七年级数学多边形练习题
- 格式:doc
- 大小:480.50 KB
- 文档页数:3
七年级数学下册《多边形》练习题及答案(华师大版)一、选择题1.下面图形是用木条钉成的支架,其中不容易变形的是( )A. B. C. D.2.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.如图,为了估计池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能是()A.5米B.7米C.10米D.18米4.将一个n边形变成n+1边形,内角和将( )A.减少180°B.增加90°C.增加180°D.增加360°5.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,为铺满地面而不重叠,瓷砖的形状可能有( )A.正三角形、正方形、正六边形B.正三角形、正方形、正五边形C.正方形、正五边形D.正三角形、正方形、正五边形、正六边形6.已知三角形三边分别为2,a-1,4,那么a的取值范围是( )A.1<a<5B.2<a<6C.3<a<7D.4<a<67.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A.43°B.47°C.30°D.60°8.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m,n上,测得,则的度数是( )A.450B.550C.650D.7509.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A. B.C. D.10.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A.4B.4或5C.5或6D.611.记n边形(n>3)的一个外角的度数为p,与该外角不相邻的(n﹣1)个内角的度数的和为q,则p与q的关系是( )A.p=qB.p=q﹣(n﹣1)•180°C.p=q﹣(n﹣2)•180°D.p=q﹣(n﹣3)•180°12.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题13.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是边形.14.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.15.在△ABC中,∠A=60°,∠B=2∠C,则∠B= .16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF= .17.如图,在一个正方形被分成36个面积均为1的小正方形,点A与点B在两个格点上.在格点上存在点C,使△ABC的面积为2,则这样的点C有个.18.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .三、作图题19.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.四、解答题20.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.21.小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.22.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.23.在△ABC中,AB=AC,AC上的中线把三角形的周长分为18cm和24cm两个部分,求三角形各边长.24.现实生活中,各种各样的图形随处可见.我们知道,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.由三角形定义可知,在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形.如图1,若有三条边的叫做三角形,有四条边的叫做四边形,有五条边的叫做五边形…通过学习,我们知道三角形三个内角的和为180°,现在我们类比三角形内角和来研究其他多边形图形的内角和问题.探究:猜想并验证四边形的内角和.猜想:四边形内角和为360°验证:在四边形ABCD中,连接AC,则四边形ABCD被分为两个三角形(图2).所以,四边形ABCD的内角和=△ABC的内角和+△ACD的内角和=180°+180°=360°请类比上述方法探究下列问题.(1)探究:猜想并探究五边形ABCDE的内角和.(图3)猜想:验证:(2)根据上述探究过程,可归纳出n边线内角和为.(3)证明:①已知一个多边形的内角和为1800°,那么这是个边形.②一天小明爸爸给小明出了一道智力题考考他.将一个多边形截去一个角后(没有过顶点),得到的多边形内角和将会( )A.不变B.增加180°C.减少180°D.无法确定.25.如图1,在平面直角坐标系中,已知A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y轴于F点.(1)求点A、B的坐标;(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图 2,求∠AMD的度数;(3)如图 3,(也可以利用图 1)①求点F的坐标;②坐标轴上是否存在点P,使得△ABP和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.【答案】B2.【答案】B3.【答案】B4.【答案】C5.【答案】A6.【答案】C7.【答案】B.8.【答案】D.9.【答案】A.10.【答案】B.11.【答案】D.12.【答案】B.13.【答案】八.14.【答案】3或4.15.【答案】80°.16.【答案】25°17.【答案】5;18.【答案】180°.19.【答案】解:(1)(2)(3)题如图所示.(4)△A′B′C′的面积为:8.故答案为:8.20.【答案】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.21.【答案】解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m. (2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7∵7+7<16∴不能构成三角形,即第一条边长不可以为7m.22.解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=0.5∠ACB=40°∴∠CDB=∠A+∠ACD=40°+40°=80°23.【答案】解:设AD=CD=x,则AB=2x①当AB+AD=24时,得:3x=24,x=8AB=AC=16∵BC+x=18∴BC=10;②当AB+AD=18时3x=18,x=6AB=AC=12又BC+x=18∴BC=6.24.【答案】解:(1)探究:猜想:五边形ABCDE的内角和为540°.理由:如图3中,连接AD、AC.由图可知,五边形的内角和=△ADE的内角和+△ADC的内角和+△ACB的内角和=180°+180°+180°=540°,故答案为540°.(2)因为:三角形内角和为180°=(3﹣2)×180°四边形内角和为360°=(4﹣2)×180°五边形内角和=(5﹣2)×180°,…所以可以推出n边形的内角和=(n﹣2)•180°故答案为(n﹣2)•180°.(3)①设是n边形,由题意(n﹣2)•180°=1800,解得n=12∴这个多边形是12边形.故答案为12.②因为一个多边形切去一个角后形成的多边形边数有三种可能:比原多边形边数小1、相等、大1,所以将一个多边形截去一个角后(没有过顶点),得到的多边形内角和可能不变,可能增加180°,也可能减少180°,不能确定,故选D.25.【答案】。
多边形专题练习一、选择题(本大题共6小题,共18.0分)1.已知n边形的每个外角都等于60∘,则它的内角和是()A. 180∘B. 270∘C. 360∘D. 720∘2.小明把一副直角三角板按如图所示的方式摆放,其中∠C=∠F=90∘,∠A=45∘,∠D=30∘,则∠α+∠β等于()A. 180∘B. 210∘C. 360∘D. 270∘3.如图,在△ABC中,AB边的长为10,则△ABC的周长可能为()A. 16B. 18C. 20D. 224.如图,在七边形ABCDEFG中,AB,ED的延长线相交于点O.若图中与∠1,∠2,∠3,∠4相邻的外角的度数和为220∘,则∠BOD的度数为()A. 40∘B. 45∘C. 50∘D. 60∘5.如图,在△ABC中,点D、E分别为BC、AD的中点,EF=2FC,若△ABC的面积为12cm2,则△BEF的面积为()A. 2cm2B. 3 cm2C. 4 cm2D. 5 cm26.我们知道正五边形不能进行平面镶嵌,若将三个完全相同的正五边形按如图所示的方式拼接在一起,那么图中∠1的度数是()A. 18∘B. 30∘C. 36∘D. 54∘二、填空题(本大题共17小题,共51.0分)7.如图,将分别含有30∘、45∘角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65∘,则∠α的度数为.8.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3 cm2,则S△ABC=.9.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12,△ABC的周长是20,则AD的长为.10.如图,平面内五点A、B、C、D、E连结成五角星的形状,那么∠A+∠B+∠C+∠D+∠E=度.11.如图所示,在四边形ABCD中,AD⊥AB,∠C=110∘,它的一个外角∠ADE=60∘,则∠B的大小是.12.如图,若AE是△ABC的边BC上的高,AD平分∠EAC交BC于D.若∠C=40∘,则∠DAE等于°.13.已知a,b,c是某个三角形的三边长,则化简|a−b+c|+|a−b−c|的结果是.14.图由平面上五个点A、B、C、D、E连结而成,则∠A+∠B+∠C+∠D+∠E=.15.一个三角形的三边长分别为x cm,(x+1)cm,(x+2)cm,,它的周长不超过39cm,则x的取值范围是.16.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的平分线相交于点P,且∠ABP=60∘,则∠APB=度.17.如图,五边形ABCDE是正五边形.若l 1//l2,则∠1−∠2=°.18.如图所示,BD=DE=EC,那么图中以AD为中线的三角形是,以AE为中线的三角形是.S△ABD==.19.如图,在△ABC中,AD为中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.20.如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.21.如图,直线MN//PQ,点A、B分别在MN、PQ上,∠MAB=33∘.过线段AB上的点C作CD⊥AB交PQ于点D,则∠CDB 的大小为度.22.如图,将分别含有30∘,45∘角的一副三角尺重叠,使直角顶点重合,若两直角重叠形成的角的度数为65∘,则图中∠α的度数为23.如图,AD,BE,CF是△ABC的三条角平分线,则∠1==1 2,∠3=12,=2∠4.三、解答题(本大题共12小题,共96.0分)24.如图所示,在锐角三角形ABC中,点D在AC边上,点E在BC边的延长线上,请说明:∠ADB>∠CDE.25.如图,已知四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,试判断AE与CF的位置关系,并说明理由.26.如图所示,D是△ABC的边AC上任意一点,连结BD,请判断AB+BC+AC与2BD的大小关系,并说明理由.27.在一个多边形中,每个内角都相等,并且每个外角都等于与它相邻的内角的1,求4这个多边形的边数及内角和.(AB+28.如图,点O是△ABC内的一点,证明:OA+OB+OC>12BC+CA).29.如图所示,在△ABC中,D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,求阴影部分的面积.30.如图所示,在△ABC中,AD,CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,求AB的长.31.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.32.如图,在△ABC中,CF,BE分别是AB,AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC的长.33.如图,D是△ABC的BC边上的一点,DE//AC交AB于点E,DF//AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗⋅说明理由.34.如图,CE是△ABC的一个外角∠ACD的平分线,且EF//BC交AB于点F,∠A=60∘,∠CEF=50∘,求∠B的度数.35.如图,D是△ABC中的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66∘,求∠DAC的度数.。
