2019春湘教版七年级数学上册(XJ)教案3.4 第3课时 行程问题1
- 格式:doc
- 大小:63.50 KB
- 文档页数:2
初中数学试卷鼎尚图文**整理制作第3课时行程问题要点感知1 相遇问题:甲的路程_________乙的路程=总路程(速度和×相遇时间=总路程).追及问题:快的路程___________慢的路程=相距的路程(速度差×相遇时间=相距的路程).预习练习1-1 肖华和晓明相距3千米,两人相约去新华书店看书,肖华每小时走4千米,晓明每小时走2千米,两人相向而行,_______小时相遇.要点感知2 航行问题:顺航速度=静航速度______水速(风速);逆航速度=静航速度_______水速(风速). 预习练习2-1轮船在静水中的速度为40 km/h,水流速度为 5 km/h,则轮船在顺水中的速度为________km/h,轮船在逆水中的速度为________km/h.知识点1 相遇问题1.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x千米/时,列方程得( )A.4+3x=25.2B.3×4+x=25.2C.3×4+3x=25.2D.3x-3×4=25.22.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时行( )A.20千米B.17.5千米C.15千米D.12.5千米3.甲、乙两站间的路程为450 km,一列慢车从甲站开出,每小时行驶65 km,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出相向而行,多少小时相遇?(2)快车先开1小时两车相向而行,慢车行驶了多少小时两车相遇?知识点2 追及问题4.一队学生去校外参加劳动,以4 km/h的速度步行前往,走了半小时,学校有紧急通知要传给队长,通讯员以14 km/h的速度按原路追上去,设通讯员追上学生队伍所需的时间为x min.则可列方程为( )A.14x+4x=4×0.5B.14x-4x=4×0.5C.(14-4)x=4D.14x=4x+0.55.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马________天可以追上驽马.6.兄弟两人由家里骑车去学校,弟弟每小时走6千米,哥哥每小时走8千米,哥哥晚出发10分钟,结果两人同时到校,学校离家有多远?知识点3 航行问题7.一艘轮船在A,B两个码头间航行,已知A,B间的路程是80千米,水流速度是2千米/时,从A到B顺流航行需4小时,那么从B返回到A需要( )A.3.5小时B.4小时C.4.5小时D.5小时8.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3 km/h ,求船在静水中的速度为___________.9.一架飞机在两个城市间飞行,无风时每小时飞行552公里,在一次往返飞行中,飞机顺风飞行用了5.5小时,逆风飞行用了6小时,求这次飞行的风速.10.A ,B 两地相距345千米,一列慢车从A 地出发,每小时行驶60千米,一列快车从B 地出发,每小时行驶90千米,快车提前30分钟出发.两车相向而行,慢车行驶了多少小时后,两车相遇?若设慢车行驶了x 小时后,两车相遇,根据题意,列方程如下,其中正确的是( )A.60(x+30)+90x=345B.60x+90(x+30)=345C.60(x+21)+90x=345 D.60x+90(x+21)=345 11.在400 m 的环形跑道上甲、乙两人练长跑,甲每分钟跑160 m ,乙每分钟跑140 m ,两人同时同地同向出发,第一次相遇的时间是( )A.10 minB.15 minC.20 minD.25 min12.(2013·赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流速度是____海里/小时.13.A 、B 两地之间的路程为160 km ,甲骑自行车从A 地出发,骑行速度为20 km/h ,乙骑摩托车从B 地出发,速度是甲的3倍.两人同时出发,相向而行,经过____小时相遇.14.A ,B 两地相距480千米,一列慢车从A 地开出,每小时走60千米,一列快车从B 地开出,每小时走65千米;(1)两车同时开出,相向而行,x 小时相遇,可列方程___________.(2)两车同时开出,相背而行,x 小时后两车相距620千米,可列方程___________.(3)慢车先开1小时,同向而行,快车开出x 小时后追上慢车,可列方程___________.15.一架飞机在两城市之间飞行,风速为24千米/时,顺风飞行需要2小时50分,逆风飞行需要3小时.求无风时飞机的飞行速度和两城之间的航程.16.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,已知轮船速度为24千米/时,汽车速度为40千米/时,问水路和公路的长分别为多少千米?