试卷分类汇编_ 梯形
- 格式:doc
- 大小:741.50 KB
- 文档页数:21
数学梯形试题答案及解析1.一个梯形的上下底之和是40.5厘米,高是1.2厘米,它的面积是平方厘米.【答案】24.3【解析】梯形的面积=(a+b)h÷2,将数据代入公式即可求解.解:40.5×1.2÷2=24.3(平方厘米);答:这个梯形的面积是24.3平方厘米.故答案为:24.3.点评:此题主要考查梯形的面积的计算方法.2.写出计算如图直角梯形的面积的算式.【答案】(5+7)×5÷2【解析】根据梯形各边的名称及梯形的面积公式即可求解.注意本题梯形的高为5.解:梯形面积=(5+7)×5÷2.故答案为:(5+7)×5÷2.点评:此题主要考查梯形的面积公式:梯形的面积=(上底+下底)×高÷2.3.有一个梯形,它的上底是7厘米,下底是12厘米,高是6厘米,这梯形的面积是立方厘米.【答案】57【解析】根据梯形的面积公式=(上底+下底)×高÷2进行计算即可得到答案.解:(7+12)×6÷2=19×6÷2,=57(立方厘米),答:这个梯形的面积是57立方厘米.故答案为:57.点评:此题主要考查的是梯形的面积公式的灵活应用.4.一个面积是20平方分米的梯形,当上底是12分米,下底是8分米时,高一定是1分米.….【答案】错误【解析】根据梯形的面积=(上底+下底)×高÷2进行计算,看面积是否等于20平方分米,然后再进行判断即可得到答案.解:(12+8)×1÷2=20×1÷2,=10(平方分米),答:上底12分米,下底8分米,高是1分米的梯形的面积是10平方分米.故答案为:错误.点评:此题主要考查的是梯形的面积公式的灵活应用.5.一个梯形的面积是34平方米,高是4米,下底长10米,上底长米.【答案】7【解析】根据梯形的面积公式可得:梯形的上底=面积×2÷高﹣下底,代入数据即可解答.解:34×2÷4﹣10,=17﹣10,=7(米),答:上底是7米.故答案为:7.点评:此题考查了梯形的面积公式的灵活应用.6.(如图)(1)在图中梯形内加一条线段,使它成为一个平形四边形和一个三角形.(2)量出相关数据(取整厘米)算出梯形面积是平方厘米.【答案】,4.5【解析】(1)利用过直线外一点作已知直线的平行线的方法即可作图;(2)量得梯形的上底是1厘米,下底是2厘米,高是3厘米,代入梯形面积公式即可求其面积.解:(1)如下图所示,即为所要求的作图,;(2)梯形的面积:(1+2)×3÷2,=3×3÷2,=4.5(平方厘米);答:梯形的面积是4.5平方厘米.故答案为:4.5.点评:此题主要考查过直线外一点作已知直线的平行线的方法及梯形面积公式.7.一个梯形的上底是5m,下底是12m,高是8m,它的面积是m2.【答案】68【解析】梯形的面积公式:S=(a+b)h÷2,上底是5,下底是12,高是8,代入公式进行计算.解:S=(a+b)h÷2,=(5+12)×8÷2,=17×8÷2,=68(平方米);答:它的面积是68平方米.故答案为:68.点评:本题主要考查了学生对梯形面积公式的掌握情况.8.用一根长56厘米的铁丝围成一个等腰梯形,两条腰长之和是36厘米,高是7厘米.它的面积是平方厘米.【答案】70【解析】根据题意,可用56减去36得到等腰梯形上、下底的和,然后再按照梯形的面积=(上底+下底)×高÷2进行计算即可.解:(56﹣36)×7÷2=20×7÷2,=140÷2,=70(平方厘米),答;这个等腰梯形的面积是70平方厘米.故答案为:70.点评:解答此题的关键是根据等腰梯形的周长确定等腰梯形上、下底的和,最后再利用梯形的面积公式进行计算即可.9.三角形面积用字母表示为,梯形面积用字母表示为.【答案】s=ah,s=【解析】(1)根据“三角形的面积=底×高÷2”进行解答即可;(2)根据“梯形的面积=(上底+下底)×高÷2”进行解答即可.解:(1)s=ah;(2)s=;故答案为:s=ah,s=.点评:解答此题的关键是根据三角形的面积计算公式和梯形的面积计算公式进行性解答即可.10.一堆钢管,最底层有18根,最高层有6根,每相邻的两层相差一根,这堆钢管共有.【答案】156根【解析】根据题意,最上层有6根,最下层有18根,相邻两层相差1根,这堆钢管的层数是(18﹣6+1)层,根据梯形的面积计算方法进行解答.解:(6+18)×(18﹣6+1)÷2=24×13÷2=156(根);答:这堆钢管一共有 156根.故答案为:156根.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.11.一个梯形的上底是7厘米,下底是5厘米,高是4厘米,它的面积是平方厘米.【答案】24【解析】将数据代入梯形面积公式即可求解.解:(7+5)×4÷2,=12×4÷2,=24(平方厘米);答:梯形面积是24平方厘米.故答案为:24.点评:此题主要考查梯形面积的计算.12.平行四边形的面积或梯形面积的大小分别与它们的底和高有关,与它们的形状和位置无关..【答案】√【解析】根据平行四边形的面积=底×高,梯形的面积=(上底+下底)×高÷2,可以看出平行四边形的面积与梯形的面积的大小与它们的底和高有关系,与它们的形状和位置无关.解:平行四边形的面积=底×高,梯形的面积=(上底+下底)×高÷2,所以平行四边形的面积与梯形的面积的大小与它们的底和高有关系,与它们的形状和位置无关.故答案为:√.点评:此题主要考查的是平行四边形的面积公式和梯形的面积公式的应用.13.(2011•杭州模拟)有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是平方厘米.【答案】20【解析】根据等腰图形的面积公式可得,只要求出梯形的高就可以解决问题,作出梯形的两条高,根据等腰梯形的性质,可将这个底角为450的梯形分成了两个等腰直角三角形,由此可以得出梯形的高为2厘米.解:梯形的高:(12﹣8)÷2,=4÷2,=2(厘米),梯形的面积:(8+12)×2÷2,=20×2÷2,=20(平方厘米),答:梯形的面积为20平方厘米.故答案为:20.点评:画出梯形的两条高将梯形分成两个直角三角形和长方形,是解决此类问题到的关键.14. (2012•德江县模拟)有一块梯形木板,上底比下底多0.6米,上底是1.8米,高比下底少0.9米,这块木板的面积是 . 【答案】0.45平方米【解析】先求出梯形的下底和高,再根据梯形的面积公式求出这个梯形的面积即可.解:1.8﹣0.6=1.2(米),1.2﹣0.9=0.3(米),(1.8+1.2)×0.3÷2=3×0.3÷2,=0.45(平方米);答:这块木板的面积是0.45平方米.故答案为:0.45平方米.点评:考查了梯形的面积公式:梯形的面积=(上底+下底)×高÷2,本题要先求出梯形的下底和高.15. 在梯形ABCD 中,BE=2EC ,CF=2AF ,阴影部分的面积为3平方厘米,则梯形的面积为 平方厘米.【答案】20.25【解析】在三角形BFE 、三角形EFC 中高相等,BE=2EC ,可以求出三角形BEF 的面积,在三角形BFC 与三角形AFB 中,高相等,CF=2AF ,可以求出三角形AFB 的面积,而三角形AFB 的面积等于三角形DFC 的面积,在三角形DFC 与三角形AFD 中高相等,CF=2AF ,可以求出三角形ADF 的面积,进而求出梯形的面积.解:在三角形BFE 、三角形EFC 中高相等,BE=2EC ,S △BEF :S △EFC =BE :EC=2:1,S △BEF =2S △EFC =2×3=6(平方厘米),在三角形BFC 与三角形AFB 中,高相等,CF=2AF ,S △ABF :S △BFC =AF :FC=1:2,所以S △ABF =S △BFC =(6+3)=4.5(平方厘米),S △ABF =S △DFC =4.5平方厘米,在三角形DFC 与三角形AFD 中高相等,CF=2AF ,S △AFD :S △DFC =AF :FC=1:2,所以S △AFD =S △DFC =×4.5=2.25(平方厘米),梯形的面积是:2S △DFC +S △BEF +S △EFC +S △AFD =4.5×2+6+3+2.25=20.25(平方厘米),故答案为:20.25.点评:题考查了三角形的高相等时,面积与底成正比的性质的灵活应用.16. 把一个平行四边形的底增加2.4厘米后,就变成了一个梯形,面积增加6平方厘米,则梯形的高是 厘米.【答案】5【解析】如图所示,增加部分为一个三角形,这个三角形的面积是6平方厘米,底为2.4厘米,则可以求出三角形的高,也就是梯形的高.解:6×2÷2.4,=5(厘米);答:梯形的高是5厘米.故答案为:5.点评:解答此题的关键是利用直观画图,求出三角形的高,也就等于求出了梯形的高.17.一个梯形上底和下底同时扩大到原来的6倍,高缩小为原来的一半,面积会(填“扩大”或“缩小”)到原来的倍.【答案】扩大、3【解析】梯形的面积=(上底+下底)×高÷2,若上底和下底同时扩大到原来的6倍,则上底和下底的和也扩大到原来的6倍,即面积扩大6倍;高缩小为原来的一半,则面积会缩小原来的一半,这时面积应该是扩大到原来的6×=3倍.解:因为梯形的面积=(上底+下底)×高÷2,若上底和下底同时扩大到原来的6倍,则上底和下底的和也扩大到原来的6倍,即面积扩大6倍;高缩小为原来的一半,则面积会缩小原来的一半,这时面积应该是扩大到原来的6×=3倍.故答案为:扩大、3.点评:此题主要考查梯形面积公式的灵活应用.18.如图,平行四边形面积是54cm2,则阴影部分面积是 cm2.【答案】6【解析】要求阴影部分面积,需要求出三角形的底边,可以通过求平行四边形的底边得到,再根据三角形的面积公式即可求解.解:54÷6=9(cm),(9﹣7)×6÷2=2×6÷2=6(cm2).答:则阴影部分面积是 6cm2.故答案为:6.点评:考查了平行四边形的面积和三角形的面积,本题关键是求得三角形的底边,这是本题的难点.19.一个梯形的上底、下底和高都是另外一个梯形的3倍,那么这个梯形的面积是另一个梯面积的()A.3倍B.6倍C.9倍【答案】C【解析】梯形的面积=(上底+下底)×高÷2,若一个梯形的上底、下底和高都是另外一个梯形的3倍,那么这个梯形的面积是另一个梯面积的9倍.解:因为梯形的面积=(上底+下底)×高÷2,若一个梯形的上底、下底和高都是另外一个梯形的3倍,那么这个梯形的面积是另一个梯面积的9倍.故答案为:C.点评:此题主要考查梯形的面积公式.20.一个梯形面积是64平方米,上底与下底的和是16米,高是()米.A.4B.8C.2【答案】B【解析】已知梯形的面积和上下底之和求高,由梯形的面积公式s=(a+b)h,可以推出h=2s÷(a+b);由此解答.解:64×2÷16,=8(米);答:高是8米.故选:B.点评:此题主要根据梯形面积的计算方法,以及求一个因数等于积除以另一个因数,由此解决问题.21.求图的梯形面积,列式正确的是()A.(4+6)×7÷2B.(5+7)×4÷2C.(5+7)×6÷2【答案】C【解析】根据梯形的面积=(上底+下底)×高÷2,上底、下底及高已知,从而代入公式即可求解.解:由梯形的面积公式可得,梯形面积为:(5+7)×6÷2.故选C.点评:此题主要考查梯形的面积计算.22.推导梯形面积的计算公式时,把两个完全一样的梯形转化成平行四边形,其方法是()A.旋转B.平移C.旋转和平移【答案】C【解析】将两个完全一样的梯形中的一个梯形沿上底或下底的一个端点进行旋转并且平移,即可拼成一个平行四边形,从而推导出梯形的面积公式.解:将两个完全一样的梯形中的一个梯形沿上底或下底的一个端点进行旋转并且平移,即可构成一个平行四边形,从而推导出梯形的面积公式.故选:C.点评:此题主要考查梯形面积公式的推导过程.23.下底是4分米,上底和高都是2分米的梯形面积是()A.8平方分米B.6平方分米C.12平方分米【答案】B【解析】梯形面积=(上底+下底)×高÷2,将已知数据代入公式即可求解.解:(2+4)×2÷2=6(平方分米);故选:B.点评:此题主要考查梯形的面积公式.24.小明用一张梯形纸做折纸游戏.先上下对折,使两底重合,可得图1,并测出未重叠部分的两个三角形面积和是20平方厘米.然后再将图1中两个小三角形部分向内翻折,得到图2.经测算,图2的面积相当于图1的.这张梯形纸的面积是()平方厘米.A.50B.60C.100D.120【答案】C【解析】在图1中左右两个三角形的面积相等,将图1中两个小三角形部分向内翻折后,减少了一个三角形的面积即20÷2=10(平方厘米);这10平方厘米就相当于图2的面积比图1的面积少了(1﹣)对应的分率,把图1的面积看作单位“1”,根据分数除法的意义,可以求出图1的面积,列式为:10÷(1﹣)=60(平方厘米);再求图2的面积是:60×=50(平方厘米);又因为图2的面积是这张梯形纸的面积的一半,所以可以求出这张梯形纸的面积,列式为:50×2=100(平方厘米);然后据此选择即可.解:每个三角形的面积是:20÷2=10(平方厘米);图1的面积是:10÷(1﹣),=10÷,=60(平方厘米);图2的面积是:60×=50(平方厘米);梯形纸的面积是:50×2=100(平方厘米);答:梯形纸的面积是100平方厘米.故选:C.点评:本题实质是考查了梯形面积推导的过程,同时揉合了分数除法的意义,本题关键是得出由图1到图2减少的面积对应的分率.25.如图,等腰梯形对角线互相垂直,且它的对角线长10厘米,求梯形的面积.【答案】50cm2【解析】梯形的面积=三角形ABC的面积+三角形ACD的面积=AC×BO÷2+AC×DO÷2=AC×(BO+DO)÷2=AC×BD÷2,即对角线互相垂直的四边形的面积可以用对角线×对角线÷2求出.解:10×10÷2=100÷2=50(cm2).答:梯形的面积为50cm2.点评:考查了对角线互相垂直的四边形的面积计算,直接用对角线×对角线÷2计算即可.26.张大伯靠一面墙用篱笆围成一个面积是72平方米的梯形养鸡场,至少需要多少米的篱笆?【答案】30米【解析】根据梯形的面积公式=(上底+下底)×高÷2,利用梯形的面积乘2再除以高即可得到梯形上下底的和,然后再加上梯形的高即可得到需要的篱笆长度,列式解答即可得到答案.解:72×2÷6+6=24+6,=30(米),答:至少需要30米篱笆.点评:解答此题的关键是根据梯形的面积公式确定梯形上下底的和,然后再加上梯形的高即可.27.一块梯形麦田的面积是1820平方米,已知上底是48米,下底是56米,求梯形的麦田的高?【答案】35米【解析】根据梯形的面积公式:(上底+下底)×高÷2=梯形的面积,可用梯形的面积1820平方米乘2再除以梯形上底与下底的和即可得到答案.解:1820×2÷(48+56),=3640÷104,=35(米).答:梯形的麦田的高是35米.点评:此题主要考查的是梯形的面积公式的应用.28.如图,用24米长的篱笆,在靠墙的地方围了一块菜地,这块菜地的占地面积是多少平方米?【答案】54平方米【解析】根据图和题意知道,梯形的上底+下底=24﹣6=18米,再根据梯形的面积公式S=(a+b)×h÷2,即可求出菜地的占地面积.解:(24﹣6)×6÷2,=18×6÷2,=108÷2,=54(平方米).答:这块菜地的占地面积是54平方米.点评:关键是求出上底与下底的和,再利用梯形的面积公式S=(a+b)×h÷2解决问题.29.计算下面每个梯形的面积.面积面积面积.【答案】30平方厘米;20平方米;36平方米【解析】根据梯形的面积=(上底+下底)×高÷2,代入数据即可解答.解:(2+8)×6÷2,=10×3,=30(平方厘米),(2+6)×5÷2,=8×5÷2,=20(平方米),(6+12)×4÷2,=18×2,=36(平方米),答:梯形的面积分别是30平方厘米、20平方米、36平方米.故答案为:30平方厘米;20平方米;36平方米.点评:此题主要考查梯形的面积公式的计算应用.30.用篱笆围成一个梯形养兔场(如图所示),一边利用房屋墙壁,篱笆全长80米,养兔场面积有多大?【答案】750平方米【解析】观察图形可知,篱笆长度是这个梯形的上下底之和与高的长度之和,又因为高是30米,可得出梯形的上下底之和是80﹣30=50(米),据此根据梯形的面积=上下底之和×高÷2计算即可.