2018年云南省大理州洱源县乔后中学九年级上学期期中数学试卷和解析
- 格式:doc
- 大小:297.50 KB
- 文档页数:19
云南省2018届九年级数学上学期期中试题(考试时间 120 分钟,满分 120 分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的考号、姓名、考场、座位号、班级在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试卷上作答无效。
一、填空题(本大题共6小题,每小题3分,共18分)1.在函数中,自变量x的取值范围.2.一个正多边形的一个外角为30°,则它的内角和为.330°角的直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置,若BC=12cm,则顶点A从开始到结束所经过的路径长为cm.4.关于x的一元二次方程2(1)(21)0a x a x a-+++=有两个不相等的实数根,则a的取值范围是_______.5.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=12x(x>0)交于C点,且AB=AC,则k的值为.6.观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+ (211)②﹣①得S=211﹣1.y=所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.二、选择题(本大题共8小题,每小题4分,共32分)7.﹣3的相反数是()A.﹣3 B.3 C.D.8.2017年昆明市参加中考的学生约为115000人,将115000用科学记数法表示为()A.1.15×106B.0.115×106C.11.5×104D.1.15×1059.如图所示的立体图形的主视图是()A.B.C.D.10.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2D.(a2b)3=a5b311.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.512.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45° B.30° C.20° D.15°13.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30° B.50° C.60° D.70°14.如图,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( )A .403B .154C .245D .6 三、解答题(本大题共9小题,各题分值见题号后,共70分)15.(5分)计算:16.(8分).如图,DB∥AC,且DB=12AC ,E 是AC 的中点, (1)求证:BC=DE ;(2)连接AD 、BE ,若要使四边形DBEA 是矩形,则给△ABC 添加什么条件,为什么?17.(8分)如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1 、B 1的坐标;(2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2;(3)求出(2)中线段CC 2所扫过的面积(结果保留根号和π).18.(6分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A 、B 、C 、D 、E 等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:301()32(2017)2-+--(1)2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?19.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?20.(7分)已知反比例函数y1=kx(k≠0)的图象与一次函数y2=ax+b(a≠0)的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.21.(8分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.22.(8分)如图,已知AB 是⊙O 的直径,点E 在⊙O 上,过点E 的直线EF 与AB 的延长线交与点F ,AC⊥EF,垂足为C ,AE 平分∠FAC.(1)求证:CF 是⊙O 的切线;(2)∠F=30°时,求OFES S ∆四边形AOEC 错误!未找到引用源。
2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的肯定值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参与会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4=.5.(3.00分)如图,已知AB∥CD,若=,则=.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥18.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°10.(4.00分)按肯定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为理解学生对这次大赛的理解程度,在全校1300名学生中随机抽取局部学生进展了一次问卷调查,并依据搜集到的信息进展了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“特别理解”的人数占抽取的学生人数的12%C.a=72°D.全校“不理解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参与了学校实行的“五好小公民•红旗飘飘”演讲竞赛,7名评委给该同学的打分(单位:分)状况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)干脆写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区主动响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进展绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形态、大小、质地,颜色等其他方面完全一样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面对上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,反面对上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)全部可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明状况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带着大家致富.经过调查探讨,他们确定利用当地消费的甲乙两种原料开发A,B两种商品,为科学决策,他们试消费A、B两种商品100千克进展深化探讨,已知现有甲种原料293千克,乙种原料314千克,消费1千克A商品,1千克B商品所须要的甲、乙两种原料及消费本钱如下表所示.甲种原料(单位:千克)乙种原料(单位:消费本钱(单位:元)千克)A商品32120B商品 2.5 3.5200设消费A种商品x千克,消费A、B两种商品共100千克的总本钱为y元,依据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并干脆写出x的取值范围;(2)x取何值时,总本钱y最小?22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影局部的面积.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,干脆写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的肯定值是1.【分析】第一步列出肯定值的表达式;第二步依据肯定值定义去掉这个肯定值的符号.【解答】解:∵|﹣1|=1,∴﹣1的肯定值是1.【点评】此题考察了肯定值的性质,要求驾驭肯定值的性质及其定义,并能娴熟运用到实际当中.肯定值规律总结:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考察的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标肯定合适此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参与会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的肯定值与小数点挪动的位数一样.当原数肯定值大于10时,n是正数;当原数的肯定值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】干脆利用平方差公式进展因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考察了平方差公式因式分解.能用平方差公式进展因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知AB∥CD,若=,则=.【分析】利用相像三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.【点评】本题考察平行线的性质,相像三角形的断定和性质等学问,解题的关键是娴熟驾驭根本学问,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,依据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,依据BC=BD﹣CD代入可得结论.【解答】解:有两种状况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考察了勾股定理的运用,娴熟驾驭勾股定理是关键,并留意运用了分类探讨的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【分析】依据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考察了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考察对三视图的理解与应用,主要考察三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°【分析】干脆利用多边形的内角和公式进展计算即可.