圆、二次函数的基础题
- 格式:doc
- 大小:282.00 KB
- 文档页数:5
二次函数与圆的综合题(中考数学压轴题必考)例1.如图,已知抛物线与x轴交于A,B两点(A在左边),抛物线经过点D以AB为直径画⊙P,试判定点D与⊙P的位置关系,并证明.练习1.如图,二次函数y=ax2﹣(a+1)x(a为常数,且0<a<1)的图象过原点O并与x轴交于点P;过点A(1,﹣1)的直线l垂直y轴于点B,并与二次函数的图象交于点Q,以OA为直径的⊙C交x轴于点D,连接DQ.(1)点B与⊙C的位置关系是;(2)点A是否在二次函数的图象上;(填“是”或“否”)(3)若DQ恰好为⊙C的切线,①猜想:四边形OAQD的形状是,证明你的猜想;②求二次函数的表达式.例2.如图示已知点M的坐标为(4,0),以M为圆心,以2为半径的圆交x轴于A、B,抛物线过A、B两点且与y轴交于点C.过C点作⊙M 的切线CE,求直线OE的解析式.练习2.平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴,设平行于x轴的直线交抛物线y=﹣x2﹣x+2于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.练习3.如图,抛物线y=﹣x2﹣x+2与x轴交于A(﹣4,0),B(2,0),与y 轴交于点C(0,2).以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.练习4.如图,抛物线y=﹣x2+x+2.经过A、B、C三点,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C,M为抛物线的顶点,试说明直线MC与⊙P的位置关系,并证明你的结论.练习5.如图,抛物线与x轴交于A、B两点,与y轴交于C点.以AB为直径作⊙M.(1)求出M的坐标并证明点C在⊙M上;(2)若P为抛物线上一动点,求出当CP与⊙M相切时P的坐标;练习6.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的析式;(2)求点D的坐标:(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.练习7.如图,在平面直角坐标系中,已知OA=n,OC=m,⊙M与y轴相切于点C,与x轴交于A,B两点,∠ACD=90°,抛物线y=ax2+bx+c经过A,B,C三点.(1)求证:∠OCA=∠OBC;(2)若A(x1,0),B(x2,0),且x1,x2满足x1+x2=5,x1•x2=4,求点C 的坐标和抛物线的解析式;(3)若△ACD≌△ABD,在四边形ABDC内有一点P,且点P到四边形四个顶点的距离之和P A+PB+PC+PD最小,求此时距离之和的最小值及P点的坐标(用含n的式子表示).练习8.已知二次函数y=mx2+(m﹣3)x﹣3(m>0)(1)求证:它的图象与x轴必有两个交点;(2)这条抛物线与x轴交于两点A、B(A在B左),与y轴交于点C,顶点为D,sin∠ABD=,⊙M过A、B、C三点,求⊙M的面积;(3)在(2)的条件下,抛物线上是否存在点P,使P A是⊙M的切线?若存在,求出P点的坐标,若不存在,说明理由.例3.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求圆心P的纵坐标.练习9.已知:如图,抛物线y=ax2+bx+1的图象关于y轴对称,且抛物线过点(2,2),点P为抛物线上的动点,以点P为圆心的⊙P与x轴相切,当点P运动对,⊙P始终经过y轴上的一个定点E.(1)求抛物线的解析式;(2)当⊙P的半径为时,⊙P与y轴交于M、N两点,求MN的长;(3)求定点E到直线y=kx﹣8k的距离的最大值.练习10.已知:直线y=﹣x﹣4分别交x、y轴于A、C两点,抛物线y=ax2+bx (a>0)经过A、O两点,且顶点B的纵坐标为﹣2(1)判断点B是否在直线AC上,并求该抛物线的函数关系式;(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,试判断直线AC与⊙D的位置关系,并说明理由;(3)若E为⊙D的优弧AO上一动点(不与A、O重合),连接AE、OE,问在抛物线上是否存在点P,使∠POA:∠AEO=2:3?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.练习11.已知A是x轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,直径OA=m,线段EF是⊙B的一条弦,EF∥x轴,点C为劣弧EF的中点,过点E作DE垂直于EF,交抛物线C1:y=ax2+bx(a>0)于点G,抛物线经过点O和点A.(1)求证:DG=m;(2)拖动点A,如果抛物线C1与⊙B除点O和点A外有且只有一个交点,求b的值;(3)拖动点A,抛物线C1交⊙B于点O、E、F、A,①求证:DE=m﹣;②直接写出FC2的值(用a,m的代数式表示)练习13.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A.B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),求出抛物线的解析式;(4)在该抛物线上是否存在一点D点,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.例4.如图1,抛物线y=ax2+3ax(a为常数,a<0)与x轴交于O,A两点,点B 为抛物线的顶点,点D是线段OA上的一个动点,连接BD并延长与过O,A,B三点的⊙P相交于点C,过点C作⊙P的切线交x轴于点E.(1)①求点A的坐标;②求证:CE=DE;(2)如图2,连接AB,AC,BE,BO,当,∠CAE=∠OBE时,①求证:AB2=AC•BE;②求的值.练习14.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E 四点,B为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.练习15.如图,二次函数与x轴的一个交点A的坐标为(﹣3,0),以点A为圆心作圆A,与该二次函数的图象相交于点B,C,点B,C的横坐标分别为﹣2,﹣5,连接AB,AC,并且满足AB⊥AC.过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N.(1)求该二次函数的关系式;(2)经过点B作直线BD,在A点右侧与x轴交于点D,与二次函数的图象交于点E,使得∠ADB=∠ABM,连接AE,求证:AE=AD;(3)若直线y=kx+1与圆A相切,请求出k的值.例5.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y 轴交于点C.(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式;(2)如图1,连接AC,E为线段AC上一点且横坐标为1,⊙P是△OAE外接圆,求圆心P点的坐标;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F;①点E在运动过程中四边形OEAF的面积是否为定值?如果是,请求出这个定值;如果不是,请说明理由;②求出当△AEF的面积取得最大值时,点E的坐标.练习16.如图1,已知抛物线y=﹣x2+bx+c经过点A(1,0),B(﹣5,0)两点,且与y轴交于点C.(1)求b,c的值.(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O 三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.练习17.如图1,抛物线y=+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式;(2)如图2,以AB为直径在x轴上方画半圆交y轴于点E,圆心为G,P为半圆上一动点,连接DP,点Q为PD的中点.①判断点C、D与⊙G的位置关系,并说明原因;②当点P沿半圆从点B运动到点A时,求线段AQ的最小值.练习18.如图1,二次函数y=ax2﹣3ax+b(a、b为参数,其中a<0)的图象与x 轴交于A、B两点,与y轴交于点C,顶点为D.(1)若b=﹣10a,求tan∠CBA的值(结果用含a的式子表示);(2)若△ABC是等腰三角形,直线AD与y轴交于点P,且AP:DP=2:3.求抛物线的解析式;(3)如图2,已知b=﹣4a,E、F分别是CA和CB上的动点,且EF=AB,若以EF为直径的圆经过点C,并交x轴于M、N两点,求MN的最大值.课后练习1.抛物线y=ax2+bx﹣4交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是介于B、C之间的抛物线上的动点(包括B、C两点),点E是△ABP 的外接圆圆心.(1)求抛物线的解析式;(2)如图1,当P为抛物线的顶点时,求圆心E的坐标;(3)如图2,作PH⊥x轴于点H,延长PH交⊙E于点Q,当P从C点出发,沿该抛物线运动到B点,求点Q在这个运动过程中的路径长.2.如图,在正方形OABC中,AB=4,点E是线段OA(不含端点)边上一动点,作△ABE的外接圆交AC于点D.抛物线y=ax2﹣x+c过点O,E.(1)求证:∠BDE=90°;(2)如图1,若抛物线恰好经过点B,求此时点D的坐标;(3)如图2,AC与BE交于点F.①请问点E在运动的过程中,CF•AD是定值吗?如果是,请求出这个值,如果不是,请说明理由;②若,求点E坐标及a的值.。
第十三关:以二次函数与圆的问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。
由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。
“圆”在初中阶段学习占有重要位置,“垂径定理”、“点与圆的位置关系”的判定与性质、“直线与圆的位置关系”的判定与性质、“正多边形的判定与性质”通常是命题频率高的知识点.由于这部分知识的综合性较强,多作为单独的解答题出现.如果把圆放到直角坐标系中,同二次函数结合,则多作为区分度较高的压轴题中出现.此类题目由于解题方法灵活,考查的知识点全面,体现了方程、建模、转化、数形结合、分类讨论等多种数学思想,得到命题者的青睐【解题思路】二次函数与圆都是初中数学的重点内容,历来是中考数学命题的热点,其本身涉及的知识点就较多,综合性和解题技巧较强,给解题带来一定的困难,而将函数与圆相结合,并作为中考的压轴题,就更显得复杂了.只要我们掌握解决这类问题的思路和方法,采取分而治之,各个击破的思想,问题是会迎刃而解的.解决二次函数与圆的问题,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。
解题时要注意各知识点之间的联系和数学思想方法、解题技巧的灵活应用,要抓住题意,化整为零,层层深入,各个击破,从而达到解决问题的目的。
【典型例题】经过点A(1,0)和点B(5,0),与y轴【例1】(2019·黑龙江中考真题)如图,抛物线y=ax2+bx−53交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.【例2】(2019·广西中考真题)如图,直线3y x =-交x 轴于点A ,交y 轴于点C ,点B 的坐标为(1,0),抛物线2(0)y ax bx c a =++≠经过,,A B C 三点,抛物线的顶点为点D ,对称轴与x 轴的交点为点E ,点E关于原点的对称点为F ,连接CE ,以点F 为圆心,12CE 的长为半径作圆,点P 为直线3y x =-上的一个动点.(1)求抛物线的解析式; (2)求BDP ∆周长的最小值;(3)若动点P 与点C 不重合,点Q 为⊙F 上的任意一点,当PQ 的最大值等于32CE 时,过,P Q 两点的直线与抛物线交于,M N 两点(点M 在点N 的左侧),求四边形ABMN 的面积.【例3】(2018·青海中考真题)如图,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,⊙MBC 是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【方法归纳】函数知识要理解好数形结合的思想,知识点的掌握中要理解文字解释和图像之间的关系,至于与圆、三角形、方程的综合题,往往最后一问难度大,要建立模型、框架,完善步骤,循序渐进. 【针对练习】1.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD 的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①√S=√S1+√S2;②√S=√S3+√S4;③“十字形”ABCD的周长为12√10.2.(2019·湖南中考真题)如图,抛物线26y ax ax =+(a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t <0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C . (1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证:CE =DE ;②如图2,连接AC ,BE ,BO ,当3a =∠CAE =∠OBE 时,求11OD OE -的值3.(2019·浙江中考真题)已知在平面直角坐标系xOy 中,直线1l 分别交x 轴和y 轴于点()()3,0,0,3A B -. (1)如图1,已知P 经过点O ,且与直线1l 相切于点B ,求P 的直径长;(2)如图2,已知直线2: 33l y x =-分别交x 轴和y 轴于点C 和点D ,点Q 是直线2l 上的一个动点,以Q 为圆心,.①当点Q 与点C 重合时,求证: 直线1l 与Q 相切;②设Q 与直线1l 相交于,M N 两点, 连结,QM QN . 问:是否存在这样的点Q ,使得QMN ∆是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.4.(2018·山东中考真题)如图①,在平面直角坐标系中,圆心为P (x ,y )的动圆经过点A (1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.5.(2018·江苏中考真题)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.6.(2017·江苏中考真题)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A 的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.7.(2019·山东中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点.其中AB两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径.点E是⊙M 与y轴的另一个交点,过劣弧DE上的点F作FH⊥AD于点H,且FH=1.5.(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.8.(2019·山东中考真题)如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长.(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.9.(2018·山东中考真题)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.10.(2018·湖南中考真题)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB ﹣∠CDB=∠ABD ﹣∠CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式; ①S =1S 2S +;②S=3S 4S +;③“十字形”ABCD 的周长为1210.11.(2017·广西中考真题)已知抛物线y 1=ax 2+bx -4(a≠0)与x 轴交于点A (-1,0)和点B (4,0). (1)求抛物线y 1的函数解析式;(2)如图①,将抛物线y 1沿x 轴翻折得到抛物线y 2,抛物线y 2与y 轴交于点C ,点D 是线段BC 上的一个动点,过点D 作DE ∥y 轴交抛物线y 1于点E ,求线段DE 的长度的最大值;(2)在(2)的条件下,当线段DE 处于长度最大值位置时,作线段BC 的垂直平分线交DE 于点F ,垂足为H ,点P 是抛物线y 2上一动点,⊙P 与直线BC 相切,且S ⊙P :S △DFH =2π,求满足条件的所有点P 的坐标.12.(2018·山东中考真题)抛物线y =ax 2+bx +4(a ≠0)过点A (1,﹣1),B (5,﹣1),与y 轴交于点C . (1)求抛物线的函数表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,求点P 的坐标;(3)如图2,⊙O 1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.13.(2019·四川中考真题)如图,已知抛物线(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求MF的值.14.(2019·江苏中考真题)如图,已知二次函数的图象与轴交于两点与轴交于点,⊙的半径为为⊙上一动点.(1)点的坐标分别为(),();(2)是否存在点,使得为直角三角形?若存在,求出点的坐标;若不存在,请说明理由;(3)连接,若为的中点,连接,则的最大值= .15.(2017·黑龙江中考真题)在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.(1)求抛物线的解析式;(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;(3)将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点的坐标.16.(2017·甘肃中考真题)如图,抛物线与直线交于,两点,直线交轴与点,点是直线上的动点,过点作轴交于点,交抛物线于点.(1)求抛物线的表达式;(2)连接,,当四边形是平行四边形时,求点的坐标;(3)①在轴上存在一点,连接,,当点运动到什么位置时,以为顶点的四边形是矩形?求出此时点的坐标;②在①的前提下,以点为圆心,长为半径作圆,点为上一动点,求的最小值.17.(2017·湖南中考真题)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB 为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足,求二次函数的表达式.18.(2017·江苏中考真题)如图,已知二次函数的图象经过点,,且与轴交于点,连接、、.(1)求此二次函数的关系式;(2)判断的形状;若的外接圆记为,请直接写出圆心的坐标;(3)若将抛物线沿射线方向平移,平移后点、、的对应点分别记为点、、,的外接圆记为,是否存在某个位置,使经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.。
(一)圆1、定义:弦,弦心距,圆心角,弦所对的弧(弧长)。
在同圆或等圆中,上述四组量中有一组相等,则其余三组均相等。
2、垂径定理及其推论。
垂直于弦的直径平分弦,并且平分弦所对的圆心角及两条弧(优弧和劣弧);平分弦(此弦不是直径)的直径垂直于弦,且平分弦所对的圆心角及两条弧(优弧和劣弧)。
垂径定理的证明运用的是等腰三角形“三线合一”的知识,同时也说明了圆是轴对称图形。
(注:垂径定理没有逆定理,为什么?)3、几种位置关系的概念:点与圆的位置关系(圆内、圆上、圆外);直线与圆的位置关系(相交、相切、相离);圆与圆的位置关系(共五种),注:圆与圆的位置关系只注重结果,不注重过程)4、圆与正多边形。
正多边形的概念(不仅各条边要相等,各个内角也要相等),中心角的概念,正多边形半径的概念;外心与内心的概念,正多边形都有外接圆和内切圆(注:不是任意多边形都有外接圆或内切圆);正多边形都是轴对称图形和旋转对称图形,正偶数边形既是轴对称图形,又是中心对称图形(中心对称与旋转对称的概念)。
5、思想:圆的研究方法体现的是“以直代曲”的数学思想,因此在面对圆的题目时,多注直线和线段,不要受曲线的干扰。
例1:下列命题中是真命题的是( ) A .经过平面内任意三点可作一个圆;B .相交两圆的公共弦一定垂直于连心线;C .相等的圆心角所对的弧一定相等;D .内切两圆的圆心距等于两圆半径的和. 注:关于圆的定理辨析。
例2:关于三角形外心说法正确的是( ) A 、三角形的外心一定在三角形的内部 B 、三角形的外心到各边的距离相等 C 、三角形的外心到三个顶点的距离相等 D 、三角形的外心到三边中点的距离相等注:外心的含义,三角形三条边垂直平分线的交点。
例3:如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于(02)M ,,(08)N ,两点,则点P 的坐标是( ) A.(53),B.(35),C.(54),D.(45),注:首先是相切的性质,然后在坐标系里运用了垂径定理和勾股定理。
二次函数与圆的综合压轴题
一、题目描述
本题是一道综合性的数学题,涉及到二次函数和圆的相关知识。
具体要求如下:
给定一个二次函数 $y=ax^2+bx+c$ 和一个圆 $x^2+y^2=r^2$,其中 $a,b,c,r$ 均为已知常数,且 $a\neq0$。
请编写一个函数,判断该二次函数与圆是否有交点,并输出交点的坐标。
