高三数学基础达标训练(20套)
- 格式:doc
- 大小:14.96 MB
- 文档页数:41
高三数学基础练习题推荐在高三数学备考阶段,进行基础练习是非常重要的,能够巩固基础知识、熟悉考点、提高解题能力。
下面是一些推荐的高三数学基础练习题,供同学们参考。
一、函数与方程1. 一次函数与二次函数(1) 求解一次方程和一次不等式;(2) 求解二次方程,包括完全平方和配方法等;(3) 理解二次函数的图像及性质,并运用函数图像解决问题。
2. 指数与对数(1) 熟悉指数与对数的基本性质;(2) 运用指数与对数求解方程与不等式;(3) 掌握指数函数与对数函数的图像与变换。
3. 三角函数(1) 熟悉三角函数的基本关系式;(2) 运用三角函数解决几何问题;(3) 理解三角函数的周期性与图像变换。
二、数列与数学归纳法1. 等差数列与等比数列(1) 理解等差数列与等比数列的定义与性质;(2) 掌握等差数列与等比数列的通项公式;(3) 运用数列求和公式解决实际问题。
2. 数学归纳法(1) 了解数学归纳法的基本思想与原理;(2) 运用数学归纳法证明数学命题。
三、三角恒等变换1. 三角函数的基本关系与恒等变换(1) 熟悉三角函数的基本关系式;(2) 掌握常用的三角函数恒等变换;(3) 运用三角函数的恒等变换简化复杂式子。
2. 三角方程与三角不等式(1) 解三角方程,包括初等函数与参数方程;(2) 解三角不等式,包括求解三角函数的极值等。
四、立体几何与解析几何1. 空间立体几何(1) 掌握空间点、线、面的直观概念;(2) 理解投影与平面的交线;(3) 运用向量与坐标法解决空间几何问题。
2. 解析几何(1) 熟悉直线、圆的方程及性质;(2) 掌握平面的方程与性质;(3) 运用解析几何解决实际问题。
以上是一些高三数学基础练习题的推荐,希望同学们能够针对自己的学习情况选择适合的题目进行练习,提高数学解题能力,为高考做好准备。
祝同学们取得优异的成绩!。
新高考高三数学基础练习题推荐在新高考改革下,数学作为一门重要的考试科目,对学生的数学基础要求更加严格。
为了帮助高三学生巩固数学基础,提高解题能力,本文将推荐一些适用于高三学生的数学基础练习题。
第一章线性代数1. 解线性方程组:求解线性方程组是线性代数的基本内容,也是高三学生必须掌握的内容之一。
推荐练习解包含2元、3元、4元等变量的线性方程组。
2. 矩阵运算:掌握矩阵的基本运算规则以及矩阵乘法的性质对于高三学生来说是必不可少的。
练习要求学生进行矩阵加法、矩阵减法、矩阵乘法等操作。
第二章微积分1. 函数求导:函数求导是微积分中的重要内容,也是高三学生必须熟练掌握的技巧之一。
推荐练习对各种函数进行求导,包括多项式函数、指数函数、对数函数等。
2. 极限运算:极限是微积分的核心概念之一,对于高三学生来说是相对较难掌握的内容。
建议练习求各种类型的极限,如常用极限、无穷小量极限、无穷大量极限等。
第三章概率论与数理统计1. 概率计算:概率计算是概率论中的重要内容,对于高三学生来说是一个相对容易掌握的部分。
推荐练习求解一些常见的概率计算问题,如排列组合问题、事件的概率计算等。
2. 统计量计算:统计量是数理统计中的重要内容,用于描述和分析数据的特征。
建议练习计算一些常用的统计量,如均值、方差、标准差等,同时要求学生理解统计量的意义。
第四章数学建模1. 实际问题建模:数学建模是将实际问题抽象化为数学问题并进行求解的过程。
推荐给高三学生一些实际问题,要求他们进行数学建模并给出解决方案。
2. 问题求解:针对一些实际问题,要求高三学生进行问题求解,分析问题的解决过程,并给出合理的答案。
以上是针对新高考高三数学基础的练习题推荐。
通过不断练习这些题目,高三学生可以提高数学基础,夯实数学知识,提高解题能力,为新高考数学考试做好准备。
最后,希望高三学生能够充分利用这些练习题,合理安排学习时间,制定学习计划,努力提升数学成绩。
祝愿大家在新高考中取得优异的成绩!。
数学基础练习题高三
数学作为一门重要的学科,对于高三学生来说尤为重要。
为了巩固和提高数学基础,下面给出一些高三数学基础练习题,希望能对同学们的学习有所帮助。
一、选择题
1. 若x是方程x^2-5x+6=0的一个根,则x的值是:
A. -2和-3
B. 2和3
C. 2和-3
D. -2和3
2. 已知直线l过点A(4,-1)和点B(2,3),则直线l的斜率为:
A. 2
B. -2
C. -1/3
D. 3
3. 记点P(x,y)为曲线y=x^2-2x+2上的动点,若点P与x轴相交成直角三角形,求直角三角形的面积。
A. 1/2
B. 2
C. 1
D. 3
4. 若a,b是两个非零实数,且满足ab=1,那么loga 1/2 * logb 4 = ?
A. -2
B. 1/2
C. 0
D. 2
二、解答题
1. 解方程3x+7=2(x+4)。
2. 若函数f(x)=x^2+ax+b与g(x)=2x-k的图象有且只有一个公共点,
则a,b和k的值分别为多少?
三、应用题
1. 曲线y=ax^3+bx^2+cx+d在点P(1,2)处的切线方程为y=2x+1。
求a,b,c和d的值。
2. 在高中三角函数的学习中,我们经常会用到“SIN”,“COS”和“TAN”三个函数,它们分别代表什么意思?请用文字解释其含义。
以上是一些高三数学基础练习题,希望同学们认真思考并尝试解答。
在解答过程中,可以通过探究、思考和演算等方法巩固自己的数学基础,提高数学应用能力。
坚持做题并查缺补漏,相信同学们一定能在
数学学习中取得好成绩!。
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2x^2 - 3x + 1$,则该函数的对称轴为:A. $x = \frac{3}{4}$B. $x = 1$C. $x = \frac{1}{2}$D. $x = -\frac{3}{4}$2. 在直角坐标系中,点A(2, 3)关于直线$y = x$的对称点为:A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)3. 若$a > 0$,则下列不等式中正确的是:A. $a^2 > a$B. $a^3 > a$C. $a^4 > a$D. $a^5 > a$4. 已知向量$\vec{a} = (2, 3)$,向量$\vec{b} = (4, 6)$,则$\vec{a}$与$\vec{b}$的夹角余弦值为:A. $\frac{1}{2}$B. $\frac{1}{3}$C. $\frac{2}{3}$D.$\frac{3}{2}$5. 下列函数中,是奇函数的是:A. $f(x) = x^2 + 1$B. $f(x) = x^3 - x$C. $f(x) = \sqrt{x^2 +1}$ D. $f(x) = \frac{1}{x}$6. 已知数列$\{a_n\}$的前$n$项和为$S_n$,且$S_n = 3^n - 1$,则$a_1$的值为:A. 2B. 3C. 4D. 57. 若等差数列$\{a_n\}$的首项为$a_1$,公差为$d$,则$a_1 + a_2 + a_3 +\ldots + a_{10}$的值为:A. $10a_1 + 45d$B. $10a_1 + 50d$C. $10a_1 + 55d$D. $10a_1 +60d$8. 若复数$z$满足$|z - 1| = |z + 1|$,则$z$的取值范围是:A. $x \leq 0$B. $x \geq 0$C. $y \leq 0$D. $y \geq 0$9. 已知函数$f(x) = x^3 - 3x^2 + 4x - 1$,则$f(x)$的极小值为:A. -1B. 0C. 1D. 210. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,则$a_1 + a_2 + a_3 + \ldots + a_{10}$的值为:A. $a_1 \frac{1 - q^{10}}{1 - q}$B. $a_1 \frac{1 - q^{10}}{q - 1}$C. $a_1 \frac{q^{10} - 1}{q - 1}$D. $a_1 \frac{q^{10} - 1}{1 - q}$二、填空题(每题5分,共50分)1. 若函数$f(x) = ax^2 + bx + c$的图像开口向上,且顶点坐标为$(1, 2)$,则$a$,$b$,$c$的关系为______。
高三补基础的数学练习题在高三学习阶段,数学是一门重要的学科,也是许多学生感到困惑和挑战的科目之一。
为了帮助高三学生巩固数学基础,以下是一些适用于高三学生的数学练习题。
练习题一:代数方程1. 解方程:2x + 5 = 132. 解方程组:2x + y = 103x - y = 23. 解二次方程:x^2 + 5x + 6 = 0练习题二:函数与图像1. 给定函数f(x) = 2x^2 + 3x - 4,求其图像上的顶点坐标。
2. 给定函数g(x) = √x + 1,求其图像的定义域和值域。
3. 给定函数h(x) = 1/(x - 2),探究其图像的渐近线。
练习题三:几何1. 已知直角三角形的斜边长度为10,其中一条直角边的长度为6,求另一条直角边的长度。
2. 一个圆的半径为5 cm,求其周长和面积。
3. 一个正方形的周长为20 cm,求其边长。
练习题四:概率与统计1. 抛一枚公正的硬币,求出现正面的概率。
2. 有一个包含红、蓝、绿三种颜色的球,其中红球有5个,蓝球有3个,绿球有2个。
从中随机抽取一个球,求抽到红球的概率。
3. 一组数据:{1, 3, 5, 7, 9},求平均值、中位数和众数。
练习题五:三角函数1. 已知sinθ = 3/5,求cosθ的值。
2. 已知cosφ = -4/5,求sinφ的值。
3. 计算tan30°的值。
以上仅为一些例题,通过这些练习题,高三学生可以巩固数学基础,并提高解题能力和逻辑思维。
在解题过程中,可以适当增加困难度,引导学生深入思考和探索,同时也鼓励学生多加练习和实践,熟能生巧。
通过高三补基础的数学练习题,相信学生们能够更加熟练地掌握数学知识,提高解题效率,在备战高考中取得优异的成绩。
祝愿同学们在数学学习中取得好成绩!。