挑战自我17.快艇从A 码头出发,沿河顺流而下,途径B 码头后继续顺流驶向C 码头,到达C 码头后立即反向驶回B 码头,共用10小时,若A ,B 相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B ,C 间的距离.18.甲,乙两列火车从相距480 km 的A ,B 两地同时出发,相向而行,甲车每小时行80 km ,乙车每小时行70 km ,问多少小时后两车相距30 km ?参考答案课前预习要点感知1 + -预习练习1-1 0.5要点感知2 + -预习练习2-1 45 35当堂训练1.C2.C3.(1)设两车行驶x 小时相遇,则65x+85x=450.解得x=3.答:两车同时开出相向而行,3小时相遇.(2)设慢车行驶y 小时两车相遇,则65y+85(y+1)=450. 解得y=30132. 答:慢车行驶了30132小时两车相遇. 4.B 5.206.设学校离家有x 千米,由题意,得860106x x =-. 解得x=4. 答:学校离家有4千米.7.D 8.27 km/h9.设这次飞行的风速每小时x 公里,依题意,得5.5(552+x)=6(552-x). 解得x=24.答:这次飞行的风速每小时24公里.课后作业10.D 11.C 12.2 13.214.(1)(60+65)x=480(2)(60+65)x+480=620(3)(65-60)x=480+60×115.设无风时飞机的飞行速度为x 千米/时,则顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时.根据题意,列方程得617(x+24)=3(x-24). 解得x=840. 3(x-24)=2 448.答:无风时飞机的飞行速度为840千米/时,两城间的航程为2 448千米.16.设水路长为x 千米,则公路长为(x+40)千米,根据题意,列方程得3404024++=x x .解得x=240. x+40=280.答:水路长240千米,公路长280千米.17.设B ,C 间的距离为x 千米,由题意,得 101040104020=-+++x x .解得x=180. 答:B ,C 间的距离为180千米.18.设x 小时后两车相距30 km ,根据题意,得 相遇之前: (80+70)x=480-30. 解得x=3; 相遇之后:(80+70)x=480+30. 解得x=517. 答:3小时或517小时后两车相距30 km.。
第3课时行程问题1.能分析行程问题中已知数与未知数之间的数量关系,利用路程、时间与速度三个量之间的关系式,列出一元一次方程解应用题.2.会用“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,培养分析问题、解决问题的能力,进一步体会方程模型的作用.一、情境导入亲爱的同学们,你们读过名著《西游记》吗?关于孙悟空的故事你一定知道很多吧.有这样一首描述孙悟空捉妖的诗:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准.请你帮孙悟空算算当时的风速每分钟是多少里?二、合作探究探究点一:用一元一次方程解决相遇问题小明家离学校2.9千米,一天小明放学走了5分钟之后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60米,爸爸骑自行车每分钟骑200米,请问小明爸爸从家出发几分钟后接到小明?解析:本题等量关系:小明所走的路程+爸爸所走的路程=全部路程,但要注意小明比爸爸多走了5分钟,另外也要注意本题单位的统一.解:设小明爸爸出发x分钟后接到小明,如图所示,由题意,得200x+60(x+5)=2900.解得x=10.答:小明爸爸从家出发10分钟后接到小明.方法总结:找出问题中的等量关系是列方程解应用题的关键,对于行程问题,通常借助“线段图”来分析问题中的数量关系.这样可以比较直观地反映出方程中的等量关系.探究点二:用一元一次方程解决追及问题敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的?解析:本题相等关系:我军所走的路程-敌军所走的路程=敌我两军相距的路程.解:设战斗是在开始追击后x小时发生的.根据题意,得8x-5x=25-1.解得x=8.答:战斗是在开始追击后8小时发生的.探究点三:用一元一次方程解决环形问题甲、乙两人在一条长400米的环形跑道上跑步,甲的速度为360米/分,乙的速度是240米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?(2)两人同时同地反向跑,问几秒后两人第一次相遇?解析:(1)题实质上是追及问题,两人第一次相遇,实际上就是快者追上慢者一圈,其等量关系是追上时,甲走的路程-乙走的路程=400米;(2)题实质上是相遇问题,两人第一次相遇就是两人所走的路程之和为环行跑道一圈的长,其等量关系是相遇时,甲走的路程+乙走的路程=400米. 