新人教版七年级数学下册知识点框架总结
- 格式:doc
- 大小:276.50 KB
- 文档页数:9
第一章 实数上信中学 陈道锋考点一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (错误!未找到引用源。
<0)a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。
二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。
三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。
四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。
五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。
六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。
以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。
初一数学知识点总结(初一上学期)代数初步知识一、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。
注意:用字母表示数有必然的限制,第一字母所取得数应保证它所在的式子成心义,第二字母所取得数还应使实际生活或生产成心义;单唯一个数或一个字母也是代数式。
二、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常利用“· ” 乘,或省略不写。
(2)数与数相乘,仍应利用“×”乘,不用“· ”乘,也不能省略乘号。
(3)数与字母相乘时,一样在结果中把数写在字母前面,如a×5应写成5a 。
(4)在代数式中显现除法运算时,一样用分数线将被除式和除式联系,如3÷a 写成a3的形式;(5)a 与b 的差写作a-b ,要注意字母顺序;假设只说两数的差,当别离设两数为a 、b 时,那么应分类,写做a-b 和b-a . 3、几个重要的代数式:(1)a 与b 的平方差是:a 2-b 2; a 与b 差的平方是:(a-b )2。
(2)假设a 、b 、c 是正整数,那么两位整数是:10a+b ;那么三位整数是:100a+10b+c 。
(3)假设m 、n 是整数,那么被5除商m 余n 的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个持续整数是:n-一、n 、n+1。
(4)假设b >0,那么正数是:a 2+b ,负数是:-a 2-b ,非负数是:b 2,非正数是:-b 2。
有理数1、有理数: (1)凡能写成ab(a 、b 都是整数且a≠0)形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
(注意:0即不是正数,也不是负数;-a 不必然是负数,+a 也不必然是正数;p 不是有理数)(2)有理数中,一、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
人教版初一数学单元知识点初一下册数学知识点总结1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、全等图形:两个能够重合的图形称为全等图形。
18、变量:变化的数量,就叫变量。
19、自变量:在变化的量中主动发生变化的,变叫自变量。
20、因变量:随着自变量变化而被动发生变化的量,叫因变量。
21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
22、对称轴:轴对称图形中对折的直线叫做对称轴。
初一下册数学知识点整理一、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法(1)运用法则的前提是底数相同,只有底数相同,才能用此法则(2)底数可以是具体的数,也可以是单项式或多项式(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负四、整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
第五章 相交线与平⾏线⼀、知识络结构⼆、知识要点1、在同⼀平⾯内,两条直线的位置关系有两种:相交和平⾏,垂直是相交的⼀种特殊情况。
2、在同⼀平⾯内,不相交的两条直线叫平⾏线。
如果两条直线只有⼀个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平⾏。
3、两条直线相交所构成的四个⾓中,有公共顶点且有⼀条公共边的两个⾓是邻补⾓。
邻补⾓的性质:邻补⾓互补。
如图1所⽰,与互为邻补⾓,与互为邻补⾓。
+ = 180°; + = 180°; + = 180°;+ = 180°。
4、两条直线相交所构成的四个⾓中,⼀个⾓的两边分别是另⼀个⾓的两边的反向延长线,这样的两个⾓互为对顶⾓。
对顶⾓的性质:对顶⾓相等。
如图1所⽰,与互为对顶⾓。
= ;= 。
5、两条直线相交所成的⾓中,如果有⼀个是直⾓或90°时,称这两条直线互相垂直,其中⼀条叫做另⼀条的垂线。
如图2所⽰,当 = 90°时,⊥。
垂线的性质:性质1:过⼀点有且只有⼀条直线与已知直线垂直。
性质2:连接直线外⼀点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所⽰,当 a ⊥ b 时, = = = = 90°。
点到直线的距离:直线外⼀点到这条直线的垂线段的长度叫点到直线的距离。
6、同位⾓、内错⾓、同旁内⾓基本特征:①在两条直线(被截线)的同⼀⽅,都在第三条直线(截线)的同⼀侧,这样的两个⾓叫同位⾓。
图3中,共有对同位⾓:与是同位⾓;与是同位⾓;与是同位⾓;与是同位⾓。
②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个⾓叫内错⾓。
图3中,共有对内错⾓:与是内错⾓;与是内错⾓。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同⼀旁,这样的两个⾓叫同旁内⾓。