【解答】解:解:依据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考察了正多边形内角和,关键是驾驭内角和的计算公式.10.(4.00分)按肯定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】视察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考察了单项式,数字的改变类,留意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】依据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不肯定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不肯定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不肯定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考察了中心对称图形与轴对称图形的概念:推断轴对称图形的关键是找寻对称轴,图形两局部沿对称轴折叠后可重合;推断中心对称图形是要找寻对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】依据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考察了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为理解学生对这次大赛的理解程度,在全校1300名学生中随机抽取局部学生进展了一次问卷调查,并依据搜集到的信息进展了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“特别理解”的人数占抽取的学生人数的12%C.a=72°D.全校“不理解”的人数估计有428人【分析】利用图中信息一一推断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“特别理解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不理解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考察条形统计图、扇形统计图等学问,解题的关键是娴熟驾驭根本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考察了分式的混合运算,以及完全平方公式,娴熟驾驭运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,须要针对每个考点分别进展计算,然后依据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考察了实数的综合运算实力,是各地中考题中常见题型.解决此类题目的关键是娴熟驾驭负整数指数幂、零指数幂、二次根式、肯定值、特别角的锐角三角函数值等学问点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】依据角平分线的定义得到∠BAC=∠DAC,利用SAS定理推断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考察的是全等三角形的断定、角平分线的定义,驾驭三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参与了学校实行的“五好小公民•红旗飘飘”演讲竞赛,7名评委给该同学的打分(单位:分)状况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)干脆写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)依据众数与中位数的定义求解即可;(2)依据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考察了平均数、众数与中位数,用到的学问点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区主动响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进展绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,依据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,依据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考察了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形态、大小、质地,颜色等其他方面完全一样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面对上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,反面对上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)全部可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先依据题意画出树状图,然后由树状图即可求得全部等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的状况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考察的是用列表法或画树状图法求概率.留意列表法或画树状图法可以不重复不遗漏地列出全部可能的结果,列表法合适于两步完成的事务,树状图法合适两步或两步以上完成的事务.留意概率=所求状况数与总状况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明状况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进展推断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考察了抛物线与x轴的交点,二次函数图象上点的坐标特征.留意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带着大家致富.经过调查探讨,他们确定利用当地消费的甲乙两种原料开发A,B两种商品,为科学决策,他们试消费A、B两种商品100千克进展深化探讨,已知现有甲种原料293千克,乙种原料314千克,消费1千克A商品,1千克B商品所须要的甲、乙两种原料及消费本钱如下表所示.甲种原料(单位:千克)乙种原料(单位:消费本钱(单位:元)千克)A商品32120B商品 2.5 3.5200设消费A种商品x千克,消费A、B两种商品共100千克的总本钱为y元,依据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并干脆写出x的取值范围;(2)x取何值时,总本钱y最小?【分析】(1)依据题意表示出两种商品须要的本钱,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考察了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影局部的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响局部面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2=×2×1=易求S△AOCS扇形OAC==∴阴影局部面积为﹣【点评】本题考察圆的综合问题,涉及圆的切线断定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等学问,须要学生敏捷运用所学学问.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,干脆写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.=×AB×EG=30得AB•EG=60,即可得【分析】(1)作EG⊥AB于点G,由S△ABE出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,依据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF 是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S=×AB×EG=30,则AB•EG=60,△ABE∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考察圆的综合问题,解题的关键是驾驭平行四边形的性质、矩形的断定与性质、全等三角形的断定与性质及等腰三角形的性质、勾股定理等学问点.。