7.5 多边形的内角和与外角和一.选择题1.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.193.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155° D.150°5.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°7.正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.88.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α9.(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.(2017•临沂)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形11.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2 12.(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°13.(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°14.(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形二.填空题15.(2017•广东)一个n边形的内角和是720°,则n=.16.(2017•西宁)若正多边形的一个外角是40°,则这个正多边形的边数是.17.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.18.(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.19.(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为.20.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.21.(2017•南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.三.解答题22.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC 的度数.23.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°理由:连接A1A4∵∠1+∠2+∠A1OA4=180°∠A5+∠A6+∠A5OA6=180°又∵∠A1OA4=∠A5OA6∴∠1+∠2=∠A5+∠A6∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°即S=360°(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明②如图3是二环五边形,可得S=,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=度.(用含n的代数式表示最后的结果)24.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:.(2)从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.25.请你裁定,你一定要主持公道啊!小明和小方分别设计了一种求n边形的内角和(n为大于2的整数)的方案:(1)小明是在n边形内任取一点P,然后分别连接PA1,PA2,…,PA n(如图①);(2)小方是在n边形的一边A2A3上任取一点P,然后分别连接PA1,PA4,…,PA n(如图②).请你评判这两种方案是否可行;如果不可行,请你说明理由;如果可行,请你分别沿着两种方案的设计思路,求出n边形的内角和.26.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.27.问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为.28.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.29.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为.30.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.31.(1)如图①,你知道∠BOC=∠1+∠2+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=;x=(3)如图③,一个六角星,其中∠BOD=80°,求∠A+∠B+∠C+∠D+∠E+∠F的度数.参考答案与试题解析一.选择题1.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°【分析】先求出∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选B.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点评】此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.3.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成n﹣2个三角形,依此可得n的值.【解答】解:根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成n﹣2个三角形,∴n﹣2=5,即n=7.故选C.【点评】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.4.把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155° D.150°【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【解答】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选:A.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°【分析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点评】此题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.7.正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.8【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵正多边形的一个内角为135°,∴外角是180﹣135=45°,∵360÷45=8,则这个多边形是八边形,故选D.【点评】本题考查了外角和的大小与多边形的边数无关,由外角和求正多边形的边数,难度适中.8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:B.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,关键是先求出∠ABC+∠BCD的度数.9.(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.10.(2017•临沂)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n ﹣2)•180°.11.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2【分析】根据多边形的内角和与外角和即可判断.【解答】解:∵(180°﹣∠1)+∠2=360°﹣90°﹣90°=180°∴∠1=∠2∵(180°﹣∠2)+∠3=360°﹣85°﹣90°=185°∴∠3﹣∠2=5°,∴∠3>∠2∴∠3>∠1=∠2故选(D)【点评】本题考查多边形的内角与外角,解题的关键是熟练运用多边形的内角和与外角和,本题属于基础题型.12.(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.13.(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.14.(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.二.填空题15.(2017•广东)一个n边形的内角和是720°,则n=6.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.16.(2017•西宁)若正多边形的一个外角是40°,则这个正多边形的边数是9.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.17.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.18.(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.19.(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.20.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.21.(2017•南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=425°.【分析】根据补角的定义得到∠AED=115°,根据五边形的内角和即可得到结论.【解答】解:∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°,故答案为:425.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三.解答题22.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE.(1)当∠BAC=40°时,∠BPC=70°,∠BQC=125°;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC 的度数.【分析】(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=∠PBC,∠QCB=∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC的度数.【解答】解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=∠PBC,∠QCB=∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;故答案为:70°,125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴(∠DBC+∠BCE)=180°,即(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,∴∠BOC=225°﹣180°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°理由:连接A1A4∵∠1+∠2+∠A1OA4=180°∠A5+∠A6+∠A5OA6=180°又∵∠A1OA4=∠A5OA6∴∠1+∠2=∠A5+∠A6∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°即S=360°(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明②如图3是二环五边形,可得S=1080,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=360(n﹣2)度.(用含n的代数式表示最后的结果)【分析】在(1)的基础上类似作辅助线,把要求的所有角转换到一个多边形中,再根据多边形的内角和定理进行求解.【解答】解:(1)如图所示,则S=∠A1+∠A2+…+∠A8=S=∠A1+∠A2+…+∠A5+∠M+∠1+∠2=(6﹣2)×180°=720°.(2)依此类推,得是二环五边形时,则S=1080°;推而广之,二环n边形(n≥3的整数)时,S=360(n﹣2).【点评】此题主要是巧妙构造辅助线把要求的角能够构造到一个多边形中.n边形的内角和是(n﹣2)×180°.24.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:S=n(n﹣3).(2)从十五边形的一个顶点可以引出12条对角线,十五边形共有90条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【分析】(1)根据多边形对角线的条数的公式即可求解;(2)根据多边形对角线的条数的公式代值计算即可求解;(3)根据等量关系:一个多边形对角线的条数与它的边数相等,列出方程计算即可求解.【解答】解:如图所示:(1)用n边形的边数n表示对角线总条数S的式子:S=n(n﹣3);(2)十五边形从一个顶点可引出对角线:15﹣3=12(条),共有对角线:×15×(15﹣3)=90(条);(3)设多边形有n条边,则n(n﹣3)=n,解得n=5或n=0(应舍去).故这个多边形的边数是5.故答案为:S=n(n﹣3);12,90.【点评】本题主要考查了多边形对角线的条数的公式总结,熟记公式对今后的解题大有帮助.25.请你裁定,你一定要主持公道啊!小明和小方分别设计了一种求n边形的内角和(n为大于2的整数)的方案:(1)小明是在n边形内任取一点P,然后分别连接PA1,PA2,…,PA n(如图①);(2)小方是在n边形的一边A2A3上任取一点P,然后分别连接PA1,PA4,…,PA n(如图②).请你评判这两种方案是否可行;如果不可行,请你说明理由;如果可行,请你分别沿着两种方案的设计思路,求出n边形的内角和.【分析】两种方案都是可行的,方案一可按照思路:n个三角形的内角和减去一个周角的度数,方案二按照思路:(n﹣1)个三角形的内角和减去一个平角的度数.【解答】解:小明和小方的方案均可行.理由如下:小明的方案:n边形的内角和等于n个三角形的内角和减去一个周角,即n边形的内角和为n×180°﹣360°为(n﹣2)×180°;小方的方案:n边形的内角和等于(n﹣1)个三角形的内角和减去一个平角,即n边形的内角和为(n﹣1)×180°﹣180°为(n﹣2)×180°.【点评】本题考查了多边形的内角和,解答本题关键是仔细观察所给图形,利用三角形的内角和定理解答.26.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.27.问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为∠AOC=∠A+∠C+∠P.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“外角的性质”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=∠B+∠C.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为∠P=90°+(∠B+∠D).【分析】问题1:根据三角形的外角的性质即可得到结论;问题2:根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;解决问题1:根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.【解答】解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(28°+48°)=38°;解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+(∠B+∠D).故答案为:∠P=90°+(∠B+∠D).