤. ………………………………………………………………………2分 解不等式②得,4x <. ………………………………………………………………………4分 ∴原不等式组的解集为1x ≤.…………………………………………………………………5分19.解:(23)(23)(3)x x x x +−−−22493x x x =−−+………………………………………………………………………………3分 2339x x =+−. …………………………………………………………………………………4分∵230x x +−=,∴2339=0x x +−. ………………………………………………………………………………5分 ∴原式=0.20.(1)证明:依题意,得22()4(1)(2)a a a ∆=−−−=−.………………………………………2分 ∵2(2)0a −≥,∴0∆≥.∴该方程总有两个实数根.……………………………………………………………3分(2)解:解方程,得11x =,21x a =−. ………………………………………………………4分∵该方程的两个实数根都是整数,且其中一个根是另一个根的2倍, ∴12a −=. ∴3a =.…………………………………………………………………………………5分21.解:(1)补全的图形如图所示:……………………………3分(2)等边三角形; ……………………………………………………………………………4分一条弧所对的圆周角等于它所对的圆心角的一半. …………………………………5分 22.(1)证明:∵AE ∥BD ,BE ∥AC ,∴四边形AEBO 是平行四边形.………………………………………………………1分∵四边形ABCD 是矩形,∴OA =OB =OC =OD . …………………………………………………………………2分 ∴四边形AEBO 是菱形.………………………………………………………………3分(2)解:连接OE ,交AB 于点H . ∵四边形AEBO 是菱形,∴OE 与AB 互相垂直平分.………………4分 ∵AB =OB =2,∴BH =1,OH =3.………………………5分 ∴OE =23.∴四边形AEBO 的面积1232AB OE =⋅=. ………………………………………6分23.(1)证明:如图1,连接OC .∵CD 是⊙O 的切线,∴∠OCD =90°. ……………………1分 ∴∠DCA +∠ACO =90°. ∵AD ⊥CD ,∴∠DCA +∠DAC =90°.∴∠ACO =∠DAC .……………………2分 ∵OA =OC ,∴∠ACO =∠OAC . ∴∠DAC =∠OAC . ∴AC 平分∠DAB . ……………………………………………………………………3分(2)解:如图2,连接BC , ∵AB 为⊙O 的直径, ∴∠ACB =90°. …………………………………4分由(1)可知cos ∠CAB =cos ∠CAD =45. ∵AB =5,∴AC =4. …………………………………………5分 ∴在Rt △ACD 中,AD =16cos 5AC CAD ⋅∠=.∴125CD =. ……………………………………………………………………………6分 24.解:(1)坐标系及图象如图所示.………………………2分(2)4; ………………………………………………………………………………………………3分 (3)设h 关于d 的函数表达式为2(1)4h a d =−+, ……………………………………………4分 把(3,0)代入,解得1a =−.∴2(1)4h d =−−+(0≤d ≤3). ……………………………………………………………5分图1图2(4)∵只调整喷头距离湖面的高度, ∴喷泉水柱的形状不变,对称轴位置不变.∴可设调整后抛物线的函数表达式为22h d d c =−++.由题意可知,当游船到立柱的水平距离和水柱到游船顶棚的竖直距离的最小值都恰好为1米时,抛物线经过点(3,2).把(3,2)代入22h d d c =−++,解得c =5.∴将喷头向上移动至少2米就能满足要求.…………………………………………………6分25.解:(1)78.5. ………………………………………………………………………………………2分(2)在本次抽取的学生中乙校区赋予等级A 的学生更多;理由为:甲校区的平均分为79.5分,从统计图可以知道超过这一分数的学生有8名,也就是在本次抽取的学生中甲校区有8人赋予等级A ,乙校区的平均分为77分,低于中位数81.5分,说明在本次抽取的学生中至少有10人可以赋予等级A ,所以在本次抽取的学生中乙校区赋予等级A 的学生更多.……………………………………………………………………………………4分 (3)78.…………………………………………………………………………………………5分26.解:(1)∵y 1=y 2,∴抛物线对称轴为y 轴.…………………………………………………………………1分 ∵(-2,0),(2,y 3)关于y 轴对称, ∴y 3=0. ……………………………………………………………………………………2分(2)把(-2,0)代入2y x bx c =++,得0=4-2b +c . ∴c =2b -4.…………………………………………………………………………………3分把(2,y 3)代入2y x bx c =++,得y 3=4+2b +c =4b . 由题意可知抛物线开口向上且经过点(-2,0),对称轴为2bx =−. ………………4分 ∵y 2<y 1, ∴02b−>. ………………………………………………………………………………5分 ∵y 1<y 3,∴122b −<. 综上,10b −<<. ∴440b −<<.即340y −<<. …………………………………………………………………………6分27.(1)①补全图形如图1所示.………………………………………1分②AB=AE+CE.…………………………………………………………………………………2分证明:如图2,延长AD,CE相交于点F.∵AB∥CE,∴∠B=∠DCF,∠BAD=∠F.……3分∵D是BC的中点,∴BD=CD.∴△ABD≌△FCD.………………4分∴AB= CF.∵将线段AB沿AD所在直线翻折得到线段A B’,∴∠BAD=∠B’AD.∴∠B’AD=∠F.∴EF=AE.………………………………………………………………………………5分∵CF=CE+EF,∴AB=AE+CE.(2)AE=AB+CE或CE=AB+AE.……………………………………………………………7分28.解:(1)2.………………………………………………………………………………………2分(2)①如图1,当直线l经过点A(0,1),B(2,0)时,k=12−.……………………3分可知OA=1,OB=2,∠AOB=90°.∴5AB=.∴2cos55ABO∠=.图1图2设AB 与⊙M 的另一个交点为C ,连接OC ,可知∠OCB =90°. ∴4cos 55BC OB ABO =⋅∠=. 即此时直线l 关于⊙M 的“圆截距”为455. 结合图形可知12−<k <0.………………………………………………………………4分 如图2,当直线l 经过点(0,1),(1,-1)时,k =-2. 由对称性可得,此时直线l 关于⊙M 的“圆截距”为455. 结合图形可知k <-2.……………………………………………………………………5分综上,当12−<k <0或k <-2时直线l 关于⊙M 的“圆截距”小于455.②2b =±.………………………………………………………………………………7分图1图2。