图3中,共有对同旁内⾓:与是同旁内⾓;与是同旁内⾓。
7、平⾏公理:经过直线外⼀点有且只有⼀条直线与已知直线平⾏。
新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
初中数学七年级下册知识点及公式总结大全(人教版)第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。
同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
七年级下册数学知识点总结人教版第一章直角三角形与勾股定理直角三角形是指三角形中包含一个直角的三角形。
直角三角形中有一个很重要的性质,即勾股定理,勾股定理是指直角三角形中,直角边上的两个边的平方和等于斜边的平方。
利用勾股定理可以求解直角三角形中的一些问题,如已知两条边的长度,求第三条边的长度;已知一个角和一条边的长度,求其他两条边的长度等。
第二章平行线及其性质平行线是指在同一个平面上,没有交点的两条直线。
平行线中有一些重要的性质,如平行线的性质;平行线与转角的关系;平行线的倾斜角等。
在平行线及其性质中,我们需要掌握平行线的判定方法,如使用转角判定、对应角相等判定、内错角相等判定等方法来判断两条直线是否平行。
同时,我们也需要掌握平行线和转角之间的关系,如同位角、内错角、外错角等的性质。
第三章三角形的面积三角形是最基本的几何图形之一,计算三角形的面积是一个重要的数学问题。
根据三角形的面积公式,三角形的面积等于底边长度和高的乘积的一半。
在计算三角形的面积时,需要注意底边的选取和高的确定,有时也需要通过分割三角形,利用相似三角形的性质求解。
第四章直角三角形的应用直角三角形是实际问题中经常遇到的三角形,在实际中有很多应用,如测量高度、距离、角度等。
在直角三角形的应用中,我们需要掌握利用正弦定理、余弦定理、正切定理等方法求解实际问题。
直角三角形的应用还涉及到一些实际问题的建模和求解,需要运用数学方法建立模型,并进行求解和分析。
第五章空间图形的认识空间图形包括三维图形和平面图形,包括球体、长方体、正方体、棱柱、棱锥等。
在空间图形的认识中,我们需要掌握这些空间图形的性质,如球体的体积和表面积的计算方法,长方体和正方体的体积和表面积的计算方法等。
在空间图形的认识中,还需要掌握空间图形的展开图和投影图的绘制,以及使用展开图和投影图求解实际问题的方法。
第六章圆的认识圆是平面上的一个特殊的几何图形,在圆的认识中,我们需要掌握圆的性质,如半径、直径、圆周、圆心等概念,以及圆的面积和周长的计算方法。
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版小学七年级下册数学知识点总结一、有理数1.有理数的概念有理数是可以表示为两个整数之比的数,包括整数和分数。
有理数集通常用符号Q 表示。
2.有理数的分类o正有理数:大于0的有理数,如1, 2, 3等。
o负有理数:小于0的有理数,如-1, -2, -3等。
o零:0既不是正数也不是负数。
3.有理数的性质o加法性质:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
o减法性质:减去一个数等于加上这个数的相反数。
o乘法性质:同号得正,异号得负,并把绝对值相乘;任何数与0相乘得0。
o除法性质:除以一个不为0的数等于乘以这个数的倒数。
4.有理数的运算o加法与减法:通过加法或减法法则进行运算。
o乘法与除法:通过乘法或除法法则进行运算。
o乘方:一个数自乘若干次,表示为a n,其中a是底数,n是指数。
5.有理数的比较o大小关系:正数大于0,0大于负数,正数大于一切负数。
o绝对值:一个数到0的距离,用符号“| |”表示。
如|-3| = 3,|3| = 3。
二、整式的加减1.单项式o概念:表示数与字母乘积的代数式。
如3x,2y2等。
o系数:单项式中的数字部分。
o次数:单项式中所有字母的指数之和。
2.多项式o概念:由有限个单项式通过加、减运算连接而成的代数式。
如3x−2y+1。
o次数:多项式中次数最高的单项式的次数。
3.整式的加减o合并同类项:将相同类型的单项式相加或相减。
o去括号:应用分配律去掉整式中的括号。
三、一元一次方程1.一元一次方程的概念o概念:只含有一个未知数,并且未知数的次数是1的方程。
如3x−2=5。
2.一元一次方程的解法o移项:将方程中的项从一边移到另一边,保持方程平衡。
o合并同类项:将方程中的同类项合并。
o系数化为1:通过除法将未知数的系数化为1,得到未知数的解。
3.一元一次方程的应用o实际问题:通过设立未知数,建立一元一次方程,解决实际问题。
七年级下册数学知识点总结人教版在七年级下册的数学学习中,我们学习了许多重要的数学知识点。
这些知识点涵盖了数的性质、代数方程、函数关系等多个方面。
下面,我将对这些知识点进行总结,以帮助大家更好地复习和理解。
第一章:数与式这一章主要介绍了整数、小数、分数和正数的概念,以及它们之间的相互转化。
我们学习了数的加法、减法、乘法和除法运算规则,以及运算的性质。
同时,还学习了运算的顺序和加减乘除法的结合律、交换律、分配律等重要的性质。
通过这一章的学习,我们对数的性质和运算有了更深入的认识。
第二章:图形的认识这一章主要介绍了平面图形和立体图形的基本概念和性质。
我们学习了不同图形的定义和特征,并能够根据规定的条件进行图形的判断和绘制。
例如,正方形、长方形、圆形等平面图形的特征和性质,以及正方体、长方体等立体图形的特征和性质。
通过这一章的学习,我们对不同图形的形状和性质有了更深入的了解。
第三章:实数的认识这一章主要介绍了实数的概念和性质。
我们学习了整数、有理数和无理数的定义,并了解了它们之间的关系。
同时,还学习了实数的大小比较和有理数的四则运算规则。
通过这一章的学习,我们对实数的认识更加深入,并能够熟练地进行实数的运算。
第四章:代数方程这一章主要介绍了一元一次方程的概念和解法。
我们学习了如何列代数方程,以及如何利用解方程的方法求出未知数的值。
同时,还学习了一些常见的应用问题,例如两个数的关系问题、速度问题等。
通过这一章的学习,我们对代数方程的解法有了更深刻的理解,并能够熟练地应用到实际问题中。
第五章:比例这一章主要介绍了比例的概念和性质。
我们学习了比例的定义,以及比例中的四个数的关系。