解:(80﹣30)×30÷2,=50×30÷2,=750(平方米),答:养兔场的面积是750平方米.点评:此题考查梯形的面积公式的计算应用,解答此题的关键是明确上下底之和.31.测量你所需的条件,并算出它们的面积.【答案】,5平方厘米,2平方厘米,5.25平方厘米【解析】平行四边形的面积=底×高,三角形的面积=底×高÷2,梯形的面积=(上底+下底)×高÷2,据此测量出它们对应的边长,代入公式即可解答.解:经过测量可知:(1)2×2.5=5(平方厘米),答:平行四边形的面积是5平方厘米.(2)4×1÷2=2(平方厘米),答:三角形的面积是2平方厘米.(3)(1.5+2)×3÷2,=3.5×3÷2,=5.25(平方厘米),答:梯形的面积是5.25平方厘米.点评:此题主要考查梯形、三角形、平行四边形的面积公式的计算应用.32.用篱笆围成一个梯形养鸡场(如图所示),一边利用房屋的墙壁,篱笆的总长度是65米,求养鸡场的面积.【答案】375平方米【解析】“一边利用房屋的墙壁,篱笆的总长度是65米”,所以这个梯形的上下底的和就是65﹣15=50米.然后再根据梯形的面积公式可求出这个养鸡场的面积.解:(65﹣15)×15÷2,=50×15÷2,=375(平方米).答:养鸡场的面积是375平方米.点评:本题的关键是求出这个梯形上下底的和,再根据梯形的面积公式进行计算.33.利用一面墙,用篱笆围一块梯形菜地,已知篱笆全长35米,求菜地的面积是多少平方米?【答案】108平方米【解析】根据题意,可利用梯形的面积公式(上底+下底)×高÷2计算梯形菜地的面积,可用篱笆的全长35米减去8米就是这个梯形菜地的上底与下底的和,然后再用上底与下底的和乘高8米再除以2即可得到答案.解:(35﹣8)×8÷2=27×8÷2,=216÷2,=108(平方米),答:菜地的面积是108平方米.点评:解答此题的关键是确定这个梯形菜地的上底与下底的和,然后再利用梯形的面积公式进行解答.34.一条下水道的横截面是梯形,下水道的宽是2.8米,下水道的底宽是1.2米,下水道的深是1.6米,它的横截面面积是多少平方米?【答案】3.2平方米【解析】要求它的横截面面积是多少平方米,因为下水道的横截面是梯形,根据“梯形的面积=(上底+下底)×高÷2”,代入数值,解答即可.解:(2.8+1.2)×1.6÷2,=4×1.6÷2,=3.2(平方米);答:它的横截面面积是3.2平方米.点评:此题考查的是梯形的面积的计算方法,应灵活运用.35.寻找合适的条件,求出各图形的面积.(单位:米)【答案】29.75平方米,12.8平方米,20.58平方米【解析】将各图形求面积所用线段的数值,代入各自的面积计算公式即可求解.解:(1)三角形的面积:7×8.5÷2,=59.5÷2,=29.75(平方米);(2)梯形的面积:(3+5)×3.2÷2,=8×3.2÷2,=25.6÷2,=12.8(平方米);(3)平行四边形的面积:9.8×2.1=20.58(平方米);答:三角形的面积是29.75平方米,梯形的面积是12.8平方米,平行四边形的面积是20.58平方米.点评:解答此题的关键是,找准各图形计算面积所用的线段的值,要注意底和高的对应.36.找准所需条件,计算下列图形的面积.(单位:米)【答案】24平方米;190平方米【解析】(1)根据三角形的面积公式S=ah÷2,把底6米,高8米代入公式即可;(2)根据梯形的面积公式S=(a+b)×h÷2,把数据代入公式,列式解答即可.解:(1)6×8÷2=24(平方米);(2)(14+24)×10÷2,=38×10÷2,=190(平方米);答:三角形的面积是24平方米;梯形的面积是190平方米.点评:本题主要考查了三角形的面积公式S=ah÷2与梯形的面积公式S=(a+b)×h÷2的实际应用.37.一个等腰直角三角形最长边是14厘米,如图折成一个梯形,梯形的面积是多少?【答案】18.375平方厘米【解析】由图意可知:折成的梯形的上底和高都是14÷4=3.5厘米,再据等腰直角三角形的斜边上的高就是斜边的一半,于是可得:梯形的下底等于14÷2=7厘米,从而利用梯形的面积公式即可求解.解:梯形的上底和高都是14÷4=3.5厘米,梯形的下底等于14÷2=7厘米,所以图形的面积是:(3.5+7)×3.5÷2,=10.5×3.5÷2,=18.375(平方厘米);答:梯形的面积是18.375平方厘米.点评:此题主要考查梯形的面积的计算方法,关键是求出计算面积所需要的线段的长度.38.王伯伯用篱笆靠墙圈出一块菜地(如图),篱笆长100米,求这块菜地的面积?【答案】962平方米【解析】根据题意可知,用100米减去梯形菜地的高26米即可得到梯形菜地的上底与下底的和,然后再利用梯形的面积公式(上底+下底)×高÷2进行计算即可得到答案.解:(100﹣26)×26÷2=74×26÷2,=1924÷2,=962(平方米),答:这块菜地的面积是962平方米.点评:解答此题的关键是用篱笆长减去梯形的高得到梯形上底与下底的和,最后再利用梯形的面积公式进行计算即可.39.一块梯形的土地,上底为8米,下底为12米,高是上底与下底和的50%,现在这块地的30%用来种花生,剩下的部分按2:3种玉米和大豆,请问玉米种多大的面积?【答案】28平方米【解析】要求玉米种多大的面积,需先求出剩下土地的面积,要求剩下土地面积,就要求出种花生的土地面积,因这块地的30%用来种花生,首先要求根据梯形的面积公式求出出这块地的面积,据此来解答.解:这块地的面积:(8+12)×(8+12)×50%÷2,=20×20×0.5÷2,=100(平方米);种花生的面积:100×30%=30(平方米);乘下地的面积:100﹣30=70(平方米);种玉米的面积:70×=70×=28(平方米).答:玉米种了28平方米.点评:本题综合考查了学生对于梯形的面积以及分数乘法和按比例分配的知识.40.一块梯形的宣传牌,上底8米,下底10米,高5米.油漆这块宣传牌的正反两面共需油漆多少千克?(每平方米需用油漆1千克)【答案】90千克【解析】此题实际上是求这块梯形广告牌两面的面积,梯形的上底、下底和高已知,则面积可求;每平方米的用漆量已知,从而能求出两面的用漆量.解:(8+10)×5÷2×2×1,=18×5÷2×2×1,=90÷2×2×1,=90×1,=90(千克);答:油漆这块宣传牌的正反两面共需油漆90千克.点评:解答此题的关键是明白:先求出这块梯形广告牌两面的面积,进而可以求出总的用漆量.41.用篱笆围成一个养鸡场(如图),其中一边利用房屋的墙壁.已知篱笆长65米,求养鸡场的面积.【答案】318平方米【解析】由题意可知:这个梯形的上底与下底的和为(65﹣12)=53米,高为12米,代入梯形的面积公式即可求解.解:(65﹣12)×12÷2,=53×12÷2,=318(平方米);答:养鸡场的面积是318平方米.点评:此题主要考查梯形的面积的计算方法的灵活应用.42.有一块菜地为梯形,上底是13米,比下底短8米,高是50米,这个梯形菜地的面积是多少?【答案】850平方米【解析】梯形的面积=(上底+下底)×高÷2,梯形的上底和高已知,先利用上底与下底的关系求出下底,再将已知数据代入梯形的面积公式即可求出菜地的面积.解:[13+(13+8)]×50÷2,=(13+21)×50÷2,=34×50÷2,=1700÷2,=850(平方米);答:这个梯形菜地的面积是850平方米.点评:解答此题的关键是先求出下底,再利用梯形的面积公式计算即可.43.(1)画出上面各图形底边上的高,并量出它的长度(测量结果保留整厘米数).(2)计算各图形的面积.【答案】,10平方厘米,7平方厘米,6.5平方厘米【解析】(1)根据平行四边形的高,梯形的高,三角形的高的定义,分别画出这三个图形的已知底上的高线,再利用刻度尺分别测量出它们的高度;(2)根据平行四边形的面积=底×高÷2,梯形的面积=(上底+下底)×高÷2,三角形的面积=底×高÷2,代入数据即可解答.解:(1)根据根据平行四边形的高,梯形的高,三角形的高的定义,分别画出这三个图形的已知底上的高线,并测量出它们的高分别如图所示:(2)平行四边形的面积是:5×2=10(平方厘米),梯形的面积是:(2.2+4.8)×2÷2=7(平方厘米),三角形的面积是:13×1÷2=6.5(平方厘米),答:平行四边形的面积是10平方厘米,梯形的面积是7平方厘米,三角形的面积是6.5平方厘米.点评:此题考查了平行四边形、梯形、三角形的高的画法以及面积公式的计算应用.44.有一块梯形果园,下底80米,比上底长20米,高50米,平均每7平方米栽一棵果树,这块地共可栽多少棵果树?【答案】1000棵【解析】根据题意,可用80减去20计算上底的长,然后再利用梯形的面积公式计算出梯形果园的面积,然后再用果园的面积除以7进行计算即可.解:(80﹣20+80)×50÷7=140×50÷7,=1000(棵),答:这块地可栽1000棵果树.点评:解答此题的关键是确定梯形果园的上底,然后再利用梯形的面积公式进行计算即可.45.某林场砍伐树木,运到家具厂将其逐层堆放,每层比下一层少一根,最上层堆放了4根,一共堆放了7层,林场一共砍伐了多少根树木?【答案】49根【解析】根据堆成梯形的物品的计算方法:根数=(上层根数+下层根数)×层数÷2,代入数据进行解答.解:[4+(7﹣1+4)]×7÷2,=[4+10]×7÷2,=14×7÷2,=49(根).答:林场一共砍伐了49根树木.点评:本题主要考查了学生对根数=(上层根数+下层根数)×层数÷2,这一数量关系的掌握情况.46.一块菜地面积共2000平方米,阴影部分种白菜,空白部分种土豆,种白菜和种土豆的面积各是多少平方米?【答案】1200平方米,800平方米【解析】先根据梯形的面积=(上底+下底)×高÷2进行计算可求梯形的高,即两个三角形的高,再根据三角形的面积=底×高÷2进行计算可求种白菜和种土豆的面积.解:2000×2÷(40+60),=2000×2÷100,=40(米),60×40÷2=1200(平方米),40×40÷2=800(平方米).答:种白菜的面积是1200平方米,种土豆的面积是800平方米.点评:此题主要考查的是梯形面积公式和三角形的面积公式的灵活应用.47.①如图中梯形的面积是多少?②如果把这个梯形的上底增加1cm,下底减少1cm,得到的新梯形与原梯形的面积之间有什么关系?③如果梯形的上底增加2cm,下底减少2cm呢?④你发现了什么?请说明理由.【答案】40平方厘米,得到的新梯形与原梯形的面积相等,得到的新梯形与原梯形的面积相等,上底+下底的和不变,高不变,那么梯形的面积也不变【解析】①梯形的面积=(上底+下底)×高÷2,代入公式计算即可.②梯形的上底增加1cm,下底减少1cm,高不变,那么梯形的面积也不变.③梯形的上底增加2cm,下底减少2cm,高不变,那么梯形的面积也不变.④上底+下底的和不变,高不变,那么梯形的面积也不变.解:①(16+30)×15÷2,=46×15÷2,=345(平方厘米).答:梯形的面积是40平方厘米.②(16+1+30﹣1)×15÷2,=46×15÷2,=345(平方厘米).答:得到的新梯形与原梯形的面积相等.③(16+2+30﹣2)×15÷2,=46×15÷2,=345(平方厘米).答:得到的新梯形与原梯形的面积相等.④上底+下底的和不变,高不变,那么梯形的面积也不变.点评:此题主要考查梯形的面积公式及其计算,并通过计算能得出规律.48.梯形面积是36平方厘米,求阴影部分的面积.【答案】28平方厘米【解析】梯形的面积=(上底+下底)×高÷2,则下底=梯形的面积×2÷高﹣上底,下底即阴影部分三角形的底,再根据三角形的面积=底×高÷2,代入公式即可求解.解:(36×2÷8﹣2)×8÷2,=(9﹣2)×8÷2,=7×8÷2,=28(平方厘米).答:阴影部分的面积是28平方厘米.点评:此题主要考查梯形的面积和三角形面积的灵活计算.49.一条新挖的水渠,横截面是梯形.渠口宽2.8m,渠底宽1.4m,渠深1.2m.它的横截面的面积是多少?【答案】2.52平方米【解析】根据梯形的面积公式:S=(a+b)h÷2,上底就是2.8米,下底是1.4米,高是1.2。
全国各地100份中考数学试卷分类汇编第27章 梯形一、选择题A. 1个B. 2个C. 3个D. 4个【答案】B 2. (山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )A.1B.2C.3D.4【答案】C3. (山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B4. (浙江台州,7,4分)如图,在梯形ABCCD 中,AD ∥BC ,∠ABC=90º,对角线BD 、AC 相交于点O 。
下列条件中,不能判断对角线互相垂直的是( )A . ∠1=∠4B . ∠1=∠3C . ∠2=∠3D .OB 2+OC 2=BC 2【答案】B5. (台湾台北,15)图(五)为梯形纸片ABCD ,E点在BC 上,且︒=∠=∠=∠90D C AEC ,AD =3,BC=9,CD =8。
若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何?ED CB A(第12题图)A B CDEF(第6题图)A . 4.5B 。
5C 。
5.5D .6【答案】B6. (2011山东潍坊,11,3分)已知直角梯形ABCD 中, A D ∥BC ,∠BCD=90°, BC = CD=2AD , E 、F 分别是BC 、CD 边的中点,连接BF 、DE 交于点P ,连接CP 并延长交AB 于点Q ,连接AF ,则下列结论不正..确.的是() A . CP 平分∠BCDB. 四边形 ABED 为平行四边形C. CQ 将直角梯形 ABCD 分为面积相等的两部分D. △ABF 为等腰三角形【答案】C7. (山东临沂,12,3分)如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =2,BC =6,∠B =60°,则梯形ABCD 的周长是( )A .12B .14C .16D .18 【答案】CA.2B. 243cmAC. 2233cm D. 223cm【答案】A9. (湖北武汉市,7,3分)如图,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是A.40°.B.45°.C.50°.D.60°.【答案】C10.(湖北宜昌,12,3分)如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( ).A. ∠HGF = ∠GHEB. ∠GHE = ∠HEFC. ∠HEF = ∠EFGD. ∠HGF = ∠HEF(第12题图)【答案】D12.二、填空题1.(福建福州,13,4分)如图4,直角梯形ABCD中,AD∥BC,90C∠=,则A B C∠+∠+∠=度.【答案】2702. ( 浙江湖州,14,4)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是.【答案】33. (湖南邵阳,16,3分)如图(六)所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,则上底DC的长是_______cm。
2022全国各地中考数学真题分类汇编-梯形一.选择题1.(2020无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于()A. 17 B. 18 C. 19 D.20考点:梯形;线段垂直平分线的性质。