机密★2018 年云南省学业水平考试试题卷数学一、填空(共 6 小,每小 3 分,分 18 分)1.(3 分) 1 的是.2.(3 分)已知点 P(a,b)在反比例函数 y= 的象上, ab= .3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示.4.(3 分)分解因式: x 2 4= .5.(3 分)如,已知 AB∥ CD,若= ,= .6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC的.二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正确)7.(4 分)函数 y= 的自量 x 的取范()A. x≤ 0 B .x≤1C. x≥ 0 D .x≥18.(4 分)下列形是某几何体的三(其中主也称正,左也称),个几何体是()A.三棱柱 B .三棱C.柱 D .9.(4 分)一个五形的内角和()A.540° B .450°C.360° D .180°10.(4 分)按一定律排列的式:a, a2,a3, a4, a5,6个式是()a ,⋯⋯,第 nA. a n B . a nC.( 1)n+1a n D .( 1)n a n11.(4 分)下列形既是称形,又是中心称形的是()A.三角形 B. 菱形C.角 D .平行四形12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切()A. 3 B .C. D .13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D大”)决在玉溪幕.某学校了解学生次大的了解程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并根据收集到的信息行了,制了下面两幅.下列四个的是()A .抽取的学生人数为 50 人B.“非常了解”的人数占抽取的学生人数的 12%C.a=72°2+ =(D.全校“不了解”的人数估计有 428 人.(分)已知x+ ,则)14 4 =6xA .38 B. 36 C. 34 D. 32三、解答题(共9 小题,满分70 分)15.(6 分)计算:﹣2cos45 °﹣()﹣1 0 ﹣(π﹣1)16.(6 分)如图,已知 AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .17.(8 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A (0,3), B(﹣ 4,﹣)两点.(2)二次函数 y=﹣ x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克 A 商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A 商品 3 2 120B 商品 2.5 3.5 200设生产 A 种商品 x 千克,生产 A 、 B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?22.( 9 分)如图,已知 AB 是⊙ O 上的点,C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD= ∠BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.23.(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD +FC,平行四边形 ABCD 的面积为 S,由 A 、E、F 三点确定的圆的周长为 t.(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.2018 年云南省中考数学试卷参考答案与试题解析一、填空题(共 6 小题,每小题 3 分,满分 18 分)1.(3.00 分)﹣ 1 的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ | ﹣ 1| =1,∴﹣ 1 的绝对值是 1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.2.( 3.00 分)已知点 P(a,b)在反比例函数y=的图象上,则ab= 2.【分析】接把点 P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点 P( a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为: 2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00 分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451 人,将3451 用科学记数法表示为 3.451×103 .【分析】科学记数法的表示形式为 a× 10n的形式,其中 1≤ | a| <10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解: 3451=3.451×103,故答案为: 3.451×103.a×10n的形式,其中 1 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3.00 分)分解因式: x 2﹣ 4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解: x2﹣4=( x+2)( x﹣ 2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00 分)如图,已知 AB ∥ CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ AB ∥CD ,∴△ AOB ∽△ COD,∴= = ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00 分)在△ ABC 中, AB=,AC=5,若BC边上的高等于3,则 BC 边的长为9 或1 .【分析】△ABC 中,∠ ACB 分锐角和钝角两种:①如图 1,∠ ACB 是锐角时,根据勾股定理计算BD 和 CD 的长可得 BC 的值;②如图 2,∠ ACB 是钝角时,同理得: CD=4, BD=5,根据 BC=BD ﹣ CD 代入可得结论.【解答】解:有两种情况:①如图 1,∵ AD 是△ ABC 的高,∴∠ ADB= ∠ADC=90°,由勾股定理得: BD===5,CD===4,∴BC=BD +CD=5+4=9;②如图 2,同理得: CD=4, BD=5,∴BC=BD ﹣ CD=5﹣4=1,综上所述, BC 的长为 9 或 1;故答案为: 9 或 1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8 小题,每小题 4 分,满分 32 分.每小题只有一个正确选项)7.(4.00 分)函数 y=的自变量x的取值范围为()A .x ≤0B. x≤ 1C. x≥ 0D. x≥ 1【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:∵ 1﹣ x≥0,∴x≤1,即函数 y= 的自变量 x 的取值范围是 x ≤1,故选: B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式 ,被开方数非 .8.(4.00 分)下列 形是某几何体的三 (其中主 也称正 ,左 也称 ) ,个几何体是( )A .三棱柱B .三棱C . 柱D . 【分析】 由三 及 条件知,此几何体 一个的 . 【解答】 解:此几何体是一个 , 故 : D .【点 】 考 三 的理解与 用,主要考 三 与 物 之 的关系,三 的投影是: “主 、俯 正;主 、左 高平 ,左 、俯相等 ”.9.(4.00 分)一个五 形的内角和 ( ) A .540° B . 450° C . 360° D . 180° 【分析】 直接利用多 形的内角和公式 行 算即可. 【解答】 解:解:根据正多 形内角和公式: 180°×( 5 2)=540°,答:一个五 形的内角和是 540 度,故 : A . 【点 】 此 主要考 了正多 形内角和,关 是掌握内角和的 算公 式..( 分)按一定 律排列的 式:2, a 3 , a 4, a 5, a 6,⋯⋯ ,第 n 个 10 4.00 a , a式是( ) A .a n B . a n C .( 1)n +1a n D .( 1)n a n 【分析】 察字母 a 的系数、次数的 律即可写出第 n 个 式.2 3 4 56,⋯⋯ ,( 1) n +1 n.【解答】 解: a , a ,a , a ,a , a?a故 : C .a 的系数 奇数 ,符号 正;系数字母【点 】 考 了 式,数字的 化 ,注意字母 a 的系数 偶数 ,符号 .11.(4.00 分)下列 形既是 称 形,又是中心 称 形的是()A .三角形B .菱形C .角D .平行四 形 【分析】 根据 称 形与中心 称 形的概念求解.【解答】 解: A 、三角形不一定是 称 形和中心 称 形,故本 ;B 、菱形既是 称 形又是中心 称 形,故本 正确;C 、角不一定是 称 形和中心 称 形,故本 ;D 、平行四 形不一定是 称 形和中心 称 形,故本 ;故 : B .【点 】 此 主要考 了中心 称 形与 称 形的概念:判断 称 形的关 是 找 称 , 形两部分沿 称 折叠后可重合; 判断中心 称 形是要 找 称中心,旋 180度后与原图重合.12.(4.00 分)在 Rt △ABC 中,∠ C=90°,AC=1, BC=3,则∠ A 的正切值为()A .3B .C .D .【分析】 根据锐角三角函数的定义求出即可.【解答】 解:∵在 Rt △ABC 中,∠ C=90°, AC=1,BC=3,∴∠ A 的正切值为= =3,故选: A .【点评】 本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00 分) 2017 年 12 月 8 日,以 “[数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海 ”为主题的 2017 一带一路数学科技文化节 ?玉溪暨第 10 届全国三维数字化创新设计大赛(简称 “全国 3D 大赛 ”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 1300 名 学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下 面两幅统计图.下列四个选项错误的是( )A .抽取的学生人数为 50 人B . “非常了解 ”的人数占抽取的学生人数的 12%C .a=72°D .全校 “不了解 ”的人数估计有 428 人【分析】 利用图中信息一一判断即可解决问题;【解答】 解:抽取的总人数为 6+10+16+18=50(人),故 A 正确,“非常了解 ”的人数占抽取的学生人数的 =12%,故 B 正确,α =360×° =72°,故正确,全校 “不了解 ”的人数估计有1300× =468(人),故 D 错误,故选: D .【点评】 本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 4.00 分)已知x+ =6,则 x 2+ =( )14A .38B .36C .34D . 32【分析】 把 x+ =6 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 x+ =6 两边平方得:( x+)2=x2++2=36,则x2+ =34,故选: C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 9 小题,满分70 分)15.(6.00 分)计算:﹣ 2cos45 °﹣()﹣1 0 ﹣(π﹣ 1)【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 =3 ﹣2×﹣ 3﹣ 1=2 ﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00 分)如图,已知AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .