八皇后(递归+回溯)
- 格式:doc
- 大小:341.00 KB
- 文档页数:3
⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。
问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。
即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。
可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。
思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。
当到达第8⾏时,说明⼋个皇后安置完毕。
代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。
回溯算法原理和几个常用的算法实例回溯算法是一种基于深度优先的算法,用于解决在一组可能的解中找到满足特定条件的解的问题。
其核心思想是按照特定的顺序逐步构造解空间,并通过剪枝策略来避免不必要的。
回溯算法的实现通常通过递归函数来进行,每次递归都尝试一种可能的选择,并在达到目标条件或无法继续时进行回溯。
下面介绍几个常用的回溯算法实例:1.八皇后问题:八皇后问题是一个经典的回溯问题,要求在一个8×8的棋盘上放置8个皇后,使得每个皇后都不能相互攻击。
即每行、每列和对角线上都不能有两个皇后。
通过在每一列中逐行选择合适的位置,并进行剪枝,可以找到所有满足条件的解。
2.0-1背包问题:0-1背包问题是一个经典的组合优化问题,要求在一组物品中选择一些物品放入背包,使得其总重量不超过背包容量,同时价值最大化。
该问题可以通过回溯算法进行求解,每次选择放入或不放入当前物品,并根据剩余物品和背包容量进行递归。
3.数独问题:数独问题是一个经典的逻辑推理问题,要求在一个9×9的网格中填入数字1-9,使得每行、每列和每个3×3的子网格中都没有重复数字。
该问题可以通过回溯算法进行求解,每次选择一个空格,并依次尝试1-9的数字,然后递归地进行。
4.字符串的全排列:给定一个字符串,要求输出其所有可能的排列。
例如,对于字符串"abc",其所有可能的排列为"abc"、"acb"、"bac"、"bca"、"cab"和"cba"。
可以通过回溯算法进行求解,每次选择一个字符,并递归地求解剩余字符的全排列。
回溯算法的时间复杂度通常比较高,因为其需要遍历所有可能的解空间。
但是通过合理的剪枝策略,可以减少的次数,提高算法效率。
在实际应用中,可以根据具体问题的特点来设计合适的剪枝策略,从而降低算法的时间复杂度。
⼋皇后问题(N皇后问题)⼋皇后问题,是⼀个古⽼⽽著名的问题,是回溯算法的典型案例。
该问题是国际西洋棋棋⼿马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放⼋个皇后,使其不能互相攻击,即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上,问有多少种摆法。
⾸先来看看这张模拟⼋皇后的图。
这张图说明皇后具有横轴、竖轴以及两个斜轴⽅向的杀伤⼒,也就是像⽶字形⼀样;为了减少判断,我们按照⼀个⽅向往另⼀个⽅向排列,中间不能跳⾏,这样我们就可以只判断已经有皇后的位置,还没有皇后的就可以偷懒不⽤判断了。
我的⽅案是:1.从最下⾯开始排列,然后往上添加,从左往右排列,这样就只需要判断⽐⾃⼰Y坐标低的具有杀伤能⼒的位置有没有皇后就OK ⽅法是把⾃⼰假定要放置皇后的位置的X和Y轴都依据判断特性进⾏处理;例如,左斜线X和Y轴都减1;中间的只需要把Y 轴减1;右边的和左边的相反,X轴加1,Y轴减1;注意处理边界问题。
2.为了找到合适的位置我们需要在查找失败的时候具备回溯的能⼒,就需要退回到前⼀⾏(Y=Y-1,注意XY是否到边界),直⾄能回溯或者全部判断完毕,每次回溯的时候记得X轴要从头开始 3.通过⼀个数据结构记录正在查找的⽅案,通过另⼀个数据结构记录已经找到的⽅案,当然也可以⽤⼀个变量记录⽅案个数下⾯这张⿊⾊背景是其中⼀个⽅案的截图,第⼀⾏代表皇后的坐标xy;后⾯的是棋盘,这⾥输出竖轴是x,横轴是y,从上到下,从左到右,其中*是边界,空格是空区,#是皇后。
#include <iostream>#include <cstring>#include "DTString.h"#include "LinkList.h" // 这⾥使⽤链表存储皇后的位置using namespace std;using namespace DTLib;template <int SIZE> // N皇后问题,SIZE表⽰皇后个数或者棋盘⼤⼩class QueenSolution : public Object{protected:enum { N = SIZE + 2 }; // N表⽰棋盘⼤⼩,为了边界识别,棋盘四周都要加⼀格struct Pos : public Object // ⽅位结构体{Pos(int px = 0, int py = 0) : x(px), y(py) { }int x;int y;};int m_chessboard[N][N]; // 棋盘,0表⽰空位,1表⽰皇后,2表⽰边界Pos m_direction[3]; // 共3个⽅向;⽅向-1、-1表⽰左斜线;0、-1表⽰下⽅;1、-1表⽰右斜线;⾸先从最下⽅开始,所以只需考虑下⾯的⾏。
