斐波那契
- 格式:docx
- 大小:32.08 KB
- 文档页数:2
斐波那契数列一、简介斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学得发展。
故斐波那契数列又称“兔子数列”。
斐波那契数列指这样得数列:1,1,2,3,5,8,13,……,前两个数得与等于后面一个数字。
这样我们可以得到一个递推式,记斐波那契数列得第i项为F i,则F i=F i—1+F i-2、兔子繁殖问题指设有一对新生得兔子,从第三个月开始她们每个月都生一对兔子,新生得兔子从第三个月开始又每个月生一对兔子。
按此规律,并假定兔子没有死亡,10个月后共有多少个兔子?这道题目通过找规律发现答案就就是斐波那契数列,第n个月兔子得数量就是斐波那契数列得第n项。
二、性质如果要了解斐波那契数列得性质,必然要先知道它得通项公式才能更简单得推导出一些定理。
那么下面我们就通过初等代数得待定系数法计算出通项公式。
令常数p,q满足F n-pF n—1=q(Fn-1-pFn—2)。
则可得:Fn—pFn—1=q(Fn—1—pF n—2)=q2(F n-2-pFn—3。
)=…=qn—2(F2—pF1)又∵F n—pF n-1=q(Fn—1-pF n-2)∴F n-pF n-1=qF n-1-pqF n—2F n-1+Fn—2-pF n—1—qFn—1+pqFn—2=0(1-p—q)F n—1+(1+pq)Fn-2=0∴p+q=1,pq=—1就是其中得一种方程组∴Fn-pFn-1=q n-2(F2-pF1)=q n-2(1—p)=qn—1Fn=qn—1+pF n—1=q n-1+p(qn—2+p(q n-3+…))=qn-1+pqn-2+p2qn—3+…+p n—1不难瞧出,上式就是一个以p/q为公比得等比数列。
将它用求与公式求与可以得到:F n=q n−1[(pq)n−1]pq−1=p n−q np−q而上面出现了方程组p+q=1,pq=-1,可以得到p(1—p)=-1,p2—p—1=0,这样就得到了一个标准得一元二次方程,配方得p2-p+0。
裴波纳契数列及其性质在现实生活中,我们经常会遇到类似“数列”变化的一系列经济问题,裴波纳契数列出现在我们生活中的方方面面,一些问题不仅可以用裴波纳契数列表示,而且本质上就是裴波纳契数列,可见裴波纳契数列在很多数学分支都有很广泛的应用,因此研究裴波纳契数列非常必要。
本文通过探讨裴波纳契数列的性质,进一步掌握数列的数字排列、增减变化、波动趋势等数项之间的变化规律,继而给出一系列与裴波纳契数列相关问题的解决方案,特别是对中学数学教育中,如何让学生巧妙解题具有启发作用。
1. 裴波纳契数列的由来斐波那契,公元13世纪意大利数学家,在他的著作《算盘书》中记载着这样一个“兔子繁殖问题”:假定有一对大兔子,每一个月可生下一对小兔子,并且生下的这一对小兔子两个月后就具有繁殖能力。
假如一年内没有发生死亡,那么,从一对小兔子开始,一年后共有多少对兔子?问题的解答思路:将每个月的兔子总对数列出来即可(需考虑到每个月具有生殖能力的兔子的对数),如下:月份 1 2 3 4 5 6 7 8 9 10 111213小兔子数(对) 1 0 1 1 2 3 5 8 13 21345589大兔子数(对)0 1 1 2 3 5 8 13 21345589144兔子总数(对) 1 1 2 3 5 8 13 21345589144233所以一年后(即第13个月初),繁殖的兔子共有233对。
仔细观察,可以看出上面列出的兔子对数呈现出一个有趣的变化规律:即从第3个月起,每个月的兔子对数都是前两个月的兔子对数之和,把这些数字按照相同的规律推算到无穷多项,就构成了一列数列:1、1、2、3、5、8、13、21、34、55……,人们就把它称为裴波纳契数列,而将这个数列中的每一项称为“裴波纳契数”。
2. 生活中常见的裴波纳契数列数学模型:假如我们把设为裴波纳契数列,不难发现数列是由递推关系式:,,……,所给出的一个数列。
从而,我们就可以轻而易举地算出两年,三年……以后的兔子数。
斐波拉契数列(又译作“斐波那契数列”或“斐波那切数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长顺次加上边长为3、5、8、13、21……等等的正方形。
这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。