二、解题思路
1. 二次函数与圆的关系
首先,我们需要了解二次函数和圆之间的关系。
对于一个二次函数$y=ax^2+bx+c$ 和一个圆 $x^2+y^2=r^2$,它们之间可能存在以下三种情况:
(1)没有交点:当二次函数和圆分离时,它们没有交点。
(2)相切:当二次函数和圆相切时,它们只有一个交点。
(3)相交:当二次函数和圆相交时,它们有两个交点。
接下来,我们需要确定如何求出这些交点的坐标。
2. 求解交点坐标
对于一条直线和一个圆之间的交点坐标可以通过联立直线方程和圆方程求解。
但是对于一个二次函数而言,并不存在明确的直线方程。
因此,在本题中,我们可以通过以下步骤求解交点坐标:
(1)将二次函数和圆的方程联立,得到一个关于 $x$ 的二次方程。
(2)解出该二次方程的根,即为交点的横坐标。
(3)将横坐标代入二次函数或圆的方程中,求出相应的纵坐标。
最后,我们需要根据交点个数输出不同的结果。
如果没有交点,则输出“无交点”;如果有一个交点,则输出该交点坐标;如果有两个交点,则输出两个交点坐标。
三、代码实现
下面是本题的完整代码实现:。
二次函数2.1二次函数开语问题:(1)圆的面积y(cm²)与圆的半径x(cm);(2)如果温室的种植面积为y(m²),外围矩形周长为120m,一边长为x(m),请写出y 关于x的函数关系。
由以上函数解析式,我们可以得出化简后它们都具有y=ax²+bx+c(a,b,c是常数,其中a≠0)的形式。
二次函数:形如y=ax²+bx+c(a,b,c是常数,其中a≠0)的函数。
其中a为二次项系数,b为一次项系数,c为常数项。
例如:y=-x²+58x-112的二次项系数a=-1,一次项系数b=58,常数项c=-112注意:有时x和y都有范围限制,做题时格外注意,否则影响答案以致全部做错!1、下列函数中,哪些是二次函数?(1)y=x²;(2)y=2x²-x-1;(3)y=x(1-x);(4)y=(x-1)²-(x+1)(x-1)2、分别写出下列二次函数的二次项系数、一次项系数和常数项;(1)y=x²+1;(2)y=-3x²+7x-12:(3)y=2x(1-x)例1、如图,一张正方形纸板的边长为2cm,将它剪去四个全等的直角三角形(图中阴影部分)。
设AE=BF=CG=DH=x(cm),四边形EFGH的面积为y(cm²),求:(1)y关于x的函数解析式和自变量x的取值范围;(2)当x分别为0.25,0.5,1,1.5,1.75时,对应的四边形EFGH的面积。
例2、已知二次函数y=x²+px+q,当x=1时,函数值是4;当x=2时,函数值是-5,求这个二次函数的解析式。
例3、已知二次函数y=ax²+bx+3,当x=2时,函数值是3;当x=-2时,函数值是2。
求这个二次函数的解析式。
例4、某工厂1月份的产值为200万元,平均每月产值的增长率为x,求该工厂第一季度的产值y关于x的函数解析式。
2.2二次函数的图象请按下列步骤用描点法画二次函数y=x ²的图象。
专题30 圆与二次函数结合1.一动点P 在二次函数2111424y x x =-+的图像上自由滑动,若以点P 为圆心,1为半径的圆与坐标轴相切,则点P 的坐标为______.【答案】(1,1)-或(3,1)或(1,0)【分析】根据题意可分两种情况讨论:①当P 与x 轴相切时,则点P 的纵坐标为1,则得一元二次方程,解方程即可;②当P 与y 轴相切时,点P 的横坐标为1或-1,则可得点P 的坐标,综上即可求解. 【详解】解:如图所示:则可分两种情况:①当P 与x 轴相切时,则点P 的纵坐标为1,令21111424x x -+=,解得11x =-,23x =,此时点P 的坐标为:(1,1)-或(3,1),②当P 与y 轴相切时,点P 的横坐标为1或-1,则此时点P 的坐标为:(1,1)-或(1,0), 综上所述:点P 的坐标为:(1,1)-或(3,1)或(1,0), 故答案为:(1,1)-或(3,1)或(1,0).【点睛】本题考查了二次函数的图像及性质和圆的切线的应用,掌握切线的性质,巧妙运用分类讨论思想解决问题是解题的关键.2.如图,平面直角坐标系中,以点C (2,3)为圆心,以2为半径的圆与x 轴交于A ,B 两点.若二次函数y =x 2+bx +c 的图象经过点A ,B ,试确定此二次函数的解析式为 ____________.【答案】y=x 2-4x +3【分析】过点C 作CH ⊥AB 于点H ,然后利用垂径定理求出CH 、AH 和BH 的长度,进而得到点A 和点B 的坐标,再将A 、B 的坐标代入函数解析式求得b 与c ,最后求得二次函数的解析式. 【详解】解:过点C 作CH ⊥AB 于点H ,则AH=BH ,∵C (2,3), ∴CH=3, ∵半径为2, ∴AH=BH=()2223-=1,∵A (1,0),B (3,0),∴二次函数的解析式为y=(x ﹣1)(x ﹣3)=x 2﹣4x +3, 故答案为:y=x 2-4x +3.【点睛】本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C 作CH ⊥AB 于点H ,利用垂径定理求出点A 和点B 的坐标. 3.如图,抛物线2143115y x =-与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.【答案】26【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可. 【详解】令214311515y x x =--中y=0,得x 1=-3,x 2=53, ∴直线AC 的解析式为313y x =--, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1 ∴PQ 2=PB 2-BQ 2, =(x-53)2+(313x )2-1, =242837533x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ 的最小值是26, 故答案为:26,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.二、解答题4.如图,在平面直角坐标系中,以()5,4D 为圆心的圆与y 轴相切于点C ,与x 轴相交于A 、B 两点,且6AB =.(1)求经过C 、A 、B 三点的抛物线的解析式; (2)设抛物线的顶点为F ,证明直线FA 与D 相切;(3)在x 轴下方的抛物线上,是否存在一点N ,使CBN 面积最大,最大值是多少,并求出N 点坐标. 【答案】(1)215442y x x =-+ (2)证明见解析 (3)存在.当4n =时,BCNS 最大,最大值为16,此时()4,2N -.【分析】(1)连接CD ,由y 轴是D 的切线,可得DC y ⊥轴,过点D 作DE AB ⊥于点E ,根据垂径定理可得3AE BE ==,连接AD ,在Rt ADE △中可求出AD ,即圆的半径,然后利用矩形的判定证明四边形OCDE 是矩形,得到4CO =,2OA =,8OB =,从而得到C 、A 、B 三点的坐标,再利用待定系数法即可确定经过点C 、A 、B 三点的抛物线的解析式;(2)因为点D 为圆心,点A 在圆周上,5r AD ==,利用勾股定理的逆定理证明90DAF ∠=︒即可; (3)设存在点N ,过点N 作NPy 轴,交BC 于点P ,求出直线BC 的解析式,设点N 的坐标215,442n n n ⎛⎫-+ ⎪⎝⎭,则可得点P 的坐标为1,42n n ⎛⎫-+⎪⎝⎭,从而根据BCN PNC PNB S S S =+△△△,表示出BCN △的面积,利用配方法可确定最大值,继而可得出点N 的坐标. (1)解:如图,连接CD ,AD ,过点D 作DE AB ⊥于点E , ∴90DEO ∠=︒,∵以()5,4D 为圆心的圆与y 轴相切于点C ,且6AB =,90COB ∠=︒,∴DC y ⊥轴,1AE BE AB 32===,4DE =,∴90DCO ∠=︒,2222435DA DE AE A =+=+=, ∴四边形OCDE 是矩形, ∴4CO DE ==,5==OE CD ,∴2OA OE AE =-=,8OB OA AB =+=, ∴()0,4C ,()2,0A ,()8,0B ,设经过点C 、A 、B 三点的抛物线解析式为:2y ax bx c =++, 将点C 、A 、B 三点的坐标代入可得:42064804a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得:14524a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴经过C 、A 、B 三点的抛物线的解析式为:215442y x x =-+.(2)证明:∵点D 为圆心,点A 在圆周上, 由(1)知,5r DA ==, 抛物线解析式为:215442y x x =-+,且顶点F 的坐标为95,4⎛⎫- ⎪⎝⎭, 又∵()5,4D ,与D 相切.N ,使CBN 面积最大,N 作NP y 轴,交()8,0B ,的解析式为:y kx =NPy 轴,交的坐标为142n =-+BCN PNC S =△当4n =时,BCNS最大,最大值为16,此时()4,2N -.【点睛】本题考查了二次函数及圆的综合应用,涉及垂径定理,矩形的判定和性质,切线的判定与性质,勾股定理及勾股定理逆定理,待定系数法求二次函数解析式,二次函数的性质等知识.由BCN PNC PNB S S S =+△△△得到BCNS与n 的函数关系是解题的关键.5.定义:平面直角坐标系xOy 中,过二次函数图像与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P (2,2),以P 5P 是不是二次函数y =x 2﹣4x +3的坐标圆,并说明理由;(2)已知二次函数y =x 2﹣4x +4图像的顶点为A ,坐标圆的圆心为P ,如图1,求△POA 周长的最小值; (3)已知二次函数y =ax 2﹣4x +4(0<a <1)图像交x 轴于点A ,B ,交y 轴于点C ,与坐标圆的第四个交点为D ,连接PC ,PD ,如图2.若∠CPD =120°,求a 的值. 【答案】(1)⊙P 是二次函数y =x 2﹣4x +3的坐标圆,理由见解析 (2)△POA 周长的最小值为6 (3)43312a +=【分析】(1)先求出二次函数y=x2-4x+3图像与x轴、y轴的交点,再计算这三个交点是否在以P(2,2)为圆心,5为半径的圆上,即可作出判断.(2)由题意可得,二次函数y=x2-4x+4图像的顶点A(2,0),与y轴的交点H(0,4),所以△POA周长=PO+P A+OA=PO+PH+2≥OH+2,即可得出最小值.(3)连接CD,P A,设二次函数y=ax2-4x+4图像的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,设PE=m,由∠CPD=120°,可得P A=PC=2m,CE=3m,PF=4-m,表示出AB、AF=BF,在Rt△P AF中,利用勾股定理建立方程,求得m的值,进而得出a的值.(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图像与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴P A=PB=PC=5,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图像的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+P A+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD ,P A ,设二次函数y =ax 2﹣4x +4图像的对称轴l 与CD 交于点E ,与x 轴交于点F ,由对称性知,对称轴l 经过点P ,且l ⊥CD , ∵AB =161641a aa a--=, ∴AF =BF =21aa-, ∵∠CPD =120°,PC =PD ,C (0,4), ∴∠PCD =∠PDC =30°,设PE =m ,则P A =PC =2m ,CE =3m ,PF =4﹣m , ∵二次函数y =ax 2﹣4x +4图像的对称轴l 为2x a=, ∴23m a=,即23a m =,在Rt △P AF 中,P A 2=PF 2+AF 2, ∴222214(4)()a m m a-=-+, 即22224(1)34(4)43mm m m -=-+,化简,得(823)16m +=,解得843m =+, ∴2433123a m+==.【点睛】此题是二次函数与圆的综合题,主要考查了二次函数的性质、圆的基本性质、解直角三角形、勾股定理等知识以及方程的思想,添加辅助线构造直角三角形是解答本题的关键.6.已知抛物线y =ax 2+bx +3(a ≠0)经过A (3,0)、B (4,1)两点,且与y 轴交于点C . (1)求抛物线的解析式;(2)如图,设抛物线与x 轴的另一个交点为D ,在抛物线上是否存在点P ,使△P AB 的面积是△BDA 面积的2倍?若存在,求出点P 的坐标;若不存在,请说明理由.(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合),经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求面积的最小值及E 点坐标.【答案】(1)215322y x x =-+;(2)存在,点P 坐标(7172-,5172-)或(7172+,5172+);(3)面积的最小值为94,E 点坐标(32,32) 【分析】(1)根据待定系数法求解即可;(2)根据抛物线的解析式求出点D 的坐标,取点E (1,0),作EP ∥AB 交抛物线于点P ,得到直线EP 为y =x ﹣1,联立方程组求解即可;(3)作BD ⊥OA 于D ,得到OA =OC =3,AD =BD =1,证明EF 是△AEO 的外接圆的直径,得到△EOF 是等腰直角三角形,当OE 最小时,△EOF 的面积最小,计算即可; 【详解】(1)将点A (3,0),B (4,1)代入可得: 933014431a b a b ++⎧⎨++⎩==,解得:1252a b ⎧=⎪⎪⎨⎪=-⎪⎩, 故函数解析式为215322y x x =-+; (2)∵抛物线与x 轴的交点的纵坐标为0, ∴2153022x x -+=,解得:x 1=3,x 2=2, ∴点D 的坐标为(2,0),取点E (1,0),作EP ∥AB 交抛物线于点P ,∵ED =AD =1,∴此时△P AB 的面积是△DAB 的面积的两倍, ∵直线AB 解析式为y =x ﹣3, ∴直线EP 为y =x ﹣1,由2115322y x y x x =-⎧⎪⎨=-+⎪⎩解得71725172x y ⎧-=⎪⎪⎨-⎪=⎪⎩或71725172x y ⎧+=⎪⎪⎨+⎪=⎪⎩, ∴点P 坐标(7172-,5172-)或(7172+,5172+). (3)如图2中,作BD ⊥OA 于D .∵A (3,0),C (0,3),B (4,1), ∴OA =OC =3,AD =BD =1, ∴∠OAC =∠BAD =45°, ∵∠OAF =∠BAD =45°, ∴∠EAF =90°,∴EF 是△AEO 的外接圆的直径, ∴∠EOF =90°,∴∠EFO =∠EAO =45°, ∴△EOF 是等腰直角三角形, ∴当OE 最小时,△EOF 的面积最小, ∵OE ⊥AC 时,OE 最小,OC =OA ,∴CE =AE ,OE =12AC =322, ∴E (32,32),S △EOF =1323292224⨯⨯=.∴当△OEF 的面积取得最小值时,面积的最小值为94,E 点坐标(32,32). 【点睛】本题主要考查了二次函数综合、一次函数的性质、圆的综合应用,准确计算是解题的关键. 7.如图,在直角坐标系中,抛物线y =ax 2+bx -2与x 轴交于点A (-3,0)、B (1,0),与y 轴交于点C .(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D ,使得△ABD 的面积等于△ABC 的面积的53倍?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点E 是以点C 为圆心且1为半径的圆上的动点,点F 是AE 的中点,请直接写出线段OF 的最大值和最小值.【答案】(1)224x 233y x =+-;(2)存在,理由见解析;D (-4, 103)或(2,103);(3)最大值13122+;最小值13122- 【分析】(1)将点A 、B 的坐标代入函数解析式计算即可得到;(2)点D 应在x 轴的上方或下方,在下方时通过计算得∴△ABD 的面积是△ABC 面积的43倍,判断点D 应在x 轴的上方,设设D (m ,n ),根据面积关系求出m 、n 的值即可得到点D 的坐标;(3)设E(x,y),由点E 是以点C 为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E 的坐标为E 2(,12)x x,再根据点F 是AE 中点表示出点F 的坐标2312(,)22x x ,再设设F(m,n),再利用m 、n 、与x 的关系得到n=21(23)22m ,通过计算整理得出22231(1)()()22n m ,由此得出F 点的轨)时,02C (,-)4533<,所以设D (m ,n ), △∴n =103∴223m +y=212x ,2,12)x x ,是AE 的中点, 的坐标2312(,)22x x ,,n=2122x ,n=21(23)22m ,∴2n+2=21(23)m ,∴(2n+2)2=1-(2m+3)2, ∴4(n+1)2+4(32m)2=1, ∴22231(1)()()22n m, ∴F 点的轨迹是以3(,1)2--为圆心,以12为半径的圆,∴最大值:2231131(0)12222, 最小值:2231131(0)12222最大值13122+;最小值13122- 【点睛】此题是二次函数的综合题,考察待定系数法解函数关系式,图像中利用三角形面积求点的坐标,注意应分x 轴上下两种情况,(3)还考查了两点间的中点坐标的求法,两点间的距离的确定方法:两点间的距离的平方=横坐标差的平方+纵坐标差的平方.8.如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线y =16x 2+bx+c 过点A 和B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象(要求过点A 、B 、C ,开口方向、顶点和对称轴相对准确)(2)点Q (8,m )在抛物线y =16x 2+bx+c 上,点P 为此抛物线对称轴上一个动点,求PQ+PB 的最小值;(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.【答案】(1)C (0,2),图象见解析;(2)PQ+PB 的最小值210;(3)OE 的解析式为y=12x -. 【详解】试题分析:(1)根据题意可知点A ,B 的坐标分别为(2,0),(6,0),代入函数解析式即可求得抛物线的解析式,即可得点C 的坐标;(2)根据图象可得PQ+PB 的最小值即是AQ 的长,所以抛物线对称轴l 是x=4.所以Q (8,m )抛物线上,∴m=2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK=2,AK=6,求的AQ 的值即可;(3)此题首先要证得OE ∥CM ,利用待定系数法求得CM 的解析式,即可求得OE 的解析式. 试题解析:(1)由已知,得A (2,0),B (6,0),∵抛物线y=16x 2+bx+c 过点A 和B ,则2212206{16606b c b c ⨯++⨯++== 解得4{32b c -== 则抛物线的解析式为y=16x 2-43x+2.故C (0,2).(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确) (2)如图①,抛物线对称轴l 是x=4. ∵Q (8,m )在抛物线上,∴m=2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK=2,AK=6, ∴AQ=22=210AK QK +.又∵B (6,0)与A (2,0)关于对称轴l 对称, ∴PQ+PB 的最小值=AQ=210. (3)如图②,连接EM 和CM .由已知,得EM=OC=2.∵CE是⊙M的切线,∴∠DEM=90°,则∠DEM=∠DOC.又∵∠ODC=∠EDM.故△DEM≌△DOC.∴OD=DE,CD=MD.又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.则OE∥CM.设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),∴40 {2k bb+==解得1 {22 kb-==直线CM的解析式为y=−12x+2.又∵直线OE过原点O,且OE∥CM,∴OE的解析式为y=−12x或y=0.5x.9.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为.(直接写出答案)【答案】(1)y=﹣x 2+2x+3;(2)当x=32时,CD 最大=94;(3)x=±12或x=±2;(4)1.【详解】分析:(1)用待定系数法求出抛物线解析式即可;(2)先确定出直线AB 解析式,进而得出点D ,C 的坐标,即可得出CD 的函数关系式,即可得出结论;(3)先确定出CD=|-x2+3x|,DP=|-x+3|,再分两种情况解绝对值方程即可;(4)利用四个点在同一个圆上,得出过点B ,C ,P 的外接圆的圆心既是线段AB 的垂直平分线上,也在线段PC 的垂直平分线上,建立方程即可. 本题解析:(1)∵抛物线y=﹣x 2+bx+c 与x 轴正半轴交于点A (3,0),与y 轴交于点B (0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x 2+2x+3;(2)∵A (3,0),B (0,3),∴直线AB 解析式为y=﹣x+3, ∵P (x ,0).