5微分方程模型共64页
- 格式:ppt
- 大小:1.12 MB
- 文档页数:64
微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。
它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。
在本章中,我们将探讨微分方程模型的基本概念、类型和应用。
微分方程是一种方程,它包含未知函数的导数。
这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。
在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。
根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。
每种类型的方程都有其特定的求解方法和应用领域。
微分方程在众多领域中都有应用,如物理学、工程学、经济学等。
例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。
人口增长模型、传染病模型等也都依赖于微分方程。
建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。
求解微分方程的方法主要有两种:数值方法和解析方法。
数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。
对于某些类型的微分方程,可能需要结合使用这两种方法。
建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。
这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。
随着科学技术的发展,微分方程模型的应用前景越来越广阔。
例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。
未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。
微分方程模型是数学建模中一个极其重要的部分。
通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。
微分方程模型引言微分方程是描述自然界中很多现象和问题的数学模型。
通过建立微分方程模型,我们可以定量地描述和预测各种物理、化学、生物和工程问题的演化和变化。
本文将介绍微分方程模型的基本概念、常见类型和求解方法,并给出一些应用实例。
基本概念微分方程是含有未知函数及其导数的方程。
通常用符号形式表示如下:F(x, y, y', y'', ..., y^(n)) = 0其中,y是未知函数,x是自变量,n是方程中最高阶导数的阶数。
微分方程模型是以微分方程为基础,结合具体物理、化学、生物和工程问题的特点所建立的数学模型。
通过对问题的建模,我们可以将真实世界中复杂的问题简化为数学形式,从而利用微分方程的性质和解析方法求解或近似解。
常见类型微分方程可以分为多种类型,常见的包括:•一阶常微分方程:包含一个未知函数的一阶导数的方程,形式如下:y' = f(x, y)•高阶常微分方程:包含一个未知函数的高阶导数的方程,形式如下:F(x, y, y', y'', ..., y^(n)) = 0•偏微分方程:包含多个未知函数及其偏导数的方程,形式如下:F(x, y, z, ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂^2u/∂x^2, ∂^2u/∂y^2, ∂^2u/∂z^2, ..., ∂^nu/∂x^n, ∂^nu/∂y^n, ∂^nu/∂z^n) = 0求解方法求解微分方程模型的方法包括解析解和数值解。
解析解对于一些简单的微分方程模型,可以通过解析方法求得解析解。
解析解是指能够用数学公式精确表示的解。
解析解求解的基本思路是尝试找到满足微分方程的函数形式,并通过代入求导的方式得到方程中的常数。
一些经典的微分方程模型如线性微分方程、齐次线性微分方程、可分离变量的微分方程等可以通过解析方法求解。
数值解对于一些复杂的微分方程模型,无法找到解析解或解析解难以求得,我们可以采用数值解法进行近似求解。
第5章 微分方程模型5.1 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化?5.2 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dtt dp = 其中t 以分钟计。
在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。
鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。
此外,由于在它们周围出现意外情况,平均每分钟有0.002条鲑鱼离开此水域。
(1)考虑到两种因素,试修正Malthus 模型。
(2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数)(t p ,并问∞→t 时会发生什么情况?5.3 根据罗瑟福的放射性衰变定律,放射性物质衰变的速度与现存的放射性物质的原子数成正比,比例系数成为衰变系数,试建立放射性物质衰变的数学模型。