北京市朝阳区九年级综合练习〔一〕数学试卷2022.5 学校班级姓名考号考生须知1.本试卷共6页,共五道大题,29道小题,总分值120分. 考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题〔此题共30分,每题3分〕下面各题均有四个选项,其中只有一个..是符合题意的.1. 据亚洲开发银行统计数据,2022年至2022年,亚洲各经济体的根底设施如果要到达世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为A.0.8×1013B.8×1012C.8×1013D.80×10112. 如图,以下关于数m、n的说法正确的选项是A.m>n B.m=nC.m>-n D.m=-n3.如图,直线a,b被直线c所截,a∥b,∠2=∠3,假设∠1=80°,那么∠4等于A.20°B.40°C.60°D.80°4.以下计算正确的选项是A.2a+3a=6a B. a2+a3=a5 C. a8÷a2=a6D. (a3)4= a75.以下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是A.平均数B.中位数C.众数D.方差7颜色数量〔个〕奖项红色 5 一等奖黄色 6 二等奖蓝色9 三等奖白色10 四等奖为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的时机均相等,那么该抽奖活动抽中一等奖的概率为A. 16B.51C.310D.128. 假设正方形的周长为40,那么其对角线长为A .100B .202.102 D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在 近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,那么河的宽度PQ 为 A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.甲先出发3秒,在跑步过程中,甲、乙两人的距离y 〔米〕与乙出发的时间t 〔秒〕之间的关系如下列图,那么以下结论正确的选项是A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米 二、填空题〔此题共18分,每题3分〕11.假设分式21-x 有意义,那么x 的取值范围是. 12.分解因式:2236+3m mn n -=.13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,那么∠CDB 的度数为.14.请写出一个图象从左向右上升且经过点〔-1,2〕的函数,所写的函数表达式是. 15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准〔见下表〕.如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是〔填“一类、二类、三类〞中的一个〕.16.一组按规律排列的式子:a 2,25a -,310a,417a -,526a ,…,其中第7个式子是,第n 个式子是〔用含的n 式子表示,n 为正整数〕. 三、解答题〔此题共30分,每题5分〕 17.:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:10122sin 45(2015)3-⎛⎫-+--︒+- ⎪⎝⎭π.地区类别 首小时内 首小时外一类 2.5元/15分钟 3.75元/15分钟二类 1.5元/15分钟 2.25元/15分钟 三类 0.5元/15分钟 0.75元/15分钟19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)假设k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2022年冬奥会,全长174千米的京张高铁 于2022年底开工.按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少 四、解答题〔此题共20分,每题5分〕23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC 且DE=12AC ,连接CE 、OE ,连接AE 交OD 于点F . 〔1〕求证:OE =CD ;〔2〕假设菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2022年全市燃煤数量比2022年压减450万吨,到2022年、2022年要比2022年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一局部:〔1〕据报道,2022年全市燃煤由四局部组成,其中电厂用煤920万吨,那么2022年全市 燃煤数量为万吨;〔2〕请根据以上信息补全2022-2022年全市燃煤数量的折线统计图,并标明相应数据; 〔3〕某地区积极倡导“清洁空气,绿色出行〞,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息〔如下表〕,发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2022-2022年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量〔万辆〕 利用公共自行车出行人数〔万人〕 2022 1.4 约9.9 2022 2.5 约17.6 2022 4 约27.6 2022 5 约根据小颖的发现,请估计,该地区2022年利用公共自行车出行人数〔直接写出结果, 精确到0.1〕25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . 〔1〕求证:∠BAD =∠DAE ;2022年全市燃煤各组成局部 用煤量分布扇形统计图2022-2022年全市燃煤数量的折线统计图〔2〕假设AB =6,AD =5,求DF 的长. 26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°,BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决〔如图2〕. 请答复:APPD的值为.参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . 〔1〕求APPD的值; 〔2〕假设CD=2,那么BP =.五、解答题〔此题共22分,第27题7分,第28题7分,第29题8分〕27.如图,将抛物线M 1:x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1的一个交点记为A ,与M 2的一个交点记为B ,点A 的横坐标是-3. 