【分析】根据角平分线的定义得到∠BAC= ∠DAC ,利用 SAS 定理判断即可.【解答】证明:∵ AC 平分∠ BAD ,∴∠ BAC= ∠DAC ,在△ ABC 和△ ADC 中,,∴△ ABC ≌△ ADC .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 SAS 定理是解题的关键.17.(8.00 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】( 1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为: 5, 6, 7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的平均数为(5+6+7× 2+8×3)÷ 7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 =总数÷个数.18.(6.00 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间 =总工作量÷工作效率结合甲工程队完成300 平方米的绿化面积比乙工程队完成300 平方米的绿化面积少用 3 小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据题意得:﹣=3,解得: x=50,经检验, x=50 是分式方程的解.答:乙工程队每小时能完成50 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】( 1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由( 1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:( 1,2)、( 1, 3)、( 2, 1)、(2,3)、(3,1)、( 3,2);(2)∵共有 6 种等可能结果,其中数字之和为偶数的有 2 种结果,∴取出的两张卡片上的数字之和为偶数的概率P= =.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 =所求情况数与总情况数之比.20.(8.00 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A ( 0, 3),B(﹣ 4,﹣)两点.(1)求 b, c 的值.(2)二次函数 y=﹣x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( 1)把点 A 、 B 的坐标分别代入函数解析式求得b、 c 的值;( 2 )利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣x2 + x+3=0,通过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标.【解答】解:(1)把 A (0,3), B(﹣ 4,﹣)分别代入 y=﹣x2+bx+c,得,解得;(2)由( 1)可得,该抛物线解析式为:y=﹣x2+ x+3.△=()2﹣4×(﹣)× 3=>0,所以二次函数 y=﹣x2+bx+c 的图象与 x 轴有公共点.∵﹣x2+ x +3=0 的解为: x1=﹣2,x2=8∴公共点的坐标是(﹣ 2, 0)或( 8,0).【点评】考查了抛物线与 x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品 100 千克进行深入研究,已知现有甲种原料293 千克,乙种原料314 千克,生产 1 千克A商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品B商品设生产 A 种商品解答下列问题:3 2 1202.53.5 200x 千克,生产 A 、 B 两种商品共100 千克的总成本为 y 元,根据上述信息,(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?【分析】( 1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;【解答】解:(1)由题意可得: y=120x+200(100﹣x)=﹣80x+20000,,解得: 72≤x ≤86;(2)∵ y=﹣80x+20000,∴y 随 x 的增大而减小,∴x=86 时, y 最小,则y=﹣80× 86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00 分)如图,已知 AB 是⊙ O 上的点, C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD=∠ BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.【分析】( 1)连接 OC,易证∠ BCD= ∠ OCA,由于 AB 是直径,所以∠ ACB=90°,所以∠OCA+OCB=∠ BCD+∠ OCB=90°,CD 是⊙ O 的切线(2)设⊙ O 的半径为 r,AB=2r,由于∠ D=30°,∠OCD=90°,所以可求出 r=2,∠AOC=120°,BC=2,由勾股定理可知: AC=2 ,分别计算△ OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连接 OC,∵OA=OC ,∴∠ BAC= ∠OCA ,∵∠ BCD= ∠ BAC ,∴∠ BCD= ∠OCA ,∵AB 是直径,∴∠ ACB=90°,∴∠ OCA+OCB=∠ BCD+∠OCB=90°∴∠ OCD=90°∵OC 是半径,∴CD 是⊙ O 的切线(2)设⊙ O 的半径为 r ,∴AB=2r ,∵∠ D=30°,∠ OCD=90°,∴OD=2r,∠ COB=60°∴r+2=2r,∴r=2,∠ AOC=120°∴B C=2,∴由勾股定理可知: AC=2易求 S △ AOC = ×2× 1=S 扇形 OAC = =∴阴影部分面积为 ﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点, AF=AD +FC ,平行四边形 ABCD 的面积为 S ,由 A 、E 、F 三点确定的圆的周长为 t .(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.【分析】( 1)作 EG ⊥AB 于点 G ,由 S △ ABE = ×AB × EG=30 得 AB?EG=60,即可得出答案; ( 2 )延长 AE 交 BC 延长线于点 H ,先证△ ADE ≌△ HCE 得 AD=HC 、 AE=HE 及 AD +FC=HC+FC ,结合 AF=AD +FC 得∠ FAE=∠CHE ,根据∠ DAE= ∠CHE 即可得证;(3)先证∠ ABF=90°得出 AF 22+BF 2 ( ﹣ )2 = ( FC+CH )2 ( ) 2,据此求 =AB =16+ 5 FC= FC+5 得 FC 的长,从而得出 AF 的长度,再由 AE=HE 、AF=FH 知 FE ⊥AH ,即 AF 是△ AEF 的外 接圆直径,从而得出答案.【解答】 解:(1)如图,作 EG ⊥ AB 于点 G ,则 S △ ABE = × AB × EG=30,则 AB?EG=60,∴平行四边形 ABCD 的面积为 60;(2)延长 AE 交 BC 延长线于点 H ,∵四边形 ABCD 是平行四边形,∴AD ∥BC ,∴∠ ADE= ∠HCE ,∠ DAE= ∠CHE ,∵E 为 CD 的中点,∴CE=ED,∴△ ADE ≌△ HCE,∴AD=HC 、 AE=HE ,∴AD +FC=HC+FC,由AF=AD +FC 和 FH=HC+FC 得AF=FH ,∴∠ FAE=∠ CHE,又∵∠ DAE= ∠CHE,∴∠ DAE= ∠FAE,∴AE 平分∠ DAF ;(3)连接 EF,∵AE=BE 、AE=HE ,∴AE=BE=HE ,∴∠ BAE= ∠ ABE ,∠ HBE= ∠BHE,∵∠ DAE= ∠CHE,∴∠BAE +∠DAE= ∠ABE +∠HBE ,即∠DAB= ∠CBA ,由四边形ABCD 是平行四边形得∠DAB+∠CBA=180°,∴∠ CBA=90°,∴AF 2=AB 2+BF2 =16+( 5﹣ FC)2=(FC+CH)2=(FC+5)2,解得: FC= ,∴AF=FC +CH=,∵AE=HE 、AF=FH ,∴FE⊥ AH ,∴AF 是△ AEF 的外接圆直径,∴△ AEF 的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。
2018学年第一学期九年级数学期中考试试卷考生注意:1.本试卷含四个大题,共30题;2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤。
6题,每题2分,满分12分)1.下列二次根式中,最简二次根式是()2.下列计算正确的是()A. =4a=C. 21)516=+==3.下列方程是关于x一元二次方程的是()A. 32x y=- B. 2212xx+=C. (2)10x x+-= D.22(1)x x x+=+4.一元二次方程2x x=+ ( )A. 有两个相等的实数根B.C.有两个不相等的实数根D.没有实数根5.下列图形中,中心对称图形的是()A.等腰三角形B.等腰梯形C.正五边形D.正方形6. 若P (1,2a a -+)是x 轴上的一点,则点P 关于原点对称的点的坐标是( )A 、(-3,0)B 、(0,3)C 、(0,-3)D 、(3,0)15题,每题2分,满分30分) 7.=________________, 8.9.2______________x <=若, 10.方程20x x -=的一次项系数是 ,常数项是 . 11.250___________________x x x +=关于的方程的解是, 12.23(32),369=___________________2a a a a -=+-若则 13.三个连续的整数中,前两个数的平方和等于第三个数的平方,则这三个数分别是________________14.如果二次三项式228x x m -+是一个完全平方式,那么m 的值是____________. 15.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为______ .16.一个长方形的长和宽相差3cm,面积是42cm ,则这个长方形的长和宽 分别为___________________.17.如果一元二方程043)222=-++-m x x m (有一个根为0,则m= ; 18.在平面直角坐标系中,若点A (x,-2)与点B (1,y )关于原点对称, 则x y +=______________.19.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是_______度,从上午9时到10时,时针旋转的旋转角是_________度.20.一个正方形要绕它的中心至少旋转度,才能和原来的图形重合.21.如下图,已知等腰三角形ABC的顶角20A∠=,若''A B C是将ABC绕C点顺时针旋转后得到的,且点'B落在AC边上,则'A AC∠=___________°.本大题共5题,第22,、23题每题5分,第24—26题每题6分,满分28分)22.计算:2)5432(÷+ 23.224.解方程:104)52(-=-xxx25.04532=--xx(用求根公式法解方程)26.的值。