1~5 ADADC 6~10 CAAA(A)B11. 2219y x -= 12. 83(8) 13. 22n n - 14. 5. 15. 解:(1)函数f (x )的定义域是R ,设x 1 < x 2 ,则 f (x 1) – f (x 2) = a -1221x +-( a -2221x +)=12122(22)(21)(21)x x x x -++,由x 1<x 2 ,1222x x -< 0,得f (x 1) – f (x 2) < 0,所以f (x 1) < f (x 2). 故,f (x )在R 上是增函数. (2)由f (-x )= -f (x ),求得a =1.*****选自《06年下期顺德区高三期中考试试题》达标训练(2)参考答案 1~5 CABBC 6~10 ACDB(D)A 11. (,0)(2,)-∞+∞;(2,)+∞ 12. (1,e ), e (1e -)13.14.215. 解:(1)∵ tan2α=2,∴ 22tan2242tan 1431tan 2ααα⨯===---,所以tan tantan 14tan()41tan 1tan tan 4παπααπαα+++==--=41134713-+=-+. (2)由(1)知,tan α=-43, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--. *****选自《澄海区2007届高三数学模查试卷》1~5 ABBCA 6~10 BCAD(A)C11. 1 12. 520x y --=(①、③) 13. 0 14. 221)1x y (-+=、22(21)41x y -+=. 15. 解:(1)a b ⊥, 0a b ∴⋅=.a b ∴⋅2sin cos 3cos x x x =⋅+1sin 222x x =++sin(2)03x π=++=42233x k πππ∴+=+或2233x k πππ+=-+, 2x k ππ∴=+ 或 3k ππ-+. ∴所求解集为{,}23x x k k k Z ππππ=+-+∈或(2)()f x a b =⋅sin(2)3x π=++22T ππ∴==. 222232k x k πππππ∴-≤+≤+,∴原函数增区间为5[,]1212k k ππππ-+ ()k Z ∈ *****选自《惠州市2007届高三第一次调研考试》达标训练(4)参考答案 1~5 DCDBB 6~10 DADD(C)A11. 2 12. 8(≥) 13.14.15. 解:(1)当3a =-时,32()331f x x x x =-+-+,∵/2()961f x x x =-+-2(31)0x =--≤,∴()f x 在R 上是减函数.(2)∵x R ∀∈不等式()4f x x '≤恒成立,即x R ∀∈不等式23614ax x x +-≤恒成立,∴x R ∀∈不等式23210ax x +-≤恒成立. 当0a =时,x R ∀∈ 210x -≤不恒成立; 当0a <时,x R ∀∈不等式23210ax x +-≤恒成立,即4120a ∆=+≤,∴13a ≤-.当0a >时,x R ∀∈不等式23210ax x +-≤不恒成立. 综上,a 的取值范围是1(]3-∞-,.*****选自《2007届广东省韶关市高三摸底考试数学考试》达标训练(5)参考答案 1~5 ABACC 6~10 BDAD(B)A 11. x +y -5=0 12. 12、6、4(36) 13. 1[,2]2 14. 43 (23π+).15. 解:(1)f (0)=2a =2,∴a =1,f (3π)=2a b =12+,∴b =2,∴f (x )=2cos 2x +sin2x =sin2x +cos2x x +4π),∴f (x )max f (x )min =1(2)由f (α)=f (β),得sin(2α+4π)=sin(2β+4π), ∵α-β≠k π,(k ∈Z)∴2α+4π=(2k +1)π-(2β+4π),即α+β=k π+4π,∴tan(α+β)=1.*****选自《2007届深圳市高三数学摸底考试题》(文)(理)达标训练(6)参考答案 1~5 BDDCC 6~10 DADB(B)A 11. 0 12. 221)1x y (-+=(43) 13. 2 14. 36. 15. 解:(1)① 小明抽出的牌 小华抽出的牌 结果 2 (4,2) 4 5 (4,5) 5 (4,5) ② 由①可知小华抽出的牌面数字比4大的概率为:23. (2)小明获胜的情况有:(4,2)、(5,4)、(5,4)、(5,2)、(5,2), 故小明获胜的概率为:512 , 因为571212<,所以不公平. *****选自《深圳宝安中学、翠园中学、外国语学校2006-2007学年第一学期高三联考试题》(文)(理)1~5 DABAB 6~10 DBBA(D)C11.12 12. 85(42) 13. sin x 14. cos()23πρθ-=. 15. 解:(1333sin[()]cos[()]12323a ππ⨯-+⨯-+=,解得1a =(2)由33()cos 22f x x x a ++32sin()126x π=++∴函数()y f x =的最小正周期24332T ππ==. 由33222262k x k πππππ+≤+≤+,得42483939k k x ππππ+≤≤+()k Z ∈. ∴ 函数()y f x =的单调递减区间为4248[,]()3939k k k Z ππππ++∈.*****选自《2007年龙门中学、新丰一中、连平中学三校联考试题》达标训练(8)参考答案 1~5 DABDC 6~10 DBCC(C)B11.221164x y += 12. 分层抽样(211) 13. ①③④14. )4π. 15. 解:(1)依题得:2*(1)501249824098.()2x x y x x x x x N -⎡⎤=-+⨯-=-+-∈⎢⎥⎣⎦(2)解不等式2240980,:1010x x x -+-><得*,317,3x N x ∈∴≤≤故从第年开始盈利。
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = 2B. x = 1C. x = 3D. x = 03. 若log2(3x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 54. 下列函数中,单调递增的函数是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = 1/x5. 在三角形ABC中,若a=3,b=4,c=5,则sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/46. 已知复数z = 1 + i,则|z|^2的值为()A. 2B. 3C. 4D. 57. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 1 = 08. 若等差数列{an}的前n项和为Sn,且a1=1,S5=15,则公差d的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)10. 已知等比数列{an}的前n项和为Sn,且a1=1,S4=15,则公比q的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x) = 2x - 3,则f(-1)的值为______。
12. 在等差数列{an}中,若a1=2,公差d=3,则第10项an的值为______。
13. 已知复数z = 3 - 4i,则|z|^2的值为______。
14. 在三角形ABC中,若∠A=60°,a=5,b=8,则c的值为______。
15. 若等比数列{an}的前n项和为Sn,且a1=1,S5=31,则公比q的值为______。
高三数学精选数列多选题达标测试基础卷试卷一、数列多选题1.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a << B.11b <<C .22n n S T <D .22n n S T ≥【答案】ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.3.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----.因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.4.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】 由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭,又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=, 故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.6.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.7.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.8.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.二、平面向量多选题9.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .32OA OB OC ++= D .132DE =【答案】AC 【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析. 【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确; B .因为E 为AB 中点,所以ABCE ,所以0AB CE ⋅=,故错误;C .因为()()(3,1,0,1,0,3O A B C ⎛- ⎝⎭,所以33331,1,0,0,2222OA OB OC ⎛⎛⎫⎛⎛++=-+--+=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以32OA OB OC ++=,故正确; D .因为()123,,0,033D E ⎛⎫ ⎪ ⎪⎝⎭,所以123,33DE ⎛⎫=-- ⎪ ⎪⎝⎭,所以133DE =,故错误, 故选:AC. 【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.10.设O ,A ,B 是平面内不共线的三点,若()1,2,3n OC OA nOB n =+=,则下列选项正确的是( )A .点1C ,2C ,3C 在同一直线上B .123OC OC OC ==C .123OC OB OC OB OC OB ⋅<⋅<⋅D .123OC OA OC OA OC OA ⋅<⋅<⋅【答案】AC【分析】利用共线向量定理和向量的数量积运算,即可得答案; 【详解】()12212()C C OC OC OA OB OA OB OB =-=+-+=,()()233232C C OC OC OA OB OA OB OB =-=+-+=,所以1223C CC C =,A 正确.由向量加法的平行四边形法则可知B 不正确.21OC OA OC OA OA OB ⋅-⋅=⋅,无法判断与0的大小关系,而()21OC OB OA OB OB OA OB OB ⋅=+⋅=⋅+,()2222OC OB OA OB OB OA OB OB⋅=+⋅=⋅+,同理233OC OB OA OB OB ⋅=⋅+,所以C 正确,D 不正确. 故选:AC . 【点睛】本题考查向量共线定理和向量的数量积,考查逻辑推理能力、运算求解能力.。