〔1〕求a 的值及M 2的表达式;〔2〕点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .①当点C 的横坐标为2时,直线n x y +=恰好经过正方形CDEF 的顶点F ,求此时n 的值; ②在点C 的运动过程中,假设直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围〔直接写出结果〕.28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上〔不与点B 、C 重合〕,连接AD ,将AD绕点D 顺时针旋转90°得到DE ,连接BE . 〔1〕如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,假设AC =8,DF =3,求BE 的长;〔2〕如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系图1图2图3〔直接写出结论〕.29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点〞,称此时MP +MQ 为PQ 的“等高距离〞. 〔1〕假设P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C 〔0,3〕中,PQ 的“等高点〞是; ②假设M 〔t ,0〕为PQ 的“等高点〞,求PQ 的“等高距离〞的最小值及此时t 的值.〔2〕假设P (0,0),PQ =2,当PQ 的“等高点〞在y 轴正半轴上且“等高距离〞最小时,直接写出点Q 的坐标.北京市朝阳区九年级综合练习〔一〕数学试卷答案及评分参考2022.5一、选择题〔此题共30分,每题3分〕 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y 〔答案不惟一〕15. 二类16. 750a,n n a n 1)1-(21+⋅+〔第一个空1分,第二个空2分〕三、解答题〔此题共30分,每题5分〕17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分 18. 解:原式=122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19.⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .图1 图2① ②∴原式=5-3=2. ……………………………………………………………………5分 21. 解:〔1〕)3(4)6(2+--=∆k ………………………………………………………1分∵原方程有两个不相等的实数根, ∴0244>+-k .解得6<k . ………………………………………………………………2分〔2〕∵6<k 且k 为大于3的整数,∴=k 4或5.………………………………………………………………………3分 ①当=k 4时,方程0762=+-x x 的根不是整数. ∴=k 4不符合题意.…………………………………………………………4分 ②当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意.……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x .……………………………………………2分 解得180=x . ……………………………………………3分经检验,180=x 是原方程的解,且符合题意.………………………………4分答:京张高铁最慢列车的速度是180千米/时.……………………………………5分 四、解答题〔此题共20分,每题5分〕 23. 〔1〕证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形.…………………………………………2分 ∴OE =CD .…………………………………………………………………3分〔2〕在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =223AD AO -………………4分 在Rt △ACE 中,227AC CE +.………………………………………………………5分24.〔1〕2300. ………………1分 〔2〕如图. …………… 3分 〔3〕35.0±0.5. ……………5分 25.解:〔1〕连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .……………………………………………………………………………1分∵AB 为⊙O 的直径,∴∠ACB =90°. …………………………………………………………………………2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 〔2〕连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD 2211AB AD -=……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD , ∴tan ∠CBD = tan ∠BAD =115. 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ……………………………………………………………5分 26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:〔1〕过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k , ∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP .∴DB AFPD AP=. ∴32=PDAP. …………………………………………………………………4分 〔2〕 6. ……………………………………………………………………………5分五、解答题〔此题共22分,第27题7分,第28题7分,第29题8分〕 27. 解:〔1〕∵点A 在直线x y =,且点A 的横坐标是-3,∴A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1.……………………………………………………………………2分 ∴M 1 :x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M 2的表达式为x x y 2-2=.…………3分 〔2〕①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2.………………………5分 ②n >3,n <-6.………………7分 28.解:〔1〕①补全图形,如图1所示.………………………1分②由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC , ∴∠FDB =90°.