解:(1)设x 分钟后两人第一次相遇,由题意,得360x -240x =400.解得x =103. ⎝ ⎛⎭⎪⎫103×360+103×240÷400=5(圈). 答:两人一共走了5圈.(2)设x 分钟后两人第一次相遇,由题意,得360x +240x =400.解得x =23(分钟)=40(秒).答:40秒后两人第一次相遇. 方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计行程问题→⎩⎪⎨⎪⎧相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.。
3.4 一元一次方程模型的应用第3课时 行程问题【学习目标】:1、 知道行程问题中的三个量及其关系:路程=速度×时间;2、 了解行程问题中的几种类型:相遇问题、追及问题、航行问题;3、 会列一元一次方程解决实际生活中简单的行程问题。
4、重点:列一元一次方程解决实际生活中的行程问题。
【预习导学】学一学:让学生阅读教材P101 “动脑筋”,回答下列问题:1、行程问题中的三个量之间的关系:路程=速度×时间 (s=vt),已知其中的两个量,会求第三个量。
2、问题中的已知量是:小斌的速度是 km/h, 时间到达;小强的速度是 Km/h, 时间到达。
所要求的是 。
3、问题中的等量关系是:小斌所用时间-小强所用时间=30min ,即0.5h(注意:单位要统一)。
4、设他们家到雷锋纪念馆的路程为s km,则小斌所用的时间是10s ,小强所用时间是15s ,列方程得: 解得 s=合作探究:某轮船往返在甲、乙两码头之间,顺流需用3h,逆流需用4h 。
已知水流速度是2.5km/h,求甲、乙两码头的距离?(提示:顺速=静速+水速;逆速=静速-水速;间接设未知数。
)学一学:让学生阅读教材P101“例3”,回答下列问题:1、问题中的已知量是未知量是2、问题中的等量关系是3、你能画草图形象分析行程问题吗?这是解决行程问题的常用方法。
4、请你谈一谈列方程解应用题的基本思路和格式?合作探究:甲、乙两站相距480km,一列慢车从甲站以90km/h的速度开出,一列快车从乙站以140km/h的速度开出。
①慢车先开出1h,快车再开。
问快车开出几小时后与慢车相遇?②两车同时开出,背向而行,问几小时后两车相距600km?③两车同时开出,同向而行,快车在慢车的后面,问几小时后快车赶上慢车?分析:本题关键是学会画草图,具体表达它们的运行情况,寻找出等量关系,设未知数,列出方程。
①相遇问题,画草图表示为:等量关系是:②背向而行,画草图表示为:等量关系是:③追及问题,画草图表示为:等量关系是:解:(请同学们写出规范的解答过程)归纳小结:谈一谈这节课你的收获是什么?练习检测:教材,练习。
3.4 一元一次方程模型的应用第3课时行程问题教学目标:知识技能:学会用图示法分析、解决实际问题中的行程问题;能准确地从实际问题中找到相等关系,并列方程解应用题。
数学思考:利用图示法解决实际问题中相遇问题和追击问题,能够分析出是属于哪一类问题,学会归类解决。
问题解决:经历运用方程解决实际问题的过程,体会图示法对分析行程问题的优越性,体会方程是刻画现实世界的有效数学模型。
情感态度:通过教学,让学生初步体会代数方法的优越性;体会数形结合的思想;培养应用数学意识,自觉反思解题过程的良好习惯。
教学重点:运用图示法寻找问题中的相等关系,列方程解决行程中的相遇和追击问题。
教学难点:列方程解决行程中的相遇和追击问题。
教学过程:一、复习提问,揭示目标:速度、路程、时间之间的关系?(利用这些知识的复习为后面的应用题提供依据。
)这节课我们就来学习关于这三个量的应用题—行程问题。
二、例题展示,解决问题1.例1:西安站和武汉站相距1500km,一列慢车从西安开出,速度65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?(由老师引导学生从实际问题中抽象出数学模型,从示意图分析,并解答,向学生呈现一个完整的分析、解决行程问题的过程,让学生利用形象的图示理解相遇问题,在解决此类问题时头脑中能形成映像,能够画出示意图解决。
)通过学习让学生对相遇问题中的各量的关系有了认识。
2.延伸拓展西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为87km/h,若两车相向而行,慢车先开30分钟,快车行使几小时后两车相遇?先让学生自己分析后,同学讨论试着画出图分析出等量,列出方程,教师再借助多媒体加深学生的理解。
理解相遇问题的不同类型归纳:相遇问题甲路程+乙路程=总路程3.例2:两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可以追上黄色马?(借助多媒体中图像让学生理解题意,解答)利用此例题让学生对追击问题中的各量之间的关系加深理解,找出等量关系,初步建模。