高三数学多选题专项训练单元达标测试基础卷一、数列多选题1.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=答案:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 2.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π=C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--答案:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件; 对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC3.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =答案:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD .【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确; 41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错; 20193201967322S =⨯=,D 正确. 故选:ACD .【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解. 4.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确; 对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确; 对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.5.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2-B .1-C .1D .2答案:ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立, 由12+n 递减,且1223n<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题. 6.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确;,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.7.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =答案:BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列的公差为. 由有,即所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.8.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列答案:ABC 【分析】由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,所以是以2为首项,以1为公差的等差数列, 所以,即,故C 正确; 所以,故A 正确; ,解析:ABC 【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断. 【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+, 即221n a n n =+-,故C 正确; 所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确;数列{}n a 不具有周期性,故D 错误; 故选:ABC9.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断.【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 10.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <答案:AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列,故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.11.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S答案:BD 【分析】由,即,进而可得答案. 【详解】 解:, 因为所以,,最大, 故选:. 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.解析:BD 【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】解:1167891011950S S a a a a a a -=++++==, 因为10a >所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 12.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 答案:ACD 【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ; 【详解】 由已知解析:ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n nN上单调递增,1na 在7nnN,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nnN上单调递增,1na 在7nn N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.二、等差数列多选题13.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题14.题目文件丢失!15.题目文件丢失!16.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .3解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.17.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC18.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S > D .110S >解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.19.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d > D .数列{}na 也是等差数列解析:AB 【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确.对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.故选:AB 【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.20.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022 解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 21.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+- B .2cos2n n a π= C .(1)2sin 2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件; 对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC22.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =- B .310na nC .228n S n n =-D .24n S n n =-解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.23.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S =,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为22解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.24.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17a B .35SC .1719a a -D .1916S S -解析:BD 【分析】 由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;13518351835()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD. 【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.三、等比数列多选题25.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >解析:ABC 【分析】由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.【详解】由题意,设数列{}n a 的公比为q , 因为11n n a a q-=,可得111(1)0n n n a a a qq -+-=->,当10a >时,1q >,此时101nn a a +<<, 当10a <时,101,1nn a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】本题主要考查了等比数列的单调性.属于较易题.26.关于递增等比数列{}n a ,下列说法不正确的是( )A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 解析:BCD 【分析】利用等比数列单调性的定义,通过对首项1a ,公比q 不同情况的讨论即可求得答案.【详解】A ,当101a q >⎧⎨>⎩时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;D ,若10a >,11nn a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD . 【点睛】本题考查等比数列的单调性的判断,意在考查对基础知识的掌握情况,属基础题. 27.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25 B .26C .27D .28解析:CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9 ,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力.28.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S = D .()222lg lg lg 3n n n a a a n -+=+≥解析:ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132nn n S -==--,所以131+2+2(3+3)132nn n S -==-, 因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力.29.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍 解析:BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =.选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题.30.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值解析:AB 【分析】由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定20191a >,202001a <<,从可判断各选项.【详解】当0q <时,22019202020190a a a q =<,不成立;当1q ≥时,201920201,1a a >>,20192020101a a -<-不成立;故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;2201920212020110a a a -=-<,故B 正确;因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 31.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 解析:ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确; 又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q << B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S解析:ABC 【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.33.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为n S ,则( )A .2qB .2nn a =C .102047S =D .12n n n a a a +++<解析:ABD 【分析】由条件可得32242q q q =+,解出q ,然后依次计算验证每个选项即可. 【详解】由题意32242q q q =+,得220q q --=,解得2q(负值舍去),选项A 正确;1222n n n a -=⨯=,选项B 正确;()12212221n n n S +⨯-==--,所以102046S =,选项C 错误;13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.故选:ABD 【点睛】本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8 B .9C .10D .11解析:AB 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】由题意,a n =1+2(n ﹣1)=2n ﹣1,12n nb -=,n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21+22+ (2))﹣n ()21212n n -=-=-2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于198 解析:ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.36.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 解析:ACD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1, ∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.四、平面向量多选题37.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案:D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】 在ABC 中,因为cos cos A bB a=,。
上师大附中高三数学基础达标训练(20)时量:60分钟 满分:80分 班级: 姓名: 计分:1.设集合{}1,2,3A =,集合{}2,3,4B =,则A B =I ( ).A .{}1B .{}1,4C .{}2,3D .{}1,2,3,42.在120个零件中,一级品24个,二级品36个,三级品60个. 用系统抽样法从中抽取容量为20的样本.则每个个体被抽取到的概率是( ).A .124B .136C .160D . 163.在∆ABC 中,60A ︒∠=,16AC =,面积为2203,那么BC 的长度为( ).A .25B .51C .493D .494.圆22(1)(4)1x y ++-=关于直线y =x 对称的圆是( ).A . (x -1)2+(y +4)2 =1B .(x -4)2+(y +1)2=1C . (x +4)2+(y -1)2 =1D . (x -1)2+(y -4)2 =15.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过70km/h 的汽车数量为( ).A .1辆B .10辆C .20辆D .70辆6.已知定义在R 上的函数()f x ,对任意,x y R ∈满足()()()f x f y f x y +=+,则( ).A .()f x 为奇函数B .()f x 为偶函数C .()f x 既为奇函数又为偶函数D .()f x 既非奇函数又非为偶函数7.已知,a b 为两条不同的直线,,αβ为两个不同的平面,且,a b αβ⊥⊥,则下列命题中为假命题...的是( ). A .若//a b ,则//αβ B .若αβ⊥,则a b ⊥C .若,a b 相交,则,αβ相交D .若,αβ相交,则,a b 相交8.某学生离开家去学校,一开始跑步前进,跑累了再走余下的路程,下列图中y 轴表示离校的距离,x 轴表示出发后的时间,则较符合学生走法的是( ).9.设复数11i z i+=-,则0122334455667788888888C C z C z C z C z C z C z C z +⋅+⋅+⋅+⋅+⋅+⋅+⋅=( ). A .16 B .15 C .16i D .16i -10.下列关系式中,能使α存在的关系式是( ).A .5sin cos 3αα+=B .()()cos sin cos sin 2αααα+-=C .1cos22cos αα+=-D .121cos 2log 2α-= 11.已知向量,a b r r 满足:1,2,2a b a b ==-=r r r r ,则a b +r r 的值是__________.12.已知球的表面积为12π,则该球的体积是 .13.二项式622x x ⎛⎫- ⎪⎝⎭展开式中常数项为_________________.(结果用数字表示). 14.已知函数()sin(2)4f x x π=-,在下列四个命题中:①()f x 的最小正周期是4π;②()f x 的图象可由()sin 2g x x =的图象向右平移4π个单位得到; ③若121212,()()1,(,0)x x f x f x x x k k z k π≠==--=∈≠且则且 ④直线()8x f x π=-是图象的一条对称轴,其中正确的命题是 .(填上序号) 15.过椭圆2222x y +=的左焦点引一条倾斜角为45︒的直线,求以此直线与椭圆的两个交点及椭圆中心为顶点的三角形的面积.1~5 CDDBC 6~10 ADDBC 11. 6 12. 43π 13. 60 14. ③ ④15. 解:椭圆方程即2212x y +=,∴2222,1a b c ===,1c ∴=,∴左焦点为1(1,0)F -, ∴过左焦点1F 的直线为tan 45(1)y x =︒+g ,即1y x =+;代入椭圆方程得2340x x +=,1240,3x x ∴==-, ∴所求三角形以半短轴为底,其面积为1421233S =⨯⨯-=.。
东升高中高三数学基础达标训练(20套)中山市东升高中2022届高三数学基础达标训练时量:60分钟满分:80分班级:姓名:计分:4,并且是第二象限的角,那么tanα的值等于().54334A.–B.–C.D.34431.已知inα=2.已知函数f(某)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(某)=0在区间[a,b]内().A.至少有一实根B.至多有一实根C.没有实根D.必有惟一实根3.已知A={某|某5<1},若CAB={某|某+4<某},则集合B=().2A.{某|2≤某<3}B.{某|2<某≤3}C.{某|2<某<3}D.{某|2≤某≤3}4.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为().223主视图左视图俯视图A.2,23B.22,2C.4,2D.2,4l2y5.若右图中的直线l1,l2,l3的斜率为k1,k2,k3则().l3l1A.k1<k2<k3B.k3<k1<k2C.k2<k1<k3D.k3<k2<k1O某6.函数y=log2|某+1|的图象是().yyyy12某12某OO–2–1O某–2–1O某A.B.C.D.7.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入().A.k10B.k10C.k11D.k118.若平面向量a=(1,2)与b的夹角是180o,且|b|=35,则b等于().A.(3,6)B.(3,6)C.(6,3)D.(6,3)9.(文)已知点A(1,2,11),B(4,2,3),C(6,1,4),则△ABC的形状是().A.直角三角形B.正三角形C.等腰三角形D.等腰直角三角形(理)某机械零件加工由2道工序组成,第1道工序的废品率为a,第2道工序的废品率为b,假定这2道工序出废品的工序彼此无关的,那么产品的合格率是().A.abab1B.1abC.1abD.12ab10.如果数据某1、某2、、某n的平均值为某,方差为S2,则3某1+5、3某2+5、、3某n+5的平均值和方差分别为().A.某和S2B.3某+5和9S2C.3某+5和S2D.3某+5和9S2+30S+2511.若双曲线的渐近线方程为y3某,一个焦点是(10,0),则双曲线的方程是__.12.(文)曲线y=某3在点(1,1)处的切线与某轴、直线某=2所围成的三角形的面积为__.(理)(42某)(43某2)d某.0213.如图在杨辉三角中从上往下数共有n行,在这些数中非1的数字之和为__.1111211331146415),N(4,),则线段MN为长度为.63215.(10分)对于函数f(某)=a 某(aR):2114.在极坐标系中,已知点M(3,(1)探索函数的单调性;(2)是否存在实数a使函数f(某)为奇函数?中山市东升高中2022届高三数学基础达标训练(2)时量:60分钟满分:80分班级:姓名:计分:1.已知集合M{某|某24},N{某|某22某30},则集合MN=().A.{某|某2}B.{某|某3}C.{某|1某2}D.{某|2某3}2.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为().A.5个B.10个C.20个D.45个3.