∴∠ADF =∠EDB .……………………………………2分 ∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =90°. ∴DB =DF .∴△ADF ≌△EDB .……………………………………3分 ∴AF =EB .在△ABC 和△DFB 中, ∵AC =8,DF =3,∴AC =82,DF =32.………………………………………………………………4分 AF =AB -BF=52即BE =52…………………………………………………………………………5分 〔22BD =BE +AB.……………………………………………………………………7分 29. 解:〔1〕A 、B ……………………………………………………………………………2分〔2〕如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点〞M ,此时“等高距离〞最小,最小值为线段P ′Q 的长.………………………3分 ∵P (1,2), ∴ P ′(1,-2).设直线P ′Q 的表达式为b kx y +=, 根据题意,有图1⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . ∴直线P ′Q 的表达式为31034-=x y .……………4分 当0=y 时,解得25=x . 即25=t .………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P .∴“等高距离〞最小值为5.…………………………………………………6分 〔3〕Q 〔554,552〕或Q 〔554-,552〕.………………………………8分。
北京市朝阳区九年级综合练习(一)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-5的相反数是A .5B .-5C .15 D .152.高速公路假期免费政策带动了京郊旅游的增长.据悉,2014年春节7天假期,我市乡村民俗旅游接待游客约697 000人次,比去年同期增长%.将697 000用科学记数法 表示应为 A .697×103B .×104C .×105D .×1063.把多项式x 2y ﹣2 x y 2+ y 3分解因式,正确的结果是( )A .y (x ﹣y)2B .y (x + y )(x ﹣y )C .y (x + y )2D .y (x 2﹣2xy + y 2)4.在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中任意抽取一张卡片,则抽到的数字是奇数的概率是 A .29 B .13C .49D .59 5.如图,△ABC 中,∠C =90°,点D 在AC 边上,DE ∥AB ,若∠ADE =46°,则∠B 的度数是A .34°B .44°C .46°D .54°6.期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数7.如图,在平面直角坐标系xOy 中,抛物线y =2x 2+mx +8的顶点A 在x 轴上,则m 的值是A .±4B . 8C .-8D .±88.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的A BED C5题图7题图阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是A .(1)和(2)B .(3)和(4)C .(1)和(4)D .(2)、(3)、(4)二、填空题(本题共16分,每小题4分)9.请写出一个经过第一、二、三象限,并且与y 轴交与点(0,1)的直线表达式 ____________.10.如图,已知零件的外径为30 mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC =OD )测量零件的内孔直径AB .若OC ∶OA =1∶2,且量得CD =12 mm ,则零件的厚度_____x =mm .11.将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕AB 、CD ,且AB ⊥CD ,垂足为M(如图②),之后将纸片如图③翻折,使点B 与点M 重合,折痕EF 与AB 相交于点N ,连接AE 、AF (如图④),则△AEF 的面积是__________. 12.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点P 1、A 1、A 2为顶点的△P 1A 1A 2的面积几位S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+ S n =________.三、解答题(本题共30分,每小题5分) 13. 计算:11()3---8-(5-π)0+4cos45°.14.解不等式组:22021 1.3x x x -≥⎧⎪+⎨>-⎪⎩,15. 已知2240x x +-=,求22(1)(6)3x x x ---+的值.10题图图① 图② 图③ 图④16.如图,四边形ABCD是正方形,AE、CF分别垂直于过顶点B的直线l,垂足分别为E、F.求证:BE=CF.17.如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B(9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它l与矩形没有公共点时,直接写出b的取值范围.18.列方程或方程组解应用题:从A地到B地有两条行车路线:路线一:全程30千米,但路况不太好;路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的平均车速的倍,走路线二所用的时间比走路线一所用的时间少20分钟.那么走路线二的平均车速是每小时多少千米.四、解答题(本题共20分,每小题5分)19.如图,△ABC中,BC >AC,点D在BC上,且CA=CD,∠ACB的平分线交AD于点F,E是AB的中点.(1)求证:EF∥BD ;(2)若∠ACB=60°,AC=8,BC=12,求四边形BDFE的面积.20.据报道,历经一年半的调查研究,北京PM 源解析已经通过专家论证.各种调查显示,机动车成为PM 的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放千克污染物.以下是相关的统计图、表:(1)请根据所给信息补全扇形统计图;(2)请你根据“2013年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少(精确到)空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)41 135 84 47 45 13 2013年北京市全年空气质量等级天数统计表北京市空气中PM 本地污染源扇形统计图(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2013年机动车保有量已突破520万辆,请你通过计算,估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?21.