∴D (x ,﹣x+3),C (x ,﹣x 2+2x+3), ∵0<x <3,∴CD=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x=﹣(x ﹣32)2+94,当x=32时,CD 最大=94; (3)由(2)知,CD=|﹣x 2+3x|,DP=|﹣x+3|①当S △PDB =2S △CDB 时,∴PD=2CD ,即:2|﹣x 2+3x|=|﹣x+3|,∴x=±12或x=3(舍),②当2S △PDB =S △CDB 时,∴2PD=CD ,即:|﹣x 2+3x|=2|﹣x+3|,∴x=±2或x=3(舍), 即:综上所述,x=±12或x=±2; (4)直线AB 解析式为y=﹣x+3,∴线段AB 的垂直平分线l 的解析式为y=x , ∵过点B ,C ,P 的外接圆恰好经过点A ,∴过点B ,C ,P 的外接圆的圆心既是线段AB 的垂直平分线上,也在线段PC 的垂直平分线上, ∴2232x x x -++=,∴x=±3,故答案为3± 10.如图,已知抛物线的对称轴为直线l :4,x =且与x 轴交于点(2,0),A 与y 轴交于点C (0,2).(1)求抛物线的解析式;(2)试探究在此抛物线的对称轴l 上是否存在一点P ,使AP CP +的值最小?若存在,求AP CP +的最小值,若不存在,请说明理由;(3)以AB 为直径作⊙M ,过点C 作直线CE 与⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE 的解析式. 【答案】解:(1)如图,由题意,设抛物线的解析式为:2y a x 4a 0k =-+≠()()∵抛物线经过(2,0)A 、C (0,2).∴24)204)2(0{(2a k a k --+=∴+= 解得:a=16,23k =-.∴212(4)63y x =--,即:214263y x x =-+. (2)存在.令0y =,得28120,x x -+=即(2)(6)0x x --=,122, 6.x x ∴== ∴抛物线与x 轴的另-交点(6,0)B .如本题图2,连接CB 交l 于点P ,则点P 即是使AP CP +的值最小的点.因为A B 、关于l 对称,则AP BP =,AP CP CB ∴+=,即AP CP +的最小值为BC . ∵6,2OB OC ==,226240210.BC ∴=+==AP CP ∴+的最小值为210;(3)如图3,连接ME ,∵CE 是⊙M 的切线,∴90ME CE CEM ,⊥∠=︒,由题意,得2.OC ME ODC MDE ==∠=∠, ∵在COD MED ∆∆与中,{COD MED ODC EDM OC EM∠=∠∠=∠=, ∴AAS COD MED ∆∆≌(), OD DE DC DM ∴==,,设OD x =,则4CD DM OM OD x ==-=-, 则在Rt △COD 中,又222OD OC CD +=,∴2224(4)x x +=-,解得32x =,∴D (32,0) 设直线CE 的解析式为y mx b =+,∵直线CE 过C (0,2)、D (32,0)两点, ∴3{22m b b +==,解方程组得:4{32m b =-=. ∴直线CE 的解析式为y 423x =-+.【详解】试题分析:(1)根据题意设抛物线的解析式为2y a x 4a 0k =-+≠()(),将(2,0)A 、C (0,2)代入解析式,即可求出a ,k 的值,得出抛物线的解析式,令0y =,即可求出抛物线与x 轴另-交点(6,0)B ;(2)连接CB 交l 于点P ,则点P 即是使AP CP +的值最小的点. 则AP CP +的最小值为BC ,在Rt △OBC 中,根据勾股定理即可求出BC 的值;(3)连接ME ,根据已知条件可得COD MED ∆∆≌,根据全等三角形的对应边相等可得OD DE DC DM ==,,在Rt △COD 中,根据勾股定理求出OD ,即可得出D 点坐标,设直线CE 的解析式为y mx b =+,代入C ,D 两点坐标,即可解得直线CE 的解析式. 考点:二次函数的综合题.点评:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,也考查了二次函数与圆的综合,本题综合性强,有一定难度.11.如图,已知二次函数23y ax bx =++的图象与x 轴交于点A (1,0)、B (3-,0),与y 轴的正半轴交于点C .(1)求二次函数23y ax bx =++的表达式;(2)点D 是线段OB 上一动点,过点D 作y 轴的平行线,与BC 交于点E ,与抛物线交于点F ,连接CF ,探究是否存在点D 使得△CEF 为直角三角形?若存在,求点D 的坐标;若不存在,说明理由;(3)若点P在二次函数图象上,是否存在以P BC相切,若存在,求点P的坐标;若不存在,说明理由.y x.3∥OB关于抛物线对称轴直线x=)②当∠ECF =90°时,作FG ⊥y 轴于G , 由OB =OC ,∠BOC =90°,可知∠BCO =45° ∵CF ⊥CB , ∴∠FCG =45°,∴△CFG 是等腰直角三角形, 设CG =a ,则点F 坐标为(-a ,a +3),代入223y x x =--+得:23()2()3a a a +=----+ 解得11a =,20a =(舍去) 点F (-1,4),此时点D 坐标为(-1,0).综上所述:存在这样的点D ,点D 坐标为(-2,0)或(-1,0) (3)解:①当点P 在BC 上方时,过点P 作PG ⊥BC 于点G ,作PM ⊥x 轴,交BC 于点N ,过点P 作直线PH ∥BC .则PNG 是等腰直角三角形,∵PG =2, ∴PN =2, ∵PM ⊥x 轴,∴直线PH 由直线BC 向上平移两个单位长度得到, ∴直线PH 的解析式为5y x =+. 联立直线PH 和抛物线的解析式,得:2235y x x y x ⎧=--+⎨=+⎩, 解得:14x y =-⎧⎨=⎩或23x y =-⎧⎨=⎩.∴点P 坐标为(-1,4)或(-2,3) .②当点P 在BC 下方时,同理可得直线PH 由直线BC 向下平移两个单位长度得到, ∴直线PH 的解析式为1y x =+.2231y x x y x ⎧=--+⎨=+⎩, 解得:31721172x y ⎧-+=⎪⎪⎨-+⎪=⎪⎩或31721172x y ⎧--=⎪⎪⎨--⎪=⎪⎩.∴点P 坐标为(31711722,-+-+)或(31711722----,). 综上所述:点P 坐标为(-1,4)或(-2,3)或(31711722,-+-+)或(31711722----,). 【点睛】此题考查了二次函数的综合应用,涉及了待定系数法求解析式,二次函数的性质,圆的切线的性质,解题的关键是熟练掌握并灵活应用相关性质进行求解,难度适中.12.已知二次函数的图象交x 轴于点A (3,0),B (-1,0),交y 轴于点C (0,-3),P 这抛物线上一动点,设点P 的横坐标为m .(1)求抛物线的解析式:(2)当△P AC 是以AC 为直角边的直角三角形时,求点P 的坐标:(3)抛物线上是否存在点P ,使得以点P 为圆心,2为半径的圆既与x 轴相切,又与抛物线的对称轴相交?若存在,求出点P 的坐标,并求出抛物线的对称轴所截的弦MN 的长度;若不存在,请说明理由.(写出过程) 【答案】(1)223y x x =--(2)点P 的坐标为(-2,5)或(1,-4);(3)点P 的坐标为()122--,或()122+-,,抛物线的对称轴所截的弦MN 的长度为22【分析】(1)利用待定系数法求解即可;(2)分当∠P AC =90°时,当∠PCA =90°时,两种情况讨论求解即可;(3)由圆P 的半径为2,且圆P 与抛物线对称轴有交点,且与x 轴相切,可得点P 的纵坐标为-2,由此求出点P 的坐标即可;过点P 作PE ⊥MN 于E ,由垂径定理可得MN =2ME ,利用勾股定理求出ME 即可得到答案.(1)解:设抛物线解析式为()()13y a x x =+-,把点C (0,-3)代入得,()()01033a +-=-,∴1a =,∴抛物线解析式为()()21323y x x x x =+-=--;(2)解:如图所示,当∠P AC =90°时,设P A 与y 轴交点为D , ∵点A 坐标为(3,0),点C 坐标为(0,-3), ∴OA =OC =3, ∵∠AOC =90°, ∴∠CAO =45°, ∴∠DAO =45°, ∴OA =OD =3,∴点D 的坐标为(0,3), 设直线AD 的解析式为y kx b =+,∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线AD 的解析式为3y x =-+,联立2323y x y x x =-+⎧⎨=--⎩, 解得25x y =-⎧⎨=⎩或30x y =⎧⎨=⎩(舍去),∴点P 的坐标为(-2,5);当∠PCA =90°,设直线PC 与x 轴的交点为E , 同理可证∠ECO =45°,即OE =OC , ∴点E 的坐标为(-3,0),同理可以求出直线PC 的解析式为3y x =--,联立2323y x y x x =--⎧⎨=--⎩, 解得14x y =⎧⎨=-⎩或03x y =⎧⎨=-⎩(舍去),∴点P 的坐标为(1,-4),综上所述,点P 的坐标为(-2,5)或(1,-4);(3)解:∵抛物线解析式为()222314y x x x =--=--, ∴抛物线对称轴为直线1x =,∴点A 和点B 到抛物线的对称轴的距离都为2,∵圆P 的半径为2,且圆P 与抛物线对称轴有交点,且与x 轴相切, ∴点P 的纵坐标为-2, 当2y =-时,2232x x --=-, 解得121212x x =-=+,,∴点P 的坐标为()122--,或()122+-,, 过点P 作PE ⊥ME 交抛物线对称轴于E ,∴1212PE =+-=或()112=2--,2MN ME =, ∴222ME MP PE =-=, ∴22MN =,∴点P 的坐标为()122--,或()122+-,,抛物线的对称轴所截的弦MN 的长度为22【点睛】本题主要考查了二次函数综合,一次函数与几何综合,圆与函数综合,待定系数法求函数解析式等等,正确理解题意,利用分类讨论和数学结合的思想求解是解题的关键.13.如图,二次函数24y ax =+的图象与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OA=OC(1)求二次函数的解析式;(2)若以点O 为圆心的圆与直线AC 相切于点D ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P 使得以P 、A 、D 、O 为顶点的四边形是直角梯形?若存在,直接写出点P 坐标;若不存在,请说明理由.【答案】(1)2144y x =-+(2)点D 的坐标为()2,2-(3)存在,点1P 的坐标为()8,12-,点2P 的坐标为()225,225----【分析】(1)由题意可知C 坐标,根据题意得到三角形AOC 为等腰直角三角形,确定出A 坐标,代入二次函数解析式求出a 的值,即可确定出解析式;(2)由题意连接OD ,作DE ∥y 轴,交x 轴于点E ,DF ∥x 轴,交y 轴于点F ,如图1所示,由圆O 与直线AC 相切于点D ,得到OD 垂直于AC ,由OA =OC ,利用三线合一得到D 为AC 中点,进而求出DE 与DF 的长,确定出D 坐标即可;(3)根据题意分两种情况考虑:经过点A 且与直线OD 平行的直线的解析式为y =-x -4,与抛物线解析式联立求出P 坐标;经过点O 且与直线AC 平行的直线的解析式为y =x ,与抛物线解析式联立求出P 坐标即可. (1)解:∵二次函数24y ax =+的图象与y 轴交于点C , ∴点C 的坐标为()0,4,∵二次函数24y ax =+的图象与x 轴交于点A ,tan ∠OAC =1, ∴∠CAO =45°, ∴OA =OC =4, ∴点A 的坐标为()4,0-, ∴()2044a =-+,∴14a =-,∴二次函数的解析式为2144y x =-+;(2)连接OD ,作DE 轴,交x 轴于点E ,DF 轴,交y 轴于点F ,如图1所示,∵⊙O 与直线AC 相切于点D ,∴OD ⊥AC , ∵OA =OC =4, ∴点D 是AC 的中点,∴122DE OC ==,122DF OA ==,∴点D 的坐标为()2,2-; (3)直线OD 的解析式为y =-x ,如图2所示,则经过点A 且与直线OD 平行的直线的解析式为y =-x -4,解方程组24144y x y x =--⎧⎪⎨=-+⎪⎩,消去y ,得24320x x --=,即()()840x x -+=, ∴18x =,24x =-(舍去), ∴y =-12,∴点1P 的坐标为()8,12-;直线AC 的解析式为y =x +4, 则经过点O 且与直线AC 平行的直线的解析式为y =x ,解方程组2144y x y x =⎧⎪⎨=-+⎪⎩, 消去y ,得24160x x +-=,即225x =-+, ∴1225x =--,2225x =-+(舍去), ∴225y =--,∴点2P 的坐标为()225,225----.【点睛】本题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,坐标与图形性质,直线与抛物线的交点,直线与圆相切的性质,锐角三角函数定义,以及等腰直角三角形的性质,熟练掌握二次函数的性质是解答本题的关键.14.如图,已知二次函数213442y x x =-++的图像与x 轴交于点A ,B ,与y 轴交于点C ,顶点为D ,连接BC ;(1)求顶点D 的坐标; (2)求直线BC 的解析式;(3)点E 是第一象限内抛物线上的动点,连接BE ,CE ,求△BCE 面积的最大值; (4)以AB 为直径,M 为圆心作圆M ,试判断直线CD 与圆M 的位置关系,并说明理由 【答案】(1)25(3,)4(2)142y x =-+(3)16(4)直线与圆M 相交,理由见解析【分析】(1)利用配方法将一般式解析式转化为顶点式解析式;(2)先解得(2,0),(8,0)A B -,(0,4)C ,再利用待定系数法,代入点B 、C 的坐标即可解答; (3)根据中点公式解得点M 的坐标,再利用两点间的距离公式解得CM ,MD 的长,比较MD <CM ,得到直线与圆M 有两个交点,据此解答. (1)解:222213114612264=()4()445949(3)44y x x x x x x x --=-++-+=-+--+=+-即顶点D 的坐标25(3,)4; (2)由(1)知(0,4)C 令0y =得201(3)254=4x -+- 解得128,2x x ==-(2,0),(8,0)A B ∴-设直线BC 的解析式:y kx b =+,代入点B 、C480b k b =⎧⎨+=⎩124k b ⎧=-⎪∴⎨⎪=⎩ 142y x ∴=-+ (3)如图,设21(,)3442E x x x ++-(0<x <8),过点E 作EH x ⊥于H , BCE BOC COBE S S S=-四边形 BHE BOC COHE SS S =+-梯形 1()1222EH CO OH BH EH BO CO +⋅=⋅+-⋅223432421(4)1114(8)()842422x x x x x x -+⋅=-⋅-+-++⨯+⨯+ 2=8x x -+2(4)16=x --+即当x =4时,△BCE 面积的最大值为16;(4)直线与圆M 的位置是相交,理由如下,如图,M 为BC 的中点,0804(,)22M ++∴ 即(4,2)M222225305(04)(42)25,(34)(2)44CM MD ∴=-+-==-+-= 32030532025,444=< MD MC ∴<∴直线CD 与圆M 有两个交点,即直线与圆M 的位置是相交.【点睛】本题考查二次函数与一次函数的综合,涉及配方法、待定系数法求一次函数的解析式、直线与圆的位置关系、勾股定理、中点公式、两点距离公式等知识,是重要考点,掌握相关知识是解题关键. 15.如图,已知二次函数y =ax 2+bx +3的图象与x 轴交于点A (﹣1,0)、B (4,0),与y 轴交于点C . (1)二次函数的表达式为 ;(2)点M 在直线BC 上,当△ABM 为等腰三角形时,求点M 的坐标;(3)若点E 在二次函数的图象上,以E 为圆心的圆与直线BC 相切于点F ,且EF =65,请直接写出点E 的坐标. 【答案】(1)239344y x x =-++;(2)点M 为(0,3)或(8,﹣3)或(32,158);(3)点E 的坐标为3626,4⎛⎫- ⎪ ⎪⎝⎭或3626,4⎛⎫+- ⎪ ⎪⎝⎭或3222,34⎛⎫-+ ⎪ ⎪⎝⎭或3222,34⎛⎫+- ⎪ ⎪⎝⎭. 【分析】(1)根据A 、B 两点的坐标,应用待定系数法即可求出二次函数的表达式;(2)首先通过BC 两点坐标,求出直线BC 的解析式,再根据三角形△ABM 是等腰三角形,分3种情况考虑,得到关于M 点横坐标x 的方程,解之即可得到x 的值,进而得到M 点坐标;(3)利用面积法求出O 到直线BC 的距离,结合EF 的长度可知P 1为线段OC 中点,可得P 1的坐标,进而可得P 2坐标,结合直线BC 的表达式,可求出直线EP 的表达式,联立直线EP 和抛物线的函数表达式,组成方程组,即可解得点E 的坐标.【详解】解:(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx +3得:3016430a b a b -+=⎧⎨++=⎩, ∴a =34-,b =94, ∴239344y x x =-++, 故二次函数表达式为:239344y x x =-++; (2)当x =0时,y =3,∴点C 的坐标是(0,3),设直线BC 的表达式为:y =kx +c (k ≠0),将B (4,0),C (0,3)代入y =kx +c 得:4303k c +=⎧⎨=⎩, ∴343k c ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为:334y x =-+,使得△ABM 为等腰三角形,存在如图所示的三种情况:过点M 1作M 1D ⊥AB ,∵A (﹣1,0),B (4,0),∴AD =12AB =52, ∴OD =32, 设M 1(x ,﹣34x +3), ∴M 1(32,158), ∵△ABM 为等腰三角形,∴AB =BM 2=5或AB =BM 3=5,设M 2(x 1,﹣34x 1+3), ∴BM 2=()22113434x x ⎛⎫-+-+ ⎪⎝⎭=5, 解得x 1=8或0,当x 1=0时,y =3,当x 1=8时,y =﹣3,∴点M 为(0,3)或(8,﹣3)或(32,158); (3)过点E 作EP ∥BC ,交y 轴于点P ,这样的点有两个,分别记为P 1,P 2,如图所示:∵OB =4,OC =3,∴BC =22OB OC +=5,∴点O 到直线BC 的距离为:125OB OC BC ⋅=, ∵以E 为圆心的圆与直线BC 相切于点F ,且EF =65, ∴点E 到直线BC 的距离是65, ∴点P 1为线段OC 的中点,∴CP 1=CP 2,∴P 2(0,92), ∵直线BC 的函数表达式为y =﹣34x +3, ∴直线EP 的函数表达式为y =﹣34x +32或y =﹣34x +92, 联立直线EP 和抛物线的表达式方程组,得:2334239344y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩或2394239344y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩, 得1126364x y ⎧=-⎪⎨=⎪⎩或2226364x y ⎧=+⎪⎨=-⎪⎩或33223234x y ⎧=-⎪⎨=+⎪⎩或44223234x y ⎧=+⎪⎨=-⎪⎩, ∴点E 的坐标为36264⎛⎫- ⎪ ⎪⎝⎭,或36264⎛⎫+- ⎪ ⎪⎝⎭,或322234⎛⎫-+ ⎪ ⎪⎝⎭,或322234⎛⎫+- ⎪ ⎪⎝⎭,.【点睛】本题主要考查了二次函数与几何的综合应用.解题的关键要熟练掌握代入法求二次函数的解析式和一次函数的解析式、两点间的距离公式及勾股定理等.。
【仲烦1】(我市)已知圆P的圆心在反比例函数y=-(A:>1)上,并与工轴相交于X、3两点.且x始终与]轴相切于定点C(0,1).⑴求经过三点的二次匣1数图象的解析式;(2)若二次函教图象的顶点为D,问当上为何值时'四边形也站尹为菱形.【耕音】解:(1)连接PC、PAx PB,谊P点ffPHXx轴.垂足为H・(1分)与y轴相切于点C(0, 1),.-.PC±y^.•.•P点在反比例函数》二占的囹象上,X•.•P点坐标为(k,1).(2分)•.•PAU.在RtAAPH中,AH=厨2_尸於后一1,•'•A(k-90 ).(3分)•.•由。
P交x轴于A、B两点,且PHJLAB,由垂径击理可知,PH垂直平分AB.AOB=OA+2AH=k•••B3小2_1,0).《4分〉故过A、B两点的抛物线的对称轴为PH所在的直钱斛析式为x=k.可设该抛物线解析式为y=a<x-k)2+h.(5分)又二.抛物线过C(。
,1),B(k-^2_r0),[ak^-^h=1•3|—?昭得a=l,h=1-k^.(7分)•.•抛物线解析式为y=心)2+1上2.(B分)(2)由<1)知抛物线顶点D坐标为(k,l-k2>•・•DH-k2-l.若四边形ADBP为装形.则必有PH=DH.(10分)VPH=1,.•-k2-l=l.又">1,(11分)•・•当k取以时,PD与AB互相垂直平分,则四边形ADBP为菱形•(12分)3【百麒2]翎南省韶关市)25.如图6,在平面直角坐标系中旭边形OABC是矩形,。
虹4应=2,直线),=-":与坐标轴交于D、E。