分析:由CD的垂直平分线交BC于E,依照线段垂直平分线的性质,即可得DE=CE,即可得四边形ABED的周长为AB+BC+AD,继而求得答案.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∵AD=3,AB=5,BC=9,∴四边形ABED的周长为:AB+BE+DE+AD=AB+BE+EC+AD=AB+BC+AD=5+9+3=17.故选A.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意把握数形结合思想与转化思想的应用是解此题的关键.2.(2020呼和浩特)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是A. 25B. 50 C2D.3024【解析】作DE∥AC,交BC的延长线于E,作DF⊥BE于F。
∵四边形ABCD是等腰梯形∴AD∥CE,AC=BD又∵DE∥AC,AC⊥BD∴四边形ACED是平行四边形,BD⊥DE∴DE=AC,AD=CE=3∴△BDE是等腰直角三角形又∵DF⊥BE∴BF=EF=DF=12BE=12(BC+CE)=12(BC+AD)=12(7+3)=5∴S梯形ABCD=12(AD+BC)·DF=25m(3+7)×5=25A DB C EF【答案】A【点评】本题考查了梯形作辅助线的方法,见对角线互相垂直,则平移对角线,利用平移后形成的直角三角形求解。
此题关键是做辅助线的方法。
3.(2020•台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?()A.24 B.25 C. 26 D.27考点:直角梯形;三角形的面积。
数学梯形试题答案及解析1.一个梯形的上底与下底的和是30厘米,梯形的高是6厘米,这个梯形的面积是平方厘米.【答案】90【解析】梯形的面积=上下底之和×高÷2,由此代入数据即可解答.解:30×6÷2=90(平方厘米),答:这个梯形的面积是90平方厘米.故答案为:90.点评:此题考查梯形的面积公式的计算应用,熟记公式即可解答.2.如图的方格纸中,每个方格的边长都表示1厘米.梯形的面积是平方厘米,平行四边形的面积是平方厘米,三角形的面积是平方厘米.【答案】18,24,12.5【解析】(1)图一为梯形,上底为5厘米,下底为1厘米,高为6厘米,可根据梯形的面积公式进行计算即可;(2)图二为平行四边形,底为6厘米,高为4厘米,可根据平行四边形的面积公式进行计算即可;(3)图三为三角形,底为5厘米,高为5厘米,可根据三角形的面积公式进行计算即可.解:(1)梯形的面积:(5+1)×6÷2=6×6÷2,=36÷2,=18(平方厘米);(2)平行四边形的面积:6×4=24(平方厘米);(3)三角形的面积为:5×5÷2=12.5(平方厘米);故答案为:18,24,12.5.点评:此题主要考查梯形的面积=(上底+下底)×高÷2、平行四边形的面积=底×高、三角形的面积=底×高÷2.3.一块直角梯形地,它的下底40米,如果上底增加30米,这块地就变成了正方形,原梯形的面积是平方米.【答案】1000【解析】如图所示,因为正方形的边长都相等,所以梯形的高和下底都等于正方形的边长,即为40米,上底为40﹣30=10米,于是即可利用梯形的面积公式求解.解:(40﹣30+40)×40÷2,=50×40÷2,=2000÷2,=1000(平方米).答:原来梯形的面积是1000平方米.故答案为:1000.点评:由题意得出梯形的上底和高,是解答本题的关键.4.一个梯形装饰板,上底是6分米,下底是10分米,高是1米,两面都要涂油漆,涂油漆的面积是平方分米.【答案】160【解析】求涂油漆的面积,根据“梯形的面积=(上底+下底)×高÷2”求出这个梯形装饰板的面积,因为是两面都要涂,所以用这个梯形装饰板的面积乘2即可.解:1米=10分米,(6+10)×10÷2×2,=160÷2×2,=160(平方分米);答:涂油漆的面积是160平方分米;故答案为:160.点评:此题考查了对梯形面积计算公式的理解和应用,注意本题中单位不同,应先统一单位.5.一堆钢管,最上层有2根,最下层有12根,相邻两层相差1根,这堆钢管一共有根.【答案】77【解析】根据题意,最上层有2根,最下层有12根,相邻两层相差1根,这堆钢管的层数是(12﹣2+1)层,根据梯形的面积计算方法进行解答.解:(2+12)×(12﹣2+1)÷2=14×11÷2=77(根);答:这堆钢管一共有 77根.故答案为:77.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.6.一块梯形白菜地的面积是216平方米,它的上、下底的和是54米,那么它的高是米.【答案】8【解析】根据梯形的面积=(上底+下底)×高÷2,则高=梯形的面积×2÷上下底的和,代入数据解答即可.解:216×2÷54,=432÷54,=8(米),答:那么它的高是 8米.故答案为:8.点评:本题考查了梯形的面积=(上底+下底)×高÷2的逆用.7.如图中,大梯形面积是阴影部分面积的倍.【答案】【解析】观察图形可知,AB是这个梯形的中位线,所以可得出这条中位线的长度是(x+2x+x)÷2=2x,据此可得出阴影部分的小梯形的上底是x,下底是2x,又根据梯形的中位线的性质可得,阴影部分的小梯形的高等于大梯形的高的一半,据此设小梯形的高是h,则大梯形的高就是2h,据此根据梯形的面积=上下底之和×高÷2,分别表示出这两个梯形的面积,再相除即可解答.解:根据题干分析可得:AB是大梯形的中位线,设小梯形的高是h,则大梯形的高就是2h,则小梯形的面积是:(x+2x)×h÷2=xh,大梯形的面积是:(x+3x)×2h÷2=4xh,4xh÷xh=,答:大梯形的面积是小梯形的面积的倍.故答案为:.点评:此题主要考查梯形的中位线的性质以及梯形的面积公式的灵活应用.8.(2005•南安市模拟)一个梯形的上底是2分米、下梯是6分米,把这个梯形分成一个平行四边形和一个三角形,所得平行四边形的面积与梯形面积的比是.【答案】1:2【解析】根据题意,梯形的高等于得到的平行四边形的高也等于得到的三角形的高,可设梯形的高为h,那么根据平行四边形的性质得到平行四边形的底边应为2分米,可根据平行四边形的面积公式和梯形的面积公式计算出各自的面积,然后再用平行四边形的面积比梯形的面积即可得到答案.解:设梯形的高为h,平行四边形的面积为:2h,梯形的面积为:(2+6)h÷2=4h,平行四边形的面积与梯形的面积的比为:2h:4h=1:2,答:所得到的平行四边形的面积与梯形的面积的比是1:2.故答案为:1:2.点评:此题主要考查的是平行四边形的性质即对边平行且相等,然后再根据平行四边形的面积公式底乘高和梯形的面积公式(上底+下底)乘高除以2计算出各自的面积,最后再用平行四边形的面积比梯形的面积即可.9.用篱笆围成一梯形菜田,梯形一边是紧靠房屋墙壁(如右图所示),篱笆总长33米,菜田的面积是平方米.【答案】91【解析】由“梯形一边是紧靠房屋墙壁,篱笆总长33米”可知,梯形的高是7米,梯形的上底+下底=(33﹣7)米,将数据代入梯形面积公式即可求解.解:(33﹣7)×7÷2=91(平方米);答:菜田面积是91平方米.故答案为:91.点评:解答此题的关键是先求彩田上底与下底的和,从而可以求其面积.10.(2011•高县)图中(单位:cm),梯形由平行四边形和直角三角形组成,这个梯形的面积是平方厘米.【答案】18【解析】因为平行四边形的对边相等,所以该梯形的下底是3+3=6厘米,然后根据“梯形的面积=(上底+下底)×高÷2”,进行解答即可.解:3+3=6厘米(3+6)×4÷2,=9×4÷2,=18(平方厘米),答:这个梯形的面积是18平方厘米.故答案为:18点评:根据平行四边形对边相等,求出该梯形的下底是解答此题的关键,然后根据梯形的面积公式解答即可.11.(2006•鹿泉市)一个梯形的下底是12分米,把上底的一端延长4分米,可以成为一个平行四边形,这时面积将增加10平方分米.原来梯形的面积是平方分米.【答案】50平方分米【解析】如图根据题意知道,上底EA是(12﹣4)厘米,面积增加的10平方厘米是三角形ABC 的面积,再根据三角形的面积公式S=a×h÷2,知道h=2S÷a,由此即可求出三角形ABC的高,即梯形AEDC的高,再根据梯形的面积公式S=(a+b)×h÷2,即可求出原来梯形的面积.解:梯形的高:10×2÷4=5(分米)梯形的上底:12﹣4=8(分米),梯形的面积:(12+8)×5÷2,=20×5÷2,=50(平方分米);答:原来梯形的面积是50平方分米.故答案为:50平方分米.点评:根据题意画出图,灵活利用三角形的面积公式S=a×h÷2与梯形的面积公式S=(a+b)×h÷2解决问题.12.(2009•和平区)如果直角梯形的上底是1厘米,面积是6平方厘米,且梯形上底、下底和高的长度均为不相等的整厘米数,则符合此条件的梯形有种.【答案】2【解析】根据题意,上底、下底和高的长度均为不相等的整厘米数,所以当上底为1厘米时,下底最小为2厘米,最大为5厘米,所以可分别设下底为2厘米、3厘米、4厘米、5厘米时梯形的高各是多少厘米,根据梯形的面积公式可计算出梯形的高,最后再看符合题意的有几种情况即可.解:当直角梯形的上底为1厘米,面积为6平方厘米时,①设下底为2厘米,高为:6×2÷(1+2)=12÷3,=4(厘米),上底为1厘米,下底为2厘米,高为4厘米,符合题意;②设下底为3厘米,高为:6×2÷(1+3)=12÷4,=3(厘米),下底和高都为3厘米,不符合题意;③设下底为4厘米,高为:6×2÷(1+4)=12÷5,=2.4(厘米),高为小数,不符合题意;④设下底为5厘米,高为:6×2÷(1+5)=12÷6,=2(厘米),上底为1厘米,下底为5厘米,高为2厘米,符合题意;答:只有下底为2厘米、高为4厘米和下底为5厘米,高为2厘米这两种情况符合题意.故答案为:2.点评:此题主要考查的是梯形的面积公式的应用.13.有一堆圆形钢管,它的横截面是梯形,上层有2根,下层有7根,共有6层,这堆钢管共有()根.A.20B.27C.28【答案】B【解析】根据题意,最上层有2根,最下层有7根,这堆钢管的层数是6层,根据梯形的面积计算方法进行解答.解:(2+7)×6÷2,=9×3,=27(根),答:一共有27根.故选:B.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.14.求下图梯形的面积,列式正确的是()A.(10+4)×7÷2B.10×4÷2C.(10十4)×5÷2【答案】C【解析】梯形的面积S=(a+b)×h÷2,据此代入数据即可求解.解:(10+4)×5÷2,=14×5÷2,=35(平方厘米);答:这个梯形的面积是35平方厘米.故选:C.点评:此题主要考查梯形的面积的计算方法.15.已知梯形的面积是20平方厘米,高为4厘米,则梯形的上、下底可能是()A.4cm和6cmB.2cm和3cmC.1cm和1.5cm【答案】A【解析】梯形面积=(上底+下底)×高÷2,因面积和高已知,代入公式即可求得上底与下底的和是多少,从而判断出上底与下底的可能值.解:上底与下底的和为:20×2÷4=10(厘米),只要是选项中上底与下底的和为10厘米的就是正确答案,故选:A.点评:此题主要考查梯形面积公式的灵活应用,将数据代入公式即可求解.16.如果一个梯形的面积是90平方厘米,高是30厘米,则它的上下底之和是()A.3厘米B.60厘米C.6厘米【答案】C【解析】根据梯形的面积公式可知:上下底之和=面积×2÷高,由此代入数据计算出结果即可作出选择.解:上下底之和是:90×2÷30=6(厘米).答:它的上下底之和是6厘米.故选:C.点评:此题考查了梯形面积=(上底+下底)×高÷2这一公式的灵活应用.17.一个梯形面积是16平方米,上底与下底的和是8米,那么高是()米.A.2B.4C.6D.8【答案】B【解析】根据梯形的面积=(上底+下底)×高÷2,可用梯形的面积乘2然后再除以上底与下底的和即可得到答案.解:16×2÷8=4(米),答:梯形的高是4米.故选:B.点评:此题主要考查的是梯形面积公式的灵活应用.18.一个等腰三角形其中两条边分别是5厘米和11厘米,那么这个等腰三角形的周长是()厘米.(三条边都是整厘米数)A.21B.27C.21或27D.以上都不是【答案】B【解析】在三角形中,两边之和大于第三边,所以这个等腰三角形的要为11厘米,那么把三角形的三条边相加即可得到这个等腰三角形的周长,列式解答即可得到答案.解:11+11+5=27(厘米),答:这个等腰三角形的周长是27厘米.故答案为:B.点评:此题主要考查是在三角形中,两边之和大于第三边和三角形周长的计算方法.19.一堆钢管每上一层比下层少1根,已知最下层有12根,最上层有5根,这堆钢管共有()根.A.68B.119C.136【答案】A【解析】根据题意,最上层有5根,最下层有12根,相邻两层相差1根,这堆钢管的层数是(12﹣5+1)层,根据梯形的面积计算方法进行解答.解:(5+12)×(12﹣5+1)÷2=17×8÷2=68(根);答:这堆钢管一共有68根.故选:A.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.20.一个梯形的面积是30平方厘米,上底与下底长度比是2:3,高是6厘米,则上底长为()A.2厘米B.4厘米C.6厘米D.8厘米【答案】B【解析】因为梯形的面积S=(a+b)×h)×h÷2,所以a+b=2S÷h,由此求出上底与下底的和,再利用按比例分配的方法,求出上底.解:30×2÷6=10(厘米),10×=4(厘米),答:上底长为4厘米;故选:B.点评:本题主要是灵活利用梯形的面积公式与按比例分配的方法解决问题.21.一块梯形菜地上底是20米,下底是30米,高是28米,共收白菜4200千克,平均每平方米收白菜多少千克?【答案】6千克【解析】根据题意,可用梯形的面积公式计算出梯形地的面积,然后再用4200除以梯形地的面积即可得到答案.解:4200÷[(20+30)×28÷2]=4200÷[50×28÷2],=4200÷700,=6(千克),答:平均每平方米收白菜6千克.点评:此题主要考查的是梯形面积公式的灵活应用.22.一个梯形的高是60厘米,下底的长度是上底的2倍,下底长12厘米.求梯形的面积.(先写出字母公式,再把数值代入公式计算)【答案】540平方厘米【解析】根据梯形的面积公式S=(a+b)h÷2进行计算即可得到答案.解:梯形的上底为:12÷2=6(厘米),梯形的面积为:S=(a+b)h÷2,=(6+12)×60÷2=18×60÷2,=540(平方厘米),答:梯形的面积是540平方厘米.点评:此题主要考查的是梯形面积公式的灵活应用.23.学校准备用梯形和小正方形地砖铺计算机室的地板,如图所示.4块梯形砖和一块小正方形砖可铺成一个大正方形.(1)每块梯形砖的面积是多少平方厘米?(2)铺一个长12米,宽8米的电教室,一共要用多少块大正方形的地转?【答案】1200平方厘米,150块【解析】(1)图中梯形的上、下底已知,大正方形的边长是由小正方形的边长和两个梯形的高拼成,由此可求出梯形的高,然后根据梯形的面积公式S=(上底+下底)×高÷2即可求出一个梯形的面积;(2)电教室的长、宽及每个大正方形的边长均已知,据此可求出一共要用多少块大正方形的地转.解:如图:(1)(180﹣40)÷2=40÷2=20(cm);(40+80)×20÷2,=120×20÷2,=1200(cm);(2)12m=1200cm,8m=800cm,1200÷80=15(块),800÷80=10(块),15×10=150(块);故答案为:1200cm,150块.点评:本题考查的知识点有图形的切拼、梯形面积的计算等.不要用电教室的总面积除以每个大正方形的面积.24.一个平行四边形和一个梯形重叠了一部分放在桌子上,平行四边形的底是13厘米,高是6厘米.没有重叠的部分是甲;梯形的上底是7厘米,下底是11厘米,高是5厘米,没有重叠的部分是乙.甲比乙大平方厘米.【答案】33【解析】因为重叠部分是二者的公共部分,可以忽略不计,则甲比乙大的面积也就是平行四边形的面积比梯形的面积大的面积.解:13×6﹣(7+11)×5÷2,=78﹣18×5÷2,=78﹣90÷2,=78﹣45,=33(平方厘米);答:甲比乙大33平方厘米.故答案为:33.点评:解答此题的关键是明白,甲比乙大的面积也就是平行四边形的面积比梯形的面积大的面积.25.