斐波拉契数列的简介:“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。
籍贯大概是比萨)。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《珠算原理》(Liber Abaci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示5的算术平方根)(19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856) 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
斐波拉契数列之闻名,可能还跟美国悬疑作家丹·布朗有关,他在他的小说《达芬奇密码》之中巧妙地运用了该数列。
其实,我国现行的高中教材中提及了杨辉三角,斐波拉契数列可在其中寻得。
13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。
书中有许多有趣的数学题,其中最有趣的是下面这个题目:“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。
斐波那契数列(Fibonacci sequence)是一组数字序列,起源于13世纪的意大利数学家斐波那契(Fibonacci)的著作《算盘书》(Liber Abaci)。
这个数列的特点是每个数字都是前两个数字之和。
它的前几个数字是:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波那契数列背后的故事与斐波那契在《算盘书》中提出的一个问题有关。
在书中,斐波那契提出了一个关于兔子繁殖的问题,以展示斐波那契数列的应用。
问题是这样的:假设一对刚出生的兔子,一个月后就可以生育,每对兔子每个月可以生下一对小兔子,并且新出生的小兔子出生后一个月就可以生育。
如果不考虑兔子的死亡,问一个月后会有多少对兔子?
斐波那契通过观察这个问题,得出了斐波那契数列的规律。
假设在第n个月时有Fn对兔子,根据题意可知,在第n个月的时候,每对兔子可以生下一对小兔子,而第n-1个月的时候已经有了Fn-1对兔子,再加上原本的Fn对兔子,总共就是Fn+Fn-1对兔子。
也就是说,第n个月的兔子对数等于第n-1个月和第n-2个月兔子对数之和。
这就是斐波那契数列的递推关系。
斐波那契数列因此被广泛应用于数学和自然科学中。
它在自然界中的出现也相当常见,比如植物的分枝、螺旋状的贝壳、蜂窝结构等等都能够观察到斐波那契数列的规律。
斐波那契数列背后的故事展示了数学在解决实际问题中的应用。
斐波那契通过一个关于兔子繁殖的问题,发现了这个有趣的数列,并由此推导出了它的递推关系。
这个故事也向人们展示了数学的智慧和美妙之处。
斐波那契数列,又被称为黄金分割数列或兔子数列,是一种在数学上极为著名且有趣的数列。
它由意大利数学家莱昂纳多·斐波那契在《计算之书》(Liber Abaci)中首次提出。
斐波那契数列不仅是数学领域的研究对象,更在日常生活中、自然界以及科学研究中展现出其独特魅力和重要性。
下面,我们将深入探讨斐波那契数列的定义、特点、以及其广泛的应用。
一、斐波那契数列的定义斐波那契数列是这样一组数列:1,1,2,3,5,8,13,21,34,……,其中每一个数字都是前两个数字的和。
具体来说,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2),其中n≥2二、斐波那契数列的特点1. 递推公式:斐波那契数列的每一项都是其前两项的和,这是其最显著的特点。
这一特点使得斐波那契数列可以通过递推的方式轻松地计算出来。
2. 黄金分割率:斐波那契数列与黄金分割率(φ = (√5 - 1) / 2 ≈ 0.618)有着密切的联系。
当斐波那契数列的项数趋于无穷大时,相邻两项的比值会趋近于黄金分割率。
这一性质使得斐波那契数列在美学、建筑、艺术等领域具有广泛的应用。
3. 对称性:斐波那契数列具有一种神奇的对称性。
具体来说,对于任意正整数n,都有F(n) = F(n-1) + F(n-2) = F(n+1) - F(n-1)。
这种对称性使得斐波那契数列在数学上具有独特的美感。
4. 递归性质:斐波那契数列是一种递归数列,这意味着每一项都可以通过递归的方式来表示。
例如,F(5) = F(4) + F(3) = (F(3) + F(2)) + F(3) = 2F(3) + F(2) = 2(F(2) + F(1)) + F(2) = 3F(2) + 2F(1) = 3×1 + 2×1 = 5。