如图,CA 、CB 为⊙O 的切线,切点分别为A 、B .直径延长AD 与CB 的延长线交于点E . AB 、CO 交于点M ,连接OB . (1)求证:∠ABO =12∠ACB ; (2)若sin∠EAB =1010,CB =12,求⊙O 的半径及BE AE的值.22.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).小辰阅读后发现,拼接前后图形的面积相等....,若设新的正方形的边长为x (x >0),可得x 2=5,x =5.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a ,宽为b ,则a 的长度为 ; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的一元二次方程 23(1)230mx m x m +++=.(1)如果该方程有两个不相等的实数根,求m 的取值范围; (2)在(1)的条件下,当关于x 的抛物线23(1)23y mx m x m =-+++与x 轴交点的横坐标都是整数,且4x <时,求m 的整数值.24.在△ABC 中,CA =CB ,在△AED 中, DA =DE ,点D 、E 分别在CA 、AB 上,. (1)如图①,若∠ACB =∠ADE =90°,则CD 与BE 的数量关系是 ;MD BO E A 图④ 图⑤O A C B图① 图② 图③(2)若∠ACB =∠ADE =120°,将△AED 绕点A 旋转至如图②所示的位置,则CD 与BE 的数量关系是 ;,(3)若∠ACB =∠ADE =2α(0°< α < 90°),将△AED 绕点A 旋转至如图③所示的位置,探究线段C D 与BE 的数量关系,并加以证明(用含α的式子表示).25.如图,在平面直角坐标系xOy 中,点A (23-,0),点B (0,2),点C 是线段OA 的中点.(1)点P 是直线AB 上的一个动点,当PC +PO 的值最小时,①画出符合要求的点P (保留作图痕迹); ②求出点P 的坐标及PC +PO 的最小值; (2)当经过点O 、C 的抛物线y =ax 2+bx +c 与直线AB 只有一个公共点时,求a 的值并指出这个公共点所在象限.北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准一、选择题(本题共32分,每小题4分)1.A 2.C 3.A 4.D 5.B 6.D 7.B 8.C 二、填空题(本题共16分,每小题4分)9.答案不唯一,如y =x 3 12. (2,1);1n n-.(每空2分) 三、解答题(本题共30分,每小题5分) 13. 解:原式2322142………………………………………… 4分 =-4.………………………………………………………………… 5分14.解:220211.3x x x -≥⎧⎪⎨+>-⎪⎩①②,由不等式①,得x ≥1. ……………………………………………………… 2分由不等式②,得x < 4. ……………………………………………………… 4分所以不等式组的解为1≤x < 4. …………………………………………… 5分15. 解:原式2224263xx x x =-+-++ ………………………………………………2分D A图①DA图③D A 图②= x2+2x+5. …………………………………………………………………3分∵x2+2x -4 =0,∴x2+2x= 4. ……………………………………………………………………4分∴原式=4+5=9. …………………………………………………………………5分16. 证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.……………………………………………………1分即∠ABE+∠CBF=90°.∵AE⊥l,CF⊥l ,∴∠AEB=∠BFC=90°,且∠ABE+∠BAE=90°.……………………… 2分∴∠BAE=∠CBF.………………………………………………………… 3分∴△ABE≌△BCF.………………………………………………………… 4分∴BE=CF.………………………………………………………………… 5分17. 解:(1)∵A(1,0),B(9,0),AD=6.∴D(1,6).………………………………………………………………… 1分将B, D 两点坐标代入y=kx+b中,得6,90k bk b+=⎧⎨+=⎩解得34,274kb⎧=-⎪⎪⎨⎪=⎪⎩∴32744y x=-+.…………………………………………………… 3分(2)34b<或514b>. ……………………………………………………………… 5分18. 解:设走路线一的平均车速是每小时x千米,则走路线二平均车速是每小时千米.…………………………………… 1分由题意,得3036201.860x x=+……………………………………………………… 2分解方程,得x =30. …………………………………………………………3分经检验,x=30是原方程的解,且符合题意. …………………………………4分所以 =54.…………………………………………………………………5分答:走路线二的平均车速是每小时54千米.四、解答题(本题共20分,每小题5分)19.(1)证明:∵CA=CD,CF平分∠ACB,∴ CF 是AD 边的中线. …………………………………………………1分 ∵ E 是AB 的中点,∴ EF 是△ABD 的中位线.∴ EF ∥BD ; ………………………………………………………………2分(2)解:∵ ∠ACB =60°,CA =CD ,∴ △CAD 是等边三角形.∴ ∠ADC =60°,AD =DC =AC =8.∴ BD =BC -CD =4.过点A 作AM ⊥BC ,垂足为M . ∴ sin AM AD ADC =⋅∠43= .1832ABD S BD AM ∆=⋅=. …………………………………………………… 3分∵ EF ∥BD ,∴ △AEF ∽△ABD ,且12EF BD =. ∴14AEF ABD S S ∆∆=. ∴23AEF S ∆=. …………………………………………… 4分 四边形BDFE 的面积=63ABD AEF S S ∆∆-=. ………………………………… 5分20.解:(1); ……………………………………………………………………… 1分 (2)45134113584474513++++++ ……………………………………………… 2分≈ . …………………………………………………………………… 3分 该年度重度污染和严重污染出现的频率共是.(3)4052000000.035100⨯⨯ …………………………………………………… 4分 =7 280 0. …………………………………………………………………… 5分 估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放 72 800千克污染物.21. 解:(1)证明:∵CA 、CB 为⊙O 的切线,∴ CA =CB , ∠BCO =12∠ACB ,∴∠CBO =90°.