用两个完全一样的梯形恰好可以拼成一个边长3厘米的正方形.已知梯形的上底是1厘米,请在下面画出这样的一个梯形,并注明上底、下底、高,再计算出它的面积.【答案】,4.5平方厘米【解析】两个完全一样的梯形拼成一个正方形(如图),那么这两个梯形是直角梯形,它的直角腰的长度就是这个正方形的边长,上下底的和也是正方形的边长,由此求解.解:这个梯形是直角梯形:面积:(1+2)×3÷2,=3×3÷2,=9÷2,=4.5(平方厘米).点评:本题关键是知道两个完全一样的直角梯形才能拼成一个正方形,根据正方形的边长找出梯形的两个底,以及高,由此求解.26.一个直角梯形,它的下底缩短2米,面积就减少了6平方米,且变成了一个正方形,求原来梯形的面积.【答案】42平方米【解析】由题意可知:减少的部分是一个三角形,其底为2厘米,面积为6平方厘米,于是可以求出三角形的高,进而可以得出梯形的上底和下底,于是利用梯形的面积公式即可求解.解:6×2÷2=6(厘米),(6+2+6)×6÷2,=14×6÷2,=42(平方米).答:原来的梯形的面积是42平方米.点评:解答此题的关键是先求出梯形的高,进而利用梯形的面积公式即可求解.27.一条新修渠道的横截面是梯形(如图),这个梯形的面积是432m2,渠底宽24m,渠口宽是渠底宽的2倍,它的渠深是多少米?【答案】12米【解析】根据题干先求出渠口宽是24×2=48米,再梯形的面积=(上底+下底)×高÷2,得出渠深=横截面的面积×2÷(渠口宽+渠底宽),据此代入数据即可解答.解:432×2÷(24+24×2),=864÷72,=12(米),答:渠深是12米.点评:此题考查梯形的面积公式的灵活应用.28.一个养鱼池的池面近似于一个梯形,上底780米,下底540米,高120米,这个养鱼池水面大约有多少公顷?【答案】7.92公顷【解析】根据题意,可用梯形的面积公式计算出这个梯形鱼池的面积.解:(780+540)×120÷2=1320×120÷2,=79200(平方米),79200平方米=7.92公顷.答:这个养鱼池大约占地7.92公顷.点评:此题主要考查的是:梯形的面积=(上底+下底)×高÷2.29.一块梯形的广告牌(如图),用油漆漆这块广告牌,每平方米用油漆0.8千克,一共用油漆多少千克?【答案】11.2千克【解析】根据梯形的面积=(上底+下底)×高÷2,即可求出广告牌的面积,再乘0.8即可求出需要油漆的千克数.解:(3+5)×3.5÷2×0.8,=8×3.5÷2×0.8,=11.2(千克),答:需要11.2千克的油漆.点评:此题主要考查梯形的面积公式的计算应用.30.填表.图形平行四边形三角形梯形【答案】70m2,9cm,120dm2,9cm,27m2【解析】本题运用三角形,平行四边形,梯形面积公式之间的数量关系进行解答即可.注意当三角形,梯形的面积是已知条件时不要忘记乘以2,再进一步计算即可.解:点评:本题考查了三角形,平行四边形,梯形面积公式之间的数量关系进行解答即可.31.有一堆圆木堆成横截面是梯形的木堆,最上层有2根,最下层有8根,每相邻两层相差一根,这堆圆木共有多少根?【答案】35根【解析】根据梯形的面积公式解决,下层8根,上层2根,每相邻两层差一根,这堆圆木的层数是:(8﹣2+1)=7层,据此解答.解:(2+8)×7÷2=10×7÷2,=35(根);答:这堆圆木共有35根.点评:此题主要根据梯形的面积计算方法解决有关的实际问题.32.一共有多少支铅笔?【答案】204支【解析】根据题意,最底层有20根,最顶层有4根,相邻两层相差1根,这堆铅笔的层数是17层,根据梯形的面积=(上底+下底)乘高÷2进行计算方法进行解答.解:(20+4)×17÷2=24×17÷2,=204(支),答:一共有204支铅笔.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.33.一个养鸡场靠墙边用篱笆围起来(如图),竹篱笆全长48米,这个养鸡场的面积是多少平方米?【答案】160平方米【解析】根据图知道,此养鸡场的图形为梯形,由竹篱笆的全长是48米,高为8米,得出上底和下底的和是48﹣8=40米,由此根据梯形的面积公式S=(a+b)×h÷2列式解答即可求出养鸡场的面积.解:(48﹣8)×8÷2,=40×8÷2,=320÷2,=160(平方米),答:这个养鸡场的面积是160平方米.点评:本题主要是根据图与题意,先求出梯形的上底与下底的和,再利用梯形的面积公式S=(a+b)×h÷2解决问题.34.一个梯形的面积是480平方厘米,高是20厘米,下底是18厘米,上底是多少厘米?【答案】30厘米【解析】因为梯形面积公式为(上底+下底)×高÷2,已知面积、高和下底,求上底,用面积乘2除以高,再减去下底即可.解:480×2÷20﹣18,=48﹣18,=30(厘米);答:上底是30厘米.点评:此题考查了学生对梯形面积公式的掌握与运用情况.35.算一算,求出下面每个图形的面积.【答案】108平方米;176平方厘米;6平方厘米;16平方厘米【解析】平行四边形的面积S=ah,梯形的面积S=(a+b)×h÷2,三角形的面积S=,据此代入数据即可求解.解:(1)9×12=108(平方米);(2)(20+12)×11÷2,=32×11÷2,=176(平方厘米);(3)20mm=2cm,6×2÷2=6(平方厘米);(4)8×4÷2=16(平方厘米).点评:此题主要考查平行四边形、梯形和三角形的面积的计算方法的灵活应用.36.填表【答案】2.5,9.2,14【解析】平行四边形的面积=底×高,三角形的面积=底×高÷2,梯形的面积=(上底+下底)×高÷2,据此根据公式变形即可计算解答.解:(1)31.5÷12.6=2.5(厘米),(2)11.04×2÷2.4=9.2(厘米),(3)122.98×2÷14.3﹣3.2,=17.2﹣3.2,=14(厘米),故完成表格如下:点评:此题主要考查平行四边形、三角形、梯形的面积公式的计算应用.37.有一堆木头,共8层,最上层2根,最下层9根,相邻两层相差一根,这堆木头共多少根?【答案】44根【解析】由题意可知:这堆木料堆成的是梯形形状,且这堆木料共有8层,于是利用梯形面积公式即可求解.解:(2+9)×8÷2,=11×8÷2,=44(根).答:这堆木头共44根.点评:解答此题的关键是:知道这堆木料的层数就是梯形的高,即可利用梯形面积公式求解.38.一块菜地是梯形,上底是400米,下底是650米,高是75.4米,这块地合多少公顷?【答案】3.948公顷【解析】根据梯形的面积公式(上底+下底)×高÷2进行计算即可得到答案.解:(400+650)×75.4÷2=1050×75.2÷2,=78960÷2,=39480(平方米),39480平方米=3.948公顷,答:这块地的面积是3.948公顷.点评:此题主要考查的是梯形的面积公式的灵活应用.39.已知梯形的上底是6米,下底是8米,高14米,求面积?【答案】98平方米【解析】根据梯形的面积公式(上底+下底)×高÷2进行计算即可得到答案.解:(6+8)×14÷2=14×14÷2,=196÷2,=98(平方米),答这个梯形的面积是98平方米.点评:此题主要考查的是梯形的面积公式的应用.40.先作出图形的高,再量出面积计算所需要的数据,最后算出面积.【答案】6.25平方厘米,7平方厘米,6.875平方厘米【解析】经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高;经过平行四边形底上的一个顶点向另一底作垂线,顶点和垂足之间的线段就是平行四边形的一条高;过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;经过度量,平形四边形的底和高都是2.5厘米,三角形的底和高分别是4厘米和3.5厘米,梯形的上、下底和高分别是2厘米、3.5厘米和2.5厘米,根据度量的数据即可分别求出下平行四边形、三角形和梯形的面积.解:作高如下,平行四边形的面积:2.5×2.5=6.25(平方厘米);三角形的面积:4×3.5÷2=7(平方厘米);梯形的面积:(2+3.5)×2.5÷2=5.5×2.5÷2=6.875(平方厘米);故答案为:6.25平方厘米,7平方厘米,6.875平方厘米.点评:本题考查的知识点比较多,有作图形的高,平行四边形、三角形、梯形面积的计算等.作图形的高要用虚线,并标出垂直符号;计算图形的面积,关键要量出所需数据.41.量出你所需要的数据(精确到厘米),再计算面积.【答案】,6平方厘米,6平方厘米,3平方厘米【解析】(1)是一个平行四边形,测量出底和高,再根据平行四边形面积=底×高,计算出面积即可;(2)是一个梯形,测量出上底、下底和高,再根据梯形面积=(上底+下底)×高÷2,计算即可;(3)是一个三角形,测量出底和高,再根据三角形面积=底×高÷2,计算出面积即可.解:如图所示:;(1):(1)3×2=6(平方厘米);答:平行四边形的面积是6平方厘米.(2)(2+4)×2÷2,=6×2÷2,=6(平方厘米);答:梯形的面积是6平方厘米.(3)3×2÷2=3(平方厘米);答:三角形的面积是3平方厘米.点评:此题主要考查平行四边形、梯形和三角形的面积的计算方法,直接利用公式解答即可.42.在右面的长方形中画上一条线段,把长方形分成一个最大的等腰直角三角形和一个梯形,梯形中最大的角是°,测量相关数据,求出梯形的面积.【答案】135°;;16平方厘米【解析】(1)要把这个长方形分成一个最大等腰直角三角形和一个梯形,则所画的等腰直角三角形的腰等于长方形的宽;(2)则梯形中有两个直角一个锐角和一个钝角,钝角最大,与三角形的底角合起来等于180度,又因为等腰直角三角形的底角是45度,则最大角的度数=180°﹣45°.(3)测量出梯形的上底、下底和高,代入面积公式计算.解:(1)如图所示:;(2)梯形中最大的角是:180°﹣45°=135°;(3)如图:梯形的上底为:2厘米,下底为:6厘米,高为:4厘米,梯形面积为:(2+6)×4÷2,=8×4÷2,=16(平方厘米).答:梯形面积为16平方厘米.点评:解决本题要根据等腰三角形的特征确定两腰的长度及角的大小,也就得出梯形的各个组成部分的长度和角的大小,再根据公式计算出面积.43.已知直角梯形的下底是30厘米,高是12厘米,把它分成一个长方形和一个三角形,三角形的面积是72平方厘米,梯形的面积是多少平方厘米?【答案】288平方厘米【解析】根据题意,可利用三角形的面积公式确定三角形的底,然后再用梯形的下底减去三角形的底即为梯形的上底,最后再利用梯形的面积公式进行计算即可得到答案.解:梯形的上底为:30﹣72×2÷12=30﹣12,=18(厘米),梯形的面积为:(30+18)×12÷2=48×12÷2,=288(平方厘米),答:梯形的面积是288平方厘米.点评:此题主要考查的是三角形面积公式和梯形面积公式的灵活应用.44.木材市场堆放着一堆圆木(形状如图),每下一层都比上一层多1根,这堆木材顶层有14根,共堆了5层,每根圆木价值30.5元.这堆圆木共有多少根?这堆圆木价值多少元?【答案】80根,2440元【解析】根据堆成梯形的物品的计算方法:根数=(上层根数+下层根数)×层数÷2,代入数据求出这堆圆木的根数,再乘每根圆木的单价,就是圆木的价值.据此解答.解:[14+14+(5﹣1)]×5÷2,=[14+14+4]×5÷2,=32×5÷2,=80(根),80×30.5=2440(元).答:这堆圆木共有80根,这堆圆木价值2440元.点评:本题的关键是根据堆成梯形物品的计算方法求出圆木的根数,再根据总价=单价×数量,求出圆木的总价值.45.计算图形的面积面积面积.【答案】28.8平方分米;93平方厘米【解析】(1)根据梯形的面积公式S=(a+b)×h÷2,代入数据求出图形的面积;(2)根据平行四边形的面积公式S=ah和三角形的面积公式S=ah÷2,分别求出平行四边形的面积和三角形的面积,再相加求出该图形的面积.解:(1)(4.8+13.2)×3.2÷2,=18×3.2÷2,=57.6÷2,=28.8(平方分米),(2)15×4.2+15×4÷2,=63+30,=93(平方厘米),故答案为:28.8平方分米;93平方厘米.点评:解决本题要先看图形的组成,再根据相应的面积公式计算.46.靠墙边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积.【答案】120平方米【解析】由图意可知:梯形的高是6米,则梯形的上底和下底的和是46﹣6=40(米),于是代入梯形的面积公式即可求出花坛的面积.解:(46﹣6)×6÷2,=40×6÷2,=120(平方米);答:这个花坛的面积是120平方米.点评:此题主要考查梯形的面积的计算方法,关键是得出梯形的上底和下底的和.47.图中小正方形的边长是8厘米,大正方形的边长是10厘米,求斜线部分的面。
初二梯形试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是梯形的定义?A. 一组对边平行的四边形B. 一组对边相等的四边形C. 一组对边平行且相等的四边形D. 一组对边垂直的四边形答案:A2. 如果一个梯形的上底是5厘米,下底是10厘米,高是4厘米,那么它的面积是多少平方厘米?A. 20B. 25C. 30D. 35答案:B3. 一个梯形的两条腰分别为8厘米和10厘米,高为6厘米,那么它的面积是多少平方厘米?A. 24B. 30C. 36D. 42答案:C4. 等腰梯形的两条腰相等,那么它的对角线是否相等?A. 是B. 否C. 无法确定D. 只有在特殊情况下相等答案:A5. 下列哪个选项不是梯形的性质?A. 梯形的对角线相等B. 梯形的对角线互相垂直C. 梯形的对边平行D. 梯形的对边不相等答案:B6. 一个梯形的上底是3厘米,下底是7厘米,高是4厘米,那么它的面积是多少平方厘米?A. 8B. 10C. 12D. 14答案:C7. 等腰梯形的两底边平行,那么它的对角线是否平行?A. 是B. 否C. 无法确定D. 只有在特殊情况下平行答案:B8. 一个梯形的上底是6厘米,下底是12厘米,高是5厘米,那么它的面积是多少平方厘米?A. 30B. 35C. 40D. 45答案:A9. 梯形的中位线等于两底边的平均值,那么中位线的长度是?A. 上底加下底除以2B. 上底减下底除以2C. 上底乘下底除以2D. 上底除以下底除以2答案:A10. 一个梯形的上底是4厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?A. 6B. 12C. 18D. 24答案:B二、填空题(每题2分,共20分)1. 一个梯形的上底是8厘米,下底是12厘米,高是5厘米,它的面积是________平方厘米。
答案:502. 如果一个梯形的上底是7厘米,下底是11厘米,那么它的中位线长度是________厘米。
答案:93. 等腰梯形的两腰相等,且对角线互相垂直,那么它的面积是________平方厘米。
2021年中考数学试题分类汇编梯形2021年中考数学试题分类汇编梯形2022中考数学试题的分类与编制姓名一、多项选择题1.(2021年烟台)如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是()a、等腰梯形B.矩形C.菱形D.正方形2.(2021年日照)已知等腰梯形的底角为45,高为2,上底为2,则其面积为()a.2b.6c.8d.123.(2022年威海)如图所示,梯形ABCD,ab‖CD,ad=BC,对角线AC⊥ BD,垂直脚是ooCD=3,ab=5,那么AC的长度是()a.42b、 4c.33d.254.(2022年台州)梯形ABCD,公元前,ab=CD=ad=2,∠ B=60°,则底部BC的长度为()a.3b。
4C。
23d。
2 + 235.(2021年温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是()a.5b.6c.7d.86.(2022年芜湖)如图所示,等腰梯形ABCD,公元前‖年,对角线AC⊥ BD在O点,AE⊥ BC,DF⊥ BC,垂直脚分别为e和f,ad=4,BC=8,那么AE+EF等于()a.9b。