八皇后问题最简单算法
八皇后问题最简单算法是使用回溯法。
1. 回溯法在求解八皇后问题时,会生成一个8位的二进制数,每一位代表一列是否放置皇后。
如果某一列放置了皇后,则该位为1,否则为0。
2. 在放置皇后时,如果当前位置可以放置皇后,则尝试放置。
如果放置后当前位置形成了一个合法的棋盘,则继续递归地放置下一个皇后。
如果放置后形成了一个不合法的棋盘,则回溯到上一个状态,尝试其他位置。
3. 如果所有8个皇后都放置完毕,且形成了一个合法的棋盘,则找到了一个解。
以上信息仅供参考,如需了解更多信息,建议查阅八皇后问题相关书籍或咨询专业人士。
回溯算法原理和几个常用的算法实例回溯算法是一种通过不断尝试和回退的方式来进行问题求解的算法。
它的基本思想是在过程中,当发现当前的选择并不符合要求时,就进行回退,尝试其他的选择,直到找到符合要求的解或者遍历完所有可能的选择。
回溯算法通常用于问题求解中的和排列组合问题,比如求解八皇后问题、0-1背包问题、数独等。
下面将介绍几个常用的回溯算法实例。
1.八皇后问题:八皇后问题是指在一个8×8的国际象棋棋盘上,放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一斜线上。
可以通过递归的方式依次尝试每一行的位置,并判断当前位置是否满足条件。
如果满足条件,则进入下一行尝试;否则回溯到上一行,并尝试其他的位置,直到找到解或遍历完所有的可能。
2.0-1背包问题:0-1背包问题是指在给定一组物品和一个容量为C的背包,每个物品都有自己的重量和价值,求解在不超过背包容量时,如何选择物品使得背包中物品的总价值最大。
可以通过递归的方式依次考察每个物品,并判断是否选择当前物品放入背包。
如果放入当前物品,则背包容量减小,继续递归考察下一个物品;如果不放入当前物品,则直接递归考察下一个物品。
直到遍历完所有物品或背包容量为0时,返回当前总价值。
3.数独问题:数独是一种通过填充数字的方式使得每一行、每一列和每一个九宫格内的数字都满足一定条件的谜题。
可以通过递归的方式依次尝试填充每一个空格,并判断当前填充是否符合条件。
如果符合条件,则继续递归填充下一个空格;如果不符合条件,则回溯到上一个空格,并尝试其他的数字,直到找到解或遍历完所有的可能。
回溯算法的时间复杂度一般较高,通常为指数级别。
因此,在实际应用中,可以结合剪枝等优化策略来提高算法的效率。
此外,回溯算法也可以通过非递归的方式进行实现,使用栈来存储当前的状态,从而避免递归带来的额外开销。
总之,回溯算法是一种非常有效的问题求解方法,通过不断尝试和回退,可以在复杂的空间中找到符合要求的解。
使用递归+回溯实现八皇后问题:
程序如下:
// eightequeen.cpp : 定义控制台应用程序的入口点。
//i,k表示行号,x[i]表示第i行对应的列值;
#include"stdafx.h"
#include<math.h>
#include<iostream>
using namespace std;
#define N 8
int sum =0;
int *x = new int[N+1];
bool issafe(int k)//判断是否有冲突;
{
int i;
for(i = 1; i<k;i++)
{
if(x[i]==x[k]||abs(i-k)==abs(x[i]-x[k]))//判断是否在同一列以及是否是对角线上;
return false;
}
return true;
}
void digui(int t)//递归实现八皇后问题;
{
int i = 0;
if(t>N)//如果t大于N,表示排好一个不冲突的布局,将其输出;
{
cout<<"输出不冲突的布局:"<<"";
for(i = 1;i<=N;i++)
cout<<x[i]<<"";
cout<<endl;
sum++;
}
else
{
for(i=1;i<=N;i++)
{
x[t] = i;
if(issafe(t))//如果该行没有冲突,则考虑下一行;
digui(t+1);
}
}
}
void huisu() //回溯法实现八皇后问题
{
int i;
x[1] = 0;
int k = 1;
while (k>0)
{
x[k]+=1;
while((x[k]<=N)&&!issafe(k))//当列小于N并且有冲突时,则搜索下一个位置;
x[k]+=1;
if(x[k]<=N)
{
if(k==N)//最后一个皇后时,则输出一个不冲突的布局;
{
cout<<"输出不冲突的布局:"<<"";
for(i = 1;i<=N;i++)
cout<<x[i]<<"";
cout<<"\n"<<"";
sum++;
}
else//如果不是最后一个皇后,则布置下一个皇后;
{
k++;
x[k]=0;
}
}
else//回溯
{
k--;
}
}
}
int _tmain(int argc, _TCHAR* argv[])
{
cout<<"递归实现八皇后问题:\n"<<"";
digui(1);
cout<<"一共有多少个布局:"<<sum<<endl;
cout<<"回溯实现八皇后问题:\n"<<"";
sum = 0;
huisu();
cout<<"一共有多少个布局:"<<sum<<endl;
return 0;
}
程序运行后输出的结果如下:。