设M是加的中点,P是线段DE上的动点.(1)求M、D两点的坐标;<2)当P在什么位置时,PA=PB?求出此时P点的坐标j<3)过P作PH1BC,垂足为H,当以PM为直径的OF与BC相切于点N时,求梯形PHBH的面积.图6【分析】(1)因为四边形OABC是逅形,0A=4,AB=2»直线>=r-?与坐标轴交于D、E,M是AB的中点2.所以令y=0,即司术出D的坐标,而AM-1.印以M(4,1);(2)因为PA=PB.断以P是AB的香直平分线和直线ED的交点,而AE的中垂线是y=l,断以P的纵坐标为1,令直线ED的解析式中的y=l,求出的x的值即为相应的P的横坐标;(3〉可设P(x,y>,连将PN、MN、NF,因为点P在y・x-:上,所以P《x,粮据蹦意可2得PNlMNi FN±BCi F是圈心,又因N是钱段HB的中点,HN-NB-—»PH-2-(-x*-)t2 2 2BM=1,利用直径对的圆周角是直甬可得到ZHPX-ZHNP=ZHNP-ZBNM=90°•所以ZHPN=ZB取ph ir£x+| NM,又因ZPHN-ZB-900-所以可得到R tAPNH<^RtANMB•所以—•A2=—^,这BM BN—4-x1—样牧可得到关于X的方程,解之即可求出X的值,而饬求面招的四边形是一个直角梯形,南以Spg=也皿滋或"医号)("6+应)=.21_色叵.2 2 24满答】俄;《1)M", 1),D《9,0);(2分)2(2)V PA=PB>•七点P在线段AB的中毒线上,•.•点P的纵坐标是I,3又•:点P在尸-X-—上,2・.•点P的坐标为(【,1)?(4分)(3)设P(x,y),连接PN、MN、NF,3点P lSy=・x+-上,匕3・'・P(x ,-w+—),2依题意知:PN«LMN>FN^BC,F是圆心,・'・N是线段HB的中点,HN=NB=±M,PH=2.2口,BM=1,<6分)22HPN-ZHNP=NHNP-ZBNM=90°,NHPN=ZBNN1,又ZPHN=ZB=90°5RtAPNH^RtANMBs:HN_PH•'两南,4-x x*.."F=二,-等」22,(8分)x?-12x+14=0»朋得;x-6-j22(^-*>^舍去),k=6-皿=些罕=空也艾竺=一*孕屈,(9分)2【例题31(||-4省白银等7市新课程)28.在直角坐标系中>0A的丰径为4,圆心A曜标为(2, 0),S与X轴交于E、尸两点,与),轴交于(7、D两点,过点(7作0X的切线时,交x轴于点3.(1)求直线C5的解析式:(2)若抛物线.件履7)日€的顶点在直线3C上,与x轴的交点恰为点E、已求该抛物线的解析式J(3)试判断点C是否在抛物线上?(4)在抛物线上是否存在三个点,由它构成的三角形与A4OC相似?直接与出两组这样的点•4[分析】(1>SHAC.根撮区]的李径求出AC. W1B点人的坐麻求出0A,燃后利用勾腹定理列式求出0C・从而得到点C的坐标,再求出ZCAO=60=.然后粮掘直有三甬形两锐角互余米出NB=30。
1、已知:二次函数y=x2-kx+k+4的图象与y 轴交于点c,且与x 轴的正半轴交于A 、B 两点(点A 在点B 左侧)。
若A 、B 两点的横坐标为整数。
(1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D 的坐标是(0,6),点P (t,0)是线段 AB 上的一个动点,它可与点A 重合,但不与点B 重合。
设四边形PBCD 的面积为S,求S 与t 的 函数关系式;(3)若点P 与点A 重合,得到四边形ABCD,以四边形ABCD 的一边为边,画一个三角形,使 它的面积等于四边形ABCD 的面积,并注明三角形高线的长。
再利用“等底等高的三角形面积相 等”的知识,画一个三角形,使它的面积等于四边形ABCD 的面积(画示意图,不写计算和证明 过程)。
2、( 1)已知:关于x 、y 的方程组 实数解,求m 的取值范围;(2)在(1)的条件下,若抛物线y=-(m-l)x2+(m-5)x+6与x 轴交于A 、B 两点,与y 轴交于点 C,且AABC 的面积等于12,确定此抛物线及直线y=(m+l)x-2的解析式;(3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。
3、已知:二次函数y=x2-2(m-l)x+m2-2m-3,其中m 为实数。
(1)求证:不论m 取何实数,这个二次函数的图像与x 轴必有两个交点;(2)设这个二次函数的 图像与x 轴交于点A(xl,0)> B(x2,0),且xl 、x2的倒数和为Z ,求这个二次函数的解析式。
4、已知二次函数yl=x2-2x-3.3(1、芦合函数yl 的图像,确定当x 取什么值时,yl>0,yl=0,yl<0; (2) 根据(1)的结论,确定函数y2=》(lyll ・yl)关于x 的解析式; (3) 若一次函数y=kx+b(k^ 0)的图像与函数y2的图像交于三个不同的点,试确定实数k 与b 应 满足的条件。
二次函数专题训练题二次函数专题训练(一)1、已知抛物线 $y=ax^2+6ax+c$ 与x轴的一个交点为A (-2,0)①求抛物线与x轴的另一个交点B的坐标。
②点C是抛物线与y轴的交点,D是抛物线上一点,且以AB为一底的梯形ABCD的面积为32,求此抛物线的解析式。
③ E是第二象限内到x轴、y轴距离之比为3:1的点。
若E在②中的抛物线上,且a>0,E和A在对称轴同侧。
问在抛物线的对称轴上是否存在P点,使△APE周长最小。
若存在,求出P点的坐标,若不存在,请说明理由。
解析:①因为点A在x轴的负半轴上,所以点B在x轴的正半轴上,设点B的坐标为(t,0),则由题意可得:begin{cases}a(-2)^2+6a(-2)+c=0 \\at^2+6at+c=0 \\end{cases}解得 $t=-\frac{c}{a}-4$所以点B的坐标为 $(-\frac{c}{a}-4,0)$②设抛物线的解析式为$y=ax^2+6ax+c$,则由题意可得:begin{cases}a(-2)^2+6a(-2)+c=0 \\at^2+6at+c=0 \\end{cases}解得 $a=2$,$c=-8$,所以抛物线的解析式为$y=2x^2+12x-8$③设抛物线的对称轴为直线 $x=k$,则点A的坐标为 $(-k,0)$,点E的坐标为 $(m,3m)$,其中 $m$ 为任意实数。
由题意可得:begin{cases}k=-\frac{b}{2a}=-3 \\a(m+2)^2+6a(m+2)-8=3m \\end{cases}解得 $m=-\frac{1}{2}$,所以点E的坐标为 $(-1,-\frac{3}{2})$。
由对称性可知,点P的坐标为 $(1,-\frac{3}{2})$,所以在抛物线的对称轴上存在点P,使△APE 周长最小。
2、已知二次函数 $y=x^2-2(m-1)x-1-m$ 的图像与x 轴交于两点A($x_1$,0)和B($x_2$,0),$x_1<<x_2$,与y轴交于点C,且满足 $\frac{AC}{OC}=\frac{1}{12}$。
二次函数基础测试题附解析一、选择题1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab <0,∵抛物线与y 轴的交点在正半轴上,∴c >0,∴abc <0,故①正确;②∵﹣=1, ∴b =﹣2a ,∴2a +b =0,故②正确.③∵(0,c )关于直线x =1的对称点为(2,c ),而x =0时,y =c >0,∴x =2时,y =c >0,∴y =4a +2b +c >0,故③正确;④由图象可知:△>0,∴b 2﹣4ac >0,故②正确;故选:D .【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.4.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O点为AB的中点,又∵圆心C坐标为(0,4),∴OC=4,∴BC长度=2205OB C+=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc>0;②a﹣b+c>0;③b2=4a(c﹣m);④一元二次方程ax2+bx+c=m+1有两个不相等的实数根,其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a,b,c的正负;根据抛物线的对称轴位置可判别在x轴上另一个交点;根据抛物线与直线y=m的交点可判定方程的解.【详解】∵函数的图象开口向上,与y轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ),∴244ac b a - =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上,0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.7.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A.B.C.D.【答案】B【解析】【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C 与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④【答案】B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c 之间的关系,从而对④作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出③的正误.【详解】①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a, ∴b=-2a , ∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a ,∵a >0,∴b-c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.15.若二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0②x =x 0是方程ax 2+bx +c =y 0的解③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0其中正确的是( )A .①③④B .①②④C .①②③D .②③【答案】B【解析】【分析】①根据二次函数图象与x 轴有两个不同的交点,结合根的判别式即可得出△=b 2-4ac >0,①正确;②由点M (x 0,y 0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x 0是方程ax 2+bx+c=y 0的解,②正确;③分a >0和a <0考虑,当a >0时得出x 1<x 0<x 2;当a <0时得出x 0<x 1或x 0>x 2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M (x 0,y 0)在x 轴下方即可得出y 0=a (x 0-x 1)(x 0-x 2)<0,④正确.【详解】①∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx+c=0有两个不相等的实数根,∴△=b 2-4ac >0,①正确;②∵图象上有一点M (x 0,y 0),∴a +bx 0+c=y 0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.16.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a-<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确; D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.17.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于(-1,0),(3,0)两点,则下列说法:①abc <0;②a -b +c =0;③2a +b =0;④2a +c >0;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,其中正确的结论是( )A .①⑤B .②④C .②③④D .②③⑤【答案】D【解析】 【分析】①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.18.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】B【解析】试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+<故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .19.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a ->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫-- ⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。
二次函数基础练习练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t 时间t (秒) 1 2 3 4 … 距离s (米)281832…写出用t 表示s 的函数关系式. 2、 下列函数:① 23y x ;② 21yx x x ;③ 224y x x x ;④ 21yx x ;⑤ 1y x x ,其中是二次函数的是 ,其中a,b ,c3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m y m m x 是关于x 的二次函数5、当____m时,函数2564m m ymx+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=mmx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.st O st O stOs t O8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2yax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个). 4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小 的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4) 2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______. 5、已知二次函数c bx ax y ++=2的图象如图所示, 则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y += 的图象不经过第 象限.7、已知二次函数2y ax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x和3x 时,函数值相同;3)40ab ;4)当2y 时,x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1D 1,110、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c15、试求抛物线2yax bx c 与x 轴两个交点间的距离(240b ac )参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、aac b 42-练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,则函数的关系式为4、根据条件求二次函数的解析式 (1)抛物线过(-1,-6)、(1,-2)和(2,3)三点 (2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y 、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =1 7、已知二次函数2yx px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22yx mx m .(1)求证此抛物线与x 轴有两个不同的交点; (2)若m 是整数,抛物线22yx mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B. 若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十 二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计..为 y (万元),且 y =ax 2+bx ,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度 y (m) 与水平距离 x (m) 之间的函数关系式为 y =-112x 2+23x +53,求小明这次试掷的成绩及铅球的出手时的高度. 4、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2件.① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;② 若商场每天要盈利 1200 元,每件应降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m ,跨度为 10m ,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?7、 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d 表示h 的函数关系式;3.50.50 2 7 月份千克销售价(元)(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,若行车道总宽度AB 为6m ,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m ).参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254 (x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。
二次函数压轴题(与圆综合问题)【典例分析】例1 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C 三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.思路点拨(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b 取何值,点D的坐标均不改变.满分解答(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴42064804a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得14324abc⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩.学#科网∴抛物线的解析式为y=14x2-32x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴804m nn+=⎧⎨=⎩,学&科网解得124mn⎧=-⎪⎨⎪=⎩,(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.考点:圆的综合题例2已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB 于点F,当△OEF的面积取得最小值时,求点E的坐标.思路点拨(1)用待定系数法求解;(2) 假设存在,分两种情况讨论(3)根据面积公式,列出二次函数,求函数的最值.满分解答(1)将A(3,0),B(4,1)代人得∴∴∴C(0,3) 学科@网②当∠ABP=90O时,过B作BP∥AC,BP交抛物线于点P. ∵A(3,0),C(0,3)∴直线AC的函数关系式为将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为由,得又B(4,1),∴P2(-1,6).综上所述,存在两点P1(0,3), P2(-1,6).(3)∵∠OAE=∠OAF=45O,而∠OEF=∠OAF=45O, ∠OFE=∠OAE=45O,∴∠OEF=∠OFE=45O,∴OE=OF,∠EOF=90O∵点E在线段AC上,∴设E∴=∴===∴当时,取最小值,此时,∴例3如图,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.(1)求D点的坐标和圆D的半径;(2)求sin∠ACB的值和经过C、A、B三点的抛物线对应的函数表达式;(3)设抛物线的顶点为F,证明直线AF与圆D相切.思路点拨(1)连接CD,过点D作DE⊥AB,垂足为E,连接AD.依据垂径定理可知AE=3,然后依据切线的性质可知CD⊥y轴,然后可证明四边形OCDE为矩形,则DE=4,然后依据勾股定理可求得AD的长,故此可求得⊙D的半径和点D的坐标;学科.网(2)先求得A(2,0)、B(8,0).设抛物线的解析式为y=a(x﹣2)(x﹣8),将点C的坐标代入可求得a 的值.根据三角形面积公式得:S△ABC=BC×AC sin∠ACB=AB×CO,代入计算即可;(3)求得抛物线的顶点F的坐标,然后求得DF和AF的长,依据勾股定理的逆定理可证明△DAF为直角三角形,则∠DAF=90°,故此AF是⊙D的切线.满分解答(2)如图1所示:∵D(5,4),∴E(5,0),∴A(2,0)、B(8,0).设抛物线的解析式为y=a(x﹣2)(x﹣8),将点C的坐标代入得:16a=4,解得:a,∴抛物线的解析式为y x 2x +4.∵S △ABC =BC ×AC sin ∠ACB =AB ×CO ,∴sin ∠ACB ==.例4如图,已知二次函数()22y x m 4m =--(m >0)的图象与x 轴交于A 、B 两点.(1)写出A 、B 两点的坐标(坐标用m 表示);(2)若二次函数图象的顶点P 在以AB 为直径的圆上,求二次函数的解析式; (3)设以AB 为直径的⊙M 与y 轴交于C 、D 两点,求CD 的长. 思路点拨(1)解关于x 的一元二次方程()22x m 4m 0--=,求出x 的值,即可得到A 、B 两点的坐标。