解法二:如图3,∵AP平分△AOB的外角∠FAD,CP平分△COD的外角∠BCE,∴∠1=∠2,∠3=∠4,分别作∠BAD、∠BCD的角平分线交于点M,则∠5=∠6,∵∠1+∠2+∠5+∠6=180°,∴∠2+∠6=90°,即∠PAM=90°,同理:∠PCM=90°,∴在四边形APCM中,∠P+∠M=180°,由问题2,得∠M=(∠B+∠D).∴∠P=180°﹣(∠B+∠D).如图4中,作∠BCD的角平分线,交AP的延长线于点N,则∠1=∠2,由问题2,得∠N=(∠B+∠D).∵CP平分△COD的外角∠BCE,∴∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,即∠PCN=90°,∵∠APC=∠PCN+∠N∴∠APC=90°+(∠B+∠D).【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.28.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.【分析】(1)只要证明∠AIB=90°+∠ACB,∠ADI=90°+∠ACB即可;(2)①只要证明∠IDC=∠DCF即可;②首先求出∠ACE﹣∠ABC=∠BAC=70°,再证明∠F=∠ACE﹣∠ABC=(∠ACE ﹣∠ABC)即可解决问题;【解答】(1)证明:∵AI、BI分别平分∠BAC,∠ABC,∴∠BAI=∠BAC,∠ABI=∠ABC,∴∠BAI+∠ABI=(∠BAC+∠ABC)=(180°﹣∠ACB)=90°﹣∠ACB,∴在△ABI中,∠AIB=180°﹣(∠BAI+∠ABI)=180°﹣(90°﹣∠ACB)=90°+∠ACB,∵CI平分∠ACB,∴∠DCI=∠ACB,∵DI⊥IC,∴∠DIC=90°,∴∠ADI=∠DIC+∠DCI=90°+∠ACB,∴∠AIB=∠ADI.(2)①解:结论:DI∥CF.理由:∵∠IDC=90°﹣∠DCI=90°﹣∠ACB,∵CF平分∠ACE,∴∠ACF=∠ACE=(180°﹣∠ACB)=90°﹣∠ACB,∴∠IDC=∠ACF,∴DI∥CF.②解:∵∠ACE=∠ABC+∠BAC,∴∠ACE﹣∠ABC=∠BAC=70°,∵∠FCE=∠FBC+∠F,∴∠F=∠FCE﹣∠FBC,∵∠FCE=∠ACE,∠FBC=∠ABC,∴∠F=∠ACE﹣∠ABC=(∠ACE﹣∠ABC)=35°【点评】本题考查三角形的内角和定理、三角形的外角的性质、平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.29.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为35°;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为∠AEC=∠ADC.【分析】(1)①先根据三角形的内角和求∠ACB=70°,由平行线的性质得:∠DAC=70°,利用角平分线得:∠DAE=35°,最后利用平行线的内错角相等得结论;②设∠CAE=x,∠BAC=y,在△ACD和△ABE中根据三角形内角和表示∠ADC和∠AEC,可得结论;(2)如图3,设∠ABC=x,∠EAD=y,则∠ACB=nx,∠CAE=ny,在△ACE中根据外角的性质得:∠AEC=nx﹣ny=n(x﹣y),在△ADC中,根据三角形内角和可得∠ADC的度数,由此可得结论.【解答】解:(1)①如图2,∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,∵∠ACB=∠ABC,∴∠ACB=70°,∵AD∥BC,∴∠DAC=∠ACB=70°,∵AE平分∠DAC,∴∠DAE=∠DAC=×70°=35°,∵AD∥BC,∴∠AEC=∠DAE=35°,故答案为:35°;②∠ADC=2∠AEC,理由是:设∠CAE=x,∠BAC=y,则∠EAD=x,∠ABC=,∵AB∥CM,∴∠ACM=∠BAC=y,∴∠ADC=180﹣2x﹣y,△ABE中,∠AEC=180﹣x﹣y﹣=90﹣x﹣,。
1234七年级数学第八章《多边形》单元测试题二(满分:120分) 一、耐心填一填!(每小题2分,共32分) 1、等腰三角形两边长分别是3cm 和5cm ,则这个三角形的周长是__。
2、等腰三角形的两边长分别是5cm 和11cm ,则这个三角形的周长是__。
3、等腰三角形的一个角是70°,则这三角形的其余两个角分别是___。
4、在ΔABC 中,∠A +∠B =∠C ,∠B =2∠A ,则∠C =__,∠A=__。
5、正八边形的内角的度数是____。
5的各个角的度数之和为___。
6、已知:如图,五角星中,∠A +∠B +∠C +∠D +∠E =___。
7、三角形的三边长分别为5,1+2x ,8,则x 的取值范围是___。
8、四边形ABCD 中,若∠A +∠C =180°,且∠B ∶∠C ∶∠D =1∶2∶3,则∠A =___。
9、多边形的外角和是___,若边数为n ,则每个外角为___。
10、一个多边形每增加一条边,那么它的内角和增加___,外角和___。
11、工人师傅在做完门框后.为防小变形常常像图4中所示的那样上两条斜拉的木条(即图中的AB ,CD 两根木条),这样做根据的数学道理是_____.12、多边形的内角中,最多有____个锐角。
13、如图,已知∠1=20°,∠2=25°,∠A =50°,则∠数是__。
14、已知:多边形内角和与外角和的和是2160°,则这个多边形的边数是__。
15、已知:多边形的每个内角都相等,且等于144°,则这个多边形的边数是__;另一个多边形的每个外角都相等,且等于30°,则这个多边形的边数是__。
16、若过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形有k 条对角线,正h 边形的内角和与外角和相等,则代数式h ·(m -k)n =___。
二、精心选一选!(每小题2分,共34分)17、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形? 应该带____。
章节测试题1.【答题】若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A. 6B. 7C. 8D. 9【答案】B【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.选B.2.【答题】一个n边形共有20条对角线,则n的值为()A. 5B. 6C. 8D. 10【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设这个多边形是n边形,则=20,∴n2−3n−40=0,(n−8)(n+5)=0,解得n=8,n=−5(舍去).故选C.3.【答题】从五边形的一个顶点,可以引几条对角线()A. 2B. 3C. 4D. 5【答案】A【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】根据n边形从一个顶点出发可引出(n-3)条对角线可直接得到从五边形的一个顶点可以引:5−3=2条对角线。
选A.4.【答题】多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A. 8B. 9C. 10D. 11【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设多边形有n条边,则n−2=11,解得n=13.故这个多边形是十三边形。
故经过这一点的对角线的条数是13−3=10.选C.5.【答题】十五边形从一个顶点出发有()条对角线.A. 11B. 12C. 13D. 14【答案】B【分析】本题主要涉及多边形对角线的问题,熟练掌握多边形对角线的计算公式是解题的关键;连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,n边形过一个顶点有(n-3)条对角线.【解答】n边形(n>3)从一个顶点出发可以引(n−3)条对角线,所以十五边形从一个顶点出发有:15−3=12条对角线。
第九章多边形章末测试(一)一.选择题(共8小题,每题3分)1.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D. 90°4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A. 1 B. 2 C. 3 D. 4A.30°B.20°C.10°D. 40°7.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形8.一个多边形的每个外角都等于72°,则这个多边形的边数为()A. 5 B. 6 C. 7 D. 8二.填空题(共6小题,每题3分)9.如图,一束平行太阳光线照射到正五边形上,则∠1=_________ .10.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是_________ .11.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=_________ .12.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为_________ .13.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________ .14.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= _________ .三.解答题(共10小题)15.(6分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.16.(6分)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.17.(6分)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)18.(8分)△ABC中,AB=AC,△ABC周长为16cm,BD为中线,且将△ABC分成的两个小三角形周长的差为2cm.求△ABC各边的长.19.(8分)如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.20.(8分)已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数.(1)请写出一个三角形符合上述条件的第三边长.(2)若符合上述条件的三角形共有n个,求n的值.(3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例.21.(8分)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A (不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:_________ .22.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB 的度数.23.(10分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).24.(10分)将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=_________ 度,∠DBC+∠DCB=_________ 度;(2)如图2,改变直角三角板DEF的位置,使该三角板的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD的大小是否发生变化?若变化,请举例说明;若没有变化,请探究∠ABD+∠ACD与∠A的关系.第九章多边形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.解答:解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:360÷36=10.故选C.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°考点:三角形的外角性质.专题:探究型.分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解答:解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1 B.2 C.3 D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°考点:平行线的性质;三角形的外角性质.分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠CFE,又由三角形外角的性质,求得答案.解答:解:∵AB∥CD,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°.故选C.点评:此题考查了平行线的性质以及三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.7.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形考点:多边形内角与外角.分析:首先求得外角的度数,然后利用360除以外角的度数即可求解.解答:解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理8.一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5 B.6 C.7 D.8考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故选A.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.二.填空题(共6小题)9.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.考点:平行线的性质;多边形内角与外角.分析:作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解答:解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.点评:本题考查了平行线的性质,注意掌握两直线平行:内错角相等、同位角相等.10.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是正五边形.考点:平面镶嵌(密铺).分析:求出各个正多边形的每个内角的度数,结合密铺的条件即可求出答案.解答:解:正三角形的每个内角是60°,能整除360°,能密铺;正四边形的每个内角是90°,4个能密铺;正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;正六边形的每个内角是120°,能整除360°,能密铺.