“inA1”是“A=30o”的().2A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.复数z1的共轭复数是().1i1111A.iB.iC.1iD.1i22225.一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是().A.异面B.相交C.平行D.不确定6.函数yco2某in某co某的最小正周期T=().A.πB.2C.2D.47.设向量a和b的长度分别为4和3,夹角为60°,则|a+b|的值为().A.37B.13C.237D.13开始i=2,um=0um=um+ii=i+2某2y21的右焦点重合,8.若抛物线y2p某的焦点与椭圆则62p的值为().A.2B.2C.4D.49.(文)面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为().111C.D.246(理)若(a某1)5的展开式中某3的系数是80,则实数a的值是A.13B.().A.-2B.22C.34D.210.给出下面的程序框图,那么,输出的数是().A.2450B.2550C.5050D.4900i≥100是否输出un结束11.函数ylog1(某22某)的定义域是,单调递减区间是___________.212.(文)过原点作曲线ye某的切线,则切点的坐标为,切线的斜率为.(理)过原点作曲线C:ye某的切线l,则曲线C、切线l及y轴所围成封闭区域的面积为.a1a2...an的数列bnn也是等差数列,类似上述命题,相应的等比数列有性质:若an是等比数列(an0),则13.已知等差数列有一性质:若an是等差数列,则通项为bn通项为bn=____________的数列bn也是等比数列.14.极坐标方程分别是ρ=coθ和ρ=inθ的两个圆的圆心距是.15.已知tan2=2,求:(1)tan(4)的值;(2)6inco的值.3in2co中山市东升高中2022届高三数学基础达标训练(3)时量:60分钟满分:80分班级:姓名:计分:1.设集合A{某|1≤某≤2},B={某|0≤某≤4},则A∩B=().A.[0,2]B.[1,2]C.[0,4]D.[1,4]2.计算3i().1iA.1+2iB.1–2iC.2+iD.2–ico,2co)位于第三象限,那么角所在的象限是().3.如果点P(inA.第一象限B.第二象限C.第三象限D.第四象限4.原命题:“设a、b、cR,若ac2bc2则ab”的逆命题、否命题、逆否命题真命题共有().A.0个B.1个C.2个D.3个5.已知平面向量a(2m1,3),b(2,m),且a∥b,则实数m的值等于().3332C.2或D.22276.等差数列an中,S10120,那么a2a9的A.2或B.值是().A.12B.24C.16D.487.如图,该程序运行后输出的结果为().A.36B.56C.55D.45某2y21上一点P到它的右焦点是3,8.如果椭圆169那么点P到左焦点的距离为().A.5B.1C.15D.89.(文)某次考试,班长算出了全班40人数学成绩的平均分M,如果把M当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N,那么M:N为().A.40:41B.41:40C.2D.1(理)从6人中选出4人分别到巴黎、伦敦、香港、莫斯科四个城市游览,要求每个城市有一人游览,每人只能游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有().A.240种B.300种C.144种D.96种10.设奇函数f(某)在[—1,1]上是增函数,且f(—1)=一1.若函数,f(某)≤t2一2at+l对所有的某∈[一1.1]都成立,则当a∈[1,1]时,t的取值范围是().11A.一2≤t≤2B.≤t≤22。
高三数学第二学期数列多选题单元达标测试基础卷一、数列多选题1.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列. 并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列结论正确的是( ) A .20192g = B .()()()()222123222022210f f f f f f -+-=C .12320192688g g g g ++++=D .22221232019201820202f f f f f f ++++=【答案】AB 【分析】由+2+1+n n n f f f =可得()2+112121n n n n n n n n f f f f f f f f +++++=-=-,可判断B 、D 选项;先计算数列{}n g 前几项可发现规律,使用归纳法得出结论:数列{}n g 是以6为最小正周期的数列,可判断A 、C 选项. 【详解】 对于A 选项:12345678910111211,2,3,1,0,1,12310g g g g g g g g g g g g ============,,,,,,,所以数列{}n g 是以6为最小正周期的数列,又20196336+3=⨯,所以20192g =,故A 选项正确;对于C 选项:()()12320193361+1+2+3+1+0+1+1+22692g g g g ++++=⨯=,故C 选项错误;对于B 选项:斐波那契数列总有:+2+1+n n n f f f =,所以()()22222232122232221f f f f f f f f =-=-,()()22121222021222120f f f f f f f f =-=-, 所以()()()()222123222022210f f f f f f -+-=,故B 正确; 对于D 选项:()212+2+1112+n n n f f f f f f f f ==∴=,,,()222312321f f f f f f f f =-=-, ()233423432f f f f f f f f =-=-,,()2+112121n n n n n n n n f f f f f f f f +++++=-=-。
上师大附中高三数学基础达标训练(4)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 已知复数12z i =+,21z i =-,则在12z z z =⋅复平面上对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限2. 有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( ). A.13B. 16C. 23D. 12 3. 已知命题tan 1p x R x ∃∈=:,使,命题2320q x x -+<:的解集是{|12}x x <<,下列结论:①命题“p 为真命题或q 为真命题”是真命题; ②命题“p 为真命题且q 为假命题”是假命题;③命题“p 为假命题或q 为真命题命题”是真命题; ④命题“p 为假命题或q 为假命题”是假命题。
其中正确的是( ).A. ②③B. ①②④C. ①③④D. ①②③④4. 已知tan 2θ=,则sin()cos()2sin()sin()2πθπθπθπθ+--=---( ). A. 2 B. -2 C. 0 D. 235. 1lg 0x x-=有解的区域是( ). A. (0,1] B. (1,10] C. (10,100] D. (100,)+∞ 6. 已知向量(12)a =,,(4)b x =,,若向量a b ∥,则x =( ). A. 12-B. 12C. 2-D. 2 7. 已知两点(2,0),(0,2)A B -,点C 是圆2220x y x +-=上任意一点,则ABC ∆面积的最小值是( ). A. 32- B. 32+ C. 232- D. 322- 8. 如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ).A. 1B. 12C. 13D. 16 9.已知公差不为零的等差数列{}n a 与等比数列{}n b 满足:113375,,a b a b a b ===,那么 ( ). A. 11b =13a B. 11b =31a C. 11b =63a D. 6311b a =10. 已知抛物线28y x =,过点(2,0)A )作倾斜角为3π的直线l ,若l 与抛物线交于B 、C 两点,弦BC 的中点P 到y 轴的距离为( ). A.103 B. 163 C. 323D. 83 11. 已知集合{}123A =,,,使{}123A B =,,的集合B 的个数是_________. 12.(文)在约束条件012210x y x y >⎧⎪≤⎨⎪-+≤⎩下,目标函数2S x y =+的最大值为_________.左视图主视图 俯视图(理)利用柯西不等式判断下面两个数的大小: 已知22221(0)x y a b a b+=>>, 则22a b +与2()x y +的大小关系, 22a b + 2()x y + (用“,,,,≤≥=><”符号填写).13. 在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径222a b r +=,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R =_______.14. 已知点P 是椭圆2214x y +=上的在第一象限内的点,又(2,0)A 、(0,1)B ,O 是原点,则四边形OAPB 的面积的最大值是_________.15. 已知(53cos ,cos ),(sin ,2cos ),a x x b x x ==函数2()||.f x a b b =+(1)求函数()f x 的最小正周期;(2)(文)求函数()f x 的值域; (理)当62x ππ≤≤时,求函数()f x 的值域.1~5 DCDBB 6~10 DADCA11. 8 12. 2(≥)13.2222a b c++14. 215. 解:。