备战2020年中考数学压轴题之二次函数专题10 二次函数背景下的与圆有关的问题【方法综述】圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。
而二次函数与圆的结合则常常是高难度的压轴题。
以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内容。
解答要点是结合相关知识,对于已知条件进行数形结合。
【典例示范】类型一 圆的基本性质应用例1:如图,抛物线y =ax 2﹣2ax +m 的图象经过点P (4,5),与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,且S △P AB =10.(1)求抛物线的解析式;(2)在抛物线上是否存在点Q 使得△P AQ 和△PBQ 的面积相等?若存在,求出Q 点的坐标,若不存在,请说明理由;(3)过A 、P 、C 三点的圆与抛物线交于另一点D ,求出D 点坐标及四边形P ACD 的周长.【答案】(1)y =x 2﹣2x ﹣3;(2)点Q 的坐标为:(﹣2,5)或(﹣13,﹣209);(3). 【思路引导】(1)因为抛物线y =ax 2﹣2ax +m ,函数的对称轴为:x =1,S △P AB =10=12×AB ×y P =12AB ×5,解得AB=4,即可求解;(2)分A 、B 在点Q (Q′)的同侧;点A 、B 在点Q 的两侧两种情况,分别求解即可;(3)过点P 作PO′⊥x 轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A 、P 、C 三点的圆,即可求解.【详解】解:(1)y=ax2﹣2ax+m,函数的对称轴为:x=1,S△P AB=10=12×AB×y P=12AB×5,解得:AB=4,故点A、B的坐标分别为:(﹣1,0)、(3,0),抛物线的表达式为:y=a(x+1)(x﹣3),将点P的坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)①当A、B在点Q(Q′)的同侧时,如图1,△P AQ′和△PBQ′的面积相等,则点P、Q′关于对称轴对称,故点Q′(﹣2,5);②当A、B在点Q的两侧时,如图1,设PQ交x轴于点E,分别过点A、B作PQ的垂线交于点M、N,△P AQ和△PBQ的面积相等,则AM=BN,而∠BEN=∠AEM,∠AME=∠BNE=90°,∴△AME≌△BNE(AAS),∴AE=BE,即点E是AB的中点,则点E(1,0),将点P、E的坐标代入一次函数表达式并解得:直线PQ的表达式为:y=53x﹣53…②,联立①②并解得:x=﹣13或4(舍去4),故点Q(﹣13,﹣209),综上,点Q的坐标为:(﹣2,5)或(﹣13,﹣209);(3)过点P作PO′⊥x轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A、P、C三点的圆,设点D(m,m2﹣2m﹣3),点O′(4,0),则DO′=5,即(m﹣4)2+(m2﹣2m﹣3)2=25,化简得:m(m+1)(m﹣1)(m﹣4)=0,解得:m=0或﹣1或1或4(舍去0,﹣1,4),故:m=1,故点D(1,﹣4);四边形P ACD的周长=P A+AC+CD+PD=【方法总结】本题考查了二次函数与三角形面积、三点共圆、四边形的周长、长度公式,综合性较强,灵活运用二次函数的知识是解题的关键.针对训练1.如图,一次函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,点P在以C(-2,0)为圆心,1为半径的圆上,Q是AP的中点(1)若k的值;(2)若OQ长的最大值为32,求k的值;(3)若过点C的二次函数y=ax2+bx+c同时满足以下两个条件:①a+b+c=0;②当a≤x≤a+1时,函数y的最大值为4a,求二次项系数a的值.【答案】(1)2;(2)3225;(3)a的值为-3或2或-4或1.【解析】(1)设A(m,n),∵∴m2+n2=5,∵一次函数y=2x的图象经过A点,∴n=2m,∴m2+(2m)2=5,解得m=±1,∵A在第一象限,∴m=1,∴A(1,2),∵点A在反比例函数y=kx(k>0)的图象上,∴k=1×2=2;(2)如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=12 BP,∵OQ长的最大值为32,∴BP长的最大值为32×2=3,如图2,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t-(-2)=t+2,BD=-2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(-2t)2,t=0(舍)或-45,∴B(-45,-85),∵点B在反比例函数y=kx(k>0)的图象上,∴k=-45×(-85)=3225;(3)∵抛物线经过点C(-2,0),∴4a-2b+c=0,又∵a+b+c=0,∴b=a,c=-2a,∴y=ax2+ax-2a=a(x+12)2-94a,∵-12<a≤x≤a+1或a≤x≤a+1<-12,当x=a时,取得最大值4a,则a•a2+a•a-2a=4a,解得a=-3或2,当x=a+1时,取得最大值4a,则a(a+1)2+a(a+1)-2a=4a,解得a=-4或1,综上所述所求a的值为-3或2或-4或1.2.对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.(1)请写出反比例函数y=6的图象上的一对关联点的坐标:;x(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y=x2+bx+c 的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.【答案】(1)(2,3),(3,2).(2)A,B两点坐标为(﹣1,2)和(2,﹣1).(3)1<m≤1+3√2.【解析】解:(1)∵2×3=3×2=6,∴点(2,3),(3,2)是反比例函数y=6的图象上的一对关联点.x故答案为:(2,3),(3,2).(2)∵抛物线y=x2+bx+c的对称轴为直线x=1,=1,∴﹣b2解得:b=﹣2.∵抛物线y=x2+bx+c与y轴交于点C(0,﹣1),∴c=﹣1,∴抛物线的解析式为y=x2﹣2x﹣1.由关联点定义,可知:点A,B关于直线y=x对称.又∵直线AB与x轴交于点D(1,0),∴直线AB 的解析式为y =﹣x +1.联立直线AB 及抛物线解析式成方程组,得:{y =﹣x +1y =x 2﹣2x ﹣1, 解得:{x 1=−1y 1=2 ,{x 2=−1y 2=2, ∴A ,B 两点坐标为(﹣1,2)和(2,﹣1).(3)由关联点定义,可知:点M ,N 关于直线y =x 对称,∴⊙T 的圆心在直线y =x 上.∵⊙T 的半径为3,∴M 1M 2=√22×2×3=3√2,∴m 的取值范围为1<m≤1+3√2. .3.已知:直线y=-x -4分别交x 、y 轴于A 、C 两点,点B 为线段AC 的中点,抛物线y=ax 2+bx 经过A 、B 两点,(1)求该抛物线的函数关系式;(2)以点B 关于x 轴的对称点D 为圆心,以OD 为半径作⊙D ,连结AD 、CD ,问在抛物线上是否存在点P ,使S △ACP =2S △ACD ?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若E 为⊙D 上一动点(不与A 、O 重合),连结AE 、OE ,问在x 轴上是否存在点Q ,使∠ACQ :∠AEO=2:3?若存在,请求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+2x;(2)P坐标为(-3)或(-3+,7);(3)Q坐标为8,0)、(--8,0)、(4,0).【解析】解:(1)∵直线y=-x-4中,y=0时,x=-4;x=0时,y=-4,∴A(-4,0),C(0,-4),∵点B为AC中点,∴B(-2,-2),∵抛物线y=ax2+bx经过A、B两点,∴1640 422a ba b-=⎧⎨-=-⎩,解得:122ab⎧=⎪⎨⎪=⎩,∴抛物线的函数关系式为y=12x2+2x.(2)在抛物线上存在点P使S△ACP=2S△ACD.如图1,连接AD并延长交y轴于点F,∵y=12x2+2x=12(x-2)2-2,∴点B为抛物线的顶点,∵点D为点B关于x轴的对称点,∴D(-2,2)在抛物线的对称轴上,∴DA=DO,∠DAO=∠DOA=45°,∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∴∠DAC=∠DAO+∠OAC=90°,∴S △ACD =12AC•AD , ∵∠AOF=90°,∴AF 为⊙D 直径,即点F 在⊙D 上,∴AF=2AD ,OF=OA=4即F(0,4),∵S △ACP =2S △ACD =2•12AC•AD=12AC•2AD=12AC•AF , ∴点P 在过点F 且平行于直线y=-x -4的直线上,∴直线PF 解析式为y=-x+4, ∵24122y x y x x =-+⎧⎪⎨=+⎪⎩,解得:1137x y ⎧=--⎪⎨=+⎪⎩;2237x y ⎧=-+⎪⎨=-⎪⎩∴点P 坐标为(-3)或(-7;(3)在x 轴上存在点Q 使∠ACQ :∠AEO=2:3. ∵∠OAD=∠ODA=45°,∴∠ADO=90°,∵点E 在⊙D 上且不与A 、O 重合,∠ACQ :∠AEO=2:3. ①如图2,当点E 在优弧AO 上时,∠AEO=12∠ADO=45°, ∴∠ACQ=23∠AEO=30°,过点Q作QG垂直直线AC于点G,设QG=t,∴Rt△CQG中,CQ=2QG=2t,.∴∠GAQ=∠OAC=45°,∴Rt△AGQ中,AG=QG=t,t.i)若点Q在线段AO上时,如图2:则,解得:-,∴(4=,∴x Q=-8;ii)若点Q在线段OA延长上时,如图3:则AC=CG-t-t=4,解得:t=,∴(4=,∴x Q=-4--8,②当点E在劣弧AO上时,∠AEO=12(360°-∠ADO)=135°,∴∠ACQ=23∠AEO=90°.∵∠CAO=45°,△ACO是等腰直角三角形,∴Q点与A点对称,A (-4,0)∴x Q=4.综上所述:满足条件的点Q有三个,坐标分别为8,0)、(--8,0)、(4,0)4.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P2的值.的半径记为r,求lr【答案】(1)证明见解析;(2)①定点F的坐标为(0,1);②10+6√5.5【解析】(1)令y=0,则x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴△>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,则x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,则y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB=OBOC =m+22(m+2)=12,在Rt△AOF中,tan∠OAF=OFOA =OF2=12,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1).∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED =∠OCB ,∴tan ∠BED =12, 设BD =n ,在Rt △BDE 中,tan ∠BED =BD BE =n BE =12, ∴BE =2n ,根据勾股定理得:DE =√BD 2+BE 2=√5n ,∴l =BD+BE+DE =(3+√5)n ,r =12DE =√52n , ∴l r =√5)√52n =10+6√55. 5..如图①,已知抛物线2139424y x x =-+的顶点为点P ,与y 轴交于点B .点A 坐标为(3,2).点M 为抛物线上一动点,以点M 为圆心,MA 为半径的圆交x 轴于C ,D 两点(点C 在点D 的左侧).(1)如图②,当点M 与点B 重合时,求CD 的长;(2)当点M 在抛物线上运动时,CD 的长度是否发生变化?若变化,求出CD 关于点M 横坐标x 的函数关系式;若不发生变化,求出CD 的长;(3)当△ACP 与△ADP 相似时,求出点C 的坐标.【答案】(1) CD=4;(2)不发生变化,CD=4;(3)点C 坐标为:(1,0),()1-,()1+ 【解析】(1)如图:连结BC ,BD ,由题意得:904B ⎛⎫ ⎪⎝⎭,,(3,2),∴AB =∴2OC ==,∴CD=2OC=4;(2)如图:作MH ⊥x 轴,连结MA ,MC ,设()M x y ,,则半径AM =∴CH ====2=, ∵MH ⊥CD ,∴CD=2CH=4,(3)①当△APC ∽△APD ,即全等时,∴PC=PD ,P 与M 重合,∵P (3,0),CD=4,∴C (1,0)②如图,点M 在点P 的左侧,△APC ∽△DPA ,2PA PD PC =⨯,设PC=x ,x (x -4)=4,解得2x =±,∴()1C -, ③如图,点M 在点P 的右侧△APC ∽△DPA ,2PA PD PC =⨯,设PC=x ,x (x+4)=4,解得2x =-±,∴()C ,综上所述,点C 坐标为:C (1,0);()1C -;()C ; 6.已知抛物线 C 1:y =ax 2 过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC 的三个顶点都在抛物线C 1 上,且边 AC 所在的直线解析式为y =x +b ,若 AC 边上的中线 BD 平行于 y 轴,求AC 2BD 的值;(3)如图,点 P 的坐标为(0,2),点 Q 为抛物线上C 1 上一动点,以 PQ 为直径作⊙M ,直线 y =t 与⊙M 相交于 H 、K 两点是否存在实数 t ,使得 HK 的长度为定值?若存在,求出 HK 的长度;若不存在,请说明理由.【答案】(1)y=12x 2 ;(2)16;(3)见解析.【解析】(1)把点(2,2)坐标代入y =ax2,解得:a =12,∴抛物线的解析式为y =x2;(2)把y =x+b 和y =12x2得:x2﹣2x ﹣2b =0,设A 、C 两点的坐标为(x1,y1)、(x2,y2),则:x1+x2=2,x1•x2=﹣2b ,点D 坐标为(x 1+x 22,y 1+y 22),即D (1,﹣b ),B 坐标为(1,12), AC2=[√2(x2﹣x1)]2=16b+8,BD =12+b , ∴AC 2BD =16;(3)设点Q 坐标为(a ,12a2),点P 的坐标为(0,2),由 P 、Q 坐标得点M 的坐标为(a 2,14a2+1), 设圆的半径为 r ,由P (0,2)、M 两点坐标可得r2=a 24+(14a2﹣1)2=116a4﹣14a2+1,设点M 到直线y =t 的距离为d ,则d2=(a2+1﹣t )=116a4+12a2+1+t2﹣2t ﹣12a2t ,则 HK =2√r 2−d 2=2√(12t −34)a 2+2t −t 2,当12t −34=0 时,HK 为常数,t =32, HK =√3.7.(浙江省湖州市南浔区2017-2018学年九年级上学期期末)已知在平面直角坐标系xOy 中,O 是坐标原点,如图1,直角三角板△MON 中,OM=ON=√3,OQ=1,直线l 过点N 和点N ,抛物线y=ax 2+2√33x+c 过点Q 和点N .(1)求出该抛物线的解析式;(2)已知点P 是抛物线y=ax 2+2√33x+c 上的一个动点.①初步尝试若点P 在y 轴右侧的该抛物线上,如图2,过点P 作PA ⊥y 轴于点A ,问:是否存在点P ,使得以N 、P 、A 为顶点的三角形与△ONQ 相似.若存在,求出点P 的坐标,若不存在,请说明理由;②深入探究若点P 在第一象限的该抛物线上,如图3,连结PQ ,与直线MN 交于点G ,以QG 为直径的圆交QN 于点H ,交x 轴于点R ,连结HR ,求线段HR 的最小值.【答案】(1)y=﹣√33x2+2√33x+√3(2)①(1,4√33)、(3,0)、(5,﹣4√3)②3√2+64【解析】 (1)由题意可知,Q (﹣1,0),N (0,√3),∴c=√3,即y=ax2+2√33x+√3, 将Q (﹣1,0)代入解析式得0=a ﹣2√33+√3,解得a=﹣√33, ∴抛物线解析式是y=﹣√33x2+2√33x+√3; (2)①分三种情况,如图2,情况一:点P 在第一象限时,△APN ∽△ONQ ,设AN=m ,则AP=√3m ,则P 的坐标(√3m ,m+√3),而点P 在抛物线上,代入可得m+√3=﹣√33(√3m )2++2√33(√3m )+√3, 解得m=√33,∴P1(1,4√33); 情况二:点P 恰好在x 轴上,P2(3,0),情况三:P 在第四象限内,同情况一方法可解得P3(5,﹣4√3),②连结CH 和CR ,如图3,∵∠NQ0=60°,∴∠HCR=120°,∵CH=CR ,∴HR=√3CH ,∴HR 最小时,只需要半径最小,即直径最小即可,∴过Q作NM的垂线,垂直时,QG最小,∴用面积法求出,QG=√6+√22,HR最小值=3√2+64.8.如图,在平面直角坐标系中,O为原点,A点坐标为(−8, 0),B点坐标为(2, 0),以AB为直径的圆P与y轴的负半轴交于点C.(1)求图象经过A,B,C三点的抛物线的解析式;(2)设M点为所求抛物线的顶点,试判断直线MC与⊙P的关系,并说明理由.【答案】(1)14x2+32x−4;(2)直线MC与⊙P相切,理由见解析【解析】解:(1)连接AC、BC;∵AB是⊙P的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵∠BCO+∠CBO=90°,∴∠CBO=∠ACO,∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴AOOC =OC OB,∴OC2=OA·OB=16,∴OC=4,故C(0,﹣4),设抛物线的解析式为:y=a(x+8)(x ﹣2),代入C 点坐标得:a(0+8)(0﹣2)=﹣4,a=14,故抛物线的解析式为:y=14(x+8)(x ﹣2)=14x 2+32x ﹣4;(2)由(1)知:y=14x 2+32x ﹣4=14(x +3)2﹣254;则M(﹣3,﹣254), 又∵C(0, ﹣4),P(﹣3, 0),∴MP=254,PC=5,MC=154,∴MP 2=MC 2+PC 2,即△MPC 是直角三角形,且∠PCM=90°,故直线MC 与⊙P 相切.9.已知抛物线y=ax 2+bx 过点A (1,4)、B (﹣3,0),过点A 作直线AC ∥x 轴,交抛物线于另一点C ,在x 轴上有一点D (4,0),连接CD .(1)求抛物线的表达式;(2)若在抛物线上存在点Q ,使得CD 平分∠ACQ ,请求出点Q 的坐标;(3)在直线CD 的下方的抛物线上取一点N ,过点N 作NG ∥y 轴交CD 于点G ,以NG 为直径画圆在直线CD 上截得弦GH ,问弦GH 的最大值是多少?(4)一动点P 从C 点出发,以每秒1个单位长度的速度沿C ﹣A ﹣D 运动,在线段CD 上还有一动点M ,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t 的值;若不存在,请说明理由.【答案】(1)直线CE 的表达式为y=﹣43x ﹣43;(2)点Q 的坐标为(﹣13,﹣89);(3)弦GH 的最大值81√580;(4)存在,t 的值为3或7【解析】解:(1)∵抛物线y=a x 2+bx 过点A (1,4)、B (﹣3,0),∴{a +b =49a −3b =0,解得:a=1,b=3, ∴抛物线的表达式为y=x 2+3x .(2)当y=4时,有x 2+3x=4,解得:x 1=﹣4,x 2=1,∴点C 的坐标为(﹣4,4),∴AC=1﹣(﹣4)=5.∵A (1,4),D (4,0),∴AD=5.取点E (﹣1,0),连接CE 交抛物线于点Q ,如图1所示.∵AC=5,DE=4﹣(﹣1)=5,AC ∥DE ,∴四边形ACED 为平行四边形,∵AC=AD ,∴四边形ACED 为菱形,∴CD 平分∠ACQ .设直线CE 的表达式为y=mx+n (m≠0),将C (﹣4,4)、E (﹣1,0)代入y=mx+n ,得:{−4m +n =4−m +n =0 ,解得:{m =−43n =−43, ∴直线CE 的表达式为y=﹣43x ﹣43.联立直线CE 与抛物线表达式成方程组,得:{y =−43x −43y =x 2+3x, 解得:{x 1=−4y 1=4 ,{x 2=−13y 2=−89 , ∴点Q 的坐标为(﹣13,﹣89).(3)设直线CD 的表达式为y=kx+c (k≠0),将C (﹣4,4)、D (4,0)代入y=kx+c ,得:{−4k +c =44k +c =0 ,解得:{k =−12c =2 , ∴直线CD 的表达式为y=﹣12x+2.设点N 的坐标为(x ,x2+3x ),则点G 的坐标为(x ,﹣12x+2),∴NG=﹣12x+2﹣(x2+3x )=﹣x2﹣72x+2=﹣(x+74)2+8116,∵﹣1<0,∴当x=﹣74时,NG 取最大值,最大值为8116. 以NG 为直径画⊙O′,取GH 的中点F ,连接O′F ,则O′F ⊥BC ,如图2所示.∵直线CD 的表达式为y=﹣12x+2,NG ∥y 轴,O′F ⊥BC , ∴tan ∠GO′F=GF O′F =12, ∴GF O′G =√12+22=√55, ∴GH=2GF=2√55 O′G=√55NG ,∴弦GH 的最大值为√55×8116=81√580.