故不能单独密铺的是正五边形.点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.11.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.考点:三角形的外角性质;三角形内角和定理.分析:由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.点评:本题考查三角形外角的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .考点:三角形的面积.分析:根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.解答:解:∵B E=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S △ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.点评:本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.13.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.14.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= 70°.考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质求出∠BAM,再由三角形的内角和定理可得出∠AMB.解答:解:∵AB∥CD,∴∠A+∠MDN=180°,∴∠A=180°﹣∠MDN=45°,在△ABM中,∠AMB=180°﹣∠A﹣∠B=70°.故答案为:70°.点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同胖内角互补,及三角形的内角和定理.三.解答题(共10小题)15将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:压轴题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.16.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:本题考查的是平行线的性质以及三角形内角和定理.解答:解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.点评:此类题解答的关键是求出∠CAE+∠ACE的度数,再求解即可.17.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)考点:平行线的性质;三角形的外角性质.专题:开放型;探究型.分析:关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.解答:解:如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.点评:两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.18.△ABC中,AB=AC,△ABC周长为16cm,BD为中线,且将△ABC分成的两个小三角形周长的差为2cm.求△ABC各边的长.考点:三角形;二元一次方程组的应用.分析:首先画出图形,设AD=xcm,BC=ycm,根据将△ABC分成的两个小三角形周长的差为2cm可得此题要分两种情况:①AB+DA比BC+CD大2cm,②AB+DA比BC+CD小2cm,根据两种情况分别计算即可.解答:解:设AD=xcm,BC=ycm.∵BD为中线,AB=AC,∴DC=xcm,AB=2xcm.∴|3x﹣(x+y)|=2,∴|2x﹣y|=2,∴2x﹣y=2或2x﹣y=﹣2.又4x+y=16,∴6x=18,x=3,y=4或6x=14,.∴△ABC各边长分别是6,6,4或.点评:此题主要考查了三角形,关键是画出图形,分别分两种情况计算,不要漏解.19.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.考点:三角形的角平分线、中线和高.分析:由三角形的一个外角等于与它不相邻的两个内角和知,∠BAC=∠ACD﹣∠B,∠AEC=∠B+∠BAE,而AD平分∠BAC,故可求得∠AEC的度数.解答:解:∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC∴∠BAE=15°∴∠AED=∠B+∠BAE=41°.点评:本题利用了三角形内角与外角的关系和角平分线的性质求解.20.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数.(1)请写出一个三角形符合上述条件的第三边长.(2)若符合上述条件的三角形共有n个,求n的值.(3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例.考点:三角形三边关系.分析:(1)根据三角形三边关系求得第三边的取值范围,即可求解;(2)找到第三边的取值范围内的正整数的个数,即为所求;(3)用周长为偶数的三角形个数÷三角形的总个数,列式计算即可求解.解答:解:两边长分别为5和7,设第三边是a,则7﹣5<a<7+5,即2<a<12.(1)第三边长是3.(答案不唯一);(2)∵2<a<12,∴n=9;(3)周长为偶数的三角形个数是4,周长为偶数的三角形所占的比例为4:9.点评:考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.21.(2012•樊城区模拟)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A (不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BO C与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:∠BOC=90°﹣∠A.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.22.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.考点:三角形的角平分线、中线和高;三角形内角和定理.分析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解答:解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.点评:此题主要考查了角平分线的性质以及高线的性质和三角形内角和定理,根据已知得出∠B的度数是解题关键.23.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).考点:三角形的角平分线、中线和高;三角形内角和定理.分析:(1)根据直角三角形的两锐角互余求出∠BCD的度数,再利用三角形的内角和定理求出∠ACB,然后根据角平分线的定义求出∠BCE,从而可以求出∠ECD的度数,即可得解;(2)根据三角形的角度关系,找出度数是70°的角即可.解答:解:(1)∵∠B=70°,CD⊥AB于D,∴∠BCD=90°﹣70°=20°,在△ABC中,∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE﹣∠BCD=40°﹣20°=20°,∴∠BCD=∠ECD;(2)∵CD⊥AB于D,DF⊥CE于F,∴∠CED=90°﹣∠ECD=90°﹣20°=70°,∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B相等的角有:∠CED和∠CDF.点评:本题主要考查了三角形的高线的定义,角平分线的定义,三角形的内角和定理,根据求出的角的度数相等得到相等关系是解题的关键.24.将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=135 度,∠DBC+∠DCB=90 度;(2)如图2,改变直角三角板DEF的位置,使该三角板的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD的大小是否发生变化?若变化,请举例说明;若没有变化,请探究∠ABD+∠ACD与∠A的关系.考点:三角形内角和定理;三角形的外角性质.专题:计算题.分析:(1)根据三角形内角和定理∴∠ABC+∠ACB=180°﹣∠A=135°,∠DBC+∠DCB=180°﹣∠DBC=90°;(2)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°﹣∠A.解答:解:(1)在△ABC中,∵∠A=45°,∴∠ABC+∠ACB=180°﹣45°=135°,在△DBC中,∵∠DBC=90°,∴∠DBC+∠DCB=180°﹣90°=90°;(2)不变.理由如下:∵90°+(∠ABD+∠ACD)+∠A=180°,∴(∠ABD+∠ACD)+∠A=90°,∴∠ABD+∠ACD=90°﹣∠A.故答案135,90.点评:本题考查了三角形内角和定理:三角形内角和为180°.。
币仍仅州斤爪反市希望学校第9章多边形精选练习1.以下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,……,那么第⑥个图形中正多边形的个数为〔 〕A 、90B 、91C 、115D 、1162.如下列图,①中多边形〔边数为12〕是由正三角形“扩展〞而来的,②中多边形是由正方形“扩展〞而来的,…,依此类推,那么由正八边形“扩展〞而来的多边形的边数为〔 〕.A. 32B. 40C. 72D. 643.正方形ABCD 边长为a ,点E 、F 分别是对角线BD 上的两点,过点E 、F 分别作AD 、AB 的平行线,如下列图,那么图中阴影局部的面积之和等于 .4.把一张矩形纸片〔矩形ABCD 〕按如图方式折叠,使顶点B 和点D 重合,折痕为EF .假设AB = 3 cm ,BC = 5 cm ,那么重叠局部△DEF 的面积是 cm 2. 5.如图,点A 1、B 1、C 1分别是△ABC 的三边BC 、AC 、AB 的中点,点A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、A 1C 1、A 1B 1的中点,依此 类推,那么△A n B n C n 与△ABC 的面积比为6.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,那么阴影局部的周长为_________7.:点P 为正方形ABCD 内部一点,且∠BPC=90°,过点P 的直线分别交边AB 、边CD 于点E 、点F .当PC=PB 时,那么S △PBE 、S △PCF 、S △BPC 之间的数量关系为 _________ ;8.提出问题:如图,有一块分布均匀的等腰三角形蛋糕〔BC AB =,且AC BC ≠〕,在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分〔要求分得的蛋糕和巧克力质量都一样〕. 背景介绍:这条分割直线..即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线〞.尝试解决:〔1〕小明很快就想到了一条分割直线.请你帮小明在图1中画出这条“等分积周线〞,从而平分蛋糕.〔2〕小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使得△AMN周长最小时,那么∠AMN+∠ANM的度数为〔〕A.100° B.110° C.120° D.130°10.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形。
章节测试题1.【答题】过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A. 8B. 9C. 10D. 11【答案】C【分析】本题主要考查了多边形的性质,从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为(n-2).【解答】设多边形有n条边,则n-2=8,解得n=10,所以这个多边形的边数是10,选C.2.【答题】下列描述正确的是()A. 单项式的系数是,次数是2次B. 如果AC=BC,则点C为AB的中点C. 过七边形的一个顶点可以画出4条对角线D. 五棱柱有8个面,15条棱,10个顶点【答案】C【分析】此题主要考查了单项式、中点和多边形的对角线的条数,利用多边形的对角线的条数的规律:n边形的一个顶点处有n-3条对角线,总共有条对角线,代入计算即可.【解答】选项A,单项式的系数是,次数是3次;选项B,如果AC=BC,且点C在线段AB上,则点C为AB的中点;选项C,过七边形的一个顶点可以画出4条对角线;选项D,五棱柱有7个面,15条棱,10个顶点.选C.3.【答题】把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A. 16B. 17C. 18D. 19【答案】A【分析】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.【解答】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.选A.4.【答题】将一个四边形截去一个角后,它不可能是()A. 六边形B. 五边形C. 四边形D. 三角形【答案】A【分析】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.【解答】解:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,选A.5.【答题】已知n边形从一个顶点出发可以作9条对角线,则n=()A. 9B. 10C. 11D. 12【答案】D【分析】此题主要考查了多边形的对角线的条数,利用多边形的对角线的条数的规律:n边形的一个顶点处有n-3条对角线,总共有条对角线,代入计算即可. 【解答】从n边形一个顶点可以引出(n-3)对角线,由题意得:n-3=9,所以n=12,选D.6.【答题】五边形的对角线共有()条A. 2B. 4C. 5D. 6【答案】C【分析】此题主要考查了多边形的对角线的条数,利用多边形的对角线的条数的规律:n边形的一个顶点处有n-3条对角线,总共有条对角线,代入计算即可.【解答】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对称轴,总共有条对角线,故可求五边形的对角线的条数为5条.选C.7.