这种递归性质使得斐波那契数列在计算上具有较大的灵活性。
三、斐波那契数列的应用斐波那契数列作为一种重要的数学概念,其在各个领域都有着广泛的应用。
斐波那契数列斐波纳契数列即斐波那契数列。
斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F1=,F2=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
中文名斐波那契数列外文名Fibonacci Sequence别名黄金分割数列所属学科数论目录1定义2通项公式▪递推公式▪通项公式▪通项公式的推导3与黄金分割▪关系▪证明4特性▪平方与前后项▪与集合子集▪奇数项求和▪偶数项求和▪平方求和▪隔项关系▪两倍项关系▪其他公式5应用▪生活中斐波那契▪黄金分割▪杨辉三角▪质数数量▪尾数循环▪自然界中巧合▪数字谜题6推广▪斐波那契—卢卡斯数列▪广义斐波那契数列7相关数学▪排列组合▪兔子繁殖问题▪数列与矩阵8前若干项9斐波那契弧线10社会文明▪艾略特波浪理论▪人类文明的斐波那契演进11程序实现▪ Java语言▪用C语言输出菲波那契数列第a项1定义编辑斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...特别指出:第一个1是第0项,不是第1项。
这个数列从第二项开始,每一项都等于前两项之和。
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),自然中的斐波那契数列生于公元1170年,卒于1250年,籍贯是比萨。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《算盘全书》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
自然界中的斐波那契现象
斐波那契现象是指自然界中出现的以斐波那契数列为基础的规律。
斐波那契数列是指从0和1开始,后面的每一个数都等于前面两个数之和的数列,即0、1、1、2、3、5、8、13、21、34、55、89等等。
许多自然现象都可以用斐波那契数列来解释,例如:
1. 植物的生长:植物的叶子、花瓣、果实等出现的数量和排列方式可以符合斐波那契数列的规律。
2. 動物的生長:动物的骨骼、器官等也可以呈斐波那契数列的长短比例。
3. 螺旋形:一些物体具有螺旋形的结构,例如蜗牛壳、旋涡、风暴和行星的轨道等,其形状也符合斐波那契数列的规律。
4. 音乐的节奏:音乐中的节奏可以根据斐波那契数列来组合,例如2拍、3拍、5拍等。
5. 火山喷发周期:一些火山的喷发周期也符合斐波那契数列的规律。
斐波那契现象在自然界中随处可见,支撑着自然规律的完美构成。
斐波那契数列斐波那契数列00求助编辑百科名片斐波纳契数列在现代物理、准晶体结构、化学等领域都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。
目录斐波那契数列的定义奇妙的属性在杨辉三角中隐藏着斐波那契数列斐波那契数列的整除性与素数生成性斐波那契数列的个位数:一个60步的循环斐波那契数与植物花瓣斐波那契―卢卡斯数列与广义斐波那契数列斐波那契―卢卡斯数列斐波那契―卢卡斯数列之间的广泛联系黄金特征与孪生斐波那契―卢卡斯数列广义斐波那契数列斐波那契数列与黄金比相关的数学问题1.排列组合2.数列中相邻两项的前项比后项的极限斐波那契数列别名斐波那契数列公式的推导编程中的斐波那契数列PB语言程序C语言程序C#语言程序Java语言程序JavaScript语言程序Pascal语言程序PL/SQL程序Python程序数列与矩阵斐波那契数列的前若干项斐波那契弧线斐波那契数列的应用影视作品中的斐波那契数列斐波那契螺旋斐波那契数列的定义斐波那契数列的发明者,是意大利数学家列昂纳多?斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《珠算原理》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,dfsdf,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列通项公式斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。