(4)取点E(﹣1,0),连接CE、AE,过点E作EP1⊥AC于点P1,交CD于点M1,过点E作EP2⊥AD 于点P2,交CD于点M2,如图3所示.∵四边形ACED为菱形,∴点A、E关于CD对称,∴AM=EM.∵AC∥x轴,点A的坐标为(1,4),∴EP1=4.由菱形的对称性可知EP2=4.∵点E的坐标为(﹣1,0),∴点P1的坐标为(﹣1,4),∴CP1=DP2=﹣1﹣(﹣4)=3,又∵AC=AD=5,∴t的值为3或7.10.如图,在平面直角坐标系中,点A(10, 0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB 并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=________°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?【答案】(1)90;(2)y=−18x2+54x;(3) 以P、O、A、E为顶点的四边形面积S等于16时,相应的点P有且只有3个.【解析】解:(1)90;(2)连接OC,如图1所示,∵由(1)知OB⊥AC,又AB=BC,∴OB是AC的垂直平分线,∴OC=OA=10,在Rt△OCD中,OC=10,CD=8,∴OD=6,∴C(6, 8),B(8, 4)∴OB所在直线的函数关系为y=12x,又∵E点的横坐标为6,∴E点纵坐标为3,即E(6, 3),抛物线过O(0, 0),E(6, 3),A(10, 0),∴设此抛物线的函数关系式为y=ax(x−10),把E点坐标代入得:3=6a(6−10),解得a=−18.∴此抛物线的函数关系式为y=−18x(x−10),即y=−18x2+54x;(3)设点P(p, −18p2+54p),①若点P在CD的左侧,延长OP交CD于Q,如右图2,OP 所在直线函数关系式为:y =(−18p +54)x∴当x =6时,y =−34p +152,即Q 点纵坐标为−34p +152, ∴QE =−34p +152−3=−34p +92,S 四边形POAE =S △OAE +S △OPE =S △OAE +S △OQE −S △PQE =12⋅OA ⋅DE +12QE ⋅OD −12⋅QE ⋅P x •=12×10×3+12×(−34p +92)×6−12•(−34p +92)⋅(6−p ), =−38p 2+94p +15, ②若点P 在CD 的右侧,延长AP 交CD 于Q ,如右图3,P(p, −18p 2+54p),A(10, 0) ∴设AP 所在直线方程为:y =kx +b ,把P 和A 坐标代入得,{10k +b =0pk +b =−18p 2+54p, 解得{k =−18p b =54p. ∴AP 所在直线方程为:y =−18px +54p ,∴当x =6时,y =−18p ⋅6+54p =12P ,即Q 点纵坐标为12P ,∴QE =12P −3,∴S 四边形POAE=S △OAE +S △APE =S △OAE +S △AQE −S △PQE =12⋅OA ⋅DE +12⋅QE ⋅DA −12⋅QE •(P x −6)=12×10×3+12⋅QE •(DA −P x +6)=15+12•(12p −3)⋅(10−p) =−14p 2+4p =−14(p −8)2+16,∴当P 在CD 右侧时,四边形POAE 的面积最大值为16,此时点P 的位置就一个,令−38p 2+94p +15=16,解得,p =3±√573, ∴当P 在CD 左侧时,四边形POAE 的面积等于16的对应P 的位置有两个,综上所知,以P 、O 、A 、E 为顶点的四边形面积S 等于16时,相应的点P 有且只有3个.类型二 与圆有关的位置关系例2.如图1,二次函数y =ax 2﹣2ax ﹣3a (a <0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴的正半轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示);(2)若以AD 为直径的圆经过点C .①求抛物线的函数关系式;②如图2,点E 是y 轴负半轴上一点,连接BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,如图3,求点Q 的坐标.【答案】(1)(1,﹣4a );(2)①y=﹣x 2+2x+3;②M (52,74)、N (32,154);③点Q 的坐标为(1,﹣)或(1,﹣4﹣).【思路引导】 (1)将二次函数的解析式进行配方即可得到顶点D 的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD 的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.【解析】(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=5 2 .∴M(52,74)、N(32,154).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C (0,3)、D (1,4),∴CH =DH =1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD =4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b =﹣;即点Q 的坐标为(1,4-+)或(1,4--.【方法总结】此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键.针对训练1.抛物线y =﹣23x 2+73x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y =t (t <2524)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t =0时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)A (12,0);B (3,0);D (74,2524);(2)1548≤t≤2548;(3)存在以CQ 为直径的圆与x 轴相切于点P ,点P的坐标为(75-0)、(311,0)、(1,0)或(75+,0). 【解析】解:(1)当y=0时,﹣23x 2+73x ﹣1=0, 解得x 1=12,x 2=3, ∴点A 的坐标为(12,0),点B 的坐标为(3,0), ∵y=﹣23x 2+73x ﹣1=﹣23(x -74)2+2524, ∴点D 的坐标为(74,2524); (2)∵点E 、点D 关于直线y=t 对称,∴点E 的坐标为(74,2t ﹣2524). 当x=0时,y=﹣23x 2+73x ﹣1=﹣1, ∴点C 的坐标为(0,﹣1).设线段BC 所在直线的解析式为y=kx+b ,将B (3,0)、C (0,﹣1)代入y=kx+b ,301k b b +=⎧⎨=-⎩,解得:131k b ⎧=⎪⎨⎪=-⎩, ∴线段BC 所在直线的解析式为y=13x ﹣1. ∵点E 在△ABC 内(含边界),∴2520242517212434tt⎧-≤⎪⎪⎨⎪-≥⨯-⎪⎩,解得:1548≤t≤2548.(3)当x<12或x>3时,y=﹣23x2+73x﹣1;当12≤x≤3时,y=﹣23x2+73x﹣1.假设存在,设点P的坐标为(12m,0),则点Q的横坐标为m.①当m<12或m>3时,点Q的坐标为(m,﹣23x2+73x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣23m2+73m)2=14m2+1+14m2+(﹣23m2+73m﹣1)2,整理,得:m1,m2,∴点P 0,0); ②当12≤m≤3时,点Q 的坐标为(m,23x 2-73x +1)(如图2), ∵以CQ 为直径的圆与x 轴相切于点P , ∴CP ⊥PQ ,∴CQ 2=CP 2+PQ 2,即m 2+(23m 2﹣73m+2)2=14m 2+1+14m 2+(23m 2﹣73m+1)2, 整理,得:11m 2﹣28m+12=0,解得:m 3=611,m 4=2, ∴点P 的坐标为(311,0)或(1,0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 0)、(311,0)、(1,0)或(75+,0). 2.如图1,抛物线y =ax 2+bx+c 的顶点(0,5),且过点(﹣3,114),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB =d (定值),将其弯折成互相垂直的两段AC 、CB 后,设A 、B 两点的距离为x ,由A 、B 、C 三点组成图形面积为S ,且S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上):(1)填空:线段AB 的长度d = ;弯折后A 、B 两点的距离x 的取值范围是 ;若S =3,则是否存在点C ,将AB 分成两段(填“能”或“不能”) ;若面积S =1.5时,点C 将线段AB 分成两段的长分别是 ;(2)填空:在如图1中,以原点O 为圆心,A 、B 两点的距离x 为半径的⊙O ;画出点C 分AB 所得两段AC 与CB 的函数图象(线段);设圆心O 到该函数图象的距离为h ,则h = ,该函数图象与⊙O 的位置关系是 .(提升)问题2,一个直角三角形斜边长为c (定值),设其面积为S ,周长为x ,证明S 是x 的二次函数,求该函数关系式,并求x 的取值范围和相应S 的取值范围.【答案】抛物线的解析式为:y =﹣14x 2+5;(1)<x <;(2,相离或相切或相交;(3)相应S 的取值范围为S >14c 2.【解析】解:∵抛物线y =ax 2+bx+c 的顶点(0,5), ∴y =ax 2+5, 将点(﹣3,114)代入, 得114=a×(﹣3)2+5, ∴a =14﹣ , ∴抛物线的解析式为:y =2154x +﹣ ;(1)∵S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上),在y =2154x +﹣,当y =0时,x 1=x 2=﹣∴M (0),即当x =S =0,∴d 的值为∴弯折后A 、B 两点的距离x 的取值范围是0<x <当S =3 时,设AC =a ,则BC =a ,∴12a (a )=3,整理,得a 2﹣=0, ∵△=b 2﹣4ac =﹣4<0, ∴方程无实数根;当S =1.5时,设AC =a ,则BC =a ,∴12a (a )=1.5,整理,得a 2﹣=0,解得1a 2a∴当a +a当a a +∴若面积S =1.5时,点C 将线段AB +故答案为:0<x <+(2)设AC =y ,CB =x ,则y =﹣1所示的线段PM ,则P (0,,M (0), ∴△OPM 为等腰直角三角形,∴PM OP =, 过点O 作OH ⊥PM 于点H ,则OH =12PM ,∴当0<x 时,AC 与CB 的函数图象(线段PM )与⊙O 相离;当x 时,AC 与CB 的函数图象(线段PM )与⊙O 相切;<x <AC 与CB 的函数图象(线段PM )与⊙O 相交;,相离或相切或相交; (3)设直角三角形的两直角边长分别为a ,b , 则222-a b c a b x c ++=,= , ∵(a+b )2=a 2+b 2+2ab , ∴(x ﹣c )2=c 2+2ab ,∴2111242ab x cx =-, 即S =()22211114244x cx x c c -=-+,∴x 的取值范围为:x >c , 则相应S 的取值范围为S >214c .3.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值; (3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩,则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴,QHN OCA ∠∠∴=,1tan QHN2∠∴=,则sin QHN ∠=,将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.4.如图1,对于平面内的点P 和两条曲线L 1、L 2给出如下定义:若从点P 任意引出一条射线分别与L 1、L 2交于Q 1、Q 2,总有PQ 1PQ 2是定值,我们称曲线L 1与L 2“曲似”,定值PQ1PQ 2为“曲似比”,点P 为“曲心”.例如:如图2,以点O ′为圆心,半径分别为r 1、r 2(都是常数)的两个同心圆C 1、C 2,从点O ′任意引出一条射线分别与两圆交于点M 、N ,因为总有O ′MO ′N =r 1r 是定值,所以同心圆C 1与C 2曲似,曲似比为r1r 2,“曲心”为O ′.(1)在平面直角坐标系xOy中,直线y=kx与抛物线y=x2、y=12x2分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使⊙O 与直线BC相切?若存在,求出k的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“y=12x2”改为“y=1mx2”,其他条件不变,当存在⊙O与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.【答案】(1)两抛物线曲似,理由详见解析;(2)存在k值,使⊙O与直线BC相切,k=±√3;(3)m>1,k2=m2−1.【解析】(1)是,过点A、B作x轴的垂线,垂足分别为D、C,依题意可得A(k,k2)、B(2k,2k2),因此D(k,0)、C(2k,0),∵AD ⊥x 轴、BC ⊥x 轴, ∴AD//BC , ∴OA OB=OD OC=k 2k=12,∴两抛物线曲似,曲似比为12;(2)假设存在k 值,使⊙O 与直线BC 相切, 则OA =OC =2k ,又∵OD =k 、AD =k 2,并且OD 2+AD 2=OA 2, ∴k 2+(k 2)2=(2k)2, 解得:k =√3(负值舍去), 由对称性可取k =−√3, 综上,k =±√3;(3)根据题意得A(k,k 2)、B(mk,mk 2), 因此D(k,0)、C(mk,0), ∵⊙O 与直线BC 相切, ∴OA =OC =mk , 由OA >OD 可得mk >k , 则m >1,由OD =k 、AD =k 2,并且OD 2+AD 2=OA 2, ∴k 2+(k 2)2=(mk)2, 整理,得:k 2=m 2−1.5.已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点.(1)求一次函数与二次函数的解析式;(2)判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明;(3)把二次函数的图象向右平移 2 个单位,再向下平移 t 个单位(t >0),二次函数的图象与x 轴交于 M ,N 两点,一次函数图象交y 轴于 F 点.当 t 为何值时,过 F ,M ,N 三点的圆的面积最小?最小面积是多少?【答案】(1)一次函数的解析式为314y x =-+;二次函数解析式为214y x =. (2)相切,证明见解析(3)当3t =时,过F M N ,,三点的圆面积最小,最小面积为4π. 【解析】()1把()4,4A -代入1y kx =+得34k =-∴一次函数的解析式为314y x =-+ ∴二次函数图象的顶点在原点,对称轴为y 轴,∴二次函数的解析式为2y ax =,将()4,4A -代入解析式得14a =-∴二次函数的解析式为214y x =-()2由231414y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得44x y =-⎧⎨=⎩或114x y =⎧⎪⎨=⎪⎩,11,4B ⎛⎫∴ ⎪⎝⎭,取,A B 的中点317,28P ⎛⎫- ⎪⎝⎭, 过P 作直线l 的垂线,垂足为N ,则3,12N ⎛⎫-- ⎪⎝⎭1725188PN ∴=+=,而直径254AB ∴==12PN AB ∴=,即圓心到直线l 的距离等于半径, 以AB 为直径的圆与直线l 相切.()3平移后二次函数的解析式为()2124y x t =--,令0,y =得()212120,224x t x x --==-=过,,F M N 三点的國的圆心C 一定在平移后抛物线的对称轴.上,要使圓面积最小,圆半径应等于点F 到直线2x =2的距离,点C 坐标为()2,1. 此时,半径为2,面积为4π设圆心为,C MN 的中点为E ,连接,CE CM ,则1CE =,在三角形CEM 中,ME =MN ∴=2134MN x x t =-=∴= ∴当3t 4=时,过,,F M N 三点的圓面积最小,最小面积为4π. 6.如图,在平面角坐标系中,抛物线C 1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C 2:y=2x 2+x+1,动直线x=t 与抛物线C 1交于点N ,与抛物线C 2交于点M . (1)求抛物线C 1的表达式;(2)直接用含t 的代数式表示线段MN 的长;(3)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(4)在(3)的条件下,设抛物线C 1与y 轴交于点P ,点M 在y 轴右侧的抛物线C 2上,连接AM 交y 轴于点k ,连接KN ,在平面内有一点Q ,连接KQ 和QN ,当KQ=1且∠KNQ=∠BNP 时,请直接写出点Q 的坐标.【答案】(1)抛物线C1:解析式为y=x 2+x ﹣1;(2)MN=t 2+2;(3)t 的值为1或0;(4)满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125)【解析】(1)∵抛物线C1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),∴{1=4a −2b −1−1=a −b −1,解得:{a =1b =1 , ∴抛物线C1:解析式为y=x 2+x ﹣1;(2)∵动直线x=t 与抛物线C1交于点N ,与抛物线C2交于点M ,∴点N 的纵坐标为t 2+t ﹣1,点M 的纵坐标为2t 2+t+1,∴MN=(2t 2+t+1)﹣(t 2+t ﹣1)=t 2+2;(3)共分两种情况①当∠ANM=90°,AN=MN 时,由已知N (t ,t 2+t ﹣1),A (﹣2,1),∴AN=t ﹣(﹣2)=t+2,∵MN=t 2+2,∴t 2+2=t+2,∴t1=0(舍去),t2=1,∴t=1;②当∠AMN=90°,AN=MN 时,由已知M (t ,2t 2+t+1),A (﹣2,1),∴AM=t ﹣(﹣2)=t+2,∵MN=t 2+2,∴t 2+2=t+2,∴t 1=0,t 2=1(舍去),∴t=0,故t 的值为1或0;(4)由(3)可知t=1时M 位于y 轴右侧,根据题意画出示意图如图:易得K (0,3),B 、O 、N 三点共线,∵A (﹣2,1),N (1,1),P (0,﹣1),∴点K 、P 关于直线AN 对称,设⊙K 与y 轴下方交点为Q2,则其坐标为(0,2),∴Q2与点O 关于直线AN 对称,∴Q2是满足条件∠KNQ=∠BNP ,则NQ2延长线与⊙K 交点Q1,Q1、Q2关于KN 的对称点Q3、Q4也满足∠KNQ=∠BNP ,由图形易得Q1(﹣1,3),设点Q3坐标为(a ,b ),由对称性可知Q3N=NQ1=BN=2√2,由∵⊙K 半径为1,∴{(a −1)2+(b −1)2=(2√2)2a 2+(b −3)2=12,解得:{a 1=35b 1=195 ,{a 2=−1b 2=3 , 同理,设点Q4坐标为(a ,b ),由对称性可知Q4N=NQ2=NO=√2,∴{(a −1)2+(b −1)2=(√2)2a 2+(b −3)2=12 ,解得:{a 3=45b 3=125 ,{a 4=0b 4=2 , ∴满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125).7.如图,直线2y x =+与抛物线222y x mx m m =-++交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,抛物线的对称轴与直线AB 交于点M .(1)当四边形CODM 是菱形时,求点D 的坐标;(2)若点P 为直线OD 上一动点,求APB ∆的面积;(3)作点B 关于直线MD 的对称点B ',以点M 为圆心,MD 为半径作M ,点Q 是M上一动点,求2QB '+的最小值. 【答案】(1);(2)3;(3【解析】(1) (,)D m m,OD =, 菱形CODM2OD OC ∴===m ∴= (2)①2y x =+与抛物线222y x mx m m =-++交于,A B 两点,∴联立,222y x mx m m =-++,2y x =+解得1111x m y m =-⎧⎨=+⎩,2224x m y m =+⎧⎨=+⎩ ∵点A 在点B 的左侧(1,1)A m m ∴-+,(2,4)B m m ++AB ∴==∴直线OD 的解析式为y x =,直线AB 的解析式为2y x =+//AB OD ∴,两直线,AB OD 之间距离22h =⨯=11322APBS AB h ∴=⋅=⨯=(3) (1,1)A m m -+,(2,4)B m m ++1AM ∴==2BM ==由M 点坐标(,2)m m +,D 点坐标(,)m m 可知以MD 为半径的圆的半径为(2)2m m +-=取MB 的中点N ,连接,,QB QN QB ',则12MN BM ==⨯=MN QMMN QM QM BM ==QMN BMQ ∠=∠, ~MNQ MQB ∴,2QN MN OB OM ∴==,QN ∴=由三角形三边关系,当,,Q N B '三点共线时QB '+最小, ∵直线AB 的解析式为2y x =+,∴直线AB 与对称轴夹角为45°,∵点,B B '关于对称轴对称, 90BMB '︒∴∠=,由勾股定理得,2QB '+最小值===.8.如图,已知以E(3,0)为圆心,5为半径的☉E 与x 轴交于A ,B 两点,与y 轴交于C 点,抛物线y=ax 2+bx+c(a≠0)经过A ,B ,C 三点,顶点为F.(1)求A ,B ,C 三点的坐标;(2)求抛物线的解析式及顶点F 的坐标;(3)已知M 为抛物线上的一动点(不与C 点重合),试探究:①若以A ,B ,M 为顶点的三角形面积与△ABC 的面积相等,求所有符合条件的点M 的坐标;②若探究①中的M 点位于第四象限,连接M 点与抛物线顶点F ,试判断直线MF 与☉E 的位置关系,并说明理由.【答案】(1)A(-2,0),B(8,0),C(0,-4);(2)抛物线的解析式为y=14x 2-32x -4,F (3,−254);(3)①所点M 的坐标为(6,-4),(√41+3,4),(-√41+3,4);②若M 点位于第四象限,则M 点即为M1点,此时直线MF 和☉E 相切,理由见解析.【解析】(1)由题图可得点A 的横坐标为3-5=-2,点B 的横坐标为3+5=8,连接CE ,则CE=5,又OE=3,。