【答题】如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成5个三角形,那么这个多边形有()条对角线A. 13B. 14C. 15D. 5【答案】B【分析】此题主要考查了多边形的对角线的条数,利用多边形的对角线的条数的规律:n边形的一个顶点处有n-3条对角线,总共有条对角线,代入计算即可. 【解答】解:设多边形有n条边,则n-2=5,解得:n=7所以这个多边形的边数是7,这个七边形×7×(7-3)=14条对角线.选B.8.【题文】已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.【答案】这个多边形的边数为12.【分析】根据内角和与外角和公式求出多边形的边数.【解答】解:设多边形的边数为n,根据题意列方程得,n−2=10,n=12.故这个多边形的边数为12.9.【题文】若一个多边形的所有内角与它的一个外角的和为600°,求这个多边形的边数和内角和.【答案】这个多边形为五边形,内角和为540°.【分析】由于n边形的内角和是(n-2)•180°,而多边形的外角大于0度,且小于180度,因而用600°减去一个外角的度数后,得到的内角和能够被180整除,其商加上2所得的数值,就是多边形的边数.【解答】解:设边数为n,一个外角为α,则(n−2)⋅180+α=600,∴n=.∵0°<α<180°,n为正整数,∴为正整数,∴α=60°,∴这个多边形为五边形,内角和为(5-2)×180°=540°.10.【题文】已知:一个多边形的内角和是外角和的2倍,这个多边形是几边形?【答案】这个多边形是六边形.【分析】设这个多边形的边数为n,根据多边形内角和公式和外角和公式,列出方程求解即可.【解答】解:设这个多边形的边数为n,则有:,解得:,答:这个多边形是六边形.11.【题文】一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.【答案】180°或360°或540°【分析】长方形木板据掉一个角以后可能是:三角形或四边形或五边形,根据多边形的内角和定理即可解决.【解答】解:长方形木板据掉一个角以后可能是:三角形或四边形或五边形,因而剩下的多边形的内角和是180°或360°或540°.12.【题文】如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=400°,求∠BGD的度数.【答案】40°【分析】根据多边形的内角和公式,求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=400°,即可求得∠GBC+∠C+∠CDG的度数,再根据四边形的内角和为360度,即可求得∠BGD的度数.【解答】解:∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=400°,∴∠GBC+∠C+∠CDG=720°-400°=320°,∴∠BGD=360°-(∠GBC+∠C+∠CDG)=360°-320°=40°.13.【题文】一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,求原多边形的边数.【答案】7、8或9.【分析】根据切后的内角和可以求出切后的多边形边数,然后又知一个多边形切去一个角可得到的多边形有三种可能,分别是比原边数少1,相等,多1.所以可求得原多边形边数.【解答】解:设切去一角后的多边形为n边形.根据题意有(n-2)·180°=1 080°.解得n=8.因为一个多边形切去一个角后形成的多边形边数有三种可能:比原多边形边数小1、相等、大1,所以原多边形的边数可能为7、8或9.14.【题文】(1)如图①②,试研究其中∠1、∠2与∠3、∠4之间的数量关系;(2)如果我们把∠1、∠2称为四边形的外角,那么请你用文字描述上述的关系式;(3)用你发现的结论解决下列问题:如图③,AE、DE分别是四边形ABCD的外角∠NAD、∠MDA的平分线,∠B+∠C=240°,求∠E的度数.【答案】(1)∠1+∠2=∠3+∠4;(2)四边形的任意两个外角的和等于与它们不相邻的两个内角的和;(3) 60°.【分析】(1)根据四边形的内角和等于360°用∠5+∠6表示出∠3+∠4,再根据平角的定义用∠5+∠6表示出∠1+∠2,即可得解;(2)从外角的定义考虑解答;(3)根据(1)的结论求出∠MDA+∠NAD,再根据角平分线的定义求出∠ADE +∠DAE,然后利用三角形的内角和定理列式进行计算即可得解.【解答】解:(1)∵∠3、∠4、∠5、∠6是四边形的四个内角,∴∠3+∠4+∠5+∠6=360°.∴∠3+∠4=360°-(∠5+∠6).∵∠1+∠5=180°,∠2+∠6=180°,∴∠1+∠2=360°-(∠5+∠6).∴∠1+∠2=∠3+∠4.(2)四边形的任意两个外角的和等于与它们不相邻的两个内角的和.(3)∵∠B+∠C=240°,∴∠MDA+∠NAD=240°.∵AE、DE分别是∠NAD、∠MDA的平分线,∴∠ADE=∠MDA,∠DAE=∠NAD.∴∠ADE+∠DAE= (∠MDA+∠NAD)=120°.∴∠E=180°-(∠ADE+∠DAE)=60°.15.【题文】四边形ABCD中,∠A=140°,∠D=80°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数.【答案】(1) 70°;(2) 60°.【分析】(1)根据四边形的内角和是360°进行求解即可;(2)先根据平行线的性质求出∠ABE和∠DEB的度数,再由角平分线求出∠EBC 的度数,最后在△EBC中利用三角形的内角和定理求出∠C即可.【解答】解:(1)∵∠A+∠B+∠C+∠D=360°,∠B=∠C,∴∠C==70°.(2)∵BE∥AD,∴∠BEC=∠D=80°,∠ABE=180°-∠A=180°-140°=40°.又∵BE平分∠ABC,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=60°.16.【题文】求下图中∠α的度数.【答案】85°,40°.【分析】第一个图:先求出40°角相邻内角,然后利用四边形的内角和是360°求解即可;第二个图:利用四边形的内角和是360°求出∠α的邻补角,然后利用邻补角互补求出∠α即可.【解答】解:根据图中的数据可知:第一个图:α=360°-65°-70°-(180°-40°)=85°;第二个图:α=180°-(360°-90°-90°-40°)=40°.17.【题文】一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.【答案】这个多边形的边数是7.【分析】设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=2×360°+180°,解得n=7.故这个多边形的边数是7.18.【题文】求图中x的值.【答案】(1) 60°;(2)100°【分析】(1)根据三角形外角等于与它不相邻的两个内角的和,列出方程即可解决问题.(2)根据四边形内角和为360°,列出方程即可解决问题.【解答】解:(1)由三角形外角等于与它不相邻的两个内角的和,得解得:(2)由四边形内角和等于,得解得:19.【题文】一个多边形的内角和比外角和的3倍多180°,则它是几边形?【答案】九边形.【分析】设多边形的边数为n,根据多边形内角和定理和外角和等于360度得到( n-2)×180°-360°×3=180°,然后解方程即可.【解答】解:设多边形的边数为n,根据题意得:( n-2)×180°-360°×3=180°,解得:n=9.答:它是九边形.20.【题文】一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数。
初中数学:多边形的内角和练习(含答案)一、选择题1、一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.6【答案】B【解析】试题分析:设多边形的边数是x,根据多边形内角和公式列方程求解.解:设多边形的边数是x,根据题意可得:(x-2)×180°=1080°,解得:x=8,答:这个多边形的边数是8.故应选B.考点:多边形的内角和2、一个多边形的边数增加2条,则它的内角和增加( )A.180°B.90°C. 360°D.540°【答案】C【解析】试题分析:根据多边形的内角和公式求解.解:当多边形的边数是x时,多边形的内角和是(x-2)×180°,当多边形的边数增加2时,多边形的内角和是(x+2-2)×180°,它的内角增加的度数是(x+2-2)×180°-(x-2)×180°=360°.故应选C.考点:多边形的内角和3、在四边形ABCD中,∠A、∠B、∠C、∠D的度数之比为2∶3∶4∶3,则∠D的外角等于() (A)60°(B)75°(C)90°(D)120°【答案】C【解析】试题分析:首先根据四边形的内角和与∠A、∠B、∠C、∠D的度数之比求出∠D的度数,再根据多边形的内角与外角的关系求解.解:因为多边形的内角和是360°,∠A、∠B、∠C、∠D的度数之比为2∶3∶4∶3,所以∠D=360°×312=90°,所以∠D的外角是90°.故应先C.考点:多边形的内角和4、在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,那么这个多边形的边数是( )A. 4B. 6C. 8D. 10【答案】C【解析】试题分析:根据多边形的一个内角是与它相邻的外角的补角求出这个多边形的外角度数,再根据多边形的外角和求出多边形的边数.解:因为多边形一个内角是与它相邻的一个外角的3倍,所以多边形的每一个外角的度数是180°×14=45°,因为多边形的外角和是360°,所以多边形的边数是360°÷45°=8.故应选C.考点:多边形的内角和5、若n边形每个内角都等于150°,那么这个n边形是()A.九边形B.十边形C.十一边形D.十二边形【答案】D【解析】试题分析:根据多边形的内角度数求出多边形每个外角的度数,再根据多边形的外角和求出多边形的边数.解:因为多边形的每个内角是150°,所以多边形的每个外角是30°,因为多边形的外角和是360°,所以多边形的边数是360°÷30°=12,答:这个n边形是12.故应选D考点:多边形的内角和6、随着多边形的边数n的增加,它的外角和()A.增加B.减小C.不变D.不定【答案】C【解析】试题分析:根据多边形的外角和解答.解:多边形的外角和是360°.故应选C考点:多边形的内角和7、一个多边形的内角和是1800°,那么这个多边形是()A.五边形B.八边形C.十边形D.十二边形【答案】D【解析】试题分析:设这个多边形的边数是x,根据多边形的内角和公式列方程求解.解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=1800°,解得:x=12,答:这个多边形是十二边形.故应选D考点:多边形的内角和8、一个多边形每个外角都是60°,这个多边形的外角和为()A.180°B.360°C.720°D.1080°【答案】B【解析】试题分析:根据多边形的外角和进行解答.解:多边形的外角和与多边形的边数无关,多边形的外角和是360°.故应选B.考点:多边形的内角和9、一个多边形中,除一个内角外,其余各内角和是1200°,则这个角的度数是()A.60°B.80°C.100°D.120°【答案】A【解析】试题分析:首先设这个多边形的边数是x,根据多边形的边数每增加1,多边形的内角和增加180°列不等式组求解.解:设这个多边形的边数是x,根据题意可得:()()2180120021801380 xx-⨯︒>︒⎧⎪⎨-⨯︒<︒⎪⎩解不等式组得:22 89 33x<<,所以多边形的边数是9,则多边形的内角和是(9-2) ×180°=1260°, 所以这个内角的度数是1260°-1200°=60°.考点:多边形的内角和二、填空题10、一个多边形的每一个外角都等于36°,那么这个多边形的内角和是°. 【答案】1440°.【解析】试题分析:根据多边形的外角和与每个外角的度数求出多边形的边数,再根据多边形的内角和公式求出结果.解:因为多边形的外角和是360°,所以多边形的边数是360°÷36°=10,所以多边形的内角和是(10-2) ×180°=1440°.故答案是1440°.考点:多边形的内角和11、六边形的内角和等于_______度.【答案】720°.【解析】试题分析:根据多边形的内角和求解.解:六边形的内角和是(6-2) ×180°=720°.故答案是720°.考点:多边形内角和12、一个多边形的每个内角都等于135°,则这个多边形为________边形.【答案】8【解析】试题分析:根据多边形的内角度数求出每个多边形的外角的度数,再根据多边形的外角和求出结果.解:多边形的每个内角是135°,所以多边形的每个外角是45°,因为多边形的外角和是360°,所以多边形的边数是360°÷45°=8.考点:多边形的内角和13、内角和等于外角和的多边形是_______边形.【答案】四【解析】试题分析:设这个多边形的边数是n,根据多边形的内角和等于外角和列方程求解. 解:设这个多边形的边数是n,根据题意可得:(n-2) ×180°=360°,解方程得:n=4,所以这个多边形是四边形.故答案是四考点:多边形的内角和三、解答题14、一个多边形的外角和是内角和的15,它是几边形?【答案】12边形【解析】试题分析:设多边形的边数是x,根据多边形的内角和与外角和的关系列方程求解. 解:设多边形的边数是x,根据题意可得:(n-2) ×180°=5×360°,解得:n=12,所以这个多边形是12边形.考点:多边形的内角和15、一个多边形的每一个外角都等于24°,求这个多边形的边数.【答案】15【解析】试题分析:根据多边形的外角和是360°和多边形每个外角的度数求解.解:因为多边形的外角和是360°和多边形每个外角是24°,所以多边形的边数是360°÷24°=15,答:这个多边形的边数是15.考点:多边形的内角和16、一个多边形出一个内角外,其余个内角的和为2030°,求这个多边形的边数.【答案】12【解析】试题分析:首先设这个多边形的边数是x,根据多边形的边数每增加1,多边形的内角和增加180°列不等式组求解.解:设这个多边形的边数是x,根据题意可得:()()2180203021802210 xx-⨯︒>︒⎧⎪⎨-⨯︒<︒⎪⎩解不等式组得:55 1112 1818x<<,所以多边形的边数是12. 故答案是12考点:多边形的内角和。