高中2021届高三数学(sh ùxu é)根底达标训练〔1〕班级: 姓名: 计分:1.sinα=,并且α是第二象限的角,那么tanα的值等于〔 A 〕.A 、– B.、– C 、34D 、432.函数f (x )在区间 [a ,b ]上单调,且f (a )•f (b )<0,那么方程f (x )=0在区间[a ,b ]内〔 D 〕.A 、至少有一实根B 、至多有一实根C 、没有实根D 、必有惟一实根 3.A ={x |< -1},假设C A B ={x | x +4 < -x },那么集合B =〔 A 〕.A.{x |-2≤x < 3}B.{x |-2 < x ≤3}C.{x |-2 < x < 3}D. {x |-2≤x ≤3} 4. 假设右图中的直线l 1, l 2, l 3的斜率为k 1, k 2, k 3 那么〔 C 〕. A. k 1< k 2 < k 3 B. k 3< k 1 < k 2C. k 2< k 1 < k 3D. k 3< k 2 < k 15.函数y =log 2|x +1|的图象是〔 C 〕.A. B. C. D. 6.程序框图如下:yxOl 3l 2l 1yxO –1 –2yx O 1 2yx O 1 2yxO –1–2假如上述(shàngshù)程序运行的结果为S=132,那么判断框中应填入〔 A 〕.A.B.C.D.7.假设平面向量a=(1 , -2)与b的夹角是180º,且| b |=3,那么b等于〔A〕.A. (-3 , 6)B. (3 , -6)C. (6 , -3)D. (-6 , 3)8.〔文科〕点A(1, -2, 11),B(4, 2, 3),C(6, -1, 4),那么△ABC的形状是〔 A〕.A.直角三角形B.正三角形C. 等腰三角形D.等腰直角三角形〔理科〕某机械零件加工由2道工序组成,第1道工序的废品率为,第2道工序的废品率为,假定这2道工序出废品的工序彼此无关的,那么产品的合格率是〔 A 〕.A. B. C. D.9.〔文科〕函数,假设函数的图象与的图象关于对称,那么〔〕A. 3B. 5C.D. 答案为:D〔理科〕假如数据x1、x2、…、x n的平均值为,方差为S2,那么3x1+5、3x2+5、…、3x n+5 的平均值和方差分别为〔B〕.A.x和S2B. 3x+5和9S2C. 3x+5和S2x+5和9S2+30S+2510、假设(jiǎshè)抛物线的焦点与椭圆的右焦点重合,那么的值是〔 D 〕.A. B. C. D.11.假设双曲线的渐近线方程为,一个焦点是,那么双曲线的方程是_ _.答案为:12.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为_ _.答案为:13.如图在杨辉三角中从上往下数一共有n行,在这些数中非1的数字之和为_ _.11 11 2 11 3 3 11 4 6 4 1 答案为:14.假如直线与圆交于M 、N 两点,且M 、N关于直线对称,那么不等式组所表示的平面区域的面积是 答:15. :是直线(zh íxi àn),是平面,给出以下四个命题:〔1〕假设垂直于内的两条直线,那么;〔2〕假设,那么l 平行于α内的所有直线;〔3〕假设,且,那么;〔4〕假设,且α⊥l ,那么βα⊥;〔5〕假设βα⊂⊂l m ,且,那么。
高三数学零基础练习题一、选择题1. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(2) 的值。
A) -5 B) -3 C) 1 D) 52. 有三只水龟一起比赛,甲乙丙三只水龟每分钟分别爬2厘米、3厘米和5厘米,它们同时起跑,并且速度始终保持不变,那么一共需要多少时间才能看到甲和乙同时越过丙?A) 10分钟 B) 12分钟 C) 15分钟 D) 20分钟3. 若有三角形 ABC,其中∠B = 90°,AB = 5,AC = 12,则以 BC 为直径的圆的面积是多少?A) 10π B) 15π C) 25π D) 30π4. 已知函数 f(x) = x^5 - 3x^3 + 2x,求 f'(x) 的值。
A) 5x^4 - 9x^2 + 2 B) 5x^4 - 3x^2 + 2 C) 5x^4 - 9x^2 D) 4x^4 -6x^2 + 25. 在平面直角坐标系中,点 A(-5, 7) 与点 B(3, -4) 的距离是多少?A) √89 B) √97 C) √101 D) √113二、填空题1. 解方程组:3x + 2y = 92x - 4y = 10x = ______,y = ______。
2. 若 a + b + c = 9,且 a^2 + b^2 + c^2 = 45,求 a*b + b*c + a*c 的值。
3. 设函数 f(x) = e^(2x) + 3sin(x),求 f'(x) 的值。
4. 已知三角形 ABC 中,∠A = 60°,AB = 8,BC = 6,求三角形ABC 的面积。
5. 若函数 f(x) = log2(x - 1),则 f(2^a + 1) = ______。
三、计算题1. 将 25cm^3 的一块正方体金属材料切割成边长分别为 5cm、2cm和 1cm 的三个立方体,求这三个立方体的总表面积。
2. 已知sinθ = 3/5,且θ 为锐角,求cosθ 和tanθ 的值。
高三数学练习题零基础在高三的数学学习中,练习题是非常重要的一环。
通过做练习题,我们可以巩固和加深自己对知识点的理解,提高解题能力,为高考做好充分准备。
下面是一些针对高三数学的练习题,适合零基础的同学进行练习。
一、选择题1. 下列四个数中,最接近√3的一个是:A. 1.6B. 1.7C. 1.8D. 1.92. 若 a:b = 3:4,b:c = 5:6,c:d = 7:8,则 a:d = ?A. 15:28B. 45:56C. 21:35D. 4:33. 设函数 f(x) = x^2 - 2x - 3,则函数 f(x) 的图像与 x 轴的交点为:A. 2和-3B. -2和3C. 3和-3D. 2和-1二、填空题1. 若正方形的面积是16平方厘米,则其对角线长为______厘米。
2. 已知动物园的大象有x只,狮子有y只,鹿有z只,且满足 x + y + z = 20,则 x:y:z = _____。
三、计算题1. 化简以下表达式:(2x - 3y)(x + 4y) - 2(x - 3y)^22. 已知二次函数 f(x) 的顶点为 (2, -3),且经过点 (1, 4),求函数 f(x) 的表达式。
四、解答题1. 解方程:2x + 3 = 7 - 4x2. 已知数列 {An} 的通项公式为 An = 3n + 1,求前5项的和 Sn。
以上就是针对高三数学的练习题,适合零基础的同学进行练习。
通过积极练习这些题目,相信你会在数学学习中取得进步,为高考做好充分准备。
注意:以上题目的答案如下,仅供参考。
一、选择题1. B. 1.72. A. 15:283. B. -2和3二、填空题1. 42. x:y:z = 5:7:8三、计算题1. -5x^2 + 16xy - 21y^22. f(x) = (x - 2)^2 - 3四、解答题1. x = 12. S5 = 45。
河北高三数学练习题零基础为了帮助河北高三学生提高数学水平,在这里提供一些零基础的数学练习题。
这些练习题包含了高中数学基础知识的各个方面,旨在帮助大家加深对数学概念和解题方法的理解,为高考提供更好的准备。
1. 解方程(1)求方程x^2 - 5x + 6 = 0的根。
(2)求方程2x + 5 = 3x + 2的根。
(3)求方程3x^2 + 4x + 1 = 0的根。
2. 因式分解(1)将4x^2 - 13x + 3进行因式分解。
(2)将8x^3 + 12x^2 - 10x进行因式分解。
(3)将x^2 + 6x + 9进行因式分解。
3. 求导数(1)求函数f(x) = x^3 - 2x^2 + 5的导数。
(2)求函数f(x) = 3x^2 + 4x + 2的导数。
(3)求函数f(x) = 2sin(x) - 3cos(x)的导数。
4. 极限计算(1)计算lim(x->2)(x^2 - 4) / (x - 2)的值。
(2)计算lim(x->0)sin(3x) / x的值。
(3)计算lim(x->∞)(3x + 2) / (4x - 1)的值。
5. 几何相关题目(1)已知直角三角形的两条直角边的长度分别为3和4,求斜边的长度。
(2)正方形的面积为49平方单位,求其对角线的长度。
(3)在平面直角坐标系中,点A(2, 5)和点B(7, 9)的距离是多少?以上仅为部分练习题,供大家练习。
希望大家能够通过不断的练习提高数学水平,为高考取得好成绩做好准备。
在解题过程中,可以利用课本、参考书等资源,加深对数学知识的理解和应用。
祝愿各位河北高三学生在数学学习中取得好成绩!。
中山市东升高中2008届高三数学基础达标训练(1)时量:60分钟满分:80分班级:姓名:计分:1.已知sinα=45,并且α是第二象限的角,那么tanα的值等于().A.–43B. –34C.34D.432.已知函数f (x)在区间[a,b]上单调,且f (a)•f (b)<0,则方程f (x)=0在区间[a,b]内().A.至少有一实根B.至多有一实根C.没有实根D.必有惟一实根3.已知A={x |52x-< -1},若C A B={x | x+4 < -x},则集合B=().A.{x |-2≤x < 3}B.{x |-2 < x≤3}C.{x |-2 < x < 3}D. {x |-2≤x≤3}4.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为().A. 2,B.2 C. 4,2 D. 2,5.若右图中的直线l1, l2, l3的斜率为k1, k2, k3 则().A. k1< k2 < k3B. k3< k1 < k2C. k2< k1 < k3D. k3< k2 < k16.函数y=log|x+1|的图象是().A. B. C. D. 7.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入().A.10?k≤B.10?k≥C.11?k≤D.11?k≥8.若平面向量a=(1 , -2)与b的夹角是180º,且| b b等于().主视图俯视图左视图l1A. (-3 , 6)B. (3 , -6)C. (6 , -3)D. (-6 , 3) 9.(文)已知点A (1, -2, 11),B (4, 2, 3),C (6, -1, 4),则△ABC 的形状是( ). A.直角三角形 B.正三角形 C. 等腰三角形 D.等腰直角三角形(理)某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品的工序彼此无关的,那么产品的合格率是( ). A. 1ab a b --+ B. 1a b -- C. 1ab - D. 12ab -10.如果数据x 1、x 2、…、x n 的平均值为x ,方差为S 2 ,则3x 1+5、3x 2+5、…、3x n +5 的平均值和方差分别为( ).A.x 和S 2B. 3x +5和9S 2C. 3x +5和S 2D.3x +5和9S 2+30S+2511.若双曲线的渐近线方程为3y x =±,一个焦点是,则双曲线的方程是_ _. 12.(文)曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为_ _. (理)220(42)(43)x x dx --=⎰ .13.如图在杨辉三角中从上往下数共有n 行,在这些数中非1的数字之和为_ _. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 114.在极坐标系中,已知点5(3,)6M π,(4,)3N π,则线段MN 为长度为 . 15. (10分)对于函数f (x )= a -221x +(a ∈R):(1)探索函数的单调性;(2)是否存在实数a 使函数f (x )为奇函数?中山市东升高中2008届高三数学基础达标训练(2)时量:60分钟 满分:80分 班级: 姓名: 计分:1.已知集合22{|4},{|230}M x x N x x x =<=--<,则集合M N =( ).A .{|2x x <-}B .{|3x x >}C .{|12x x -<<}D .{|23x x <<}2. 要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ).A .5个B .10个C .20个D .45个 3. “1sin 2A =”是“A =30º”的( ). A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 4. 复数11z i =-的共轭复数是( ). A .1122i + B .1122i - C .1i - D .1i +5. 一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是( ).A .