若已知某放射性物质经时间21T 放射物质的原子下降至原来的一半(21T 称为该物质的半衰期)试决定其衰变系数。
5.4 用具有放射性的14C 测量古生物年代的原理是:宇宙线轰击大气层产生中子,中子与氮结合产生14C 。
植物吸收二氧化碳时吸收了14C ,动物食用植物从植物中得到14C 。
在活组织中14C 的吸收速率恰好与14C 的衰变速率平衡。
但一旦动植物死亡,它就停止吸收14C ,于是14C 的浓度随衰变而降低。
由于宇宙线轰击大气层的速度可视为常数,既动物刚死亡时14C 的衰变速率与现在取的活组织样本(刚死亡)的衰变速率是相同的。
若测得古生物标本现在14C 的衰变速率,由于14C 的衰变系数已知,即可决定古生物的死亡时间。
试建立用14C 测古生物年代的模型(14C 的半衰期为5568年)。
5.5 试用上题建立的数学模型,确定下述古迹的年代:(1)1950年从法国Lascaux 古洞中取出的碳测得放射性计数率为0.97计数(min ⋅g ),而活树木样本测得的计数为6.68计数(min ⋅g ),试确定该洞中绘画的年代;(2)1950年从某古巴比伦城市的屋梁中取得碳标本测得计数率为4.09计数(min ⋅g ),活数标本为6.68计数(min ⋅g ),试估计该建筑的年代。
微分⽅程模型第四章微分⽅程模型§4.1利⽤平衡原理和微元法建模进⼀步理解建模基本⽅法与基本建模过程,掌握平衡原理与微元法在建模中的⽤法.所谓平衡原理是指⾃然界的任何物质在其变化的过程中⼀定受到某种平衡关系的⽀配.注意发掘实际问题中的平衡原理是从物质运动机理的⾓度组建数学模型的⼀个关键问题.就象中学的数学应⽤题中等量关系的发现是建⽴⽅程的关键⼀样.微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微⼩单元变化情况,这是因为在这些微元上的平衡关系⽐较简单,⽽且容易使⽤微分学的⼿段进⾏处理.这类模型基本上是以微分⽅程的形式给出的.例1 设警⽅对司机饮酒后驾车时⾎液中酒精含量的规定为不超过80%(mg/ml). 现有⼀起交通事故,在事故发⽣3个⼩时后,测得司机⾎液中酒精含量是56%(mg/ml), ⼜过两个⼩时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发⽣时,司机是否违反了酒精含量的规定? 解:模型建⽴设)(t x 为时刻t 的⾎液中酒精的浓度, 则依平衡原理时间间隔],[t t t ?+内, 酒精浓度的改变量t t x x ??∝?)(, 即t t kx t x t t x ?-=-?+)()()(其中k >0为⽐例常数, 式前负号表⽰浓度随时间的推移是递减的, 遍除以t ?, 并令0→?t , 则得到,d d kx tx -=且满⾜40)5(,56)3(==x x 以及0)0(x x =.模型求解容易求得通解为ktc t x -=e)(, 代⼊0)0(x x =,得到ktx t x -=e)(0则)0(0x x =为所求. ⼜由,40)5(,56)3(==x x 代⼊0)0(x x =可得17.04056e 40e56e 25030=?===--k x x kk k 将17.0=k 代⼊得 25.93e 5656e17.03017.030≈?=?=??-x x >80故事故发⽣时,司机⾎液中的酒精浓度已超出规定.例2 在凌晨1时警察发现⼀具⼫体, 测得⼫体温度是29?C, 当时环境温度是21?C . ⼀⼩时后⼫体温度下降到27?C , 若⼈的正常体温是37?C , 估计死者的死亡时间.解运⽤⽜顿冷却定律T ')(T T out -=-α, 得到它的通解为 )(0out out T T T T -+=t α-e , 这⾥0T 是当0=t 时⼫体的温度, 也就是所求的死亡时间时⼫体的温度, 将题⽬提供的参数代⼊:=-+=-++--27e1(t t αα解得: 168e=-tα和 166e)1(=+-t α则34e=α求得:)(409.2)12(,2877.0h Ln t ≈-=≈αα这时求得的t 是死者从死亡起到⼫体被发现所经历的时间, 因此反推回去可推测死者的死亡时间⼤约是前⼀天的夜晚10:35.例3在⼀种溶液中,化学物质A 分解⽽形成B ,其速度与未转换的A 的浓度成⽐例.转换A 的⼀半⽤了20分钟,把B 的浓度y 表⽰为时间的函数,并作出图象.解:记B 的浓度为时间t 的函数y(t ),A 的浓度为x(t ).⼀、假设1.1mol A 分解后产⽣n mol B . 2.容体的体积在反应过程中不变.⼆、建⽴模型,求解有假设知,A 的消耗速度与A 的浓度成⽐例,故有下列⽅程成⽴其中k 为⽐例系数.设反应开始时t = 0,A 的浓度为x0,.解初值问题==-0)0(d d xx kx tx得 ktx t x -=e )(0它应满⾜当t = 20(分)时,A 的浓度为021)20(x x =020021e所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000t t nx x x n t y ---=-=三、作图(如图4.1)图4.1 例4追逐问题1.问题如图14-4所⽰,正⽅形ABCD 四个顶点各有⼀⼈。