……………………………… 1分 ∴ CO ⊥AB .∴ ∠ABO +∠CBM =∠BCO +∠CBM =90°.C∴ ∠ABO =∠BCO . ∴ ∠ABO =12∠ACB . ……………………………………………………………2分 (2)∵ OA =OB , ∴∠EAB =∠ABO .∴ ∠BCO =∠EAB . ∵ sin ∠BCO =sin ∠EAB =1010.…………………3分 ∴OB CB =13. ∵ CB =12,∴ OB =4. ……………………………………………4分 即⊙O 的半径为4.∴∠OBE =∠CAE =90°,∠E =∠E , ∴△OBE ∽△CAE . ∴BE AE =OBCA. ∵CA =CB =12, ∴BE AE =13. ………………………………………………………………………5分 22. 解:(1)10; ……………………………………………………………………… 1分 (2)如图(画出其中一种情况即可)…………………………………… 3分(2)如图(画出其中一种情况即可) ……………………………………………… 5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)由题意 m ≠ 0, ………………………………………………………… 1分 ∵ 方程有两个不相等的实数根,∴ △>0. ……………………………………………………………… 2分即 22[3(1)]4(23)(3)0m m m m -+-+=+>.得 m ≠﹣3. ………………………………………………………………… 3分 ∴ m 的取值范围为m ≠0和m ≠﹣3;(2)设y =0,则23(1)230mx m x m -+++=.∵ 2(3)m ∆=+, ∴ 33(3)2m m x m+±+=.∴ 123m x m+=,21x =.……………………………………………… 5分 当 123m x m+=是整数时, 可得m =1或m =-1或m =3.………………………………………………………… 6分 ∵4x <,∴ m 的值为﹣1或3 . …………………………………………………………… 7分 24.解:(1)BE =2CD ; ……………………………………………………………… 1分 (2)BE =3CD ; ………………………………………………………………… 3分(3)BE =2CD ·sin α. ……………………………………………………………… 4分 证明:如图,分别过点C 、D 作CM ⊥AB 于点M ,DN ⊥AE 于点N , ∵ CA =CB ,DA =DE ,∠ACB =∠ADE =2α , ∴ ∠CAB =∠DAE ,∠ACM =∠ADN=α ,AM=12AB ,AN=12AE . ∴∠CAD =∠BAE . ……………………………………………………………… 5分 Rt △ACM 和Rt △ADN 中,sin ∠ACM =AM AC ,sin ∠ADN =ANAD . ∴ sin AM AN AC AD α==.∴ 2sin AB AE AC ADα==.……………………… 6分又 ∵∠CAD =∠BAE ,∴ △BAE ∽△CAD . ∴2sin BE ABCD ACα== ∴ BE =2DC ·sin α. ……………………………………………………………… 7分 25. 解:(1)①如图1. ………………………………………………………………… 1分 ②如图2,作DF ⊥OA 于点F ,根据题意,得AC =CO =3,∠BAO =30°,CE =DE ,∴ CD =3,CF =32,DF =32. ∴ D (332-,32).………………………2分yx1E PD OCAB 图1求得直线AB 的表达式为323y x =+, 直线OD 的表达式为33y x =-, ∴ P (3-,1).……………………… 3分 在△DFO 中,可求得 DO =3.∴PC +PO 的最小值为3. ……………………… 4分(2)∵抛物线y =ax 2+bx +c 经过点O 、C ,∴23y ax ax =+. ……………………………………………………………… 5分由题意,得 23323ax ax x +=+ . …………………………………………… 6分 整理,得 2332=03ax a x +--(). ∵ 23342=03a a ∆--⨯-=()(). ∴ 3223a -±=. ……………………………………………………………… 7分当3223a -+=时,公共点在第三象限, 当3223a --=时,公共点在第二象限.…………………………………………………………………………………… 8分图2yx1F E P D OCAB。
朝阳区初三数学一模试题及答案版Updated by Jack on December 25,2020 at 10:00 am北京市朝阳区九年级综合练习(一)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-5的相反数是A .5B .-5C .15D .152.高速公路假期免费政策带动了京郊旅游的增长.据悉,2014年春节7天假期,我市乡村民俗旅游接待游客约697 000人次,比去年同期增长%.将697 000用科学记数法 表示应为 A .697×103B .×104C .×105D .×1063.把多项式x 2y ﹣2 x y 2 + y 3分解因式,正确的结果是( )A .y (x ﹣y)2B .y (x + y )(x ﹣y )C .y (x + y )2D .y (x 2﹣2xy +y 2)4.在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中任意抽取一张卡片,则抽到的数字是奇数的概率是A .29B .13C .49D .595.如图,△ABC 中,∠C =90°,点D 在AC 边上,DE ∥AB ,若∠ADE =46°,则∠B 的度数是 A .34°B .44°C .46°D .54°6.期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是A .众数和平均数B .平均数和中位数 A BE DC5题图7.如图,在平面直角坐标系xOy中,抛物线y=2x2+mx+8的顶点A在x 轴上,则m的值是A.±4 B. 8 C.-8 D.±88.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是A.(1)和(2) B.(3)和(4) C.(1)和(4) D.(2)、(3)、(4)二、填空题(本题共16分,每小题4分)9.请写出一个经过第一、二、三象限,并且与y轴交与点(0,1)的直线表达式 ____________.10.如图,已知零件的外径为30 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)测量零件的内孔直径AB.若OC∶OA=1∶2,且量得CD=12 mm,则零件的厚度_____x mm.11.