异面 B. 相交 C. 平行 D. 不确定 6. 函数cos2sin cos y x x x =+的最小正周期T =( ). A. π B. 2π C.2πD.4π7. 设向量a 和b 的长度分别为4和3,夹角为60°,则|a+b|的值为( ).A. 37B. 13C.D.8. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ).A .2-B .2C .4-D .49. (文)面积为S 的△ABC ,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( ).A.13B.12 C.14 D.16(理)若5(1)ax -的展开式中3x 的系数是80,则实数a 的值是( ).A .-2 B. C. D. 2 10. 给出下面的程序框图,那么,输出的数是( ). A .2450 B. 2550 C. 5050 D. 490011.函数212log (2)y x x =-的定义域是 ,单调递减区间是___________.12.(文)过原点作曲线x y e =的切线,则切点的坐标为 ,切线的斜率为 . (理)过原点作曲线:x C y e =的切线l ,则曲线C 、切线l 及y 轴所围成封闭区域的面积为 .13.已知等差数列有一性质:若{}n a 是等差数列,则通项为12...nn a a a b n++=的数列{}n b 也是等差数列,类似上述命题,相应的等比数列有性质:若{}n a 是等比数列(0)n a >,则通项为n b =____________的数列{}n b 也是等比数列.14.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是 . 15. 已知tan2α=2,求:(1)tan()4πα+的值; (2)6sin cos 3sin 2cos αααα+-的值.中山市东升高中2008届高三数学基础达标训练(3)时量:60分钟 满分:80分 班级: 姓名: 计分:1.设集合{|1A x =-≤x ≤2},B ={x |0≤x ≤4},则A ∩B =( ).A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.计算31ii-=+( ). A .1+2i B . 1–2i C .2+i D .2–i3.如果点P (sin cos ,2cos )θθθ位于第三象限,那么角θ所在的象限是( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限4.原命题:“设a 、b 、c R ∈,若22ac bc >则a b >”的逆命题、否命题、逆否命题真命题共有( ).A .0个B .1个C .2个D .3个5.已知平面向量(21,3),(2,)a m b m =+=,且a ∥b ,则实数m 的值等于( ).A .2或32-B .32 C .2-或32 D .27-6.等差数列{}n a 中,10120S = ,那么29a a +的值是( ).A . 12B . 24C .16D . 48 7.如图,该程序运行后输出的结果为( ). A .36 B .56 C .55 D .458.如果椭圆221169x y +=上一点P 到它的右焦点是3, 那么点P 到左焦点的距离为( ).A.5B.1C.15D.8 9.(文)某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M :N 为( ).A .40:41B .41:40C .2D .1(理)从6人中选出4人分别到巴黎、伦敦、香港、莫斯科四个城市游览,要求每个城市有一人游览,每人只能游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ).A .240种 B.300种 C.144种 D.96种10.设奇函数f (x )在[—1,1]上是增函数,且f (—1)= 一1.若函数,f (x )≤t 2一2 a t +l 对所有的x ∈[一1.1]都成立,则当a ∈[1,1]时,t 的取值范围是( ).A .一2≤t ≤2B . 12-≤t ≤12C .t ≤一2或t = 0或t ≥2D .t ≤12-或t=0或t ≥1211. 规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 .12. (文)过曲线32y x x =+上一点(1,3)的切线方程是___________(理)关于二项式2006(1)x -,有下列三个命题:①.该二项式展开式中非常数项的系数和是1-; ②.该二项式展开式中第10项是1019962006C x ;③.当2006x =时,2006(1)x -除以2006的余数是1.其中正确命题的序号是 (把你认为正确的序号都填上). 13. 设a ,b ,c 是空间的三条直线,下面给出四个命题: ①若a b ⊥,b c ⊥,则//a c ;②若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线; ③若a 和b 相交,b 和c 相交,则a 和c 也相交; ④若a 和b 共面,b 和c 共面,则a 和c 也共面. 其中真命题的个数是________个.14. 圆C :1cos sin x y θθ=+⎧⎨=⎩,,(θ为参数)的普通方程为 ,设O 为坐标原点,点00()M x y ,在C 上运动,点()P x y ,是线段OM 的中点,则点P 的轨迹方程为 .15. 已知(sin )a x x =,(cos ,cos )b x x = ,()f x a b =⋅ .(1)若a b ⊥,求x 的解集;(2)求()f x 的周期及增区间.中山市东升高中2008届高三数学基础达标训练(4)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 已知复数12z i =+,21z i =-,则在12z z z =⋅复平面上对应的点位于( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( ).A.13B.16 C. 23 D. 123. 已知命题tan 1p x R x ∃∈=:,使,命题2320q x x -+<:的解集是{|12}x x <<,下列结论:①命题“p q ∧”是真命题; ②命题“p q ∧⌝”是假命题;③命题“p q ⌝∨”是真命题; ④命题“p q ⌝∨⌝”是假命题其中正确的是( ). A. ②③ B. ①②④C. ①③④D. ①②③④4. 已知tan 2θ=,则sin()cos()2sin()sin()2πθπθπθπθ+--=---( ). A. 2 B. -2 C. 0 D. 235. 1lg 0x x -=有解的区域是( ).A. (0,1]B. (1,10]C. (10,100]D. (100,)+∞6. 已知向量(12)a = ,,(4)b x =,,若向量a b ∥,则x =( ).A. 12-B. 12C. 2-D. 27. 已知两点(2,0),(0,2)A B -,点C 是圆2220x y x +-=上任意一点,则ABC ∆面积的最小值是( ).A. 3-B. 3+C. 32-D. 32-8. 如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ).A. 1B. 12C. 13 D. 169. (文)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:左视图主视图). A. 甲 B. 乙 C. 丙 D. 丁(理)已知公差不为零的等差数列{}n a 与等比数列{}n b 满足:113375,,a b a b a b ===,那么 ( ).A. 11b =13aB. 11b=31a C. 11b =63a D. 6311b a = 10. 已知抛物线28y x =,过点(2,0)A )作倾斜角为3π的直线l ,若l 与抛物线交于B 、C两点,弦BC 的中点P 到y 轴的距离为( ). A.103B.163C.323D.11. 在约束条件012210x y x y >⎧⎪≤⎨⎪-+≤⎩下,目标函数2S x y =+的最大值为_________.12.(文)已知集合{}123A =,,,使{}123A B = ,,的集合B 的个数是_________.(理)利用柯西不等式判断下面两个数的大小: 已知22221(0)x y a b ab+=>>, 则22a b +与2()x y +的大小关系, 22a b + 2()x y + (用“,,,,≤≥=><”符号填写).13. 在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R =_______. 14. 已知点P 是椭圆2214x y +=上的在第一象限内的点,又(2,0)A 、(0,1)B ,O 是原点,则四边形OAPB 的面积的最大值是_________. 15. 已知32()31f x ax x x =+-+,a R ∈.(1)当3a =-时,求证:()f x 在R 上是减函数;(2)如果对x R ∀∈不等式()4f x x '≤恒成立,求实数a 的取值范围.中山市东升高中2008届高三数学基础达标训练(5)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 已知21{|log ,1},{|(),1}2x A y y x x B y y x ==<==>,则A B = ( ).A .φB .(,0-∞)C .1(0,)2D .(1,2-∞)2. 3(1)(2)i i i --+=( ).A .3i +B .3i --C .3i -+D .3i -3. 已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是( ). A .15B .30C .31D .644. 正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ).A .75°B .60°C .45°D .30° 5. 已知平面上三点A 、B 、C 满足3AB = ,4BC = ,5CA = ,则AB BC BC CA CA AB ⋅+⋅+⋅的值等于( ).A .25B .24C .-25D .-24 6.点P 在曲线323y x x =-+上移动,在点P 处的切线的倾斜角为α,则α的取值范围是( ). A .[0,)2π B .3[0,)[,)24πππ C .3[,)4ππ D .3[0,)(,]224πππ7.在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.若函数f(x)=x 2+bx +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ).A. B. C. D. 9.(文)已知函数y =f (x ),x ∈{1,2,3},y ∈{-1,0,1},满足条件f (3)=f (1)+f (2)的映射的个数是( ).A. 2B. 4C. 6D. 7(理)已知随机变量ξ服从二项分布,且E ξ=2.4,D ξ=1.44,则二项分布的参数n ,p 的值为( ).A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 10.