七年级第二学期数学第9章多边形单元测试卷一.选择题(共10小题)1.若正多边形的内角和是1080︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒2.已知三角形的两边分别为4和10,则此三角形的第三边可能是() A.4B.5C.9D.143.若一个正n边形的每个内角为144︒,则n等于()A.10B.8C.7D.54.正十边形的外角和的度数为()A.1440︒B.720︒C.360︒D.180︒5.从十边形的一个顶点出发可以画出的对角线的条数是()A.7B.8C.9D.106.如图,已知ACD∠的大小为(∠=︒,75∠=︒,则BA∠是ABC∆的外角,若135ACD)A.60︒B.140︒C.120︒D.90︒7.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转⋯⋯如此下去,当他第一次回到A点时,发现自己走了60米,θ的度数为()A.28︒B.30︒C.33︒D.36︒8.如图,多边形ABCDEFG中,108∠+∠的∠=∠=︒,则A B∠=∠=∠=︒,72C DE F G值为()A.108︒B.72︒C.54︒D.36︒9.如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A落在正方形BEFG 内,则ABG∠的度数为()A.18︒B.36︒C.54︒D.72︒10.用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是()A.正五边形B.正三角形,正方形C.正三角形,正五边形,正六边形D.正三角形,正方形,正六边形二.填空题(共5小题)11.如图,五边形ABCDE的对角线共有条.12.小李同学在计算一个n边形的内角和时不小心多加了一个外角,得到的内角之和是1380度,则这个多边形的边数n的值是.13.如图,一把三角尺的两条直角边分别经过正八边形的两个顶点,则1∠的度数和∠与2为.14.如图,ABC ∆中,55A ∠=︒,将ABC ∆沿DE 翻折后,点A 落在BC 边上的点A '处.如果70A EC ∠'=︒,那么A DB ∠'的度数为 .15.如图,用灰白两色正方形瓷砖铺设地面,第1个图案用了4块灰色的瓷砖,第2个图案用了6块灰色的瓷砖,第3个图案用了8块灰色的瓷砖,⋯,第n 个图案中灰色瓷砖块数为 .三.解答题(共8小题)16.已知正多边形的内角和与其外角和的和为900︒,求边数及每个内角的度数.17.如图,D 是ABC ∆的BC 边上的一点,且12∠=∠,34∠=∠,66BAC ∠=︒,求DAC ∠的度数.18.如图, 在BCD ∆中,4BC =,5BD =,(1) 求CD 的取值范围;(2) 若//AE BD ,55A ∠=︒,125BDE ∠=︒,求C ∠的度数 .19.如图,AC ,BD 为四边形ABCD 的对角线,90ABC ∠=︒,ABD ADB ACB ∠+∠=∠,ADC BCD ∠=∠.(1)求证:AD AC ⊥;(2)探求BAC ∠与ACD ∠之间的数量关系,并说明理由.20.(1)我们知道“三角形三个内角的和为180︒”.现在我们用平行线的性质来证明这个结论是正确的.已知:BAC ∠、B ∠、C ∠是ABC ∆的三个内角,如图1求证:180BAC B C ∠+∠+∠=︒证明:过点A 作直线//DE BC (请你把证明过程补充完整)(2)请你用(1)中的结论解答下面问题:如图2,已知四边形ABCD ,求A B C D ∠+∠+∠+∠的度数.21.如图,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F .(1)若//BF CD ,80ABC ∠=︒,求DCB ∠的度数;(2)已知四边形ABCD 中,105A ∠=︒,125D ∠=︒,求F ∠的度数;(3)猜想F ∠、A ∠、D ∠之间的数量关系,并说明理由.22.如图1,在A ∠内部有一点P ,连接BP 、CP ,请回答下列问题:①求证:12P A ∠=∠+∠+∠;②如图2,利用上面的结论,在五角星中,A B C D E ∠+∠+∠+∠+∠= ;③如图3,如果在BAC ∠间有两个向上突起的角,请你根据前面的结论猜想1∠、2∠、3∠、4∠、5∠、A ∠之间有什么等量关系,直接写出结论即可.23.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:(82)180903608x y -+=,整理得:238x y +=, 我们可以找到方程的正整数解为12x y =⎧⎨=⎩. 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.。
七年级数学多边形的重点习题1. 正多边形和不规则多边形- 题 1: 用形状相同的多边形填充每个正方形。
有多少个多边形是正多边形?为什么?习题 1:用形状相同的多边形填充每个正方形。
有多少个多边形是正多边形?为什么?- 题 2: 画出一个不规则多边形,并标记出其各边和顶点。
习题2:画出一个不规则多边形,并标记出其各边和顶点。
2. 图形的边数和顶点数- 题 1: 一个多边形有10个边和8个顶点,它是什么类型的多边形?习题 1:一个多边形有10个边和8个顶点,它是什么类型的多边形?- 题 2: 画出一个有6个边和6个顶点的多边形。
习题 2:画出一个有6个边和6个顶点的多边形。
3. 直角三角形和等边三角形- 题 1: 如何判断一个三角形是直角三角形?给出一个示例。
习题 1:如何判断一个三角形是直角三角形?给出一个示例。
- 题 2: 如何判断一个三角形是等边三角形?给出一个示例。
习题 2:如何判断一个三角形是等边三角形?给出一个示例。
4. 多边形的内角和外角- 题 1: 计算一个五边形的内角和。
习题 1:计算一个五边形的内角和。
- 题 2: 计算一个六边形的外角和。
习题 2:计算一个六边形的外角和。
5. 对称图形和转移图形- 题 1: 画出一个对称图形,并标记出对称轴。
习题 1:画出一个对称图形,并标记出对称轴。
- 题2: 从给定的图形中找出一个转移图形,并画出其结果图形。
习题 2:从给定的图形中找出一个转移图形,并画出其结果图形。
6. 数学图形的命名- 题 1: 画出一个凸四边形。
习题 1:画出一个凸四边形。
- 题 2: 画出一个凹多边形。
习题 2:画出一个凹多边形。
7. 多边形的面积和周长- 题 1: 计算一个三角形的面积和周长。
习题 1:计算一个三角形的面积和周长。
- 题 2: 计算一个矩形的面积和周长。
习题 2:计算一个矩形的面积和周长。
8. 判断多边形相等- 题 1: 如何判断两个多边形是否相等?给出一个示例。
七年级数学下册第9章多边形专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°2、数学课上,同学们在作ABC 中AC 边上的高时,共画出下列四种图形,其中正确的是( ).A .B .C .D .3、已知a b ∥,一块含30°角的直角三角板如图所示放置,250∠=︒,则1∠等于( )A .140°B .150°C .160°D .170°4、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,95、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°6、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3∠的度数为( )A .80︒B .70︒C .45︒D .307、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个B.2个C.3个D.4个8、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.不能确定∠+∠+∠+∠=()9、如图,在六边形ABCDEF中,若1290∠+∠=︒,则3456A.180°B.240°C.270°D.360°10、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为()A.35°B.42°C.45°D.48°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在Rt ABC 中,锐角50A ∠=︒,则另一个锐角B ∠=_______.2、如果三角形的三条边长分别为26x 、、,那么x 的取值范围是______. 3、如图,在△ABC 中,点D 在CB 的延长线上,∠A =60°,∠ABD =110°,则∠C 等于___.4、过五边形一个顶点的对角线共有________条.5、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.三、解答题(5小题,每小题10分,共计50分)1、如图,FA ⊥EC ,垂足为E ,∠F =40°,∠C =20°,求∠FBC 的度数.2、已知直线AB ∥CD ,EF 是截线,点M 在直线AB 、CD 之间.(1)如图1,连接GM ,HM .求证:M AGM CHM ∠=∠+∠;(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数. 3、若AE 是ABC 边BC 上的高,AD 是EAC ∠的平分线且交BC 于点D .若40ACB ∠=︒,65B ∠=︒,分别求BAD ∠和DAE ∠的度数.4、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.5、阅读填空,将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图①所示,三角尺的两边PM 、PN 恰好经过点B 和点C ,我们来研究∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 度,∠ABP +∠ACP = 度.(2)类比探索:∠ABP、∠ACP、∠A 的关系是 .(3)变式探索:如图②所示,改变三角尺的位置,使点P 在△ABC 外,三角尺的两边PM 、PN 仍恰好经过点B 和点C ,则∠ABP、∠ACP、∠A 的关系是 .-参考答案-一、单选题1、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∵DE ∥AF ,∴∠CAF =∠CED =45°,∵∠BAC =60°,∴∠BAF =60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C=90°,∠2=∠CDE=50°,∠3=∠C+∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.4、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.5、A【解析】由折叠得到∠B =∠BCD ,根据三角形的内角和得∠A +∠B +∠ACB =180°,代入度数计算即可.【详解】解:由折叠得∠B =∠BCD ,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.6、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】解:3180540⨯︒=︒,360180⨯︒=︒,540180180180∴︒-︒-︒=︒,123180∴∠+∠+∠=︒,12100∠+∠=︒,380∴∠=︒,故选:A .【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.7、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.8、B【解析】【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得∠=∠+∠∠=∠+∠,再根据四边形的内角和等于360°,即可求解.,BMD B F CNE A E【详解】解:设BE与DF交于点M,BE与AC交于点N,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.9、C【解析】【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.10、D【解析】【分析】可以设∠ECB '=α,∠FCD '=β,根据折叠可得∠DCE =∠D 'CE ,∠BCF =∠B 'CF ,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.二、填空题1、40【解析】【分析】根据直角三角形两锐角互余,即可求解.【详解】解:在Rt ABC 中,∵锐角50A ∠=︒,∴另一个锐角90905040B A ∠=︒-∠=︒-︒=︒ .故答案为:40︒【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形两锐角互余是解题的关键.2、48x【解析】【分析】根据三角形的三边关系列出不等式组,解不等式组即可求解【详解】解:根据题意得:6262x -<<+,即48x .故答案为:48x .【点睛】 考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.3、50°【解析】【分析】首先根据平角的概念求出ABC ∠的度数,然后根据三角形内角和定理即可求出C ∠的度数.【详解】解:∵∠ABD =110°,∴18070ABC ABD ∠=︒-∠=︒,∴180180607050C A ABC ∠=︒-∠-∠=︒-︒-︒=︒故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.4、2【解析】【分析】画出图形,直接观察即可解答.【详解】解:如图所示,过五边形一个顶点的对角线共有2条;故答案为:2.【点睛】本题考查了多边形对角线的条数,解题关键是明确过n 边形的顶点可引出(n -3)条对角线.5、七【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n,则(n-2)•180°-2×360°=180°,解得n=7.故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.三、解答题1、110°【解析】【分析】根据三角形的内角和可得∠A的度数,再利用外角的性质可得∠FBC的度数.【详解】解:在△AEC中,FA⊥EC,∴∠AEC=90°,∴∠A=90°-∠C=70°.∵∠FBC是△ABF的一个外角,∴∠FBC=∠A+∠F=70°+40°=110°.【点睛】本题考查三角形的内角和与外角的性质,求出∠A的度数是解题关键.2、 (1)见解析(2)∠GQH +∠GMH =180°,理由见解析(3)60°【解析】【分析】(1)过点M 作MI ∥AB 交EF 于点I ,可得∠AGM =∠GMI ,再由AB ∥CD ,可得MI ∥CD ,从而得到∠CHM =∠HMI ,即可求证;(2)过点M 作MP ∥AB 交EF 于点P ,同(1)可得到∠PMH =∠CHM ,∠GMP =∠AGM ,再由MH 平分∠GHC ,可得∠PHM =∠CHM ,从而得到∠PHM =∠PMH ,再由AGM HGQ ∠=∠,可得∠HGQ =∠GMP ,从而得到∠GMH =∠HGQ +∠PHM ,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒-,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解.