同时,还学习了比例的比较和计算方法,以及比例的应用问题。
通过这一章的学习,我们对比例的概念和性质有了更深入的了解,并能够灵活运用到实际问题中。
第六章:函数与方程式这一章主要介绍了函数关系和方程式的概念和性质。
我们学习了函数的定义和表示方法,并能够根据函数关系进行图像的绘制和判断。
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。
1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二)平行线的判定:1.同位角相等,两直线平行。
2.内错角相等,两直线平行。
3.同旁内角互补,两直线平行。
(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。
2.两条平行线被第三条直线所截,内错角相等。
3.两条平行线被第三条直线所截,同旁内角互补。
七下数学知识点框架总结
第五章相交线与平行线
知识框架:
相交线
相交线垂线
同位角、内错角、同旁内角
平行线
平行线及其判定
平行线的判定
平行线的性质
平行线的性质
命题、定理
平移
基本概念:
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
6.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
7.命题:判断一件事情的语句叫命题。
8.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移
变换,简称平移。
9.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
定理与性质:
1.对顶角的性质:对顶角相等。
2.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
4.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章实数知识框架:
重难点聚焦:
算术平方根和平方根的概念及其求法;
平方根和实数的概念。
知识要点回顾:
4、实数的三个非负性:|a|≥0,a2≥0,≥0(a≥0)
5、实数的运算:⑴加减法:类比合并同类项
⑵乘法:=(a≥0,b≥0)
⑶除法:(a≥0,b>0)
6、算术平方根与平方根的区别与联系.
区别: ①定义不同;②个数不同;③表示方法不同;④取值范围不同.
联系: ①具有包含关系;
②存在条件相同;
③ 0的算术平方根与平方根是0.
提示:
1. 正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;
零的平方根和算术平方根都是零;
负数没有平方根.
2. 实数都有立方根,且一个数的立方根只有一个,它的符号与被开方数的符号相同.
3. 所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.
其中,有限小数和无限循环小数统称有理数,
无限不循环小数叫做无理数.
4. 无理数分成三类:①开方开不尽的数,如,等;
②有特殊意义的数,如π;
③有特定结构的数,如0.1010010001…
5. 有理数和无理数统称实数,实数和数轴上的点一一对应.
6. 实数的运算:
实数运算的基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算.正确地确定运算结果的符号和灵活运用各种运算律来进行运算是掌握好实数运算的关键.
第七章平面直角坐标系
知识框架:
有序数对
平面直角坐标系
平面直角坐标系
用坐标表示地理位置
坐标方法的简单应用
用坐标表示平移
基本概念:
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴
的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,
对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二
象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
第八章二元一次方程组
知识框架:
基本概念:
1. 二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一
次方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方
程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现
消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代
入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加
或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
第九章不等式与不等式组
知识框架:
未知数,列不等式(组)
基本概念:
1.不等式:一般地,用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
数学问题的解
(不等式(组)的解决)
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次
数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了
一个一元一次不等式组。
6.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这
个一元一次不等式组的解集。
定理与性质:
1.不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方
向不变。
2.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
第十章数据的收集、整理与描述知识框架:
基本概念:
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。