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB 中点的直线的ab值为( ). ABCD11. A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为 12.(文)调查某单位职工健康状况,其青年人数为300,中年人数为150,老年人数为100,现考虑采用分层抽样,抽取容量为22的样本,则青年、中年、老年各层中应抽取的个体数分别为_____________(理)5人站成一排,甲、乙两人之间恰有1人的不同站法的种数有 .13.在条件02021x y x y ≤≤⎧⎪≤≤⎨⎪-≥⎩下, 22(1)(1)Z x y =-+-的取值范围是 .14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数y =sinn x 在[0,nπ]上的面积为2n(n ∈N * ), (i )y =sin3x 在[0,23π]上的面积为 ; (ii )(理)y =sin (3x -π)+1在[3π,43π]上的面积为 .15. 已知函数f (x )=2a cos 2x +b sin x cos x ,且f (0)=2,f (3π)=12. (1)求f (x )的最大值与最小值;(2)若α-β≠k π,k ∈Z ,且f (α)=f (β),求tan(α+β)的值.中山市东升高中2008届高三数学基础达标训练(6)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 化简31ii-=+( ). A. 1+2i B. 12i - C. 2+i D. 2i - 2. 若110a b<<,则下列结论不正确...的是( ). A .22a b < B .2ab b < C .2b aa b+> D .a b a b -=- 3. 已知直线a 、b 和平面M ,则//a b 的一个必要不充分条件是( ). A. ////a M b M , B. a M b M ⊥⊥,C. //a M b M ⊂,D. a b 、与平面M 成等角 4. 下列四个个命题,其中正确的命题是( ). A. 函数y =tan x 在其定义域内是增函数 B. 函数y =|sin(2x +3π)|的最小正周期是πC. 函数y =cos x 在每个区间[72,24k k ππππ++](k z ∈)上是增函数 D. 函数y =tan(x +4π)是奇函数5. 已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为( ). A. 13B. 13-C. 12D. 12-6. 已知()f x 定义在(,0)-∞上是减函数,且(1)(3)f m f m -<-,则m 的取值范围是( ).A .m <2B .0<m <1C .0<m <2D .1<m <27. 将直线0x =绕原点按顺时针方向旋转30︒,所得直线与圆22(2)3x y -+=的位置关系是( ).A.直线与圆相切B.直线与圆相交但不过圆心C.直线与圆相离D.直线过圆心 8. 与直线41y x =-平行的曲线32y x x =+-的切线方程是( ).A .40x y -=B .440x y --=或420x y --=C .420x y --=D .40x y -=或440x y --=9. (文)一组数据8,12,x ,11,9的平均数是10,则这样数据的方差是( ).A .2BC .D .2(理)由正方体的八个顶点中的两个所确定的所有直线中,取出两条,这两条直线是异面直线的概率为( ).A .29189B .2963C . 3463D .4710. 椭圆M :2222x y a b+=1 (a >b >0) 的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12PF PF ⋅的最大值的取值范围是[2c 2,3c 2],其中c . 则椭圆M 的离心率e 的取值范围是( ).A. B. C. D. 11[,)3211. 已知单位向量i 和j 的夹角为60º,那么 (2j -i )•i = .12.(文)圆C :1cos sin x y θθ=+⎧⎨=⎩(θ为参数)的普通方程为__________.(理)由抛物线2y x =和直线1x =所围成图形的面积为_____________. 13. 设(,)P x y 是下图中四边形内的点或四边形边界上的点(即x 、y 满足的约束条件),则2z x y =+的最大值是__________.14. 棱长为1 cm 的小正方体组成如图所示的几何体,那么这个几何体的表面积是 2cm .15. 小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花5)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张. (1)若小明恰好抽到黑桃4;①请绘制出这种情况的树状图;②求小华抽出的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.中山市东升高中2008届高三数学基础达标训练(7)时量:60分钟 满分:80分 班级: 姓名: 计分:1.设集合A={x | x},a =3,那么( ). A. a A B. a ∉A C. {a }∈A D. {a } A 2.向量a = (1,2),b = (x ,1),c = a + b ,d = a - b ,若c //d ,则实数x 的值等于( ).A.12 B. 12- C. 16 D. 16- 3. 方程lg 30x x +-=的根所在的区间是( ).A.(1,2)B. (2,3)C. (3,4)D.(0,1)4.已知2sin cos αα=,则2cos2sin 21cos ααα++的值是( ).A. 3B. 6C. 12D. 325.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ).A. 810B. 840C. 870D.900x1)<的图象的大致形状是(). 7. 设三棱锥的3个侧面两两互相垂直,且侧棱长均为,则其外接球的表面积为( ).A.48πB. 36πC. 32πD.12π8. 实数,x y 满足(6)(6)014x y x y x -++-≥⎧⎨≤≤⎩,则yx 的最大值是( ).A .52B .7C .5D .8 9.(文)一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率( ).⊂ ≠⊂ ≠A.25 B. 35 C. 825 925(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是( ).A .103 B .559 C .809 D .50910. 设动点A , B (不重合)在椭圆22916144x y +=上,椭圆的中心为O ,且0OA OB ⋅=,则O 到弦AB 的距离OH 等于( ).A .203B .154C .125D .41511. 复数21ii-+(i 是虚数单位)的实部为 .12. (文)某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.(理)在10(1)(1)x x -+的展开式中, 5x 的系数是 . 13. 在如下程序框图中,输入0()cos f x x =,则输出的是__________.14.自极点O 向直线l 作垂线,垂足是(2,)3H π,则直线l 的极坐标方程为 .15. 已知函数33()cos 22f x x x a ++恒过点(,1)3π-.(1)求a 的值;(2)求函数()y f x =的最小正周期及单调递减区间.中山市东升高中2008届高三数学基础达标训练(8)时量:60分钟 满分:80分 班级: 姓名: 计分:1.2(1)i i - 等于( ).A . 22i -B .22i +C .-2D .2 2.如图,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( ).①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④3.给出下列函数①3y x x =-,②sin cos ,y x x x =+③sin cos ,y x x =④22,x x y -=+其中是偶函数的有( ).A .1个B .2个C .3 个D .4个4.已知等差数列{}n a 的前n 项和为n S ,若4588,10,S a a ==则=( ). A .18 B .36 C .54 D .72 5.设全集U 是实数集R ,{}2|4M x x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是( ). A .{}|21x x -≤< B .{}|22x x -≤≤ C .{}|12x x <≤ D .{}|2x x <6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为( ).A .60%B .30%C .10%D .50%7.以线段AB :20(02)x y x +-=≤≤为直径的圆的方程为( ). A .22(1)(1)2x y +++= B .22(1)(1)2x y -+-= C .22(1)(1)8x y +++= D .22(1)(1)8x y -+-= 8.下面程序运行后,输出的值是( ).i=0 DOA. 42B. 43C. 44D. 459.(文)(cos2,sin ),(1,2sin 1),(,)2a b πααααπ==-∈ ,若2,tan()54a b πα=+= 则( ).A .13B .27C .17D .23(理)8的展开式中系数最大的项是( ).A.第3项B.第4项C.第2或第3项D.第3或第4项10.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ). A .0.5小时 B .1小时 C .1.5小时 D .2小时11.已知椭圆中心在原点,一个焦点为(F -,且长轴是短轴长的2倍,则该椭圆的标准方程是 . 12.(文)某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体健康状况,需从他们中抽取一个容量为36的样本,抽取样本的合适方法是 . (理)空间12个点,其中5个点共面,此外无任何4个点共面,这12个点最多可决定_________个不同的平面.13.关于函数21()lg (0),x f x x x+=≠有下列命题:①其图像关于y 轴对称;②当x >0时,()f x 是增函数;当x <0时,()f x 是减函数;③()f x 的最小值是lg 2;④当102x x -<<>或时,()f x 是增函数;⑤()f x 无最大值,也无最小值.其中所有正确结论的序号是 .14.极坐标系内,点(2,)2π关于直线cos 1ρθ=的对称点的极坐标为 .15.某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年总收入为50万元,设使用x 年后数控机床的盈利额为y 万元. (1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值) (3)使用若干年后,对机床的处理方案有两种:(i )当年平均盈利额达到最大值时,以30万元价格处理该机床; (ii )当盈利额达到最大值时,以12万元价格处理该机床。