人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。
一、选择题(共30分)1.方程(x+2)^2=4的根是()A。
x1=4,x2=-4B。
x1=0,x2=-4C。
x1=0,x2=2D。
x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。
2,-3B。
-2,-3C。
2,-5D。
-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。
(x-3)^2=0B。
3(x-1)^2=0C。
(x-1)^2=0D。
(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。
800(1+a%)^2=578B。
800(1-a%)^2=578C。
800(1-2a%)=578D。
800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。
y=3(x+2)^2+3B。
y=3(x+2)^2-3C。
y=3(x-2)^2+3D。
y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。
某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。
2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4=.5.(3.00分)如图,已知AB∥CD,若=,则=.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥18.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知AB∥CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:7(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S=×2×1=△AOCS扇形OAC==∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.=×AB×EG=30得AB•EG=60,即可得【分析】(1)作EG⊥AB于点G,由S△ABE出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF 是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,=×AB×EG=30,则AB•EG=60,则S△ABE∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,资料收集于网络,如有侵权请联系网站删除∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.只供学习与交流。
2018年下学期期中考试九年级数学参考答案二、填空题13.1; 14.-3; 15.y=2x 2-4x+1; 16.m>1; 17.7或8; 18.-8 三、解答题(每小题6分)19.20. 20m四、解答题(每小题8分)21. 解:(1)∵方程x 2+4x +(2﹣k )=0有两个不相等的实数根, ∴42﹣4(2﹣k )>0, 即4k +8>0,解得k >﹣2; (2)若k 是负整数,k 只能为﹣1; 如果k =﹣1,原方程为0342=++x x 解得:x 1= -1,x 2= -3.22.(1)矩形一边为xm ,则另一边为(6-x )m ,则S=x (6-x )=-x 2+6x (0<x <6)。
(2)设设计费为y 元,则y=400S=400(-x 2+6x )=-400(x 2-6x+9-9)=-400(x-3)2+3600 当x=3时,即长3米,宽3米时,此时可获得最多设计费为3600元。
五、解答题(每小题9分)23略 (9分)24解:解:(1)w=(x ﹣30)•y=(﹣x +60)(x ﹣30)=﹣x 2+30x +60x ﹣1800=﹣x 2+90x ﹣1800,w 与x 之间的函数解析式w=﹣x 2+90x ﹣1800;…………………………………(3分) (2)根据题意得:w=﹣x 2+90x ﹣1800=﹣(x ﹣45)2+225, ∵﹣1<0,当x=45时,w 有最大值,最大值是225. …………………………………(6分)(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.…………………………………(9分)六、解答题(每小题10分)25解:【尝试】(1)∵将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线l上.…………………………………(2分)(2)将x=﹣1代入抛物线l的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.……………………(4分)【发现】∵将抛物线E的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4∴抛物线l必过定点(2,0)、(﹣1,6).………………………(6分)【应用1】将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即可得抛物线y=﹣3x2+5x+2不经过点B,二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.…………………………………(10分)26.解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为y=x2﹣x﹣2.y=(x﹣)2﹣,∴顶点D的坐标为:(,﹣);(3)如图所示:连接AM,点A关于对称轴的对称点B,BC交对称轴于点M,根据轴对称性及两点之间线段最短可知,MC+MA的值最小,即△ACM周长最小,设直线BC解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣2,当x=时,y=﹣,∴M(,﹣),△ACM最小周长是:AC+AM+MC=AC+BC=+2=3.。
2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。
云南省大理白族自治州九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)(2018·白银) 甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A . 甲B . 乙C . 丙D . 丁2. (2分) (2020八下·香坊期末) 下列方程是一元二次方程的是()A . x+2y=1B . x2+2=0C . x2+ =2D . 3x+8=2x+23. (2分) (2017九上·和平期末) 两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A . 1:1000000B . 1:100000C . 1:2000D . 1:10004. (2分)(2019·会宁模拟) 如图,A、B、C分别是小正方形的三个顶点,且每个小正方形的边长均为1,则sin∠BAC的值为()A .B .C . 1D .5. (2分)(2013·宿迁) 下列选项中,能够反映一组数据离散程度的统计量是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)用配方法解方程x2+8x﹣7=0,则配方正确的是()A . (x+4)2=23B . (x﹣4)2=23C . (x﹣8)2=49D . (x+8)2=647. (2分)(2020·泰安) 如图,四边形是一张平行四边形纸片,其高,底边,,沿虚线将纸片剪成两个全等的梯形,若,则的长为()A .B .C .D .8. (2分) (2020九上·慈溪期末) 如图,在△ABC中,D,E,F分别为BC,AB,AC上的点,且EF∥BC,FD∥AB,则下列各式正确的是()A .B .C .D .9. (2分) (2019八下·平顶山期中) 若实数a、b满足等式|a﹣3|+ =0,且a、b恰好是等腰三角形△ABC的边长,则这个等腰三角形的周长是()A . 15B . 9C . 12D . 12或1510. (2分) (2017九上·江津期中) 某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得()A . (8﹣ ) (10﹣)=8×10﹣40B . (8﹣ )(10﹣)=8×10+40C . (8+ )(10+ )=8×10﹣40D . (8+ )(10+ )=8×10+4011. (2分)若x1 , x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1 , x2 , a,b 的大小关系为()A . x1<x2<a<bB . x1<a<x2<bC . x1<a<b<x2D . a<x1<b<x212. (2分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A . 9B . 8C . 7D . 613. (2分) (2020九上·岐山期末) 已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形()A . 一定不相似B . 不一定相似C . 一定相似D . 不能确定14. (2分)(2017·双桥模拟) 如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A . 1B . 2C . 1+D . 