10c。
11天。
127.(2021年十堰)如图,已知梯形abcd的中位线为ef,且△aef的面积为6cm,则梯形abcd的面积为()a.12cm二2b、 18cmc.24cmd.30cm2228.(2022年达州)如图所示,一条从→ M→ N→ C(M和N分别是AB和CD的中点)建在一个直角梯形的草坪上。
为了走“捷径”,一些学生沿着AC线走,破坏了草坪。
事实上,他们只是少走了一步a.7米b.6米c.5米d.4米9.(2021年咸宁)如图,菱形abcd由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段ac的长为()a.3c.33b、 6d.6310.(2021年黄石)如图,直角梯形abcd中,ad∥bc,∠adc=∠bac=90°,ab=2,cd=3,则ad的长为()a.33b。
梯形综合测试题(含答案[经典试卷]第一题:计算下列梯形的面积:梯形ABCD,底边AB为8cm,上底CD为12cm,高h为5cm。
解答:梯形的面积可以通过以下公式计算:$$\text{面积} = \frac{(\text{底边1} + \text{底边2}) \times\text{高}}{2}$$代入已知数值:$$\text{面积} = \frac{(8 + 12) \times 5}{2} = 50 \, \text{cm}^2$$所以,梯形的面积为50平方厘米。
第二题:求下列梯形的高:梯形EFGH,底边EF为6cm,上底GH为10cm,面积为40平方厘米。
解答:梯形的面积可以通过以下公式计算:$$\text{面积} = \frac{(\text{底边1} + \text{底边2}) \times\text{高}}{2}$$已知面积为40平方厘米,底边1为6cm,底边2为10cm。
代入公式,整理求解高:$$40 = \frac{(6 + 10) \times \text{高}}{2} \\80 = (6 + 10) \times \text{高} \\80 = 16 \times \text{高} \\\text{高} = \frac{80}{16} = 5 \, \text{cm}$$所以,梯形的高为5厘米。
第三题:计算下列梯形的周长:梯形IJKL,底边IJ为7cm,上底KL为9cm,高为4cm。
解答:梯形的周长可以通过以下公式计算:$$\text{周长} = \text{底边1} + \text{底边2} + 2 \times \text{高}$$代入已知数值:$$\text{周长} = 7 + 9 + 2 \times 4 = 24 \, \text{cm}$$所以,梯形的周长为24厘米。
第四题:给定梯形面积为60平方厘米,底边1为5cm,底边2为10cm,计算梯形的高。
解答:梯形的面积可以通过以下公式计算:$$\text{面积} = \frac{(\text{底边1} + \text{底边2}) \times\text{高}}{2}$$已知面积为60平方厘米,底边1为5cm,底边2为10cm。
数学梯形试题1.有一个梯形的面积48平方米,上、下底的平均长度是24分米,这个梯形的高是分米.【答案】200【解析】由“上、下底的平均长度是24分米”可知,上底+下底=(24×2)分米,再依据梯形的面积公式即可求解.解:设梯形的高是x分米,48平方米=4800平方分米,则24×2×x÷2=4800,48x=4800×2,48x=9600,x=200;答:这个梯形的高是200分米.故答案为:200.点评:解答此题的关键是先求出上底与下底的和,且要注意单位间的换算.2.梯形面积=,用字母表示S=,长方形周长=,用字母表示C=.【答案】(上底+下底)×高÷2,(a+b)h,(长+宽)×2,2(a+b)【解析】因为梯形的面积=(上底+下底)×高÷2,用S表示梯形的面积,a表示上底,b表示下底,h表示高,则梯形的面积公式是S=(a+b)h;因为长方形的周长=(长+宽)×2,用C表示长方形的周长,用a表示长,用b表示宽,则长方形周长计算公式用字母表示是:C=(a+b)×2.解:梯形的面积=(上底+下底)×高÷2,用字母表示梯形面积公式是:S=(a+b)h.长方形的周长=(长+宽)×2,长方形周长计算公式用字母表示是:C=2(a+b);故答案为:(上底+下底)×高÷2,(a+b)h,(长+宽)×2,2(a+b).点评:此题考查用字母表示梯形的面积公式和长方形的周长计算公式,熟记公式,正确写出.3.一个梯形的上底是5m,下底是12m,高是8m,它的面积是m2.【答案】68【解析】梯形的面积公式:S=(a+b)h÷2,上底是5,下底是12,高是8,代入公式进行计算.解:S=(a+b)h÷2,=(5+12)×8÷2,=17×8÷2,=68(平方米);答:它的面积是68平方米.故答案为:68.点评:本题主要考查了学生对梯形面积公式的掌握情况.4.一个梯形的面积是36平方厘米,它的上底3厘米,高8厘米,它的下底厘米.【答案】6【解析】梯形的面积=(上底+下底)×高÷2,梯形的面积、上底和高已知,代入公式即可求出其下底的长度.解:36×2÷8﹣3,=72÷8﹣3,=9﹣3,=6(厘米);答:它的下底是6厘米.故答案为:6.点评:此题主要考查梯形的面积计算公式.5.如图,直角梯形ABCD的上底是5厘米,下底是7厘米,高是4厘米,且三角形ADE、ABF和四边形AECF的面积相等,则三角形AEF的面积是平方厘米.【答案】6.8【解析】因为四边形AECF的面积=梯形面积,只要求出三角形CEF的面积,就可以求三角形AEF的面积;要求△CEF,应先求得CE、CF的值,而S△ADE=S△ABF=S梯形,则能求DE、BF,从而可求得CE、CF,S△CEF就求出了,问题得解.解:梯形的面积=(5+7)×4÷2=24(平方厘米);S△ADE=S梯形=×24=8(平方厘米);DE=8×2÷4=4cm;则EC=7﹣4=3cm;同理S△ABF=8;BF=8×2÷5=cm;则FC=4﹣=;S△CEF=3×÷2=(平方厘米);S△AEF=8﹣==6.8(平方厘米);故此题填6.8.点评:此题主要考查三角形和梯形的面积公式,将数据代入公式即可求得结果.6.一块梯形白菜地的面积是216平方米,它的上、下底的和是54米,那么它的高是米.【答案】8【解析】根据梯形的面积=(上底+下底)×高÷2,则高=梯形的面积×2÷上下底的和,代入数据解答即可.解:216×2÷54,=432÷54,=8(米),答:那么它的高是 8米.故答案为:8.点评:本题考查了梯形的面积=(上底+下底)×高÷2的逆用.7.(2012•德江县模拟)有一块梯形木板,上底比下底多0.6米,上底是1.8米,高比下底少0.9米,这块木板的面积是.【答案】0.45平方米【解析】先求出梯形的下底和高,再根据梯形的面积公式求出这个梯形的面积即可.解:1.8﹣0.6=1.2(米),1.2﹣0.9=0.3(米),(1.8+1.2)×0.3÷2=3×0.3÷2,=0.45(平方米);答:这块木板的面积是0.45平方米.故答案为:0.45平方米.点评:考查了梯形的面积公式:梯形的面积=(上底+下底)×高÷2,本题要先求出梯形的下底和高.8.(2013•华亭县模拟)在如图所示的梯形中,上底的长度是下底的,已知阴影部分的面积是24平方厘米,这个梯形的面积是平方厘米.【答案】84【解析】根据题意,阴影部分为三角形,阴影三角形和空白三角形等高,所以阴影三角形与空白三角形底的比即为它们面积的比,可设空白三角形的面积为1,那么阴影三角形的面积为,可用24除以计算出空白三角形的面积,然后再用阴影部分的面积加空白部分的面积即为梯形的面积.解:设空白部分的面积为1.则阴影部分的面积为,24÷=60(平方厘米),60+24=84(平方厘米),答:这个梯形的面积是84平方厘米.故答案为:84.点评:解答此题的关键是利用等高的两个三角形,底边的比等于面积的比进行解答即可.9.如图ABCD是一个任意的梯形,它的面积是68平方厘米,E、F分别是AD与BC的中点,阴影部分的面积是平方厘米.【答案】17【解析】如下图:连接DF,设梯形的高为h,根据E、F分别是AD与BC的中点,知道三角形ABE、三角形BEF、三角形DEF、三角形DCF的高是h,由此根据三角形ABE、三角形BEF、三角形DEF、三角形DCF的面积和就是梯形的面积,即可求出阴影部分的面积.解:S△ABE=×AB×h,S△BEF=××EF×h,S△DEF=××EF×h,S△DFC=××CD×h,所以:S△ABE +S△BEF+S△DEF+S△DFC=×AB×h+××EF×h+××EF×h+××CD×h=68,而AB+CD=2EF,所以,4EF×h=68×4,EF×h=68;所以阴影部分的面积为:S△BEF=××EF×h,=×68,=17(平方厘米);故答案为:17.点评:解答此题的关键是根据三角形与梯形的关系,求出EF与梯形的高的乘积,然后整体代入即可求出阴影部分的面积.10.一个梯形的高为7厘米,它与上底的乘积是78.4,与下底的乘积是178.4,那么这个梯形的面积是平方厘米.【答案】128.4【解析】梯形的面积计算公式是:s=(a+b)h÷2,根据乘法分配律得:s=(ah+bh)÷2,由此列式解答.解:(78.4+178.4)÷2=256.8÷2=128.4(平方厘米);答:这个梯形的面积是128.4平方厘米.故答案为:128.4.点评:此题主要考查梯形的面积计算,直接根据梯形的面积公式解答即可.11.一个上底是3厘米、下底是5厘米、高是2.5厘米的梯形,这个梯形的面积是平方厘米,从上底的左端点到下底的右端点画一条线段,把梯形分成两个三角形,求小三角形面积与大三角形面积的比是:.【答案】10,3:5【解析】根据梯形的面积公式很容易求出这个梯形的面积;再根据梯形的知识,把梯形分成两个三角形,这两个三角形的底,分别是原来梯形的上下底,高是原来梯形的高,再根据三角形的面积公式,就可求出小三角形面积与大三角形面积,有比的意义就可得出它们之间的比.解:梯形的面积:(3+5)×2.5÷2=8×2.5÷2=10(平方厘米);大三角形的面积=5×2.5÷2=6.25(平方厘米);小三角形的面积=3×2.5÷2=3.75(平方厘米).小三角形面积与大三角形面积的比是:3.75:6.25=3:5.故填:10,3:5.点评:本题主要考查梯形的面积和三角形的面积,根据题意,分别求出它们各自的面积,再根据比的意义,就可求出结果.12.(2010•大安区)如图:梯形的上底是a,下底是b,高是h,它的面积S=;如果它的上底逐渐延长到和下底相等时,它会变成形,这时它的面积是.【答案】(a+b)h,平行四边,ah【解析】根据梯形的面积公式,s=(a+b)h,如果它的上底逐渐延长到和下底相等时,它会变成平行四边形,根据平行四边形的面积公式s=ah,列式解答.解:梯形的上底是a,下底是b,高是h,它的面积S=(a+b)h;如果它的上底逐渐延长到和下底相等时,它会变成平行四边形,这时它的面积是:ah.故答案为:(a+b)h,平行四边,ah.点评:此题主要考查梯形和平行四边形的面积公式,重点是理解和掌握它们的面积字母公式.13.(如图)用篱笆围成一个梯形菜田,梯形一边是利用房屋墙壁,篱笆总长75米,菜田的面积是平方米.【答案】450【解析】由图意可知:梯形的上底与下底的和为(75﹣15)米,梯形的高已知,从而代入梯形的面积公式即可求解.解:(75﹣15)×15÷2,=60×15÷2,=900÷2,=450(平方米);答:菜田的面积是450平方米.故答案为:450.点评:此题主要考查梯形的面积计算方法,关键是先求出梯形的上底与下底的和.14.一个梯形的上底是0.8分米,下底是1.2分米,高是10分米,它的面积是()分米.A.20B.10C.2D.1【答案】B【解析】梯形的面积S=(a+b)×h÷2,将数据代入公式即可求解.解:(0.8+1.2)×10÷2,=2×10÷2,=10(平方分米).答:它的面积是10平方分米.故选:B.点评:此题主要考查梯形的面积的计算方法.15.一个直角梯形,上、下底和是20厘米,两条腰分别长10cm和18cm,求这个梯形的面积,正确的算式是()A.20×10÷2B.(20+10)×12÷2C.20×12÷2【答案】A【解析】根据直角梯形的斜边大于直角梯形的高,所以这个直角梯形的高应该为10厘米,然后再根据直角梯形的面积=(上底+下底)×高÷2进行列式后再选择即可得到答案.解:直角梯形的面积为:20×10÷2.故选:A.点评:解答此题的关键是根据直角梯形的斜边大于直角梯形的高确定直角梯形高是多少,然后再利用梯形的面积公式进行列式即可.16.梯形面积是80平方厘米.已知它的下底是20厘米,高是5厘米,上底是多少?设上底为x.下列方程中()是正确的.A.(20+x)×5=80B.(20+x)×5÷2=80C.80×2﹣5x=20D.5x=80﹣5×20【答案】B【解析】根据梯形的面积公式=(上底+下底)×高÷2,进行列式后再选择即可.解:设梯形的上底为x,(x+20)×5÷2=80.故选:B.点评:此题主要考查的是梯形面积公式的灵活应用.17.王大伯利用一面墙围成一个鸡圈(如图)已知所用篱笆全长30.3m,请你帮王大伯算出这个鸡圈的面积是多少平方米.【答案】72.9平方米【解析】梯形的面积S=(a+b)×h÷2,将题目所给数据代入公式即可求出鸡圈的面积.解:(9.8+14.5)×6÷2,=24.3×6÷2,=145.8÷2,=72.9(平方米);答:这个鸡圈的面积是72.9平方米.点评:此题主要考查梯形的面积的计算方法在实际生活中的应用,解答时要注意无关数据的干扰.18.计算如图所示阴影部分的面积.(单位:dm)【答案】64平方分米【解析】由图意可知:阴影是个梯形,梯形的上底是12分米,下底是(12﹣8)分米,高是8分米,于是利用梯形的面积公式即可求解.解:[12+(12﹣8)]×8÷2,=16×8÷2,=64(平方分米);答:图中阴影部分梯形的面积是64平方分米.点评:此题主要考查梯形的面积的计算方法,求出梯形的下底的长度,是解答此题的关键.19.如图梯形的面积是70平方厘米,求阴影部分的面积.(单位:厘米)【答案】2平方厘米【解析】根据梯形的面积公式可求出这个梯形的高是多少,梯形的高就是阴影部分三角形的高,再根据三角形的面积公式求出它的面积.解:梯形的高:70×2÷(12+8),=70×2÷20,=7(厘米),阴影部分的面积:S=ah÷2,=8×7÷2,=28(平方厘米);答:阴影部分的面积是2平方厘米.点评:本题主要考查了学生根据三角形和梯形的面积公式解答问题的能力.20.在下面的梯形中,剪去一最大的三角形,剩下的面积是多少平方分米?【答案】21.6平方分米【解析】要想在这个梯形中剪去一个最大的三角形,必须把梯形的下底作为三角形的底,把梯形的高作为三角形的高,再用三角形的底×高÷2=三角形的面积.再求出原梯形的面积,用原梯形的面积﹣三角形的面积=剩下的面积.解:剪去一个最大的三角形,必须以梯形的下底作为三角形的底,梯形的高作为三角形的高,所以三角形的面积:10.6×8÷2=42.4(平方分米),梯形的面积:(5.4+10.6)×8÷2=64(平方分米),剩下的面积:64﹣42.4=21.6(平方分米).答:剩下的面积是21.6平方分米.点评:此题考查组合图形的面积,解决此题关键是弄明白怎么剪才能使三角形的面积最大,求出此三角形的面积,进一步求出原梯形的面积,用原梯形的面积﹣三角形的面积=剩下的面积.21.寻找合适的条件,求出各图形的面积.(单位:米)【答案】29.75平方米,12.8平方米,20.58平方米【解析】将各图形求面积所用线段的数值,代入各自的面积计算公式即可求解.解:(1)三角形的面积:7×8.5÷2,=59.5÷2,=29.75(平方米);(2)梯形的面积:(3+5)×3.2÷2,=8×3.2÷2,=25.6÷2,=12.8(平方米);(3)平行四边形的面积:9.8×2.1=20.58(平方米);答:三角形的面积是29.75平方米,梯形的面积是12.8平方米,平行四边形的面积是20.58平方米.