2018版数学-第7章第三讲 基本不等式
- 格式:pptx
- 大小:6.09 MB
- 文档页数:27
基本不等式完整版(非常全面)[整理]
基本不等式可以指几乎所有组成分析和数学的基础。
它可以使许多不同的数学问题变
得更容易理解,因此使用它们进行计算是极其重要的。
基本不等式包括了三类不等式:大
小不等式,加法不等式和乘法不等式。
以下是一些基本的不等式定义。
1、大小不等式:大小不等式表示一个数与另一个数之间的存在或缺失的关系。
例如,如果A > B,则表示A大于B,而A ≤ B表示A小于或等于B,A ≠ B表示A与B之间存
在某种不同。
2、加法不等式:加法不等式表示两个数相加时的结果。
例如,A + B > C的意思是A
与B的和大于C,A + B ≤ C的意思是A与B的和小于或等于C,A + B = C的意思是A
与B的和等于C。
一般地,一个数与另一个数之间的关系可以用不等式来表示,但也可以用不等式来表
示多个数之间的关系:
1、省略不等式:3x + 2y = 4z,这表示3x + 2y至少等于4z的意思。
基本不等式可以用来处理大量数学问题,比如解一元不等式、求函数的极值以及进行
多元函数分析等。
它们对于熟悉数学理论和解决数学问题都极其重要。
真题演练集训1.[2016·江苏卷]在锐角三角形ABC 中,若sin A =2sin Bsin C ,则tan Atan Btan C 的最小值是________.答案:8解析:由sin A =sin(B +C)=2sin Bsin C ,得sin Bcos C +cos Bsin C =2sin Bsin C ,两边同时除以cos Bcos C ,得tan B +tan C =2tan Btan C ,令tan B +tan C =2tan Btan C =m ,因为△ABC 是锐角三角形,所以2tan Btan C>2tan Btan C ,则tan Btan C>1,m>2.又在三角形中有tan Atan Btan C =-tan(B +C)tan Btan C=-m 1-12m ·12m =m 2m -2=m -2+4m -2+4 ≥2m -24m -2+4=8, 当且仅当m -2=4m -2,即m =4时等号成立, 故tan Atan Btan C 的最小值为8.2.[2014·福建卷]要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元). 答案:160解析:设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4x m ,依题意,得y =20×4+10⎝ ⎛⎭⎪⎫2x +2×4x =80+20⎝ ⎛⎭⎪⎫x +4x ≥80+20×2x ×4x =160,当且仅当x =4x,即x =2时等号成立, 所以该容器的最低总造价为160元.3.[2013·天津卷]设a +b =2,b>0,则当a =________时,12|a|+|a|b取得最小值. 答案:-2解析:∵a +b =2,∴12|a|+|a|b =24|a|+|a|b=a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b≥a 4|a|+2 b 4|a|×|a|b =a 4|a|+1. 当且仅当b 4|a|=|a|b且a<0, 即b =-2a ,a =-2时,12|a|+|a|b取得最小值.课外拓展阅读基本(均值)不等式在压轴题中的应用关于基本(均值)不等式的高考试题,它可以涉及的知识点很多,尤其是在数列、解析几何中运用时,难度一般较大,需要有较强的分析问题及解决问题的能力.1.与数列搭配基本不等式在数列解答题中多出现在第(2)问中,常见的是比较大小或证明不等式,问题的求解需要有较强的运算能力.[典例1] 已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a 1=1,且a 1,a 2,a 7成等比数列.(1)求数列{a n }的前n 项和S n ;(2)设b n =2S n 2n -1,数列{b n }的前n 项和为T n ,求证:2T n -9b n -1+18>64b n n +9b n +1(n>1). [思路分析] (1)根据等差数列和等比数列的性质易求;(2)中数列{b n }满足b n =2S n 2n -1,这是一个等差数列的前n 项和与一个关于n 的一次函数之比,数列{b n }极可能也是一个等差数列,求出其和后,根据不等式的有关知识解决.(1)[解] 因为a 1,a 2,a 7成等比数列,所以a 22=a 1a 7,即(a 1+d)2=a 1(a 1+6d).又a 1=1,d ≠0,所以d =4.