)有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
斐波那契数列常用结论
1斐波那契数列
斐波那契数列又称黄金分割数列,是指从0和1开始,之后的每一项都是前两项之和的自然数序列,即:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n>1,n∈N*),那么形成了如下数列:0,1,1,2,3,5,8,13,21,34,55,89,144,……
斐波那契数列可以用来表示各种有规律变化的现象,如天文学中行星轨道运行的规律、物理学中光衍射和电磁波传播的规律、生物学中由细胞分裂形成的规律等。
2常用结论
1.黄金比例
斐波那契数列中的两个相邻数的比值,比如5和8的比为8/5等于1.618,34和55的比为55/34也等于1.618。
这就是著名的黄金分割比例,也常被称为黄金比例,具有美观耐看性,在艺术、建筑中广泛应用。
2.斐波那契数列的通项公式
从斐波那契数列的定义可以发现,任何一项的斐波那契数都可以用前两项来计算出来,比如F(5)=F(4)+F(3),那么我们可以用下面这个公式来表示斐波那契数列的每一项:F(n)=F(n-1)+F(n-2),这就可以用来计算出任意的项的斐波那契数了。
3.斐波那契数列的正则表达式
斐波那契数列可以用下面的正则表达式完美地描述出来:
F(n)=2*F(n-1)+F(n-2),用此正则表达式可以轻松实现斐波那契数列的自动构建。
4.完美数
斐波那契数列中的完美数是指那些满足F(n)=2^n-1的斐波那契数,即F(0)=0,F(1)=1,F(2)=3,F(3)=7,F(4)=15,F(5)=31,如果除了0和1外,它们都等于2的次方数减1,都称之为完美数。
从上面几条结论来看,斐波那契数列不仅应用于数学领域,在多个领域也有着广泛的应用,对于研究具有重要意义。
斐波那契
斐波那契是中世纪占主导地位的数学家之一,他在算术、代数和几何等方面多有贡献.斐波那契也许是在生活在丢番图之后费尔马之前这2000年间欧洲最杰出的数论学家。
我们对他的生平知道得很少。
他出生在意大利那个后来因为伽里略做过落体实验而著名的斜塔所在的城市里,现在那里还有他的一座雕像。
斐波那契(Leonardo Fibonacci,1175-1250),意大利数学家,12、13世纪欧洲数学界的代表人物。
生于比萨,早年跟随经商的父亲到北非的布日伊(今阿尔及利亚东部的小港口贝贾亚),在那里受教育。
以后到埃及、叙利亚、希腊、西西里、法国等地游历,熟悉不同国度在商业上的算术体系。
1200年左右回到比萨,潜心写作。
他的书保存下来的共有5种。
最重要的是《算盘书》(Liber Abac,1202年完成,1228年修订,亦译作《算经》),算盘并不单指罗马算盘或沙盘,实际是指一般的计算。
《算盘书》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。
他生于意大利比萨的列奥纳多家族(1175—1250),是一位意大利海关设在南部非洲布吉亚的官员的儿子.由于他父亲的工作,使他得以游历了东方和阿拉伯的许多城市.而在这些地区,斐波那契熟练地掌握了印度—阿拉伯的十进制系统,该系统具有位置值并使用了零的符号.
在那时,意大利仍然使用罗马数字进行计算.斐波那契看到了这种美丽的印度—阿拉伯数字的价值,并积极地提倡使用它们.公元1202年,他写了《算盘书》一书,这是一本广博的工具书,其中说明了怎样应用印度—阿拉伯数字,以及如何用它们进行加、减、乘、除计算和解题,此外还对代数和几何进行了进一步的探讨.意大利商人起初不愿意改变老的习惯,后来通过对阿拉伯数字不断地接触,加上斐波那契和其他数学家的工作,终使印度—阿拉伯数字系统得以在欧洲推广,并被缓慢地接受.
比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契数列指的是这样一个数列0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
自然中的斐波那契数列
特别指出:第0项是0,第1项是第一个1。
这个数列从第2项开始,每一项都等于前两项之和。
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《算盘全书》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。