二次函数和圆结合的题二次函数和圆是数学中常见的几何概念,它们在解题过程中经常结合在一起。
本文将探讨二次函数和圆结合的一些题目,并分析解题思路和方法。
一、已知二次函数和圆的方程,求二者的交点坐标。
题目描述:已知二次函数的方程为f(x)=ax^2+bx+c,圆的方程为(x-h)^2+(y-k)^2=r^2,求二者的交点坐标。
解题思路:将二次函数和圆的方程联立,求解交点坐标。
首先,将二次函数的方程代入圆的方程,得到方程(ax^2+bx+c-h)^2+(x-k)^2=r^2,然后将该方程化简,整理成关于x的二次方程,即ax^2+(b-2ah)x+(c-h^2-k^2-r^2)=0。
根据二次方程的求根公式,可以求得x的两个解,然后将x的值代入二次函数的方程,求得对应的y值,即得到二者的交点坐标。
二、已知二次函数与圆的交点,求二次函数和圆的方程。
题目描述:已知二次函数与圆的交点的坐标为(x1,y1)和(x2,y2),求二次函数和圆的方程。
解题思路:根据已知的交点坐标,可以列出两个方程。
首先,将交点坐标代入二次函数的方程,得到方程ax1^2+bx1+c=y1和ax2^2+bx2+c=y2,然后将这两个方程联立,消去c,得到方程a(x1^2-x2^2)+b(x1-x2)=y1-y2。
接着,将交点坐标代入圆的方程,得到方程(x1-h)^2+(y1-k)^2=r^2和(x2-h)^2+(y2-k)^2=r^2,将这两个方程联立,消去h和k,得到方程(x1^2-x2^2)+(y1^2-y2^2)=2hx1-2hx2+2ky1-2ky2。
将方程a(x1^2-x2^2)+b(x1-x2)=y1-y2和方程(x1^2-x2^2)+(y1^2-y2^2)=2hx1-2hx2+2ky1-2ky2联立,即可得到二次函数和圆的方程。
三、已知二次函数和圆的交点,求交点到圆心的距离。
题目描述:已知二次函数的方程为f(x)=ax^2+bx+c,圆的方程为(x-h)^2+(y-k)^2=r^2,已知二次函数和圆的交点的坐标为(x1,y1)和(x2,y2),求交点到圆心的距离。
专题10二次函数与圆存在性问题二次函数是初中数学代数部分最重要的概念之一,是中考数学的重难点;而圆是初中几何中综合性最强的知识内容,它与二次函数都在中考中占据及其重要的地位,两者经常作为压轴题综合考查,能够很好的考查学生的数学综合素养以及分析问题、解决问题的能力.圆心与抛物线的关系、圆上的点和抛物线的关系,其本质就是把位置关系向数量化关系转化.二次函数与圆的综合要数形结合,在读题之前要想到圆中的相关概念、性质及定理,比如圆的定义、垂径定理、圆周角、圆心角、内心、外心、切线、四点共圆的、隐藏圆等;对于二次函数,要熟练掌握解析式的求法和表达形式、顶点、最值、与方程之间的关系,线段长与点的坐标之间的数量转化等.【例1】(2022•闵行区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴相交于点A(﹣1,0),B(3,0),与y轴交于点C.将抛物线的对称轴沿x轴的正方向平移,平移后交x轴于点D,交线段BC于点E,交抛物线于点F,过点F作直线BC的垂线,垂足为点G.(1)求抛物线的表达式;(2)以点G为圆心,BG为半径画⊙G;以点E为圆心,EF为半径画⊙E.当⊙G与⊙E内切时.①试证明EF与EB的数量关系;②求点F的坐标.【例2】(2022•福建模拟)如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论.【例3】(2022•武汉模拟)已知抛物线y=﹣2x2+bx+c(c>0).(1)如图1,抛物线与直线l相交于点M(﹣1,0),N(2,6).①求抛物线的解析式;②过点N作MN的垂线,交抛物线于点P,求PN的长;(2)如图2,已知抛物线y=﹣2x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A,B,C,D(0,n)四点在同一圆上,求n的值.【例4】(2022•上海模拟)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+2(a<0)交y轴于点A,抛物线的对称轴交x轴于点P,联结PA.(1)求线段PA的长;(2)如果抛物线的顶点到直线PA的距离为3,求a的值;(3)以点P为圆心、PA为半径的⊙P交y轴的负半轴于点B,第一象限内的点Q在⊙P上,且劣弧=2.如果抛物线经过点Q,求a的值.1.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF 相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2.(2021•张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B (8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.3.(2021•宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.4.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B 的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.5.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B (3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.6.(2021•开福区模拟)如图,在平面直角坐标系中,抛物线y=x2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),①求点M的坐标及⊙M的半径;②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.7.(2020•天桥区二模)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.8.(2020•百色)如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.9.(2020•西藏)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;=,求点P的坐标;(2)如图甲,连接AC,PA,PC,若S△P AC(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.10.(2020•宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.11.(2021•嘉兴二模)定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,如图1,求△POA周长的最小值;(3)已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD,如图2.若∠CPD=120°,求a的值.12.(2021•常州二模)如图1:抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)连接BM并延长交y轴于点N,连接AN,OM,若AN∥OM,求m的值.(3)如图2.当m=1时,P是直线l上的点,以P为圆心,PE为半径的圆交直线l于另一点F(点F在x 轴上方),若线段AC上最多存在一个点Q使得∠FQE=90°,求点P纵坐标的取值范围.13.(2021•乐山模拟)如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值14.(2021•河北区二模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+3的对称轴是直线x=2,与x 轴相交于A,B两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求抛物线的解析式及顶点坐标;(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.15.(2021•长沙模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;(2)如图2,延长线段OC至N,使得ON=,若∠OBN=∠ONA,且,求抛物线的解析式;(3)如图3,抛物线y=ax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C的直线l:y=kx+m (k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,求k的取值范围.16.(2021秋•上城区校级期中)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C,⊙M是△ABC的外接圆.若抛物线的顶点D的坐标为(1,4).(1)求抛物线的解析式,及A、B、C三点的坐标;(2)求⊙M的半径和圆心M的坐标;(3)如图2,在x轴上有点P(7,0),试在直线BC上找点Q,使B、Q、P三点构成的三角形与△ABC相似.若存在,请直接写出点坐标;若不存在,请说明理由.17.(2021秋•西湖区校级期中)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标.18.(2021•雨花区二模)如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B 为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.19.(2020•东海县二模)如图,△AOB的三个顶点A、O、B分别落在抛物线C1:y=x2+x上,点A的坐标为(﹣4,m),点B的坐标为(n,﹣2).(点A在点B的左侧)(1)则m=,n=.(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线C2:y=ax2+bx+4经过A'、B'两点,延长OB'交抛物线C2于点C,连接A'C.设△OA'C的外接圆为⊙M.①求圆心M的坐标;②试直接写出△OA'C的外接圆⊙M与抛物线C2的交点坐标(A'、C除外).20.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.21.(2022•炎陵县一模)抛物线:y=﹣x2+bx+c与y轴的交点C(0,3),与x轴的交点分别为E、G两点,对称轴方程为x=1.(1)求抛物线的解析式;(2)如图1,过点C作y轴的垂线交抛物线于另一点D,F为抛物线的对称轴与x轴的交点,P为线段OC 上一动点.若PD⊥PF,求点P的坐标.(3)如图1,如果一个圆经过点O、点G、点C三点,并交于抛物线对称轴右侧x轴的上方于点H,求∠OHG的度数;(4)如图2,将抛物线向下平移2个单位长度得到新抛物线L,点B是顶点.直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.与对称轴交于点G,若△BMN的面积等于2,求k的值.22.(2022•杨浦区二模)如图,已知在平面直角坐标系xOy中,抛物线y=﹣+bx+c与x轴相交于点A (4,0),与y轴相交于点B(0,3),在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交线段AB于点N,交抛物线于点P,过P作PM⊥AB,垂足为点M.(1)求这条抛物线的表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,如果,求点P的坐标;(3)如果以N为圆心,NA为半径的圆与以OB为直径的圆内切,求m的值.【例1】(2022•闵行区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴相交于点A(﹣1,0),B(3,0),与y轴交于点C.将抛物线的对称轴沿x轴的正方向平移,平移后交x轴于点D,交线段BC于点E,交抛物线于点F,过点F作直线BC的垂线,垂足为点G.(1)求抛物线的表达式;(2)以点G为圆心,BG为半径画⊙G;以点E为圆心,EF为半径画⊙E.当⊙G与⊙E内切时.①试证明EF与EB的数量关系;②求点F的坐标.【分析】(1)根据点A、B的坐标,设抛物线y=a(x+1)(x﹣3),再将点C代入即可求出a的值,从而得出答案;(2)①分两种情形,当r⊙G>r⊙E时,则GB﹣EF=GE,则EF=EB,当r⊙G<r⊙E时,则EF﹣GB=GE,设EF=5t,FG=3t,GE=4t,则5t﹣GB=4t,则GB=t<GE=4t,从而得出矛盾;②由.设BD=t,则DE=,利用勾股定理得BE=,则F坐标为(3﹣t,3t),代入抛物线解析式,从而解决问题.【解答】解:(1)∵点A坐标为(﹣1,0),点B坐标为(3,0).设抛物线y=a(x+1)(x﹣3)(a≠0),∵抛物线经过点C(0,4),∴4=﹣3a.解得.∴抛物线的表达式是;(2)①由于⊙G与⊙E内切,当r⊙G<r⊙E时,则EF﹣GB=GE,设EF=5t,FG=3t,GE=4t,则5t﹣GB=4t,∴GB=t<GE=4t,∴点E在线段CB的延长线上.又∵已知点E在线段BC上,∴矛盾,因此不存在.当r⊙G>r⊙E时,则GB﹣EF=GE,又∵GE=GB﹣EB,∴EF=EB;②∵OC⊥OB,FD⊥OB,∴∠COB=∠EDB=90°.∴.∴设BD=t,则DE=;在Rt△BED中,由勾股定理得,.∴,∴F坐标为(3﹣t,3t),∵F点在抛物线上,∴,∴解得,t=0(点F与点B重合,舍去).∴F坐标为(,).【例2】(2022•福建模拟)如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论.【分析】(1)等腰直角三角形斜边中线等于斜边一半,点的坐标,不难求出A、B两点坐标,把点A、B、C 代入二次函数解析式,解三元一次方程组就可得到函数解析式.(2))通过设过点D(2,0)的直线MN解析式为y=k(x﹣2)=kx﹣2k,得到关于x、关于y的方程,利用跟与系数的关系,再得到圆的解析式,待定系数法确定定点的x、y的值,确定定点的坐标.【解答】解:连接AC、BC,过点C作CP垂直于x轴于点P.在Rt△CAB中,AC=BC,CP⊥AB,点C(2,﹣4),∴CP=AP=PB=4,OP=2,∴OA=AP﹣OP=4﹣2=2,OB=OP+PB=4+2=6,∴点A(﹣2,0),点B(6,0),把点A(﹣2,0),点B(6,0),点C(2,﹣4)代入函数解析式得,解得,∴抛物线的解析式为:y=x2﹣x﹣3.故答案为:y=x2﹣x﹣3.(2)设过点D(2,0)的直线MN解析式为y=k(x﹣2)=kx﹣2k,联立直线与抛物线解析式得关于x的等式:kx﹣2k=x2﹣x﹣3,化简得=0,x N+x M=﹣=4(k+1),x N x M==8k﹣12..........①,联立直线与抛物线解析式得关于y的等式:y=(+2)2﹣(+2)﹣3,化简得y2+(﹣﹣1)y﹣4=0,y M+y N=4k2,y M y N=﹣16k2................②,线段MN的中点就是圆的圆心,∴x O=(x N+x M)=2(K+1),代入直线方程得y O=2k2,∴圆心坐标为(2k+2,2k2),直径MN==,把①、②代入上式化简整理得直径MN=,设圆上某一点(x,y)到圆心的距离等于半径,∴=,化简整理得16k2+12﹣8k=x2﹣4kx﹣4x+y2﹣4k2y=﹣4yk2﹣4kx+x2﹣4x+y2,圆过定点,所以与k值无关,看作是关于k的二次等式,k2、k的系数,常量对应相等,得﹣8=﹣4x,x=2,16=﹣4y,y=﹣4,由以上分析,所以以MN为直径的圆过定点(2,﹣4).故答案为:以线段MN为直径的圆过定点(2,﹣4).【例3】(2022•武汉模拟)已知抛物线y=﹣2x2+bx+c(c>0).(1)如图1,抛物线与直线l相交于点M(﹣1,0),N(2,6).①求抛物线的解析式;②过点N作MN的垂线,交抛物线于点P,求PN的长;(2)如图2,已知抛物线y=﹣2x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A,B,C,D(0,n)四点在同一圆上,求n的值.【分析】(1)①把点M(﹣1,0),N(2,6)代入到y=﹣2x2+bx+c中,可得b和c的值.②设P(a,﹣2a2+4a+6),再利用M(﹣1,0),N(2,6),得到MN、PM、PN的表达式,最后利用勾股定理求得a的值.(2)令C(0,c),当y=0时,代入抛物线得x A x B=﹣,根据两角对应相等,可得△AOC∽△DOB,然后再找到对应线段成比例,即得到n的值.【解答】解:(1)①把M(﹣1,0)N(2,6)代入y=﹣2x2+bx+c,得,解得,∴抛物线的解析式为y=﹣2x2+4x+6;②由①,抛物线解析式为:y=﹣2x2+4x+6,设P(a,﹣2a2+4a+6)∵M(﹣1,0),N(2,6),∴MN==3,∴PM=,PN=,又∵PN⊥MN,则PM2=MN2+PN2,(﹣1﹣a)2+(2a2﹣4a﹣b)2=(3)2+(2﹣a)2+(2a2﹣4a)2.整理得:4a2﹣9a+2=0,∴(a﹣2)(4a﹣1)=0.∴a1=2,a2=.当a=2时,P与N重合,∴a=,PN=.(2)证明:设OA=﹣x A,OB=x B,OD=﹣n当y=0时,﹣2x2+bx+c=0,∴x A x B=﹣,∴OA•OB=﹣x A x B=.∵∠CAO=∠BDO,∠ACO=∠DBO∴△AOC∽△DOB∴=∴OA•OB=OC•OD∴=c•(﹣n).∵c≠0∴n=﹣.【例4】(2022•上海模拟)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+2(a<0)交y轴于点A,抛物线的对称轴交x轴于点P,联结PA.(1)求线段PA的长;(2)如果抛物线的顶点到直线PA的距离为3,求a的值;(3)以点P为圆心、PA为半径的⊙P交y轴的负半轴于点B,第一象限内的点Q在⊙P上,且劣弧=2.如果抛物线经过点Q,求a的值.【分析】(1)分别求出P(,0),A(0,2),由两点间距离公式可求;=×PM×OP=×AP×3,可得a=﹣;(2)抛物线的顶点为M(,2﹣a),由S△APM(3)连接PQ,BP,AM,设Q(t,at2﹣3at+2),求出M(﹣1,0),由垂径定理可得AM=AQ,=①,PQ=AP,得②,联立①②可得a=.【解答】解:(1)y=ax2﹣3ax+2=a(x﹣)2+2﹣a,∴抛物线的对称轴为x=,∴P(,0),令x=0,则y=2,∴A(0,2),∴PA=;(2)由(1)可知抛物线的顶点为M(,2﹣a),∵a<0,∴2﹣a>0,∴S △APM =×PM ×OP =×AP ×3,∴(2﹣a )×=×3,解得a =﹣;(3)连接PQ ,BP ,AM ,∵MP ⊥AB ,∴=,∵=2,∴=,∴AM =AQ ,设Q (t ,at 2﹣3at +2),∵AP =,P (,0),∴M (﹣1,0),∴=①,∵PQ =AP ,∴②,联立①②可得t =或t =﹣1(舍),将t =代入①,可得a =.1.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF 相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【分析】(1)运用待定系数法即可求出抛物线解析式,再运用配方法求出顶点坐标;(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,运用勾股定理即可求出答案;(3)如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,可得DF=t2﹣2t﹣3,BF=t﹣3,AF=t+1,运用圆内接四边形的性质可得∠DAF=∠BEF,进而证明△AFD∽△EFB,利用=,即可求得答案.【解答】解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4);(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′===,∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1;(3)线段EF的长为定值1.如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴=,∴=,∴EF===1,∴线段EF的长为定值1.2.(2021•张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B (8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E 的运动时间t的最小值.