第3课时湘教版七上数学利用一元一次方程解决行程问题【知识与技能】进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力.【过程与方法】通过自主探究与小组合作交流,能合理清晰地表达自己的思维过程,掌握根据具体问题中的数量关系,列出方程,感悟方程是刻画现实世界的一个有效模型,训练学生运用新知识解决实际问题的能力.【情感态度】进一步体会数学中的化归思想,引导学生关注生活实际,建立数学应用意识,热爱数学.【教学重点】利用线形示意图分析行程问题中的数量关系.【教学难点】找出问题中的等量关系.一、情景导入,初步认知在行程问题中,最基本的等量关系式是什么?【教学说明】为本节课的教学作准备.二、思考探究,获取新知1.探究:星期天早晨,小斌和小强分别骑自行车从家里出发去参观雷锋纪念馆,已知他俩的家到纪念馆的路程相等,小斌每小时骑10km,他在上午10时到达;小强每小时骑15km,他在上午9时30分到达,求他们的家到雷锋纪念馆的路程.【教学说明】引导学生分析题意,找出题目中的等量关系式,并列出方程解答.2.讨论:在行程问题中还存在什么样的等量关系式?【归纳结论】相遇问题的基本关系:各路程之和=总路程.追及问题的基本关系:追及者的路程-被追者的路程=相距的路程.三、运用新知,深化理解1.教材P101例3、P103例4.2.某城市出租车起步价为8元(3公里以内),以后每千米2元(不足1km 按1km算),某人乘出租车花费20元,那么他大概行驶了多远?解:设这个人大概行驶x公里,根据题意得:8+2(x-3)=20解得:x=9答:这个人大概行驶9公里.3.甲、乙两列火车的长为144m和180m,甲车比乙车每秒多行4m.两列火车相向而行,从相遇到全部错开需9s,问两车的速度各是多少?解:设乙车每秒行驶x m,则甲车每秒行驶(x+4)m,根据题意得:9(x+x+4)=144+180,整理得:2x=32,解得:x=16,x+4=20.答:甲车每秒行驶20m,乙车每秒行驶16m.4.甲、乙两地的路程为360千米,一列快车从乙站开出,每小时行72千米;一列慢车从甲站开出,每小时行48千米.(1)若两列火车同时开出,相向而行,经过多少小时两车相遇?(2)若快车先开25分钟,两车相向而行,慢车行驶了多少时间两车相遇?解:(1)设两车同时开出相向而行,经x小时两车相遇,即72x+48x=360,解得:x=3,答:经过3小时两车相遇.(2)设慢车行驶y小时两车相遇;根据题意有:48y+72(y+2560)=360,解得:y=114.答:慢车行驶了114小时两车相遇四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.4”中第5、6题.新课标要求我们合理选用教学素材,优化教学内容.所以我在教学中,选用具有现实性的故事串作为素材.努力做到忠实于教材,在研究的基础上使用教材,以激发学生学习的积极性和主动探究数学问题的热情.教学方法合理化,不拘泥于形式.在教学中,通过故事串和观察动画,培养学生把行程问题抽象成线段图的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决问题的能力.整个教学环节思路清晰,以故事串作为问题背景,引出数量关系,抽象出线段图,从而解决了实际问题.。
第3章一元一次方程3.4 一元一次方程模型的应用课时3 行程问题与工程问题【知识与技能】1.学会解决图表信息问题的方法,用方程解决行程问题中的相遇水流等行程问题,会根据实际问题中的数量关系列方程解决问题,掌握用方程计算球赛积分问题和行程问题的方法.2.进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义.3.培养学生形成良好的学习习惯和学习态度,借助学生身边熟悉的例子认识数学的应用价值.【过程与方法】经历工程问题和行程问题应用题的解答过程,体验抽象、归纳的思想和方法.【情感态度与价值观】学习过程中,体验数学知识中的逻辑美,体会数学知识与.实际生活之间的密切联系,培养解决问题的能力.会用一元一次方程解决实际问题,不仅会列方程求出问题的解,还会进行推理判断.把实际问题转化为解一元一次方程的过程.多媒体课件情景1:很多男生喜欢看NBA,激烈的对抗中比分交替上升,最终由积分显示牌上的各队积分进行排位.你了解积分表吗?通过本节课的学习,相信同学们一定会有所收获.情境2:教师操作课件,播放篮球赛片段.学生欣赏球赛.师生活动教师提出问题,学生思考,教师对学生的回答给予提示.在学生充分思考、合作交流后,教师引导学生分析.一、思考探究,获取新知探究1 行程问题甲、乙两人相距4km,以各自的速度同时出发。
如果同向而行,甲2小时追上乙;如果相向而行,0.5小时相遇。
试问两人的速度各是多少?【分析】行程问题中的等量关系,还可以借助线段示意图表示。