(1)证明:如图,过点M 作MI ∥AB 交EF 于点I ,∵MI ∥AB ,∴∠AGM =∠GMI ,∵AB ∥CD ,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI+∠GMI= ∠AGM+∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∠=∠,∵AGM HGQ∴∠HGQ=∠GMP,∵∠GMH =∠GMP +∠PMH ,∴∠GMH =∠HGQ +∠PHM ,∵∠GQH +∠HGQ +∠PHM =180°,∴∠GQH +∠GMH =180°(3)解:如图,过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒-,∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠,∴12HGN αβαβ∠=+-=,即2HGN β∠=,∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ , 解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键. 3、25DAE ∠=︒;50BAD ∠=︒【解析】【分析】根据△AEC 的内角和定理可得:18050EAC AEC ACB ∠=︒-∠-∠=︒,根据角平分线的性质可得11502522DAE EAC ∠=∠=⨯︒=︒,根据△ABC 的内角和定理可得∠BAC ,又因为BAE BAC EAC ∠=∠-∠,BAD BAE DAE ∠∠∠=+,即可得解.【详解】解:∵AE 是ABC 边BC 上的高∴90AEC ∠=︒∴在EAC 中,有180EAC AEC ACB ∠+∠+∠=︒又∵40ACB ∠=︒∴180EAC AEC ACB ∠=︒-∠-∠1809040=︒-︒-︒50=︒∵AD 是EAC ∠的平分线 ∴11502522DAE EAC ∠=∠=⨯︒=︒∵在ABC 中,有180BAC B BAC ∠+∠+∠=︒ 已知40ACB ∠=︒,65B ∠=︒∴180BAC ACB B ∠=︒-∠-∠1804065=︒-︒-︒75=︒∴755025BAE BAC EAC ∠∠∠=-=︒-︒=︒∴525205BAD BAE DAE ∠∠∠=+=︒=+︒︒【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.4、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴a =b =c ,∴ ABC ∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.5、(1)90,40 ;(2)∠ABP +∠ACP +∠A =90°;(3)∠A +∠ACP -∠ABP =90°.【解析】【分析】(1)由三角形内角和为180°计算BPC △和ABC 中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A 的关系为∠ABP +∠ACP +∠A =90°.(3)由三角形外角的性质即可推出∠A +∠ACP -∠ABP =90°.【详解】(1)在BPC △中∵∠MPN =90°∴∠PBC +∠PCB =180°-∠MPN =180°-90°=90°在ABC 中∵∠A +∠ABC +∠ACB =180°又∵∠ABC =∠PBC +∠ABP,∠ACB =∠ACP +∠BCP∴∠A +∠PBC +∠ABP +∠ACP +∠BCP =180°∵∠PBC+∠PCB=90°,∠A=50°∴∠ABP +∠ACP=180°-90°-50°=40°(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP=180°又∵∠PBC+∠PCB=90°∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°(3)如图所示,设PN与AB交于点H∵∠A+∠ACP=∠AHP又∵∠ABP+∠MPN=∠AHP∴∠A+∠ACP=∠ABP+∠MPN又∵∠MPN=90°∴∠A+∠ACP=90°+∠ABP∴∠A+∠ACP-∠ABP=90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.。
7.3 多边形及其内角和(检测时间50分钟 总分值100分) 一、选择题:(每题3分,共24分) 1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个 2.不能作为正多边形的内角的度数的是( ) A.120 B.(128)°C.144 D.145°3.假设一个多边形的各内角都相等,那么一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个 B.4个 C.5个 D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( ) A.都是钝角; B.都是锐角 C.是一个锐角、一个钝角 D.是一个锐角、一个直角 6.假设从一个多边形的一个顶点出发,最多可以引10条对角线,那么它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形7.假设一个多边形共有十四条对角线,那么它是( ) A.六边形 B.七边形 C.八边形 D.九边形 8.假设一个多边形除了一个内角外,其余各内角之和为2570°,那么这个内角的度数为( ) A.90° B.105° C.130° D.120° 二、填空题:(每题3分,共15分) 1.多边形的内角中,最多有________个直角. 2.从n 边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形. 3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________. 4.一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,那么这个多边形的边数为_________. 5.每个内角都为144°的多边形为_________边形. 三、根底训练:(每题12分,共24分) 1.如下图,用火柴杆摆出一系列 三角形图案,当摆到20层(n=20)时,需要多少 根火柴?2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n 是互质的正整数,求这个多边形的边数(用m,n 表示)及n 的值.五、探索发现:(共18分) 从n 边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n 边形共有多少条对角线. 六、中考题与竞赛题:(共4分) (2002·湖南)假设一个多边形的内角和等于1080°,那么这个多边形的边数是( ) A.9 B.8 C.7 D.6 镶嵌47(检测时间50分钟 总分值100分) 一、选择题:(每题3分,共18分) 1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( ) A.等腰三角形 B.正方形 C.正五边形 D.正六边形 2.以下图形中,能镶嵌成平面图案的是( ) A.正六边形 B.正七边形 C.正八边形 D.正九边形 3.不能镶嵌成平面图案的正多边形组合为( ) A.正八边形和正方形 B.正五边形和正十边形 C.正六边形和正三角形 D.正六边形和正八边形 4.如下图,各边相等的五边形ABCDE 中,假设∠ABC=2∠DBE,那么∠ABC 等于( ) A.60° B.120° C.90° D.45° 5.用正三角形和正十二边形镶嵌,可能情况有( ) A.1种 B.2种 C.3种 C.4种6.用正三角形和正六边形镶嵌,假设每一个顶点周围有m 个正三角形、n 个正六边形,那么m,n 满足的关系式是( )A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6二、填空题:(每题4分,共12分) 1.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形. 2.用正多边形镶嵌,设在一个顶点周围有m 个正方形、n 个正八边形,那么m=_____,n=______.3.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能〞或“不能〞)三、根底训练:(每题15分,共30分)1.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案?画出草图.2.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案? 说明理由.四、提高训练:(共15分) 请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?五、探索发现:(共15分)如图2所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面? (2)像上面那样铺地砖,能否全用正十边形的材料?为什么? (3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图. 六、中考题竞赛题:(共10分) 用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成假设干个图案.(1)第四个图案中有白色地砖_______块; (2)第n 个图案中有白色地砖________块. 答案:一、1.C 2.A 3.C 4.A 5.A 6.D 二、1.2 2 4 1 2.1 2 3.不能 三、略 四、略 五、(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.(2)不能,因为正十边形的内角不能组成360°.(3)能(图略) E D C B A六、(1)18 (2)4n+2.答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C 二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十 三、1.630根 2.15四、边数为,n=1或2. 五、(n-3)条 六、B.2()m n n +(3)2n n -。
用正多边形铺设地面一、选择题1.当围绕一点拼在一起的某种正多边形内角之和恰好是______时,就能铺满地面() A.45° B.90° C.180° D.360°2.某人到瓷砖店去买一种多边形形状的瓷砖,用来密铺地板,则他购买的瓷砖形状不可能是()A.等边三角形 B.正方形C.正八边形D.正六边形3.用两种正多边形地砖铺满地面,其中一种是正八边形,则另一种正多边形是()A.正三角形B.正四边形C.正五边形D.正六边形4.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是()A.正方形B.正六边形C.正八边形D.正十二边形5.下列四组多边形地板砖:①正三角形与正方形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的两种多边形结合,其中能铺满地面的是() A.①③④B.②③④C.①②③D.①②④二、填空题6.用边长相等的正三角形与正方形两种图形铺满地面,设在一个顶点周围有x个正三角形和y个正方形,则x=________,y=________.7.如果只用一种正多边形铺满地面,而且在每一个正多边形的每一个顶点周围都有6个正多边形,那么该正多边形的每个内角度数为________.8.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1①.用n 个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n 的值为________.图1三、解答题9.小明家准备用正方形地板砖铺设客厅,客厅的长为6.4 m ,宽为4.8 m .装修工人提出两种铺设方案:第一种方案是铺设80 cm ×80 cm 的地板砖,每块40元;第二种方案是铺设60 cm ×60 cm 的地板砖,每块25元;第三种方案是铺设40 cm ×40 cm 的地板砖,每块15元.你能从中帮他选一种材料的费用少且铺得又整齐的方案吗?10 [动手操作]如图2所示,地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无缝隙的地面?(2)像上面那样铺地砖,能否全用正十边形的材料?为什么?(3)你能不能另外想出用一种相同的正多边形材料铺地面的方案?并画出草图.图21.[答案]D2.[解析]C 正八边形的每个内角为(8-2)×180°8=135°,不能组合成360°. 3.[解析]B 正八边形的一个内角为(8-2)×180°8=135°,而2×135°+90°=360°,所以另外一种正多边形是正四边形.4.[答案]C5.[解析]D 假设用x 块正三角形地板砖与y 块正方形地板砖可以密铺地面,则60°x +90°y =360°,即2x +3y =12.因为x ,y 为正整数,只有当x =3,y =2时,2x +3y =12成立,所以用3块正三角形地板砖和2块正方形地板砖可以密铺地面;同样的方法可以用2块正三角形地板砖和2块正六边形地板砖或用4块正三角形地板砖和1块正六边形地板砖可以密铺地面;用2块正八边形地板砖和1块正方形地板砖可以密铺地面;用正六边形地板砖和正方形地板砖不能密铺地面.6.[答案] 32[解析]正三角形的每个内角为60°,正方形的每个内角为90°,3×60°+2×90°=360°.7.[答案] 60°[解析]∵只用一种正多边形铺满地面,而且在每一个正多边形的每一个顶点周围都有6个正多边形,∴该正多边形的每个内角度数为360°÷6=60°.8.[答案] 6[解析]正六边形的每个内角都是120°,则所求的中间一个正多边形的内角度数为360°-120°-120°=120°,则这个多边形的每个外角度数为180°-120°=60°,即n=360°÷60°=6.9.解:经过计算、比较可知,选第一种方案较好.10 解:(1)因为正三角形的每个内角都是60°,而图中每个顶点处都有6个正三角形的内角,它们恰好组成一个周角,所以能铺成平整、无缝隙的地面.(2)不能.理由:因为正十边形的每个内角都是144°,图中每个顶点处的几个内角不能组成周角,所以不能全用正十边形的材料.(3)略.。
典型例题二
例题02 已知一个多边形的每个内角都等于168°,求它的边数.
分析 (1)多边形的内角和可以表示成︒⋅-180)2(n 的形式,用于所给多边形的每个内角的度数都相等,所以又可以表示为n ⋅︒168,因此可以列方程解出.
(2)由已知数据,很容易求得每个外角的度数,再利用多边形的外角和等于360°,求之.
解法一 设所求的边数为n ,根据多边形的内角和定理有
30
180)2(168=︒⋅-=︒n n n 解法二 设所求的多边形的边数为n .