将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕AB、CD,且AB⊥CD,垂足为M(如图②),之后将纸片如图③翻折,使点B与点M重合,折痕EF与AB相交于点N,连接AE、AF(如图④),则△AEF的面积是__________.10题图12.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点P 1、A 1、A 2为顶点的△P 1A 1A 2的面积几位S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+ S n =________.三、解答题(本题共30分,每小题5分) 13. 计算:11()3---8-(5-π)0+4cos45°.14.解不等式组:22021 1.3x x x -≥⎧⎪+⎨>-⎪⎩,15. 已知2,求22(1)(6)3x x x ---+的值.16.如图,四边形ABCD是正方形,AE、CF分别垂直于过顶点B的直线l,垂足分别为E、F.求证:BE=CF.17.如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B(9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它l与矩形没有公共点时,直接写出b的取值范围.18.列方程或方程组解应用题:从A地到B地有两条行车路线:路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的平均车速的倍,走路线二所用的时间比走路线一所用的时间少20分钟.那么走路线二的平均车速是每小时多少千米.四、解答题(本题共20分,每小题5分)19.如图,△ABC 中,BC >AC ,点D 在BC 上,且CA =CD ,∠ACB 的平分线交AD 于点F ,E 是AB 的中点. (1)求证:EF ∥BD ;(2)若∠ACB =60°,AC =8,BC =12,求四边形BDFE 的面积.20.据报道,历经一年半的调查研究,北京PM 源解析已经通过专家论证.各种调查显示,机动车成为PM 的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放千克污染物.以下是相关的统计图、表:F EABCD2013年北京市全年空气质量等级天数统计表北京市空气中PM 本地污染源 扇形统计图(1)请根据所给信息补全扇形统计图;(2)请你根据“2013年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少(精确到)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2013年机动车保有量已突破520万辆,请你通过计算,估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?21.如图,CA、CB为⊙O的切线,切点分别为A、B.直径延长AD与CB的延长线交于点E. AB、CO交于点M,连接OB.(1)求证:∠ABO=12∠ACB;(2)若sin∠EAB,CB=12,求⊙O 的半径及BEAE的值.五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).小辰阅读后发现,拼接前后图形的面积相等....,若设新的正方形的边长为x (x >0),可得x 2=5,x =5.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a ,宽为b ,则a 的长度为 ; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)OBACB图① 图② 图③五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的一元二次方程23(1)230-+++=.mx m x m(1)如果该方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,当关于x的抛物线23(1)23=-+++与x轴交点的y mx m x m横坐标都是整数,且4x<时,求m的整数值.24.在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB上,.(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是;,(3)若∠ACB=∠ADE=2α(0°< α< 90°),将△AED绕点A旋转至如图③所示的位置,探究线段C D与BE的数量关系,并加以证明(用含α的式子表示).DA图①DA图③DA图②25.如图,在平面直角坐标系xOy中,点A( ,0),点B(0,2),点C是线段OA的中点.(1)点P是直线AB上的一个动点,当PC+PO的值最小时,①画出符合要求的点P(保留作图痕迹);②求出点P的坐标及PC+PO的最小值;(2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准一、选择题(本题共32分,每小题4分)1.A 2.C 3.A 4.D 5.B 6.D 7.B 8.C 二、填空题(本题共16分,每小题4分) 9.答案不唯一,如y =x +1 10. 3 11.312. (2,1);1n n-.(每空2分) 三、解答题(本题共30分,每小题5分) 13. 解:原式232214………………………………………… 4分 =-4.………………………………………………………………… 5分14.解:220211.3x x x -≥⎧⎪⎨+>-⎪⎩①②,由不等式①,得x ≥1. ……………………………………………………… 2分由不等式②,得x < 4. ……………………………………………………… 4分所以不等式组的解为1≤x < 4. …………………………………………… 5分15. 解:原式2224263x x x x =-+-++ ………………………………………………2分= x 2+2x +5. …………………………………………………………………3分 ∵ x 2+2x -4 =0,∴x2+2x= 4. ……………………………………………………………………4分∴原式=4+5=9. …………………………………………………………………5分16.证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.……………………………………………………1分即∠ABE+∠CBF=90°.∵AE⊥l,CF⊥l ,∴∠AEB=∠BFC=90°,且∠ABE+∠BAE=90°.……………………… 2分∴∠BAE=∠CBF.………………………………………………………… 3分∴△ABE≌△BCF.………………………………………………………… 4分∴BE=CF.………………………………………………………………… 5分17.解:(1)∵A(1,0),B(9,0),AD=6.∴D(1,6).………………………………………………………………… 1分将B, D两点坐标代入y=kx+b中,得6,90k bk b+=⎧⎨+=⎩解得34,274kb⎧=-⎪⎪⎨⎪=⎪⎩∴32744y x=-+.