数控机床的产生与发展过程
- 格式:doc
- 大小:51.50 KB
- 文档页数:8
第一章数控机床概述
数控技术是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物,它已开始在各个领域普及,并且它所带来的巨大效益已引起了世界各国科技与工业届的普遍重视。
20世纪40年代以来,汽车、飞机和导弹制造工业发展迅速,原来的加工设备已无法承担加工航空工业需要的复杂型面零件。数控技术是为了解决复杂型面零件加工的自动化而产生的。1948年,美国帕森斯(Parsons)公司在研制加工直升机叶片轮廓检验用样板的机床时,首先提出了应用电子计算机控制机床加工样板曲线的设想。后来与美国空军签订合同,帕森斯(Parsons)公司与麻省理工学院(MIT)伺服机构研究所合作进行研制成功。1952年试制成功第一台三坐标立式数控铣床。后来,又经过改进并开展自动编程技术的研究,于1955年进入实验阶段,这对加工复杂曲面和促进美国飞机制造业的发展起了重要作用。
1958年我国开始研制数控机床,1975年研制出第一台加工中心。目前,在数控技术领域,我国同先进国家之间还存在不小的差距,但这种差距正在缩小。数控技术的应用也从机床控制拓展到其他控制设备,如数控电火花线切割机床、数控测量机和工业机器人等。
1.1数控机床的产生与发展
科学技术和社会生产的不断发展,对机械产品的性能、质量、生产率和成本提出了越来越高的要求。机械加工工艺过程自动化是实现上述要求的重要技术措施之一。单件、小批生产占机械加工的80%左右,一种适合于产品更新换代快、品种多、质量和生产率高、成本低的自动化生产设备的应用已迫在眉睫。而数控机床则能适应这种要求,满足目前生产需求。
1.1.1数控机床的产生与发展过程
1946年诞生了世界上第一台电子计算机,它为人类进入信息社会奠定了基础。1952年,计算机技术应用到机床上,在美国诞生了第一台数控机床。从此,传统机床产生了质的变化。近半个世纪以来,数控机床经历了两大阶段和六代的发展。
1.数控(NC)阶段(1952年-1970年)
早期计算机的运算速度底,这对当时的科学计算和数据处理影响还不大,但不能适应机床的实施控制要求.人们不得不采用数字逻辑电路制成一台机床专用计算机作为数控系统,这被称为硬件连接数控(HARD-WIREDNC),简称为数控(NC) 。随着元器件的发展,这个阶段经历了三代,即1952年的第一代——电子管数控机床;1959年的第二代——晶体管数控机床;1965年的第三代——集成电路数控机床。
2.计算机数控(CNC)阶段(1970年-现在)
直到1970年,通用小型计算机业出现并成批生产,其运算速度比20世纪
五六十年代有了大幅度的提高,这比逻辑电路专用计算机成本低,可靠性高。于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段。1971年,美国Intel公司在世界上第一次将计算机的两个核心部件——运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICRO-PROCESSOR),又称中央处理单元(简称CPU)。1974年,微处理器被应用于数控系统。这是因为小型计算机功能强大,控制一台机床能力有多余,但不及采用微处理器经济合理,而且当时的小型计算机可靠性也不太理想。虽然早期的微处理器速度和功能都还不够高,但可以通过多处理器结构来解决。
因为微处理器是通用计算机的核心部件,故称为计算机数控。到了1990年,PC机(个人计算机,国内习惯称为微机)的性能已发展到很高的阶段,可满足作为数控系统核心部件的要求,而且PC机生产批量很大,价格便宜,可靠性高。数控系统从此进入了基于PC的阶段。
总之,计算机数控阶段也经历了三代,即1970年的第四代——小型计算机数控机床;1974年的第五代——微型计算机数控系统;1990年的第六代——基于PC(国外称为PC—BASED)的数控机床。
1.1.2数控机床的发展趋势
随着现代制造技术向着高速、高效、高精度方向的发展,制造业发生了根本性的变化。由于数控技术的广泛应用,普通机械被高效率、高精度的数控机械所代替,形成了巨大的生产力。机械制造业是国民经济的基础产业,是支撑整个工业和国民经济发展的基石。数控机床作为机械制造的基本装备,又是基础的基础。数控机床是集现代先进制造技术、计算机技术、通讯技术、控制技术、液压气动技术、光电技术于一体,具有高效率、高精度、高自动化、高柔性的特点,是典型的数字化控制技术与精密制造技术有机结合的机电一体化产品。
目前,国内外数控机床产品技术发展方向主要体现在高速、复合、精密、智能、环保等方面。
1.高速
高速切削加工不仅可以提高生产效率,而且可以改善加工质量,所以自20世纪90年代初以来,便成为机床技术重要的发展方向。各国相继推出了许多主轴转速10000r/min至60000r/min以上的加工中心和数控铣床。高速切削加工正与硬切削加工、干切削和准干切削加工以及超精密切削加工相结合;从铣削向车、钻、镗等其它工艺扩展,向较大切削负荷方向发展。
高速加工对机床的要求是:主轴速度应能达到12000~40000r/min;进给速度应达到40~60m/min;快速移动速度应达到80m/min;高刚性的机械结构;高稳定、高刚度、冷却良好的高速主轴;精确的热补偿系统;高速处理能力的控制系统(具有NURBS插补功能和预处理能力的控制系统)。
在数控机床高速化上,国外直线电机驱动技术,应用于进给驱动系统已实现实用化、普及化;机床的主轴转速和切削进给速度普遍提高。主轴转速一般都在10000 r/min以上,快移速度也因普遍采用直线电机而提高到100m/min以上。瑞士的MIKRON公司生产的HSM立式加工中心,它在主轴转速在30000r/min、进给速度40m/min、加速度17m/s2的情况下,实现平稳运行;日本安