∵多边形的每个内角为168°
多边形的每个外角为180°-168°=12°,由多边形的外角和等于360°,得30 36012=︒=︒n n
说明 两个解法中的哪一个更好呢?相信你比较后会从中得到启发.。
多边形练习题一.选择题1.正八边形的每一个内角的度数为()A.120°B.60°C.135°D.45°2.下列长度的三条线段能组成三角形的是()A.5cm,6cm,11cm B.1cm,3cm,5cmC.2cm,3cm,6cm D.3cm,4cm,5cm3.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()A.50°B.60°C.65°D.75°4.如图,在六边形ABCDEF中,∠A+∠B+∠E+∠F=α,CP、DP分别平分∠BCD、∠CDE,则∠P的度数是()A .α﹣180°B.180°﹣αC .αD.360°﹣α(第3题)(第4题)(第5题)(第7题)(第8题)5.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2cm2,则S△ABC为()A.4 cm2B.6 cm2C.8 cm2D.10 cm26.正多边形内角和为540°,则该正多边形的每个外角的度数为()A.36°B.72°C.108°D.360°7.如图,正五边形ABCDE,点F是AB延长线上的一点,则∠CBF的度数是()A.60°B.72°C.108°D.120°8.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC,若∠A=70°,∠AED=60°,则∠B的大小为()A.50°B.60°C.70°D.55°9.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°10.若一个三角形三个内角度数的比为3:4:11,那么这个三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形11.如图,在△ABC中,CD是∠ACB的外角平分线,且CD∥AB,若∠ACB=100°,则∠B 的度数为()A.35°B.40o C.45o D.50o12.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.6B.5C.4D.713.若一个多边形的外角和是其内角和的,则这个多边形的边数为()A.2B.4C.6D.814.四边形剪去一个角后,内角和将()A.减少180°B.不变C.增加180°D.以上都有可能15.将两个直角三角板如图所示放置,DF恰好经过点C,AB与EF在同一条直线上,则∠BCF=()A.30°B.45°C.60°D.75°16.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A.0个B.1个C.2个D.3个17.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.1118.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°19.下列说法中,错误的是()A.任意多边形的外角和都是360°B.三角形的一个外角大于任何一个内角C.三角形任一边的中线把原三角形分成两个面积相等的三角形D.三角形的中线、角平分线、高都是线段20.某小区要植一块三角形草坪,两边长分别是30米和80米,那么这块草坪第三边长可以是()A.110米B.70米C.20米D.50米21.三条高的交点一定在三角形内部的是()A.任意三角形B.锐角三角形C.直角三角形D.钝角三角形22.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC 外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°23.十边形的外角和等于()A.1800°B.1440°C.360°D.180°24.过n边形的其中一个顶点有5条对角线,则n为()A.5B.6C.7D.825.如图,∠1=125°,∠C=65°,则∠A=()A.125°B.65°C.70°D.60°26.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°27.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°(第25题)(第26题)(第27题)(第29题)28.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.929.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°30.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°31.若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<932.我们知道,四边形有2条对角线,五边形有5条对角线,那么十二边形的对角线总条数是()A.9B.54C.60D.10833.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.434.若一个多边形的内角和为540°,则该多边形为()边形.A.四B.五C.六D.七35.若一个多边形的内角和是1080°,则此多边形的边数是()A.十二B.十C.八D.十四36.若一个多边形的内角和比外角和的2倍少180°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形37.一个多边形的边数增加1,则内角和与外角和增加的度数之和是()A.60°B.90°C.180°D.360°38.一个三角形,剪去一个角后所得的多边形内角和的度数是()A.180°B.360°C.540°D.180°或360°39.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4B.6C.8D.1二.填空题1.如图,AC、AD是正五边形的对角线,则∠CAD的度数是.2.如图,在△ABC的纸片中,∠C=69°,剪去△CED,得到四边形ABDE,则∠AED+∠BDE=°.3.如果一个多边形的每一个角都相等,且一个内角是它相邻外角的4倍,则该多边形的边数是.4.如图,小明在操场上从A点出发,沿直线前进150米后向左转45°,再沿直线前进150米后,又向左转45°,照这样走下去,他第一次回到出发地A点时,一共走了米.(第1题) (第2题) (第4题) (第5题)5.如图,小明从点A出发,沿直线前进8m后向左转36°,再沿直线前进8m后向左转36°……照这样走下去,小明第一次回到出发点A,一共走了m.6.如图,∠1、∠2、∠3是多边形的三个外角,边CD、AE的延长线交于点F,如果,∠1+∠2+∠3=225°,那么∠DFE的度数是.(第6题)(第7题)7.如图,AB、CD是互相垂直的小路,它们用BE、EF、FC连接,则∠ABE+∠BEF+∠EFC+∠FCD=度.。
章节测试题1.【答题】如图,在五边形ABCDE中,若∠D=110°,则∠1+∠2+∠3+∠4=______.【答案】290°【分析】根据多边形的内角和及外角和解答即可.【解答】∵∠D=110°,∴∠5=180°-110°=70°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360°-70°=290°.2.【答题】若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是______.【答案】6【分析】运用了多边形的内角和定理及多边形的对角线,熟记多边形的内角和计算公式是正确解答本题的基础.【解答】∵凸n边形的内角和为1260°,∴(n-2)×180°=1260°,得,n=9;∴9-3=6.故答案是:6.3.【答题】一个多边形的内角和为720,则这个多边形的边数为______.【答案】6【分析】根据多边形的内角和解答即可.【解答】设这个多边形的边数为n,由题意得(n-2) ×180°=720°,解之得n=6.4.【答题】一个多边形的内角和是1800°,这个多边形是______边形.【答案】十二【分析】根据多边形的内角和解答即可.【解答】解:设这个多边形的边数为n,则有:(n-2)180°=1800°,解得:n=12.故答案为:十二.5.【答题】正十二边形的每一个内角的度数为()A. 120°B. 135°C. 150°D. 108°【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°−30°=150°.故选项为:C.6.【答题】若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是()度A. 2520B. 2880C. 3060D. 3240【答案】B【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:设这个多边形的边形为n,则(n-2)180°=160°n,解得,n=18.则(n-2)180°=(18-2)180°=2880°.选B.方法总结:本题主要考查了多边形的内角和,n边形的内角和是(n-2)180°.7.【答题】一个五边形的5个内角中,钝角至少有()A. 5个B. 4个C. 3个D. 2个【答案】D【分析】五边形内角和为540度,五个角平分,一个角为108度,可以都为钝角.又因外角和为360度,所以5个外角中不能有4个或5个钝角,外角中至多有3个钝角,即内角中最多有3个锐角,至少有2个钝角.【解答】解:∵五边形外角和为360度,∴5个外角中不能有4个或5个钝角,外角中至多有3个钝角,即内角中最多有3个锐角,至少有2个钝角.选D.8.【答题】已知正n边形的一个内角为144°,则边数n的值是()A. 7B. 8C. 9D. 10【答案】D【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:根据题意得:144°n=(n﹣2)×180°,解得:n=10选D.9.【答题】如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是().A. 110°B. 108°C. 105°D. 100°【答案】D【分析】根据多边形的外角和为360°解答即可.【解答】如下图,∵凸多边形的外角和为360°,∴∠1+∠2+∠3+∠4+∠5=360°,又∵∠1=∠2=∠3=∠4=70°∴∠5=360°-70°×4=80°,∴∠AED=180°-∠5=100°.选D.10.【答题】如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是()A. 三角形B. 四边形C. 五边形D. 六边形【答案】D【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据一个多边形的内角和等于它的外角和的2倍,设这个多边形是n边形.则(n-2)×180°=2×360°,n=6选D.11.【答题】正多边形的一个内角是120°,则这个正多边形的边数为()A. 4B. 8C. 6D. 12【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】根据正多边的内角求出外角为180°-120°=60°,然后根据多边形的外角和为360°,可求其边数为360÷60°=6.选C.方法总结:此题主要考查了正多边的内外角关系,解题关键是根据内角和外角互补,求出外角,然后根据多边形的内外角和求解.12.【答题】如果一个正多边形的中心角为60°,那么这个正多边形的边数是A. 4B. 5C. 6D. 7【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:这个多边形的边数为:选C.13.【答题】在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A. ∠ADE=20°B. ∠ADE=30°C. ∠ADE=∠ADCD. ∠ADE=∠ADC【答案】D【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】如图,设∠ADE=x,∠ADC=y,根据三角形的内角和可得,∠ADE+∠AED+∠A=180°,根据四边形的内角和为360°可得∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以x=y,即∠ADE=∠ADC.选D.方法总结:此题主要考查了多边形的内角和,解题关键是根据三角形的内角和为180°,四边形的内角和为360°,求出角的关系即可.14.【答题】若一个多边形的每个外角都等于60°,则它的内角和等于()A. 180°B. 720°C. 1080°D. 540°【答案】B【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6﹣2)×180°=720°.故选B.15.【答题】如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A. 120°B. 180°C. 240°D. 300°【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.选C.16.【答题】一个多边形的外角和与它的内角和相等,则多边形是()A. 六边形B. 五边形C. 四边形D. 三角形【答案】C【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4选C.17.【答题】下列多边形中,内角和是外角和的两倍的是()A. 四边形B. 五边形C. 六边形D. 八边形【答案】C【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】解:设多边形边数为n,由题意得:(n﹣2)•180°=2×360°,解得n=6,所以这个多边形是六边形.选C.18.【答题】正n边形的内角和等于1080º,则n的值为()A. 7B. 8C. 9D. 10【答案】B【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】由题意得:(n-2)·180=1080,解得:n=8,选B.19.【答题】如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A. 90°B. 135°C. 150°D. 270°【答案】D【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:∠CDE=180°-∠1,∠CED=180°-∠2,在△CDE中,∠CDE+∠CED+∠C=180°,所以,180°-∠1+180°-∠2+90°=180°,所以,∠1+∠2=270°.选D.20.【答题】一个多边形的内角和是外角和的5倍,则这个多边形是()A. 八边形B. 十边形C. 十二边形D. 十四边形【答案】C【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可. 【解答】多边形的外角和是360°,设这个多边形的边数为x,则180°(x-2)=5×360,解得x=12.选C.。
《多边形》
班级:学号:姓名:成绩:
一、填空题(每小题3分,共21分)
1、在△ABC中,∠A=20,∠B=∠C,则∠B=度.
2、正多边形的内角和等于720,那么这个正多边形的一个外角等于度.
3、(1)∠1= 度(2)∠1= 度(3)∠1= 度
(第3题)
4、从五边形的顶点出发,共可以画条对角线
5、已知等腰三角形的两边长是4和10,则它的周长是
6、一个五边形有三个内角是直角,另两个内角都等于,则n 的值为
7、在△ABC中,若AB=2,BC=3,AC边长为奇数,则AC边长为
二、选择题(每小题3分,共18分)
8、下列各个度数中,不可能是多边形的内角和的是( ).
(A)600 (B)720 (C)900 (D)1080
9、若多边形的边数由3增加到5,则其外角和的度数( ).
(A) 增加(B) 减少(C) 不变(D) 不能确定
10、下列正多边形不能拼成一个平面的是( ).
(A) 正三角形(B) 正方形(C) 正六边形(D) 正十边形
11、在△ABC中,符合下列条件但不能判定它是直角三角形的是( ).
(A) ∠A+∠B =90°(B) ∠A、∠B、∠C的度数之比是1:2:3
(C) ∠A=2∠B=3∠C (D) ∠A+∠B=2∠C
12、若等腰三角形的底边长为8,则腰长的取值范围是( ).
(A) 大于4且小于8 (B) 大于4且小于16
(C) 大于8且小于16 (D) 大于4
13、正多边形的一个外角为36度,则它的边数是()
(A) 10 (B) 6 (C)5 (D)8
三、作出△ABC的三条高(9分)
A
B
C
四、(每空1分,共24分)
1、如图1,D 是△ABC 的BC 边上一点,∠B =∠BAD ,
∠ADC =80°,
∠BAC =70°.求:
(1)∠B 的度数;
(2)∠C 的度数.
解 (1)∵∠ADC 是△ABD 的外角(已知)
∴∠ADC =∠ +∠BAD (三角形的一个外角等于 ).
又∵∠B =∠BAD ,∠ADC =80°( )
∴∠B =80°÷ = °.
(2)在△ABC 中,
∵∠B +∠ +∠C =180°(三角形的 ),
∴∠C =180°-∠B -∠BAC
=180°- - 70°
=
2、如图,在直角△ABC 中,CD 是斜边AB 上的高,∠BCD =35°,
求(1)∠EBC 的度数. (2)∠A 的度数。
解:
(1)∵CD 是斜边AB 上的高 ( )
∴∠CDB=
∵在△BDC 中,∠EBC=∠CDB+∠ ( )
∴∠EBC= °+ °(等量代换)。
(2)∵在△ABC 中,∠EBC=∠A+∠ ( )
∴∠A=∠EBC-∠ (等式的性质)
又∵△ABC 是直角三角形,∠ACB= °( )
∴∠A= °- °= °( )
五、(10分)如图,△ABC 中,∠ACD=70°,∠B=∠BAC ,AE 是∠BAC 的平分线,AD 是BC 边上的高,求∠B 和∠DAE 的度数
图
1 A B C D E (第2题)
六、(10分)如图,已知△ABC的两条高BE、CF相
交于点D,∠A=40,求∠BDC的度数
七、请用正三角形和正六边形组合设计出两种不同的铺满整个地面的图案,并在所给方格中画出示意图,涂上你喜欢的颜色。
(8分)。