点评:解答此题的关键是,找准各图形计算面积所用的线段的值,要注意底和高的对应.22.一个梯形高与两底的乘积分别是18平方厘米和25平方厘米.这个梯形的面积是多少平方厘米?【答案】21.5平方厘米【解析】根据梯形的面积公式=(上底+下底)×高÷2,即梯形的面积=(上底×高+下底×高)÷2进行计算即可得到答案.解:(18+25)÷2=43÷2,=21.5(平方厘米),答:这个梯形的面积是21.5平方厘米.点评:此题主要考查的是梯形面积公式的灵活应用.23.一个靠墙围起的直角梯形篱笆,篱笆共长45米,它的面积是多少平方米?【答案】250平方米【解析】由题意可知:这个梯形的上底与下底的和是(45﹣20)米,高是20米,代入梯形的面积公式即可求解.解:(45﹣20)×20÷2,=25×20÷2,=250(平方米);答:它的面积是250平方米.点评:解答此题的关键是,明确这个梯形的上底与下底的和是(45﹣20)米,利用公式求解即可.24.已知梯形的上底是6米,下底是8米,高14米,求面积?【答案】98平方米【解析】根据梯形的面积公式(上底+下底)×高÷2进行计算即可得到答案.解:(6+8)×14÷2=14×14÷2,=196÷2,=98(平方米),答这个梯形的面积是98平方米.点评:此题主要考查的是梯形的面积公式的应用.25.求如图所示图形的面积.(单位:厘米)【答案】278.1平方厘米,2.43平方厘米,72.9平方厘米【解析】平行四边形的面积S=ah,三角形的面积S=ah,梯形的面积S=(a+b)h÷2,据此代入数据即可分别求解.解:(1)20.6×13.5=278.1(平方厘米);答:平行四边形的面积是278.1平方厘米.(2)2.7×1.8÷2=2.43(平方厘米);答:三角形的面积是2.43平方厘米.(3)(9.8+14.5)×6÷2,=24.3×6÷2,=72.9(平方厘米);答:梯形的面积是72.9平方厘米.点评:此题主要考查平行四边形、三角形和梯形的面积的计算方法.26.看图求面积(单位:米)【答案】2000平方米,1050平方米【解析】(1)梯形的面积=(上底+下底)×高÷2,由题意可知:梯形的上底是34、下底是66、高是40,代入梯形面积公式即可求解;(2)平行四边形的面积=底×高,平行四边形的底是30、高是35,代入平行四边形的面积计算公式即可求解.解:(1)(34+66)×40÷2,=100×40÷2,=4000÷2,=2000(平方米);(2)30×35=1050(平方米);答:梯形的面积是2000平方米,平行四边形的面积是1050平方米.点评:在求平行四边形的面积时要注意底和高的对应,即底是30,高是35.27.在右面的长方形中画上一条线段,把长方形分成一个最大的等腰直角三角形和一个梯形,梯形中最大的角是°,测量相关数据,求出梯形的面积.【答案】135°;;16平方厘米【解析】(1)要把这个长方形分成一个最大等腰直角三角形和一个梯形,则所画的等腰直角三角形的腰等于长方形的宽;(2)则梯形中有两个直角一个锐角和一个钝角,钝角最大,与三角形的底角合起来等于180度,又因为等腰直角三角形的底角是45度,则最大角的度数=180°﹣45°.(3)测量出梯形的上底、下底和高,代入面积公式计算.解:(1)如图所示:;(2)梯形中最大的角是:180°﹣45°=135°;(3)如图:梯形的上底为:2厘米,下底为:6厘米,高为:4厘米,梯形面积为:(2+6)×4÷2,=8×4÷2,=16(平方厘米).答:梯形面积为16平方厘米.点评:解决本题要根据等腰三角形的特征确定两腰的长度及角的大小,也就得出梯形的各个组成部分的长度和角的大小,再根据公式计算出面积.28.一块梯形麦田,上底30米,高50米,下底60米,共施化肥63千克平均每平方米施化肥多少千克?【答案】0.028千克【解析】要求平均每平方米施化肥的千克数,需先求出这块梯形麦田的面积,进一步求得问题.解;这块梯形麦田的面积:(30+60)×50÷2=2250(平方米),平均每平方米施化肥的千克数:63÷2250=0.028(千克).答;平均每平方米施化肥0.028千克.点评:解决此题关键是先求出这块梯形麦田的面积,进一步求得平均每平方米施化肥的千克数.29.下面每个小方格的面积表示1cm2,请你数出图形的面积.【答案】16.5平方厘米【解析】根据题意可知,每个小方格的面积是1平方厘米,那么半个方格的面积就是0.5平方厘米,图中阴影部分共占了13个小方格,半个的方格占了7个,那么列式解答即可得到图形的面积.解:13+7×0.5=13+3.5,=16.5(平方厘米),答:图形的面积是16.5平方厘米.点评:解答此题的关键是图形共占了几个半个的小正方格,然后再确定占半个小方格的面积是多少,最后再加上占的整个小正方格的个数即是整个图形的面积.30.一块梯形的土地,上底120米,下底180米,高100米,如果每5平方米种一棵果树,这块地共种多少棵?【答案】3000棵【解析】根据题意,可利用梯形的面积公式=(上底+下底)×高÷2计算出梯形土地的面积,然后再除以5即可得到答案.解:(120+180)×100÷2÷5=300×100÷2÷5,=30000÷2÷5,=15000÷5,=3000(棵),答:这块地共种3000棵.点评:此题主要考查的是梯形面积公式的灵活应用.31.有一块莱地,如图.要在这块菜地里种白莱,如果每平方米种8棵,可以种多少棵?【答案】640棵【解析】先依据梯形的面积公式求出这块菜地的面积,再用其面积乘每平方米种白菜的棵数,问题即可得解.解:(6.5+13.5)×8÷2,=20×8÷2,=80(平方米);80×8=640(棵);答:可以种640棵.点评:此题主要考查梯形的面积的计算方法在实际生活中的应用.32.一块梯形麦田,上底是76米,下底是120米,高50米,一共收小麦14.7吨,平均每公顷收小麦多少吨?【答案】30吨【解析】首先根据梯形面积公式:梯形面积=(上底+下底)×高÷2求出这块梯形的面积后,再根据除法的意义用收的小麦吨数除以地的面积,即得平均每公顷收小麦多少吨.解:(76+120)×50÷2,=196×50÷2,=4900(平方米);4900平方米=0.49公顷;14.7÷0.49=30(吨).答:平均每公顷收小麦30吨.点评:首先根据梯形面积公式求出这块地的面积是完成本题的关键,完成本题要注意单位的换算.33.一条新筑的高速公路穿过一块地(如图),这块地剩下的面积是多少平方米?【答案】1350平方米【解析】根据题意,可利用梯形的面积公式确定原来地的面积,再利用平行四边形的面积公式计算出高速公式的面积,最后用原来地的面积减去高速公路占用的面积即可.解:[(60+15)+(30+15)]×30÷2﹣15×30=[75+45]×30÷2﹣450,=120×30÷2﹣450,=1800﹣450,=1350(平方米),答:这块地剩下的面积是1350平方米.点评:此题主要考查的是梯形的面积公式和平行四边形面积公式的灵活应用.34.美术课上,明明把一张长20厘米,宽15厘米的长方形彩纸分成了两个完全相同的梯形,每个梯形的面积是.【答案】150平方厘米【解析】根据题干,两个完全相同的梯形,它们的面积也相等,都是这个长方形的面积的一半,由此利用长方形的面积公式即可解决问题.解:20×15÷2=150(平方厘米),答:每个梯形的面积是150平方厘米.故答案为:150平方厘米.点评:此题考查了长方形可以分成两个完全相同的梯形的性质的灵活应用.35.根据计算面积的算式把相应的图形画完整.(6+4)×3÷2【答案】【解析】由题意可知,梯形的上底是4厘米,下底是6厘米,高是3厘米,据此即可作出符合要求的梯形.解:如图所示,即为所要求的作图;.点评:解答此题的关键是,找清梯形面积算式中各主要线段的对应值,即可完成作图.36.下图每个方格的边长都是1厘米,分别求得下列图形的面积:【答案】9平方厘米;16平方厘米;13.5平方厘米【解析】每个小正方形的边长已知,则计算几个图形的面积所需要的线段的长度就可求,从而可以求出它们的面积.解:平行四边形的面积:3×3=9(平方厘米);梯形的面积:(3+5)×4÷2,=8×4÷2,=32÷2,=16(平方厘米);三角形的面积:9×3÷2,=27÷2,=13.5(平方厘米);答:平行四边形的面积是9平方厘米,梯形的面积是16平方厘米,三角形的面积是13.5平方厘米.点评:此题主要考查平行四边形、梯形和三角形面积的计算方法,关键是先求出计算面积所需要的线段的长度.37.根据要求画图列式计算:(1)画一个底是4厘米高是2.5厘米的平行四边形,并计算出它的面积.(2)画一个上底是1厘米,下底是3厘米,高是2厘米的直角梯形,并计算出它的面积.(3)画一个底和高都是2厘米的三角形,并计算它的面积.【答案】;10平方厘米;4平方厘米;2平方厘米;【解析】依据过直线上或直线外一点做这条直线的直线或平行线的方法及各主要线段的长度,即可做出需要平行四边形、梯形和三角形.解:如图所示,即为所要求的作图,,(1)平行四边形的面积=4×2.5=10(平方厘米);(2)梯形的面积=(1+3)×2÷2=4(平方厘米);(3)三角形的面积=2×2÷2=2(平方厘米);答:平行四边形的面积是10平方厘米,梯形的面积是4平方厘米,三角形的面积是2平方厘米.点评:此题主要考查平行四边形、梯形和三角形的面积公式.38.明明家有一个梯形果园,上底是40米,下底是70米,高是50米.如果每棵果树占地2平方米,每年产水果260千克,明明家的果园每年可产水果多少吨?【答案】357.5吨【解析】先根据“梯形的面积=(上底+下底)×高÷2”计算出果园的面积,进而根据“果园的面积÷每棵果树占地面积=果树的棵树”求出果树的棵树,继而“单产量×数量=总产量”进行解答即可.解:[(40+70)×50÷2]÷2×260,=2750÷2×260,=357500(千克);357500千克=357.5(吨);答:明明家的果园每年可产水357.5吨.点评:解答此题读法关键是根据梯形的面积计算公式计算出果园的面积,进而根据“果园的面积÷每棵果树占地面积=果树的棵树”求出果树的棵树,继而“单产量×数量=总产量”进行解答即可.39.在一块梯形麦田.上底长230米,下底长270米,高是60米,共收小麦12吨.平均每公顷收小麦多少吨?.【答案】8吨【解析】首先根据梯形面积公式:梯形面积=(上底+下底)×高÷2求出这块梯形的面积后,再根据除法的意义用收的小麦吨数除以地的面积,即得平均每公顷收小麦多少吨.解:(270+230)×60÷2,=500×60÷2,=15000(平方米);15000平方米=1.5公顷;12÷1.5=8(吨).答:平均每公顷收小麦8吨.点评:首先根据梯形面积公式求出这块地的面积是完成本题的关键,完成本题要注意单位的换算.40.列式解答(1)一根6.4米长的彩带,每1.4米剪一段包扎一个礼盒,这根彩带可以包扎几个礼盒?(2)学校举行书画竞赛,四、五年级共有75人获奖,其中五年级获奖人山数是四年级的1.5倍,四、五年级各有多少同学获奖?(列方程解答)(3)一块梯形麦田,上底是76米,下底是120米,高50米,一共收小麦9310千克,平均每平方米收小麦多少千克?(4)妈妈到菜市场用31元买了4千克西红柿和一些鸡蛋,其中买西红柿用去20元,如果每千克鸡蛋4.4元,那么妈妈买鸡蛋多少千克?你还能提出什么数学问题?并列式解答.【答案】4个;30人、45人;1.9千克;2.5千克【解析】(1)6.4米中有几个1.4米,根据四舍五入法中的去尾法进行解答即可;(2)设四年级有x人,再根据题意列出方程解答即可;(3)根据题意,先求出这个梯形麦田的面积,再根据题意解答;(4)先求出买鸡蛋的钱数,由数量=总价÷单价,进行解答即可;解:(1)根据题意可得:6.4÷1.4≈4(个)答:这根彩带可以包扎4个礼盒.(2)设四年级有x人,那么五年级有1.5x人,根据题意可得:x+1.5x=752.5x=75x=30五年级的人数是:1.5x=1.5×30=45(人).答:四、五年级各有30人、45人获奖.(3)(76+120)×50÷2,=196×50÷2,=4900(平方米),9310÷4900=1.9(千克);答:平均每平方米收小麦1.9千克.(4)(31﹣20)÷4.4=11÷4.4=2.5(千克);答:妈妈买鸡蛋2.5千克.每千克西红柿的价钱:20÷4=5(元);答:每千克西红柿5元.点评:根据题目所给的数据与要求,分析好题意,进行解答即可.41.用一条线段将梯形分成甲、乙两部分,使甲、乙面积比是1:2,请在图中画出来,并将其中一部分涂上阴影.【答案】【解析】把梯形的上底和下底都三等分,连接相应的三等分点,即是所要求的线段.解:答案如下图:点评:此题考查了图形的拆拼和梯形的面积,梯形面积=(上底+下底)×高/2.42.(2012•罗平县模拟)如图所示(单位:厘米),圆的周长是18.84cm,求阴影部分面积.【答案】13.5平方厘米【解析】先利用圆的周长公式求出圆的半径,又因梯形的上底和高都等于圆的半径,下底已知,于是利用梯形的面积S=(a+b)h÷2,即可求出阴影部分的面积.解:圆的半径:18.84÷(2×3.14),=18.84÷6.28,=3(厘米),阴影部分的面积:(3+6)×3÷2,=9×3÷2,=27÷2,=13.5(平方厘米);答:阴影部分的面积是13.5平方厘米.点评:此题主要考查圆的周长和梯形的面积的计算方法,关键是明白:梯形的上底和高都等于圆的半径,求出圆的半径,问题即可得解.43.(2012•宝应县模拟)列式计算.(1)除以商加上的1.5倍,和是多少?(2)除2个的积,商是多少?(3)一个数的,再加上30正好与这个数的相等.求这个数.(4)如图,梯形的两条对角线互相垂直,且AC=20厘米,BD=30厘米,这个梯形的面积是多少?【答案】1;;85;300平方厘米【解析】(1)先算除以商,与1.5的积,最后求和.(2)本题是一道易错题,审题上要注意“除”与“除以”的区别,还要注意是2个的积是不是×2,被除数是.(3)本题中比多的分率对应的具体数就是30,用30除以这两个分数的差就是单位“1”这个数.(4)把这个梯形分成2个三角形△ABC与△ADC把它们的面积相加,就是梯形的面积.解:(1)÷+×1.5,=+×,。