2﹣15. (2分)(2017·河北模拟) 如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于N、M,则下列式子中错误的是()A . =B . =C . =D . =16. (2分)下列关于x的一元二次方程中,没有实数根的方程是()A . x2+4=0B . 4x2﹣4x﹣1=0C . x2﹣x﹣3=0D . x2+2x﹣1=0二、填空题 (共4题;共4分)17. (1分)如果,那么=________ .18. (1分)请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是________.19. (1分)(2020·哈尔滨模拟) 如图,PA、PB分别与⊙O相切于点A、B,EF与⊙O相切于点C,且分别交PA、PB于点E、F,∠P=60°,△PEF的周长为 6,则⊙O的半径为________.20. (1分)(2020·张家界) 观察下面的变化规律:,……根据上面的规律计算:________.三、解答题 (共6题;共68分)21. (10分)解方程:(1)x2+4x+1="0" (2)(x﹣1)2+2x(x﹣1)=0.22. (16分)(2020·山西模拟) 为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,李明随机抽查了所住小区x户家庭的月用水量,绘制了下面不完整的统计图:(1)求x并补全条形统计图;(2)求这x户家庭的月平均用水量;并估计李明所住小区620户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率;23. (15分) (2020八下·西安期中) 如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)①请画出将△ABC向左平移4个单位长度后得到的图形,直接写出点的坐标;②请画出△ABC绕原点O顺时针旋转90∘的图形,直接写出点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,请求出点P的坐标.24. (15分) (2019九上·道里月考) 如图,射线MN表示一艘轮船的航行路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A , A处到M处为100海里.(1)求点A到航线MN的距离;(2)在航线MN上有一点B ,且∠MAB=15°,若轮船的速度为50海里/时,求轮船从M处到B处所用时间为多少小时?(结果保留根号)25. (6分) (2019九上·新泰月考) 某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.(1)设每个定价增加x元,此时的销售量是多少?(用含x的代数式表示)(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?26. (6分)如图,在△ABC中,D是BC边的中点,DE⊥BC交AB于点E,AD=AC,EC交AD于点F.(1)求证:△ABC∽△FCD;(2)求证:FC=3EF.参考答案一、单选题 (共16题;共32分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共4题;共4分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共68分)答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
大理白族自治州九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八下·韶关期末) 下列计算正确的是()A . +=B . ÷ =2C . ()-1=D . ( -1)2=22. (2分) (2017八上·双城月考) 工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据()A . 两点之间的线段最短B . 三角形具有稳定性C . 长方形是轴对称图形D . 长方形的四个角都是直角3. (2分)下面四张扑克牌中,图案属于中心对称的是()A .B .C .D .4. (2分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A . 转化思想B . 三角形的两边之和大于第三边C . 两点之间,线段最短D . 三角形的一个外角大于与它不相邻的任意一个内角5. (2分)(2017·深圳模拟) 如图,正方形ABCD的顶点A、C分别在直线a、b上,且a∥b ,∠1=65°,则∠2的度数为A . 65°B . 55°C . 35°D . 25°6. (2分)(2016·深圳模拟) 如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 .上述说法正确的是()A . ①②③④B . ③④C . ①③④D . ①②7. (2分)(2017·玉林) 如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中矩形的个数共有()A . 5个B . 8个C . 9个D . 11个8. (2分)(2018·金华模拟) 下列调查中,适宜采用普查方式的是A . 调查热播电视剧人民的名义的收视率B . 调查重庆市民对皮影表演艺术的喜爱程度C . 调查某社区居民对重庆万达文旅城的知晓率D . 调查我国首艘货运飞船“天舟一号”的零部件质量9. (2分)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S 与t之间的函数关系的图象为下列选项中的()A .B .C .D .10. (2分)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2020七上·苍南期末) 已知一个无理数a,满足1<a<2,则这个无理数a可以是________(写出一个即可)。
(完整word版)2018年云南省中考数学试卷及答案(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)2018年云南省中考数学试卷及答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)2018年云南省中考数学试卷及答案(2)(word版可编辑修改)的全部内容。
机密★2018年云南省学业水平考试试题卷数学一、填空题(共6小题,每小题3分,满分18分)1.(3分)﹣1的绝对值是.2.(3分)已知点P(a,b)在反比例函数y=的图象上,则ab= .3.(3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3分)分解因式:x2﹣4= .5.(3分)如图,已知AB∥CD,若=,则= .6.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4分)函数y=的自变量x的取值范围为( )A.x≤0 B.x≤1C.x≥0 D.x≥18.(4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱 B.三棱锥C.圆柱 D.圆锥9.(4分)一个五边形的内角和为( )A.540° B.450°C.360° D.180°10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是( )A.a n B.﹣a nC.(﹣1)n+1a n D.(﹣1)n a n11.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形 B。
(完整word版)2018年云南省中考数学试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)2018年云南省中考数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)2018年云南省中考数学试卷及答案(word版可编辑修改)的全部内容。
机密★2018年云南省学业水平考试试题卷数学一、填空题(共6小题,每小题3分,满分18分)1.(3分)﹣1的绝对值是.2.(3分)已知点P(a,b)在反比例函数y=的图象上,则ab= .3.(3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3分)分解因式:x2﹣4= .5.(3分)如图,已知AB∥CD,若=,则= .6.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1C.x≥0 D.x≥18.(4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱 B.三棱锥C.圆柱 D.圆锥9.(4分)一个五边形的内角和为()A.540° B.450°C.360° D.180°10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是( )A.a n B.﹣a nC.(﹣1)n+1a n D.(﹣1)n a n11.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形 B。
云南省大理白族自治州九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·钦州期末) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2016九上·北京期中) 如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A . M(1,﹣3),N(﹣1,﹣3)B . M(﹣1,﹣3),N(﹣1,3)C . M(﹣1,﹣3),N(1,﹣3)D . M(﹣1,3),N(1,﹣3)3. (2分) (2018九上·无锡月考) 用配方法解方程,配方正确的是()A . (x+3)²=9B . (x-3)²=9C . (x+3)²=6D . (x+3)²=74. (2分)已知抛物线y=x2+x-1经过点P(m,5),则代数式m2+m+2006的值为()A . 2012B . 2013C . 2014D . 20155. (2分)如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A .B .C .D .6. (2分)关于x的二次函数y=2mx2+(8m+1)x+8m的图像与x轴有交点,则m的范围是()A . m<-B . m≥-且m≠0C . m=-D . m>-且m≠07. (2分)据兰州市旅游局最新统计,2014年春节黄金周期间,兰州市旅游收入约为11.3亿元,而2012年春节黄金周期间,兰州市旅游收入约为8.2亿元.假设这两年兰州市旅游收入的平均增长率为x,根据题意,所列方程为()A . 11.3(1﹣x%)2=8.2B . 11.3(1﹣x)2=8.2C . 8.2(1+x%)2=11.3D . 8.2(1+x)2=11.38. (2分) (2018九上·黄石期中) 当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A .B .C .D .9. (2分) (2019八下·博罗期中) 如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD 于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE ,⑤CF=BD.正确有()个.A . 1B . 2C . 3D . 410. (2分) (2016九上·武汉期中) 如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1<y2 ,其中说法正确的是()A . ①②B . ②③C . ①②④D . ②③④二、填空题 (共6题;共9分)11. (1分) (2020九上·巢湖月考) 方程(x-1)(x-3)=0的解为________。