【分析】(1)运用待定系数法即可求出答案;(2)运用配方法将抛物线解析式化为顶点式,得出顶点坐标,运用待定系数法求出直线AB的函数表达式;(3)方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),得出△AFO、△AFB均为等腰直角三角形,即可得出答案,方法2:由△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),运用勾股定理及逆定理即可得出答案;(4)以O为圆心,2为半径作圆,则点P在圆周上,根据t=AP+PB=PD+PB,可知当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由t=DB=即可求出答案.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象经过C(2,﹣3),且与x轴交于原点及点B(8,0),∴c=0,二次函数表达式可设为:y=ax2+bx(a≠0),将C(2,﹣3),B(8,0)代入y=ax2+bx得:,解得:,∴二次函数的表达式为;(2)∵=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),设直线AB的函数表达式为y=kx+m,将A(4,﹣4),B(8,0)代入,得:,解得:,∴直线AB的函数表达式为y=x﹣8;(3)△ABO是等腰直角三角形.方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),∴∠AFO=∠AFB=90°,OF=BF=AF=4,∴△AFO、△AFB均为等腰直角三角形,∴OA=AB=4,∠OAF=∠BAF=45°,∴∠OAB=90°,∴△ABO是等腰直角三角形.方法2:∵△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),∴OB=8,OA===,AB===,且满足OB2=OA2+AB2,∴△ABO是等腰直角三角形;(4)如图2,以O为圆心,2为半径作圆,则点P在圆周上,依题意知:动点E的运动时间为t=AP+PB,在OA上取点D,使OD=,连接PD,则在△APO和△PDO中,满足:==2,∠AOP=∠POD,∴△APO∽△PDO,∴==2,从而得:PD=AP,∴t=AP+PB=PD+PB,∴当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由于,且△ABO为等腰直角三角形,则有DG=1,∠DOG=45°∴动点E的运动时间t的最小值为:t=DB===5.3.(2021•宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)△BCE是直角三角形.运用勾股定理逆定理即可证明;(3)如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.【解答】解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.4.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B 的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.【分析】(1)令y=0,求得抛物线与x轴的交点A、B的坐标,令x=0,用a表示C点的坐标,再由三角函数列出a的方程,便可求得a的值;(2)过M点作MH⊥AB于点H,连接MA、MC,用d表示出M的坐标,根据MA=MC,列出a、d的关系式,再通过关系式求得结果;(3)取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当P 为直线y=x与⊙M的切点时,∠APB达到最大,利用圆圆周角性质和解直角三角形的知识求得结果便可.【解答】解:(1)连接BC,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=,解得,a=;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH==2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+=,∴当4时,有,即当a=时,有;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=,∴MS==,∵MS+MT=ST=6,∴,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=∠AMB=∠APB,∴sin∠APB=sin∠BMT=.5.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B (3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.【分析】(1)将三个已知点坐标代入抛物线的解析式中列出方程组求得a、b、c,便可得抛物线的解析式;(2)1°用待定系数法求出直线BC的解析式,再设M的横坐标为t,用t表示MN的距离,再根据二次函数的性质求得MN的最大值;2°分三种情况:当∠PMN=90°时;当∠PNM=90°时;当∠MPN=90°时.分别求出符合条件的P点坐标便可.【解答】解:(1)把A、B、C三点的坐标代入抛物线y=ax2+bx+c(a≠0)中,得,解得,,∴抛物线的解析式为:y=x2﹣4x+3;(2)1°设直线BC的解析式为y=mx+n(m≠0),则,解得,,∴直线BC的解析式为:y=﹣x+3,设M(t,﹣t+3)(0<t<3),则N(t,t2﹣4t+3),∴MN=﹣t2+3t=﹣,∴当t=时,MN的值最大,其最大值为;2°∵△PMN的外接圆圆心Q在△PMN的边上,∴△PMN为直角三角形,由1°知,当MN取最大值时,M(),N(),①当∠PMN=90°时,PM∥x轴,则P点与M点的纵坐标相等,∴P点的纵坐标为,当y=时,y=x2﹣4x+3=,解得,x=,或x=(舍去),∴P();②当∠PNM=90°时,PN∥x轴,则P点与N点的纵坐标相等,∴P点的纵坐标为﹣,当y=﹣时,y=x2﹣4x+3=﹣,解得,x=,或x=(舍去),∴P(,);③当∠MPN=90°时,则MN为△PMN的外接圆的直径,∴△PMN的外接圆的圆心Q为MN的中点,∴Q(),半径为,过Q作QK∥x轴,与在MN右边的抛物线图象交于点K,如图②,令y=,得y=x2﹣4x+3=,解得,x=<(舍),或x=,∴K(,),∴QK=>,即K点在以MN为直径的⊙Q外,设抛物线y=x2﹣4x+3的顶点为点L,则l(2,﹣1),连接LK,如图②,则L到QK的距离为,LK=,设Q点到LK的距离为h,则,∴=,∴直线LK下方的抛物线与⊙Q没有公共点,∵抛物线中NL部分(除N点外)在过N点与x轴平行的直线下方,∴抛物线中NL部分(除N点外)与⊙Q没有公共点,∵抛物线K点右边部分,在过K点与y轴平行的直线的右边,∴抛物线K点右边部分与⊙Q没有公共点,综上,⊙Q与MN右边的抛物线没有交点,∴在线段MN右侧的抛物线上不存在点P,使△PMN的外接圆圆心Q在MN边上;综上,点P的坐标为()或().6.(2021•开福区模拟)如图,在平面直角坐标系中,抛物线y=x2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),①求点M的坐标及⊙M的半径;②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.【分析】(1)c=﹣2,将点B的坐标代入抛物线表达式得:0=﹣4b﹣2,解得:b=﹣,即可求解;。
1 二次函数和圆中考综合题【例题1】已知圆P 的圆心在反比例函数ky x =(1)k >图象上,并与x 轴相交于A 、B 两点.且始终与y 轴相切于定点C (0,1).(1)求经过A 、B 、C 三点的二次函数图象的解析式; (2)若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形.【例题2】在平面直角坐标系中,四边形OABC 是矩形,是矩形,OA=4OA=4OA=4,,AB=2AB=2,直线,直线32y x =-+与坐标轴交于D 、E 。
设M 是AB 的中点,的中点,P P 是线段DE 上的动点上的动点. .(1)求M 、D 两点的坐标;(2)当P 在什么位置时,在什么位置时,PA=PB PA=PB PA=PB?求出此时?求出此时P 点的坐标;(3)过P 作PH PH⊥⊥BC BC,垂足为,垂足为H ,当以PM 为直径的⊙为直径的⊙F F 与BC 相切于点N 时,求梯形PMBH 的面积的面积. .【例题3】在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y 轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.的解析式;(1)求直线CB的解析式;(2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;,求该抛物线的解析式;(3)试判断点C是否在抛物线上?是否在抛物线上?相似?直接写出两组这样的点. (4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.【例题4】如图,已知抛物线y= ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.的值及抛物线的解析式;(1)求m的值及抛物线的解析式;(a-b)的值;)的值;sin((2)设∠DBC = a,∠CBE = b,求sin(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指的坐标;若不存在,请说明理由.出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.【例题5】如图,点M (4,0),以点M 为圆心、为圆心、22为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象.的坐标,并画出抛物线的大致图象.(2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.所在直线的解析式.【例题6】如图所示,如图所示,在平面直角坐标系中,在平面直角坐标系中,M 经过原点O ,且与x 轴、y 轴分别相交于A (-8,0),B (0,-6)两点.)两点.(1)请求出直线AB 的函数表达式;的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在M 上,开口向下,且经过点B ,求此抛物线的函数表达式;函数表达式;(3)设(2)中的抛物线交x 轴于D E ,两点,在抛物线上是否存在点P ,使得115PDE ABC S S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.的坐标;若不存在,请说明理由.(4)点H 是抛物线对称轴上的一个动点,且在点M 的下方,请问抛物线上是否存在另一点Q ,使得△ABH 与△ABQ 全等。
中考数(Shu)学压轴题二次函数与圆一(Yi)、二次函数与圆(Yuan)综合【例1】已知(Zhi):抛物线与(Yu)轴(Zhou)相交于两(Liang)点,且(Qie).(Ⅰ)若,且为正整数,求抛物线的解析式;(Ⅱ)若,求的取值范围;(Ⅲ)试判断是否存在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;(Ⅳ)若直线过点,与(Ⅰ)中的抛物线相交于两点,且使,求直线的解析式.【解析】(Ⅰ)解法一:由题意得,.解得,.为正整数,∴.∴.解法二:由题意知,当时,.(以下同解法一)解法三:,.又.∴.(以下同解法一.)解法四:令,即,∴.(以下同解法三.)(Ⅱ)解法一:.,即.,∴.解得:.∴的取值范围是.解法二:由题意知,当时,.解得:.∴的取值范围是.解法三:由(Ⅰ)的解法三、四知,.∴∴.∴的(De)取值范围是.(Ⅲ)存(Cun)在.解法一(Yi):因为过两点的(De)圆与轴(Zhou)相切于点,所(Suo)以两点(Dian)在轴的同(Tong)侧,∴.由切割线定理知,,即.∴,∴∴.解法二:连接.圆心所在直线,设直线与轴交于点,圆心为,则.,∴在中,.即.解得.(Ⅳ)设,则.过分别向轴引垂线,垂足分别为.则.所以由平行线分线段成比例定理知,.因此,,即.过分别向轴引垂线,垂足分别为,则.所以....,或.当时,点.直线过,解得当时,点.直线过,解得故所求直线的解析式为:,或.【例2】已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式并且线段CM的长为(1)求抛物线的解析式。
(2)设抛物(Wu)线与x轴有(You)两个交点A(X1 ,0)、B(X2,0),且(Qie)点A在(Zai)B的左侧,求线(Xian)段AB的(De)长。
(3)若(Ruo)以AB为(Wei)直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。
【解析】(1)解法一:由已知,直线CM:y=-x+2与y轴交于点C(0,2)抛物线.过点C(0,2),所以c=2,抛物线的顶点M在直线CM上,所以,解得或若,点C、M重合,不合题意,舍去,所以.即M过M点作y轴的垂线,垂足为Q,在所以,,解得,。
圆的基础题 (一)主要知识点:
1.垂径定理及推论
1.如图,⊙O 的半径为5cm ,圆心到弦AB 的距离为3cm ,弦AB 的长为______ 2.圆心角、弧、弦之间相等关系的定理
2.如图,D 、E 分别是⊙O 的半径OA 、OB 上的点, CD ⊥OA ,CE ⊥OB ,CD=CE ,则AC 与BC 弧长的大小关系是 3.圆周角定理及推论
3.如图,点A 、B 、C 三点在⊙O 上,且
80
=∠AOB
,则=∠ACB
4.点与圆的位置关系 4.⊙O 的半径为4cm ,A 为线段OP 的中点,当OP=7cm 时,点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定 5.直线与圆的位置关系(切线的判定定理、性质定理、切线长定理) 5.如图,AB 是⊙O 的直径,BC 是弦,∠B =30°,延长 BA 到D ,使∠BDC =30°,则DC 与⊙O 的位置关系是 .
6.如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,DC 的延长线交AB 点A ,∠A=20°,则∠DBE= .
7.Rt △ABC 中,∠C=90°, a=3,b=4,则内切圆的半径是_____. 6.圆和圆的位置关系
8.⊙O 1与⊙O 2外切,半径分别是方程2
7110x x -+=的两根,圆心距a 的值是 .
7.正多边形和圆
9.同一个圆的内接正方形和外切正方形的边长之比为( )
A 、2:1 B.2:3 C.3:2 D 、2:2 8.弧长与扇形面积、圆锥的侧面展开图
10. 如图,方格纸中4个小正方形的边长均为1,则图中阴影部分 三个小扇形的面积和为 (结果保留π)
11.一圆锥的底面半径为6㎝,侧面展开图扇形的圆心角为240°,则 圆锥的母线长为 ,圆锥的侧面积为 .
9.圆中的最值
1. 若P 为半径长是6cm 的⊙O 内一点,OP =2cm ,求过P 点的最短的弦长 . 2. 如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠
B
为AN
弧的中点,P 是直径MN 上一动点,则P A +PB ( )
(C)1 (D)2
3. 如图,△ABC 中, BC=5,AC=12,AB=13.过点C 作
C
N
⌒ ⌒
一动圆与AB相切于点D,交AC于点P,BC于点Q。
求PQ最小值。
10.分类讨论
1.圆的一条弦把圆分成1:4两部分,则这条弦所对的圆周角大小为.
2.点A、B、C为⊙O上的两点,O
∠,求圆周角BAC
=
BOC70
∠的大小.
3.半径为3的圆O的一条弦AB的长为3,点C在圆O上,则ACB
∠=. 4.已知:点P到⊙O最近的距离为3,最远的距离为11,求⊙O的半径。
5.⊙O半径为10cm,弦CD
AB//,若AB=12cm,CD=16cm,求两弦的距离。
6.已知:⊙O的半径OA=1,弦AB、AC的长分别为3
,2,求BAC
∠的大小。
7.已知⊙O的直径AB的长为34,弦CD的长为16,CD
AB⊥,求以CD为弦的弓形的高.
8.等腰三角形ABC内接于⊙O,AB=AC,若⊙O的直径为10,BC=8,求该三角形底
边上的高。
9.⊙P圆心为(-1,0)半径为1,⊙Q圆心为(4,0)半径为2,⊙P以每秒1个单位的
速度向右移动,经过几秒两圆相切?
10.在平面直角坐标系中,⊙O的圆心在原点,半径为2,点A的坐标为)3
2,2(,直线AB 为⊙O切线,B为切点,求点B点的坐标。
11. 已知中ABC ∆4,390C o ==∠BC AC ,=,分别以A 、C 为圆心作⊙A 与⊙C ,⊙C 与
直线AB 不相交,⊙A 与⊙C 相切,设⊙A 的半径为r ,求r 的取值范围。
12. 已知中ABC ∆4,390C o ==∠BC AC ,=,若以C 为圆心,R 为半径作⊙C 与斜边AB 只有一个公共点,求R 的取值范围
13. 已知半径为2cm 的两圆外切,半径为4cm 且和这两个圆都相切的圆共有几个?
二次函数基础题
1.基本概念:二次函数的定义,对称轴,顶点 练习:1.下列函数中,哪些是二次函数?
① 02=-x y ② 2
)1()2)(2(---+=x x x y ③x
x y 12+= ④322
-+=x x y
2.函数1)1(2
+-=+k
k x k y 为二次函数,则k 的值为 .
3.抛物线94
12
-=
x y 的开口 ,对称轴是 ,顶点坐标是 .
4.抛物线2
)1(3+-=x y 的开口 ,对称轴是 ,顶点坐标是 . 5.抛物线3422
+-=x x y 的开口 ,对称轴是 ,顶点坐标是 . 2.二次函数y=ax 2+bx+c (a≠0)的图象和性质:
五点法画函数图象,增减性,最大最小值,函数值的正、负性,的交点坐标
练习:1.作出二次函数322
--=x x y 的图像,并回答下列问题: (1) 函数有最_____值;当x=_____时,y 最值=______.
(2) 图象与x 轴交点A 的坐标_________,B 点的坐标________,
(A 点在B 点左边).与y 轴交点C 的坐标________,A B C S ∆(3)当x______时,y 随x 的增大而增大;当x_______时,y 随x 的增大而减小. (4)当x 满足 ___ ___时,y ≤0; 当x 满足_____ __时,y >0.
2.已知二次函数y=x 2+(2k-1)x+k 2
(1)若函数的顶点在x 轴上,则k 的值为 . (2)若函数图象关于y 轴对称,则k 的值为 . (3)若函数图象经过原点,则k 的值为 .
3.二次函数y=ax 2+bx+c (a≠0)的系数a 、b 、c 与图象的关系: 练习:1.已知:c
b a
>>,且c b a ++=0,则二次函数c
bx ax
y
++=2
的图象可能是下列图象
中的( ).
2.二次函数2
y ax bx c =++的图象如图,下列结论:①0b >,②0c <, ③30a b +<,④420a b c ++>,⑤22
()a c b +>,其中正确的有( )
A.1个
B.2个
C.3个
D.4个 4.待定系数法求二次函数的解析式:
根据条件选择合适的函数解析式: 一般式y=ax 2+bx+c (a≠0); 顶点式y=a (x-h )2+k ; 交点式y=a (x-x 1)(x-x 2)
练习:求满足下列条件的二次函数的解析式
(1)抛物线的顶点坐标是(1,-4),且与x 轴的交点坐标是(-1,0).
(2)二次函数的图象过(-1,5),(1,1)和(3,5)三个点.
(3)抛物线对称轴是直线x =1,与x 轴一个交点为(-2,0),与y 轴交点(0,12).
(4)图象与x 轴的交点坐标是(-1,0),(-3,0)且函数有最小值-5.
5.抛物线的平移、翻折、旋转:
练习: 已知抛物线C 1 的解析式:8822-+-=x x y
(1)将此抛物线向上平移2个单位长度,再向右平移1个单位长度,所得抛物线C 2的解析式是 .
(2)将抛物线C 2沿y 轴翻折,所得抛物线C 3的解析式是 .
(3)将抛物线C 3绕原点旋转180o
,所得抛物线C 4的解析式是 .
(4) 将抛物线C 5绕它的顶点旋转180o
,所得抛物线C 5的解析式是 . 6.二次函数与一元二次方程、不等式的关系:
练习:1.若关于x 的一元二次方程0522
=-+x ax 有且仅有一根在0与1之间(不含0和1),则a 的取值范围是( )
A .3<a
B .3>a
C .3-<a
D .3->a
2.直线m x y +=和抛物线c bx x y ++=2
都经过点A (1,0),B (3,2).
⑴求m 的值和抛物线的解析式;
⑵观察图象回答不等式m x c bx x +>++2
的解集. (直接写出答案). 7.二次函数实际应用问题:
练习:
(1)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.
(2)小汽车刹车距离s (m )与速度v (km/h )之间的函数关系式为2
100
1v s =
,一辆小汽车速度为100km/h ,在前方80m 处
停放一辆故障车,此时刹车 有危险(填“会”或“不会”).
(3)如图,小明的父亲在相距2米的两棵树间拴了一根绳子, 给小明做了一个简易的秋千.拴绳子的地方距地面高都是2 米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵 树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的 距离为 米.。