梯形一、选择题1. (2014年广西钦州,第10题3分)如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是()A.13 B.26 C.36 D.39考点:等腰梯形的性质;中点四边形.分析:首先连接AC,BD,由点E、F、G、H分别是边AB、BC、CD、DA的中点,可得EH,FG,EF,GH是三角形的中位线,然后由中位线的性质求得答案.解答:解:连接AC,BD,∵等腰梯形ABCD的对角线长为13,∴AC=BD=13,∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EH=GF=BD=6.5,EF=GH=AC=6.5,∴四边形EFGH的周长是:EH+EF+FG+GF=26.故选B.点评:此题考查了等腰梯形的性质以及三角形中位线的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.(2014衡阳,第10题3分)如图,一河坝的横断面为等腰梯形ABCD,坝i ,则坝底AD的长度为【】顶宽10米,坝高12米,斜坡AB的坡度1:1.5A.26米 B.28米 C.30米 D.46米3.二、填空题1.(2014•黑龙江龙东,第3题3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足AB=DC(或∠ABC=∠DCB、∠A=∠D)等条件时,有MB=MC(只填一个即可).考点:梯形;全等三角形的判定.专题:开放型.分析:根据题意得出△ABM≌△△DCM,进而得出MB=MC.解答:解:当AB=DC时,∵梯形ABCD中,AD∥BC,则∠A=∠D,∵点M是AD的中点,∴AM=MD,在△ABM和△△DCM中,,∴△ABM≌△△DCM(SAS),∴MB=MC,同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,故答案为:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.点评:此题主要考查了梯形的性质以及全等三角形的判定与性质,得出△ABM≌△△DCM是解题关键.2. (2014•青岛,第13题3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.3. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形.分析:首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.解答:解:延长BA,CD交于点F,∵BE平分∠ABC,∴∠EBF=∠EBC,∵BE⊥CD,∴∠BEF=∠BEC=90°,在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EC=EF,S△BEF=S△BEC=2,∴S△BCF=S△BEF+S△BEC=4,∵CE:ED=2:1∴DF:FC=1:4,∵AD∥BC,∴△ADF∽△BCF,∴=()2=,∴S△ADF=×4=,∴S四边形ABCD=S△BEF﹣S△ADF=2﹣=.故答案为:.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.(2014•湖北黄石,第14题3分)如图,在等腰梯形ABCD中,AB∥CD,∠D=45°,AB=1,CD=3,BE∥AD交CD于E,则△BCE的周长为.第1题图考点:等腰梯形的性质.分析:首先根据等腰梯形的性质可得∠D=∠C=45°,进而得到∠EBC=90°,然后证明四边形ABED是平行四边形,可得AB=DE=1,再得EC=2,然后再根据勾股定理可得BE长,进而得到△BCE的周长.解答:解:∵梯形ABCD是等腰梯形,∴∠D=∠C=45°,∵EB∥AD,∴∠BEC=45°,∴∠EBC=90°,∵AB∥CD,BE∥AD,∴四边形ABED是平行四边形,∴AB=DE=1,∵CD=3,∴EC=3﹣1=2,∵EB2+CB2=EC2,∴EB=BC=,∴△BCE的周长为:2+2,故答案为:2+2.点评:此题主要考查了等腰梯形的性质,以及平行四边形的判定和性质,勾股定理的应用,关键是掌握等腰梯形同一底上的两个角相等.5.三、解答题1.(2014•黑龙江龙东,第26题8分)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.考点:旋转的性质;全等三角形的判定与性质;梯形中位线定理.分析:(1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可;(2)根据题意得出图2的结论为:ME= (BD+CF),图3的结论为:ME= (CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案.解答:解:(1)如图1,∵ME⊥m于E,CF⊥m于F,∴ME∥CF,∵M为BC的中点,∴E为BF中点,∴ME是△BFC的中位线,∴EM=CF.(2)图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD).图2的结论证明如下:连接DM并延长交FC的延长线于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠DBM=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA),∴DB=CK DM=MK由题意知:EM=FK,∴ME= (CF+CK)= (CF+DB)图3的结论证明如下:连接DM并延长交FC于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠MBD=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA)∴DB=CK,DM=MK,由题意知:EM=FK,∴ME=(CF﹣CK)=(CF﹣DB).点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△DBM≌△KCM(ASA)是解题关键.2. (2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.考点:直角梯形;矩形的判定与性质;解直角三角形..分析:利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.解答:解:过点A作AH⊥BC于H,则AD=HC=1,在△ABH中,∠B=30°,AB=2,∴cos30°=,即BH=ABcos30°=2×=3,∴BC=BH+BC=4,∵CE⊥AB,∴CE=BC=2.点评:此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键.3. (2014•攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).(1)求过点B的双曲线的解析式;(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.考点:等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.分析:(1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y=(k≠0),然后利用待定系数法求反比例函数解析式解答;(2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.解答:解:(1)如图,过点C作CD⊥AB于D,∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),∴CD=2,BD=3,∵C(0,2),∴点B的坐标为(2,5),设双曲线的解析式为y=(k≠0),则=5,解得k=10,∴双曲线的解析式为y=;(2)平移后的点C落在(1)中的双曲线上.理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),当x=5时,y==2,∴平移后的点C落在(1)中的双曲线上.点评:本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.。
初二梯形试题及答案一、选择题1. 下列哪个选项不是梯形的性质?A. 梯形的对边平行B. 梯形的对角线相等C. 梯形的对角线互相平分D. 梯形的上下底平行答案:B2. 如果一个梯形的上底为5厘米,下底为10厘米,高为3厘米,那么这个梯形的面积是多少平方厘米?A. 7.5B. 15C. 22.5D. 30答案:C3. 等腰梯形的两条腰相等,那么它的两个底角相等吗?A. 是B. 不一定C. 不是答案:A二、填空题4. 梯形的面积公式是:\[ \text{面积} = \frac{(\text{上底} +\text{下底}) \times \text{高}}{2} \]。
5. 如果一个梯形的上底是6厘米,下底是12厘米,高是4厘米,那么它的面积是\[ 24 \]平方厘米。
三、简答题6. 请说明什么是等腰梯形,并给出一个等腰梯形的性质。
答:等腰梯形是两条腰相等的梯形。
等腰梯形的一个性质是它的两个底角相等。
7. 如何证明一个四边形是梯形?答:一个四边形是梯形,如果且仅如果它有一对平行边。
可以通过证明四边形的两组对边中有一组平行来证明它是梯形。
四、计算题8. 已知梯形ABCD,其中AB平行于CD,AB=4厘米,CD=8厘米,高DE=5厘米。
求梯形ABCD的面积。
解:根据梯形面积公式,\[ \text{面积} = \frac{(AB + CD)\times DE}{2} \],代入数值得:\[ \text{面积} = \frac{(4 + 8) \times 5}{2} = 30 \]平方厘米。
五、证明题9. 已知等腰梯形ABCD,AB平行于CD,AB=6厘米,CD=2厘米,AD=4厘米,BC=4厘米。
证明:对角线AC=BD。
证明:由于ABCD是等腰梯形,所以AD=BC。
设AC与BD相交于点E,根据等腰梯形的性质,我们可以知道三角形AED和三角形BEC是全等的。
因此,AE=BE,CE=DE。
由于AD=4厘米,我们可以得出AE+EC=4厘米,即BE+DE=4厘米。
梯形1、(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()考点:梯形;等腰三角形的判定与性质.分析:延长AE交BC于F,根据角平分线的定义可得∠BAF=∠DAF,再根据两直线平行,内错角相等可得∠DAF=∠AFB,然后求出∠BAF=∠AFB,再根据等角对等边求出AB=BF,然后求出FC,根据两组对边平行的四边形是平行四边形得到四边形AFCD是平行四边形,然后根据平行四边形的对边相等解答.解答:解:延长AE交BC于F,∵AE是∠BAD的平分线,∴∠BAF=∠DAF,∵AE∥CD,∴∠DAF=∠AFB,∴∠BAF=∠AFB,∴AB=BF,∵AB=,BC=4,∴CF=4﹣=,∵AD∥BC,AE∥CD,∴四边形AFCD是平行四边形,∴AD=CF=.故选B.点评:本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,梯形的问题,关键在于准确作出辅助线.2、(2013•十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为()A.8B.9C.10 D.11考点:等腰梯形的性质;等边三角形的判定与性质.分析:首先构造直角三角形,进而根据等腰梯形的性质得出∠B=60°,BF=EC,AD=EF=5,求出BF即可.解答:解:过点A作AF⊥BC于点F,过点D作DE⊥BC于点E,∵梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,∴∠B=60°,BF=EC,AD=EF=5,∴cos60°===,解得:BF=1.5,故EC=1.5,∴BC=1.5+1.5+5=8.故选:A.点评:此题主要考查了等腰梯形的性质以及解直角三角形等知识,根据已知得出BF=EC的长是解题关键.3、(2013•荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.3718684分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案.解答:解:①当直线l经过BA 段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.点评:本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案.4、(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( ) A 23 B 22 C114 D 554分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算. 解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC , 过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E , ∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.5、(2013年南京)如图,在梯形ABCD 中,AD //BC ,AB =DC ,AC 与BD 相交于点P 。
2021年全国中考数学试题分类解析汇编(159套63专题)专题45:梯形一、选择题1. (2012广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC 于点E,且EC=3,则梯形ABCD的周长是【】A.26 B.25 C.21 D.20【答案】C。
【考点】等腰梯形的性质,平行四边形的判定和性质。
【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。
∴BE=AD=5。
∵EC=3,∴BC=BE+EC=8。
∵四边形ABCD是等腰梯形,∴AB=DC=4。
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。
故选C。
2. (2012江苏无锡3分)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于【】A. 17 B.18 C.19 D.20【答案】A。
【考点】梯形和线段垂直平分线的性质。
【分析】由CD的垂直平分线交BC于E,根据线段垂直平分线上的点到线段两端距离相等的性质,即可得DE=CE,即可由已知AD=3,AB=5,BC=9求得四边形ABED的周长为:AB+BC+AD=5+9+3=17。
故选A。
3. (2012福建漳州4分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,∠B=80o,则∠D的度数是【】A.120o B.110o C.100o D.80o【答案】C。
【考点】等腰梯形的性质,平行的性质。
【分析】∵AD∥BC,∠B=80°,∴∠A=180°-∠B=180°-80°=100°。
∵四边形ABCD是等腰梯形,∴∠D=∠A=100°。
故选C。
4. (2012湖北十堰3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为【】A.22 B.24 C.26 D.28【答案】B。
2019年全国中考试题解析版分类汇编-梯形(46页)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017•宁夏,3,3分〕等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,那么等腰梯形的下底是〔〕A、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案、解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm、应选B、点评:此题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键、2.〔2017新疆乌鲁木齐,9,4〕如图、梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,假设BC=6,那么此梯形的面积为〔〕A、2B、1+3C、62 D、2+3考点:等腰梯形的性质;垂线;三角形内角和定理;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理。
专题:计算题。