云南省大理白族自治州九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2017八上·夏津开学考) 下列说法正确的是()A . a的平方根是±B . a的立方根是C . 的平方根是0.1D . =-32. (2分)下列图案是轴对称图形的是()A .B .C .D .3. (2分)(2017·磴口模拟) 已知⊙O的面积为2π,则其内接正三角形的面积为()A . 3B . 3C .D .4. (2分)若点A的坐标为(3,4),⊙A的半径5,则点P(6,3)的位置为()A . P在⊙A内B . P在⊙A上C . P在⊙A外D . 无法确定5. (2分)抛物线的对称轴是直线()A .B .C .D .6. (2分)抛物线y=2x2+1的的对称轴是()A . 直线x=B . 直线x=C . x轴D . y轴7. (2分) (2017九上·秦皇岛开学考) 有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()A . 5B . 6C . 7D . 88. (2分) (2019九上·宜兴期末) 将抛物线向上平移2个单位后,得到的函数表达式是()A .B .C .D .9. (2分)(2016·鄂州) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y 轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c(a≠0)有一个根为﹣其中正确的结论个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2013·湛江) 如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A . 25°B . 35°C . 55°D . 70°11. (2分)(2016·无锡) 如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A .B . 2C . 3D . 212. (2分)(2018·广水模拟) 如图,函数的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x =-1.在下列结论中,错误的是()A . 顶点坐标为(-1,4)B . 函数的解析式为C . 当时,y随x的增大而增大D . 抛物线与x轴的另一个交点是(-3,0)二、填空题: (共6题;共6分)13. (1分) (2017九上·临海期末) 点P(2,-5)关于原点的对称点Q的坐标为________.14. (1分)关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是________.15. (1分) (2016九上·沁源期末) 如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=________.16. (1分) (2016九上·微山期中) 如图所示,⊙D内切△ABC,切点分别为M,G,N,DE切0D于F点,交AC,AB于点D,E,若△ABC的周长为l2,BC=2,则△ADE的周长是________.17. (1分) (2017七下·宁江期末) 如图,∠A=60°,O是AB上一点,直线OD与AB的夹角∠BOD为85°,要使OD∥AC,直线OD绕点O逆时针方向至少旋转________度.18. (1分)(2014·绵阳) 将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1 ,第2次对折后得到的图形面积为S2 ,…,第n次对折后得到的图形面积为Sn ,请根据图2化简,S1+S2+S3+…+S2014=________.三、解答题: (共8题;共97分)19. (10分)(2017·丰县模拟) 已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.20. (10分)(2017·新泰模拟) 已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.21. (5分)一水果店主分两批购进同一种水果,第一批所用资金为2400元,第一批购进120箱,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多a%,以致购买的数量比第一批少(a﹣25)%.(1)求a值.(2)该水果店主计划第一批水果每箱售价定为40元,第二批水果每箱售价定为50元,每天销售水果30箱.实际销售时按计划售完第一批后发现第二批水果品质不如第一批,必须打折销售才能保证每天销售水果30箱.在销售过程中,该店主每天还需要支出其他费用60元,为了使这两批水果销售完后总利润率不低于30%,那么该店主销售第二批水果时最低可打几折?22. (15分) (2016九上·鞍山期末) 已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).23. (17分) (2019九上·西城期中) 已知二次函数y=x2+2x﹣3.(1)把函数配成y=a(x﹣h)2+k的形式;(2)求函数与x轴交点坐标;(3)用五点法画函数图象x……y……(4)当y>0时,则x的取值范围为________.(5)当﹣3<x<0时,则y的取值范围为________.24. (10分) (2017九上·北京期中) 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+ ,BC=2 ,求⊙O的半径.25. (15分) (2019九上·长兴期末) 如图,已知抛物线(k为常数,且k>o)与x轴从左至右依次交于A,B两点,与y轴交于点C,过点B的直线与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC 的面积26. (15分)(2017·兴庆模拟) 如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共97分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、23-4、23-5、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2017-2018学年云南省大理州洱源县乔后中学九年级(上)期中数学试卷一、选择题(共8小题,每小题4分,共32分)下列各题中均由四个备选答案,其中有且只有一个正确,请将各题正确答案的代号填入到答题卷相应的答题栏中1.(4分)一元二次方程3x2﹣8x﹣10=0中的一次项系数为()A.3 B.8 C.﹣8 D.﹣102.(4分)如果﹣2是方程x2﹣m=0的一个根,则m的值为()A.2 B.﹣4 C.3 D.43.(4分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(4分)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)25.(4分)电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是()A.x(x+1)=81 B.1+x+x2=81 C.1+x+x(x+1)=81 D.1+(x+1)2=81 6.(4分)一元二次方程x2+x﹣6=0的根的情况是()A.有两个相等的实根B.没有实数根C.有两个不相等的实根D.无法确定7.(4分)如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE ⊥BC,∠ADC=65°,则∠ABC的度数为()A.30°B.40°C.50°D.60°8.(4分)如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C与原点重合,点A(﹣1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为A1,经过第二次翻滚点A对应点记为A2…依此类推,经过5次翻滚后点A 对应点A 5的坐标为()A.(5,2) B.(6,0) C.(8,0) D.(8,1)二、填空题(每小题3分,共18分)9.(3分)x2﹣6x+()=(x﹣)210.(3分)二次函数y=x2﹣2x﹣3的图象的顶点坐标是.11.(3分)若m、n是方程x2+6x﹣5=0的两根,则3m+3n﹣2mn=.12.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),该抛物线的对称轴为直线x=﹣1,若点C(﹣,y1),D(﹣,y2),E(,y3)均为函数图象上的点,则y1,y2,y3的大小关系为.13.(3分)已知点C为线段AB上一点,且AC2=BC•AB,则=.14.(3分)在△ABC中,AC=BC,∠ACB=90°,将△ABC绕点A旋转60°到△ADE 的位置,点C的对应点为E,连接CD,若AC=BC=1,则CD的长为.三、解答题(共70分)15.(6分)选择适当方法解方程:2x2﹣x﹣3=0.16.(6分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,求该三角形的周长.17.(7分)已知关于x的方程x2﹣4x+1﹣p2=0.(1)若p=2,求原方程的根;(2)求证:无论p为何值,方程总有两个不相等的实数根.18.(8分)已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(2,﹣)(1)求此抛物线的解析式;(2)当y<0时,x的取值范围是(直接写出结果)19.