…………………………………………………… 3分(2)34b<或514b>. ……………………………………………………………… 5分18. 解:设走路线一的平均车速是每小时x千米,则走路线二平均车速是每小时千米.…………………………………… 1分由题意,得3036201.860x x=+……………………………………………………… 2分解方程,得 x =30. …………………………………………………………3分 经检验,x =30是原方程的解,且符合题意. …………………………………4分 所以 =54. …………………………………………………………………5分 答:走路线二的平均车速是每小时54千米.四、解答题(本题共20分,每小题5分) 19.(1)证明:∵ CA =CD ,CF 平分∠ACB ,∴ CF 是AD 边的中线. …………………………………………………1分 ∵ E 是AB 的中点,∴ EF 是△ABD 的中位线.∴ EF ∥BD ; ………………………………………………………………2分(2)解:∵ ∠ACB =60°,CA =CD ,∴ △CAD 是等边三角形.∴ ∠ADC =60°,AD =DC =AC =8.∴ BD =BC -CD =4.过点A 作AM ⊥BC ,垂足为M . ∴ sin AM AD ADC =⋅∠43= .1832ABD S BD AM ∆=⋅=. …………………………………………………… 3分∵ EF ∥BD , ∴ △AEF ∽△ABD ,且12EF BD =. ∴14AEF ABD S S ∆∆=. ∴23AEF S ∆=. …………………………………………… 4分 四边形BDFE 的面积=63ABD AEF S S ∆∆-=. ………………………………… 5分20.解:(1); ……………………………………………………………………… 1分 (2)45134113584474513++++++ ……………………………………………… 2分≈ . …………………………………………………………………… 3分 该年度重度污染和严重污染出现的频率共是.(3)4052000000.035100⨯⨯ …………………………………………………… 4分 =7 280 0. …………………………………………………………………… 5分估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放 72 800千克污染物.21. 解:(1)证明:∵CA 、CB 为⊙O 的切线,∴ CA =CB , ∠BCO =12∠ACB ,∴∠CBO =90°.……………………………… 1分 ∴ CO ⊥AB .∴ ∠ABO +∠CBM =∠BCO +∠CBM =90°. ∴ ∠ABO =∠BCO .∴ ∠ABO =12∠ACB . ……………………………………………………………2分 (2)∵ OA =OB , ∴∠EAB =∠ABO .∴ ∠BCO =∠EAB . ∵ sin ∠BCO =sin ∠EAB 10.…………………3分 ∴OB CB =13. ∵ CB =12,∴ OB =4. ……………………………………………4分 即⊙O 的半径为4.∴∠OBE =∠CAE =90°,∠E =∠E , ∴△OBE ∽△CAE .M D B OEA∴BEAE=OBCA.∵CA=CB=12,∴BEAE=13.………………………………………………………………………5分22.解:(1)10;……………………………………………………………………… 1分(2)如图(画出其中一种情况即可)…………………………………… 3分(2)如图(画出其中一种情况即可)……………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)由题意m≠0,………………………………………………………… 1分∵方程有两个不相等的实数根,∴ △>0. ……………………………………………………………… 2分 即 22[3(1)]4(23)(3)0m m m m -+-+=+>.得 m ≠﹣3. ………………………………………………………………… 3分 ∴ m 的取值范围为m ≠0和m ≠﹣3;(2)设y =0,则23(1)230mx m x m -+++=.∵ 2(3)m ∆=+, ∴ 33(3)2m m x m+±+=.∴ 123m x m+=,21x =.……………………………………………… 5分 当 123m x m+=是整数时, 可得m =1或m =-1或m =3.………………………………………………………… 6分 ∵ 4x <,∴ m 的值为﹣1或3 . …………………………………………………………… 7分24.解:(1)BE =2CD ; ……………………………………………………………… 1分 (2)BE =3CD ; ………………………………………………………………… 3分(3)BE =2CD ·sin α. ……………………………………………………………… 4分 证明:如图,分别过点C 、D 作CM ⊥AB 于点M ,DN ⊥AE 于点N , ∵ CA =CB ,DA =DE ,∠ACB =∠ADE =2α ,∴ ∠CAB =∠DAE ,∠ACM =∠ADN=α ,AM=12AB ,AN=12AE . ∴∠CAD =∠BAE . ……………………………………………………………… 5分 Rt △ACM 和Rt △ADN 中,sin ∠ACM =AM AC ,sin ∠ADN =ANAD. ∴ sin AM AN AC AD α==.∴ 2sin AB AE AC ADα==.……………………… 6分又 ∵∠CAD =∠BAE ,∴ △BAE ∽△CAD . ∴2sin BE ABCD ACα== ∴ BE =2DC ·sin α. ……………………………………………………………… 7分25. 解:(1)①如图1. ………………………………………………………………… 1分②如图2,作DF ⊥OA 于点F ,根据题意,得AC =CO =3,∠BAO =30°,CE =DE ,∴ CD =3,CF =32,DF =32.∴ D (33-,32).………………………2分求得直线AB 的表达式为32y x =+,直线OD 的表达式为3y x =-,∴ P (3-,1).……………………… 3分 在△DFO 中,可求得 DO =3.∴PC +PO 的最小值为3. ……………………… 4分(2)∵抛物线y =ax 2+bx +c 经过点O 、C ,∴23y ax ax =+. ……………………………………………………………… 5分 由题意,得 2332ax ax x +=+ . …………………………………………… 6分 整理,得 2332=03ax a x +--(). ∵ 23342=0a a ∆--⨯-=()().∴ 322a -±=. ……………………………………………………………… 7分当322a -+=时,公共点在第三象限, 当322a --=时,公共点在第二象限.…………………………………………………………………………………… 8分yx1E P D OCAB 图1图2yx1F E P D O CAB。