分析:过O作EF⊥AD交AD于E,交BC于F,根据等腰梯形的性质得出∠ABC=∠DCB,证△ABC≌△DCB,推出∠DBC=∠ACB,求出∠DBC=∠ACB=45°,根据直角三角形性质求出OF,根据勾股定理求出OB、OA,OE、AD,根据面积公式即可求出面积、解答:解:过O 作EF ⊥AD 交AD 于E ,交BC 于F ,∵等腰梯形ABCD ,AD ∥BC ,AB =CD ,∴∠ABC =∠DCB ,∵BC =BC ,∴△ABC ≌△DCB ,∴∠DBC =∠ACB ,∵AC ⊥BD ,∴∠BOC =90°,∴∠DBC =∠ACB =45°,∴OB =OC ,∵OF ⊥BC ,∴OF =BF =CF =21BC =26,由勾股定理得:OB =3,∵∠BAC =60°,∴∠ABO =30°,由勾股定理得:OA =1,AB =2,同法可求OD =OA =1,AD =2,OE =22,S 梯形ABCD =21〔AD +BC 〕•EF =21×〔62 〕×〔22+26〕=2+3故答案为:2+3、点评:此题主要考察对等腰梯形的性质,全等三角形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,垂线,勾股定理,直角三角形斜边上的中线性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键、3.〔2017•贵港〕如下图,在梯形ABCD 中,AB ∥CD ,E 是BC 的中点,EF ⊥AD 于点F ,AD=4,EF=5,那么梯形ABCD 的面积是〔〕A 、40B 、30C 、20D 、10考点:梯形;全等三角形的判定与性质。
人教新课标六年级上册数学《梯形》试题(含答案)1. 题目:梯形的定义是什么?题目:梯形的定义是什么?答案:梯形是一个具有两条平行边的四边形。
:梯形是一个具有两条平行边的四边形。
2. 题目:根据梯形的定义,以下哪个图形是梯形?题目:根据梯形的定义,以下哪个图形是梯形?![梯形](image1.jpg)答案:图中的形状是梯形。
:图中的形状是梯形。
3. 题目:已知一个梯形的上底长度为8cm,下底长度为12cm,高度为6cm,求该梯形的面积。
题目:已知一个梯形的上底长度为8cm,下底长度为12cm,高度为6cm,求该梯形的面积。
答案:梯形的面积可以通过上底和下底的和乘以高度的一半来计算,即$(8+12)\times \frac{6}{2}=60 \,cm^2$。
:梯形的面积可以通过上底和下底的和乘以高度的一半来计算,即$(8+12)\times\frac{6}{2}=60 \,cm^2$。
4. 题目:已知一个梯形的上底长度为10cm,面积为80 $cm^2$,求该梯形的下底长度。
题目:已知一个梯形的上底长度为10cm,面积为80 $cm^2$,求该梯形的下底长度。
答案:根据梯形的面积公式,${\text{面积}} = \frac{\text{上底} + \text{下底}}{2} \times \text{高度}$,将已知数据代入,得到$80 = \frac{10 + \text{下底}}{2} \times \text{高度}$。
已知高度为6cm,代入公式可以得到$80 = \frac{10 + \text{下底}}{2} \times 6$,解方程得到$\text{下底} = 20 \,cm$。
:根据梯形的面积公式,${\text{面积}} = \frac{\text{上底} + \text{下底}}{2} \times \text{高度}$,将已知数据代入,得到$80 = \frac{10 + \text{下底}}{2} \times \text{高度}$。
梯形一.选择题(共7小题)1.()的四边形叫做梯形。
A.两组对边分别平行B.只有一组对边平行C.有一组对边平行2.梯形有()条高。
A.1B.2C.无数D.43.在一个梯形中,最多有()个角是直角。
A.1B.2C.34.梯形的四个角中不可能出现的角是()。
A.直角B.钝角C.平角5.把梯形的上底和下底延长,它们()。
A.一定相交B.永不相交C.可能相交6.有一组对边平行,另两条边相等的四边形一定是()。
A.等腰梯形B.梯形C.正方形7.下面关于梯形说法正确的是()。
A.只有一组对边平行B.有一组对边平行C.两组对边分别平行二.填空题(共6小题)8.梯形中,不平行的一组对边叫做梯形的。
9.两腰相等的梯形是,直角梯形中有个直角。
10.梯形只有组对边平行,有条高。
11.如图梯形的上底与下底长度的和是厘米,高是厘米。
第11题第12题12.图形中有个角;其中有个直角,有个钝角,有个锐角。
13.如果把梯形ACFD的上底记作:AC,那么下底记作,高记作,这是一个梯形。
三.判断题(共5小题)14.梯形的两条腰延长后会相交,上底和下底延长后永远也不会相交。
15.直角梯形仍然只有两条高。
16.两腰相等的梯形叫等腰梯形。
17.(易错题)梯形的腰一定比高长。
18.直角梯形具有稳定性。
四.操作题(共3小题)19.填出下面图形的各部分的名称20.在点子图上画一个上底是2cm,下底是5cm,高是3cm的梯形(每个小正方形的边长是1cm)21.在点子图上画一个等腰梯形。
梯形-解析一.选择题(共7小题)1.B2.C3.B4.C5.B6.A7.A 二.填空题(共6小题)8.腰9.等腰图形,210.一,无数11.14,712.4,2,1,113.DF,CF,直角三.判断题(共5小题)14.√15.×16.√17.×18.×四.操作题(共3小题)19.解:20.解:21.解:。
梯形一、选择题1. (2012广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC 于点E,且EC=3,则梯形ABCD的周长是【】A.26 B.25 C.21 D.20【答案】C。
【考点】等腰梯形的性质,平行四边形的判定和性质。
【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。
∴BE=AD=5。
∵EC=3,∴BC=BE+EC=8。
∵四边形ABCD是等腰梯形,∴AB=DC=4。
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。
故选C。
2. (2012江苏无锡3分)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于【】A. 17 B.18 C.19 D.20【答案】A。
【考点】梯形和线段垂直平分线的性质。
【分析】由CD的垂直平分线交BC于E,根据线段垂直平分线上的点到线段两端距离相等的性质,即可得DE=CE,即可由已知AD=3,AB=5,BC=9求得四边形ABED的周长为:AB+BC+AD=5+9+3=17。
故选A。
3. (2012福建漳州4分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,∠B=80o,则∠D的度数是【】A.120o B.110o C.100o D.80o【答案】C。
【考点】等腰梯形的性质,平行的性质。
【分析】∵AD∥BC,∠B=80°,∴∠A=180°-∠B=180°-80°=100°。
∵四边形ABCD是等腰梯形,∴∠D=∠A=100°。
故选C。
4. (2012湖北十堰3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为【】A.22 B.24 C.26 D.28【答案】B。
【考点】梯形的性质,平行的性质,等腰三角形的性质,全等三角形的判定和性质。
【分析】∵AD∥BC,∴∠AMB=∠MBC,∠DMC=∠MCB,又∵MC=MB,∴∠MBC=∠MCB。
∴∠AMB=∠DMC。
在△AMB和△DMC中,∵AM=DM,∠AMB=∠DMC,MB=MC,∴△AMB≌△DMC(SAS)。
∴AB=DC。
∴四边形ABCD的周长=AB+BC+CD+AD=24。
故选B。
5. (2012四川宜宾3分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=12 AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为【】A . 17B . 16 C . 15 D . 14【答案】C 。
【考点】直角梯形的性质,三角形的面积,三角形中位线定理。
【分析】如图,连接BD ,过点F 作FG∥AB 交BD 于点G ,连接EG ,CG 。
∵DC∥AB,CB⊥AB,AB=AD ,CD=12AB ,点E 、F 分别为AB .AD 的中点,∴根据三角形中位线定理,得AE=BE=AF=DF=DC=FG 。
∴图中的六个三角形面积相等。
∴△AEF 与多边形BCDFE 的面积之比为15。
故选C 。
6. (2012四川达州3分)如图,在梯形ABCD 中,AD∥BC,E 、F 分别是AB 、CD 的中点,则下列结论:①EF∥AD; ②S △ABO =S △DCO ;③△OGH 是等腰三角形;④BG=DG;⑤EG=HF。
其中正确的个数是【 】A 、1个B 、2个C 、3个D 、4个【答案】D 。
【考点】梯形中位线定理,等腰三角形的判定,三角形中位线定理。
【分析】∵在梯形ABCD 中,AD∥BC,E 、F 分别是AB 、CD 的中点,∴EF∥AD∥BC,∴①正确。
∵在梯形ABCD 中,△ABC 和△DBC 是同底等高的三角形,∴S △ABC =S △DBC 。
∴S △AB C -S △OBC =S △DBC -S △OBC ,即S △ABO =S △DCO 。
∴②正确。
∵EF∥BC,∴∠OGH=∠OBC,∠OHG=∠OCB。
已知四边形ABCD 是梯形,不一定是等腰梯形,即∠OBC 和∠OCB 不一定相等,即∠OGH 和∠OHG 不一定相等,∠GOH 和∠OGH 或∠OHG 也不能证出相等。
∴△OGH 是等腰三角形不对,∴③错误。
∵EF∥BC,AE=BE (E 为AB 中点),∴BG=DG,∴④正确。
∵EF∥BC,AE=BE(E为AB中点),∴AH=CH。
∵E、F分别为AB、CD的中点,∴EH=12BC,FG=12BC。
∴EH=FG。
∴EG=FH,∴⑤正确。
∴正确的个数是4个。
故选D。
7. (2012山东临沂3分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC.BD相交于点O,下列结论不一定正确的是【】A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD【答案】C。
【考点】等腰梯形的性质,全等三角形的判定和性质,等腰三角形的判定,三角形边角关系,三角形内角和定理。
【分析】A.∵四边形ABCD是等腰梯形,∴AC=BD,故本选项正确。
B.∵四边形ABCD是等腰梯形,∴AB=DC,∠ABC=∠DCB,∵在△ABC和△DCB中,AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS)。
∴∠ACB=∠DBC。
∴OB=OC。
故本选项正确。
C.∵BC和BD不一定相等,∴∠BCD与∠BDC不一定相等,故本选项错误。
D.∵∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABD=∠ACD。
故本选项正确。
故选C。
8. (2012山东烟台3分)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为【】A.4 B.5 C.6 D.不能确定【答案】B。
【考点】等腰梯形的性质,坐标与图形性质,勾股定理。
【分析】如图,连接BD,由题意得,OB=4,OD=3,∴根据勾股定理,得BD=5。
又∵ABCD是等腰梯形,∴AC=BD=5。
故选B。
9. (2012广西北海3分)如图,梯形ABCD中AD//BC,对角线AC、BD相交于点O,若AO∶CO=2:3,AD=4,则BC等于:【】A.12 B.8 C.7 D.6【答案】D。
【考点】梯形的性质,平行的性质,相似三角形的判定和性质。
【分析】∵梯形ABCD中AD∥BC,∴∠ADO=∠OBC,∠AOD=∠BOC。
∴△AOD∽△COB。
∵AO:CO=2:3,AD=4,∴AD :BC =AO :CO =2 3 ,4:即 BC =2 :3 。
解得BC=6。
故选D。
10. (2012广西贵港3分)如图,在直角梯形ABCD中,AD//BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于【】A.10 B.11 C.12 D.13【答案】A。
【考点】全等三角形的判定和性质,直角梯形的性质,矩形的判定和性质,旋转的性质。
【分析】如图,过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,∵AD∥BC,∠C=90°,∴∠C=∠ADC=∠ANC=90°。
∴四边形ANCD是矩形。
∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD。
11. (2012内蒙古呼和浩特3分)已知:在等腰梯形ABCD 中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是【 】A .25B .50C .D 【答案】A 。
【考点】等腰梯形的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质。
【分析】 过点D 作DE∥AC 交BC 的延长线于点E ,作D F⊥BC 于F 。
∵AD∥BC,DE∥AC,∴四边形ACED 是平行四边形。
∴AD=CE=3,AC=DE 。
在等腰梯形ABCD 中,AC=DB ,∴DB=DE。
∵AC⊥BD,AC∥DE,∴DB⊥DE。
∴△BDE 是等腰直角三角形。
∴DF=12BE=5。
S 梯形ABCD =12(AD+BC )•DF=12(3+7)×5=25。
故选A 。
12. (2012黑龙江龙东地区3分)如图,已知直角梯形ABCD 中,AD∥BC,∠ABC=90°,AB=BC=2AD ,点E 、F 分别是AB 、BC 边的中点,连接AF 、CE 交于点M ,连接BM 并延长交CD 于点N ,连接DE 交AF 于点P ,则结论:①∠ABN=∠CBN; ②DE∥BN; ③△CDE 是等腰三角形;④EM 3 :; ⑤EPM ABCD 1S S 8∆=梯形,正确的个数有【 】A. 5个B. 4个C. 3个D. 2个【答案】B。
【考点】直角梯形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,平行的判定,平行四边形的判定和性质,三角形中位线定理,相似全等三角形的判定和性质,矩形的判定和性质,勾股定理。
【分析】如图,连接DF,AC,EF,∵E、F分别为AB、BC的中点,且AB=BC,∴AE=EB=BF=FC。
在△ABF和△CBE中,∵AB=CB,∠ABF=∠CBE, BF=BE,∴△ABF≌△CBE(SAS)。
∴∠BAF=∠BCE,AF=CE。
在△AME和△CMF中,∵∠BAF=∠BCE,∠AME=∠CMF ,AE=CF,∴△AME≌△CMF(AAS)。
∴EM=FM。
在△BEM和△BFM中,∵BE=BF,BM=BM, EM=FM,∴△BEM≌△BFM(SSS)。
∴∠ABN=∠CBN。
结论①正确。
∵AE=AD,∠EAD=90°,∴△AED为等腰直角三角形。
∴∠AED=45°。
∵∠ABC=90°,∴∠ABN=∠CBN=45°。
∴∠AED=∠ABN=45°。
∴ED∥BN。
结论②正确。
∵AB=BC=2AD,且BC=2FC,∴AD=FC。
又∵AD∥FC,∴四边形AFCD为平行四边形。
∴AF=DC。
又AF=CE,∴DC=EC。
则△CED为等腰三角形。
结论③正确。
∵EF为△ABC的中位线,∴EF∥AC,且EF=12 AC。
∴∠MEF=∠MCA,∠EFM=∠MAC。
∴△EFM∽△CAM。
∴EM:MC=EF :AC=1:2。
设EM=x ,则有MC=2x ,EC=EM+MC=3x ,设EB=y ,则有BC=2y ,在Rt△EBC 中,根据勾股定理得:EC ,,即x :3。
∴EM:3。
结论④正确。
∵E 为AB 的中点,EP∥BM,∴P 为AM 的中点。
∴AEP EPM AEM 1S S S 2∆∆==∆。
又∵AEM BEM BEM BFM S S S S ∆∆∆∆==,,∴AEM BEM BFM ABF 1S S S S 3∆∆∆∆===。