同时出发,同向而行相等关系:甲2小时行程-乙2小时行程=4km同时出发,相向而行相等关系:甲0.5小时行程+乙0.5小时行程=4km师生共同总结:解答此题的关键是根据题目已知条件作图得出数量关系式并用一元一次方程表示出来.二、典例精析,掌握新知例1一足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分为17分.比赛规定胜一场得3分,平一场得1分,负一场得0分.如果勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场?【分析】9场比赛,负了2场,则胜场和平场共9-2=7(场).总得分=胜场总得分+平场总得分+负场总得分.【解】设这个队胜了x场,则平了(7-x)场.由题意,得胜x场得3x分,平(7-x)场得(7-x)分,负2场得0分.列方程,得3x+(7-x)=17,解得x=5.所以7-x=7-5=2.答:这个队胜了5场,平了2场.例2 A、B两地相距340千米,一列慢车从A地出发,每小时行48千米,一列快车从B地出发,每小时行72千米,两车相向而行,若快车先开出25分钟,则快车开出多长时间后,两车之间的距离是60千米?【分析】可通过数轴比较a,-a,b,-b的大小,先在数轴上找出表示a,-a,b,-b的点的大致位置,再进行比较.【解】设快车开出x小时,则:若是相遇前距离60千米:x*72+(x-25/60)*48=340-60120x=300x=2.5若是相遇后距离60千米:x*72+(x-25/60)*48=340+60120x=420x=3.5答:车开出2.5h或3.5h时间后,两车之间的距离是60千米。
第3课时行程问题
1.能分析行程问题中已知数与未知数之间的数量关系,利用路程、时间与速度三个量之间的关系式,列出一元一次方程解应用题.
2.会用“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,培养分析问题、解决问题的能力,进一步体会方程模型的作用.
一、情境导入
亲爱的同学们,你们读过名著《西游记》吗?关于孙悟空的故事你一定知道很多吧.有这样一首描述孙悟空捉妖的诗:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准.请你帮孙悟空算算当时的风速每分钟是多少里?
二、合作探究
探究点一:用一元一次方程解决相遇问题
小明家离学校2.9千米,一天小明放学走了5分钟之后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60米,爸爸骑自行车每分钟骑200米,请问小明爸爸从家出发几分钟后接到小明?
解析:本题等量关系:小明所走的路程+爸爸所走的路程=全部路程,但要注意小明比爸爸多走了5分钟,另外也要注意本题单位的统一.
解:设小明爸爸出发x分钟后接到小明,如图所示,由题意,得200x+60(x+5)=2900.解得x=10.
答:小明爸爸从家出发10分钟后接到小明.
方法总结:找出问题中的等量关系是列方程解应用题的关键,对于行程问题,通常借助“线段图”来分析问题中的数量关系.这样可以比较直观地反映出方程中的等量关系.
探究点二:用一元一次方程解决追及问题
敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的?
解析:本题相等关系:我军所走的路程-敌军所走的路程=敌我两军相距的路程.
解:设战斗是在开始追击后x小时发生的.根据题意,得8x-5x=25-1.解得x=8.
答:战斗是在开始追击后8小时发生的.
探究点三:用一元一次方程解决环形问题
甲、乙两人在一条长400米的环形跑道上跑步,甲的速度为360米/分,乙的速度
是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?
(2)两人同时同地反向跑,问几秒后两人第一次相遇?
解析:(1)题实质上是追及问题,两人第一次相遇,实际上就是快者追上慢者一圈,其等量关系是追上时,甲走的路程-乙走的路程=400米;(2)题实质上是相遇问题,两人第一次相遇就是两人所走的路程之和为环行跑道一圈的长,其等量关系是相遇时,甲走的路程+乙走的路程=400米.
解:(1)设x 分钟后两人第一次相遇,由题意,得360x -240x =400.解得x =103. ⎝ ⎛⎭
⎪⎫103×360+103×240÷400=5(圈). 答:两人一共走了5圈.
(2)设x 分钟后两人第一次相遇,由题意,得360x +240x =400.解得x =23
(分钟)=40(秒).
答:40秒后两人第一次相遇.
方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.
三、板书设计
行程问题→⎩⎪⎨⎪⎧相遇问题追及问题环形问题
教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.。