所以S n =na 1+n n -12d =n +2n(n -1)=2n 2-n.(2)[证明] 因为b n =2S n 2n -1=2n 2n -12n -1=2n , 所以{b n }是首项为2,公差为2的等差数列.所以T n =n 2+2n 2=n 2+n.所以2T n -9b n -1+18=2n 2+2n -18(n -1)+18=2n 2-16n +36=2(n 2-8n +16)+4=2(n -4)2+4≥4,当且仅当n =4时等号成立.①64b nn +9b n +1=64×2n n +92n +1 =64nn 2+10n +9=64n +9n +10≤646+10 =4,当且仅当n =9n,即n =3时等号成立.② 又①②中等号不可能同时取到,所以2T n -9b n -1+18>64b n n +9b n +1(n>1).温馨提示 本题在求解时注意,两次放缩取等号的条件不一致,最后结果不能取等号.2.与函数、导数共现在函数的解答题中出现的基本(均值)不等式一般都与导数有密切的联系,在多数情况下问题的求解需要构造新的函数,通过合理转化,巧妙放缩去完成.求解这类问题一般难度较大,在高考中常以压轴题的形式出现,需要较强的综合能力.[典例2] 已知h(x)=ln(x +1)-ax x +1. (1)当a>0时,若对任意的x ≥0,恒有h(x)≥0,求实数a 的取值范围;(2)设x ∈N 且x>2,试证明:ln x ≥12+13+14+…+1x. (1)[解] h(x)=ln(x +1)-ax x +1, 则h(x)的定义域为(-1,+∞),h ′(x)=11+x -a 1+x 2=x +1-a1+x 2.①当0<a ≤1时,对任意的x ≥0,h ′(x)≥0恒成立,则h(x)在[0,+∞)上单调递增,h(x)≥h(0)=0,所以满足题意.②当a>1时,h(x)在x ∈(0,a -1]上单调递减,h(x)在x ∈[a -1,+∞)上单调递增.若对任意的x ≥0,恒有h(x)≥0,则h(x)的最小值h(a -1)=ln a +1-a ≥0恒成立.令m(a)=ln a +1-a(a>1),则m ′(a)=1-a a,m ′(a)<0, m(a)在a ∈(1,+∞)上单调递减,所以当a ∈(1,+∞)时,有m(a)<m(1)=0, 与h(a -1)=ln a +1-a ≥0恒成立矛盾. 所以实数a 的取值范围为(0,1].(2)[证明] 由(1)知,ln(1+x)≥x 1+x, 所以ln x =ln ⎝ ⎛⎭⎪⎫21×32×43×…×x x -1 =ln 2+ln 32+ln 43+…+ln xx -1 =ln(1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+…+ln ⎝ ⎛⎭⎪⎫1+1x -1 ≥12+121+12+…+1x -11+1x -1=12+13+14+…+1x. 所以ln x ≥12+13+14+…+1x.。
基本不等式公开课课件一、引言基本不等式是数学中的重要概念,它在解决实际问题、证明数学定理等方面起到了重要的作用。
本课件旨在介绍基本不等式的概念、性质和解题方法,帮助学生理解并掌握基本不等式的应用。
二、基本不等式的概念1. 不等式的定义和符号不等式是数学中一种表示大小关系的表达式。
通常用不等号(>、<、≥、≤)表示。
2. 基本不等式的定义基本不等式是指具有普遍适用性和重要性的不等式。
常见的基本不等式有:算术平均-几何平均不等式、柯西-施瓦茨不等式、均值不等式等。
三、基本不等式的性质1. 不等式的运算性质基本不等式满足不等式的运算性质,包括加法法则、乘法法则和取反法则等。
2. 不等式的传递性质如果对于任意的实数a、b、c,若a < b,b < c,则有a < c。
这种传递性质在解决不等式问题时具有重要意义。
四、基本不等式的应用1. 不等式求解方法不等式求解的一般步骤包括:将不等式转化为等价的形式、求解等价不等式,最后给出不等式的解集。
2. 基本不等式的应用举例例1:应用算术平均-几何平均不等式证明某个数值组的最优解。
例2:利用基本不等式解决实际问题,如最优化问题、优化调整问题等。
五、基本不等式的证明1. 不等式的证明方法常见的不等式证明方法有:直接证明法、间接证明法(反证法)、数学归纳法等。
2. 不等式的证明举例例:使用间接证明法证明算术平均-几何平均不等式。
六、课堂练习为了巩固学生对基本不等式的掌握,本课件设置了一些课堂练习,供学生在课后完成。
七、总结通过本课件的学习,我们了解了基本不等式的概念、性质和应用。
基本不等式作为数学中的重要工具,在解决实际问题和证明数学定理中具有广泛的应用。
希望同学们能够通过课后的练习进一步巩固对基本不等式的理解和运用能力。