(8分)如图,线段AB两个端点的坐标分别为A(1,﹣1),B(3,1),将线段AB绕点O逆时针旋转90°到对应线段CD(点A与点C对应,点B与D对应).(1)请在图中画出线段CD;(2)请直接写出点A、B的对应点坐标C(,),D (,);(3)在x轴上求作一点P,使△PCD的周长最小,并直接写出点P的坐标(,).20.(7分)已知y=(m﹣2)x+3x+6 是二次函数,求m的值,并判断此抛物线的开口方向,写出顶点坐标及对称轴.21.(8分)某商品原价为100元,因销售不畅,10月份降价10%,从11月份起开始涨价,12月份的价格为108.9元.(1)10月份这种商品的售价是多少?(2)11月份和12月份每个月的平均涨价率是多少?22.(8分)某宾馆有50个房间可供游客居住,当每个房间每天的定价为180元时,房间会全部住满,当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间的定价增加x元(x为10的整数倍),此时入住的房间数为y间,宾馆每天的利润为w元.(1)直接写出y(间)与x(元)之间的函数关系;(2)如何定价才能使宾馆每天的利润w(元)最大?23.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2017-2018学年云南省大理州洱源县乔后中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,共32分)下列各题中均由四个备选答案,其中有且只有一个正确,请将各题正确答案的代号填入到答题卷相应的答题栏中1.(4分)一元二次方程3x2﹣8x﹣10=0中的一次项系数为()A.3 B.8 C.﹣8 D.﹣10【解答】解:一元二次方程3x2﹣8x﹣10=0中的一次项系数为﹣8,故选:C.2.(4分)如果﹣2是方程x2﹣m=0的一个根,则m的值为()A.2 B.﹣4 C.3 D.4【解答】解:∵x=﹣2是方程的根,∴x=﹣2代入方程有:4﹣m=0,解得:m=4.故选:D.3.(4分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.4.(4分)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2【解答】解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选:A.5.(4分)电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是()A.x(x+1)=81 B.1+x+x2=81 C.1+x+x(x+1)=81 D.1+(x+1)2=81【解答】解:设每轮感染中平均一台电脑会感染x台电脑.根据题意,得:1+x+x(1+x)=81,故选:C.6.(4分)一元二次方程x2+x﹣6=0的根的情况是()A.有两个相等的实根B.没有实数根C.有两个不相等的实根D.无法确定【解答】解:∵△=b2﹣4ac=12﹣4×1×(﹣6)=25>0,∴有两个不相等的实根.故选:C.7.(4分)如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE ⊥BC,∠ADC=65°,则∠ABC的度数为()A.30°B.40°C.50°D.60°【解答】解:∵△ABC绕点A旋转到△AED的位置,∴AD=AC,∠BAE=∠CAD,∵AD=AC,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣65°﹣65°=50°,∴∠BAE=50°,∵AE⊥BC,∴∠ABC=90°﹣∠BAE=40°.故选:B.8.(4分)如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C与原点重合,点A(﹣1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为A1,经过第二次翻滚点A对应点记为A2…依此类推,经过5次翻滚后点A 对应点A5的坐标为()A.(5,2) B.(6,0) C.(8,0) D.(8,1)【解答】解:如下图所示:由题意可得上图,经过5次翻滚后点A对应点A5的坐标对应上图中的坐标,故A5的坐标为:(8,1).故选项A错误,选项B错误,选项C错误,选项D正确.故选:D.二、填空题(每小题3分,共18分)9.(3分)x2﹣6x+(9)=(x﹣3)2【解答】解:∵(x﹣3)2=x2﹣6x+32=x2﹣6x+9,故答案为:9,3.10.(3分)二次函数y=x2﹣2x﹣3的图象的顶点坐标是(1,﹣4).【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4).11.(3分)若m、n是方程x2+6x﹣5=0的两根,则3m+3n﹣2mn=﹣8.【解答】解:∵m、n是方程x2+6x﹣5=0的两根,∴m+n=﹣6,mn=﹣5,∴3m+3n﹣2mn=3(m+n)﹣2mn=3×(﹣6)﹣2×(﹣5)=﹣8.故答案是:﹣8.12.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),该抛物线的对称轴为直线x=﹣1,若点C(﹣,y1),D(﹣,y2),E(,y3)均为函数图象上的点,则y1,y2,y3的大小关系为y3<y1<y2.【解答】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,开口向下,∴离对称轴近的点的函数值大,∵|﹣+1|<|﹣+1|<|+1|∴y3<y1<y2.故答案为y3<y1<y2.13.(3分)已知点C为线段AB上一点,且AC2=BC•AB,则=.【解答】解:∵点C为线段AB上一点,AC2=BC•AB,∴点C为线段AB的黄金分割点,∴=,故答案为:.14.(3分)在△ABC中,AC=BC,∠ACB=90°,将△ABC绕点A旋转60°到△ADE的位置,点C的对应点为E,连接CD,若AC=BC=1,则CD的长为或.【解答】解:当△ABC绕点A逆时针旋转60°得到△ADE的位置,如图1,作CH ⊥ED于H,连结CE,则∠EAC=60°,∠AED=∠ACB=90°,AE=ED=AC=1,∴△AEC为等边三角形,∴∠AEC=60°,EC=CA=1,∴∠DEC=30°,在Rt△CEH中,CH=CE=,EH=CH=,∴DH=ED﹣EH=1﹣,在Rt△CHD中,CD===;当△ABC绕点A顺时针旋转60°得到△ADE的位置,如图2,连结CE,作DH⊥CE 于H,则∠EAC=60°,∠AED=∠ACB=90°,AE=ED=AC=1,∴△AEC为等边三角形,∴∠AEC=60°,EC=CA=1,∴∠DEC=150°,∴∠DEH=30°,在Rt△DEH中,DH=DE=,EH=DH=,∴CH=CE+EH=1+,在Rt△CHD中,CD===,纵上所述,CD的长为或=.故答案为或=.三、解答题(共70分)15.(6分)选择适当方法解方程:2x2﹣x﹣3=0.【解答】解:2x2﹣x﹣3=0,分解因式得:(x+1)(2x﹣3)=0,可得x+1=0或2x﹣3=0,解得:x1=﹣1,x2=.16.(6分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,求该三角形的周长.【解答】解:x2﹣12x+35=0,解得x1=5,x2=7,∵3+4=7,∴x=5,∴该三角形的周长=3+4+5=12.17.(7分)已知关于x的方程x2﹣4x+1﹣p2=0.(1)若p=2,求原方程的根;(2)求证:无论p为何值,方程总有两个不相等的实数根.【解答】解:(1)若p=2,原方程为x2﹣4x﹣3=0,解得:x1=2+,x2=2﹣;(2)△=(﹣4)2﹣4×1×(1﹣p2)=4p2+12,∵p2≥0,∴4p2+12>0,∴无论p为何值,方程总有两个不相等的实数根.18.(8分)已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(2,﹣)(1)求此抛物线的解析式;(2)当y<0时,x的取值范围是﹣1<x<3(直接写出结果)【解答】解:(1)把A(﹣1,0),B(3,0),C(2,﹣)代入抛物线解析式,得解得∴该函数的解析式为:y=x2﹣x﹣.(2)由抛物线开口向上,交点为A(﹣1,0),B(3,0)可知,当y<0时,x 的取值范围是﹣1<x<3;故答案为﹣1<x<3.19.(8分)如图,线段AB两个端点的坐标分别为A(1,﹣1),B(3,1),将线段AB绕点O逆时针旋转90°到对应线段CD(点A与点C对应,点B与D对应).(1)请在图中画出线段CD;(2)请直接写出点A、B的对应点坐标C(1,1),D(﹣1,3);(3)在x轴上求作一点P,使△PCD的周长最小,并直接写出点P的坐标(0.5,0).【解答】解:(1)如图,CD为所作;(2)C(1,1),D(﹣1,3);(3)P(0.5,0).故答案为1,1;﹣1,3;0.5,0.20.(7分)已知y=(m﹣2)x+3x+6 是二次函数,求m的值,并判断此抛物线的开口方向,写出顶点坐标及对称轴.【解答】解:∵y=(m﹣2)x+3x+6 是二次函数,∴,∴m=±.当m=时,二次函数解析式为y=(﹣2)x2+3x+6,∴此时抛物线开口向上,对称轴为直线x=﹣,顶点坐标为(﹣,);当m=﹣时,二次函数解析式为y=(﹣﹣2)x2+3x+6,∴此时抛物线开口向下,对称轴为直线x=,顶点坐标为(,).21.(8分)某商品原价为100元,因销售不畅,10月份降价10%,从11月份起开始涨价,12月份的价格为108.9元.(1)10月份这种商品的售价是多少?(2)11月份和12月份每个月的平均涨价率是多少?【解答】解:(1)100×(1﹣10%)=90(元);答:10月份这种商品的售价是90元;(2)设两个月平均涨价率为x,根据题意得:90(1﹣10%)(1+x)2=108.9解得x1=0.3,x2=﹣2.3(不合题意舍去).答:11,12月份两个月平均涨价率为30%.22.(8分)某宾馆有50个房间可供游客居住,当每个房间每天的定价为180元时,房间会全部住满,当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间的定价增加x元(x为10的整数倍),此时入住的房间数为y间,宾馆每天的利润为w元.(1)直接写出y(间)与x(元)之间的函数关系;(2)如何定价才能使宾馆每天的利润w(元)最大?【解答】解:(1)设每个房间的定价为x,则房间的数量y=50﹣=﹣x+68;(2)∵w=(x﹣20)×(﹣x+68)=﹣x2+70x﹣1360,当x=﹣=350时,y最大==10890元.答:当定价为350元时,宾馆利润最大,为10890元.23.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).方法二追加第(4)问:在(3)的条件下,⊙M为△OBP的外接圆,求出圆心M 的坐标.(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。