2018八年级下册期末考试数学试卷及答案
- 格式:docx
- 大小:608.05 KB
- 文档页数:16
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有()个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为().A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAB C A D O二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD =cm 。
八年级下期末试题2018一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b2 D .-2a >-2b2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x )3下列所培图形中·既是中心对称图形又是轴对称图形的是()A B C D 4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +4 7.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120°D .150°30°B'C 'CBA8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y =09.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( )A .16crnB .14cmC .12cmD .8cmOCABD10.若分式方程x -3x -1=mx -1有增根,则m 等于( )A .-3B .-2C .3D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6EDBCA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )xy2-1POA .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5B .125C .245D .185A DOBCE14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)x y B 2A 2B 1A 1ABO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________.17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.C D AOBP19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分) (1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1; (2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2; (3)直接写出点B 2、C 2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14……根据你发现的规律,回答下列问题: (1)14×5=___________,1n ×(n +1)=___________;(2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程: 1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(一6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .(1)直接写出线段BO 的长: (2)求点D 的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.专业资料word格式可复制编辑。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAB C A D O二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分)1.二次根式21、12 、30、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子2x-有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠3 3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.1113,4,5222C.3,4,5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE 交AE于点F,则∠1=()1FED CBAA.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121x x x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52(第8xM FEABCADOC .53D .65二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分)1.二次根式21、12 、30 、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子2x-有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠3 3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()|A.7,24,25 B.1113,4,5222C.3,4,5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()1FEDCBAA.40°B.50°C.60°D.80°(6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体!C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE BAADO$二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30 -23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2017-2018级八年级期末测试一、选择题(本题共10小题,满分共30分)1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )(-1y (2,2yxyO(第7A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121x x x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-=Λ中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2018年初二下数学期末调研测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .C .3,4, 5D .4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )A .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121x x x x x x nS n -++-+-= 中,下列说法不正确的是( )1113,4,5222114,7,8221FEDCBA(第7题)ADOA. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .B .C .D .二、填空题(本题共10小题,满分共30分)11.48-13-⎛ ⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
【最新整理,下载后即可编辑】2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是A .y =x 2B. y =x2 C. y =2x D.y =21 x2. 下列四组线段中,不能作为直角三角形三条边的是 A. 3cm ,4cm ,5cm B. 2cm ,2cm ,cm C. 2cm ,5cm ,6cm D. 5cm ,12cm ,13cm3. 下图中,不是函数图象的是ABC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择A .甲B .乙C .丙D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为A .1或﹣4B .﹣1或﹣4C .﹣1或4D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 30xS612OxS612OxS124O9. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 A .k ≤5 B .k ≤5,且k ≠1 C .k <5,且k ≠1 D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A BC D二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.xS66O13. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____________.14. 在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为 .16. 方程28150-+=的两个根分别是一个直角三角形的两x x条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ; ② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19.用配方法解方程:261-=x x20. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点BE EC=,求线段EC, D落在BC边上的点E处,折痕为GH.若:2:1CH的长.,其中 21. 已知关于x的一元二次方程()()2--++=1120m x m xm≠ .1(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.赁有限公司赁公司美国通用租赁公司GECAS20 兴业金融租赁公司20泰国都市航空10 德国普仁航空公司7根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.订单(架)7 10 15 20 30 50 客户(家)1 12 2 224.有这样一个问题:探究函数11y=+的图象与性质.x小明根据学习一次函数的经验,对函数11=+的图象与性质yx进行了探究.下面是小明的探究过程,请补充完整:(1)函数11y=+的自变量x的取值范围是;x(2)下表是y与x的几组对应值.求出m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE . (1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)BDB27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A 翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.备用图28.在平面直角坐标系xOy中,已知点(),M a b及两个图形1W和2W,若对于图形1W上任意一点(),P x y,在图形2W上总存在点(),P x y''',使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形2W是图形1W关于点M的关联图形,此时三个点的坐标满足2x ax+'=,2y by+'=.(1)点()P'-是点P关于原点O的关联点,则点P的坐标2,2是;(2)已知,点()C--,()D--以及点()3,0M4,14,1A-,()2,12,1B-,()①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y x=-分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2018学年度第二学期期末统一检测初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 12345678910答案C C BD B A C BB B二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 3 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分) 19. 解:()2310x -=, ………………2分解得1310x =,2310x = (4)分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. (1)分设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=. 即()22239x x +=-. ………………3分解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ (1)分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分 (2)解:解方程()()21120m x m x --++=, 得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数, ∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. (5)分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分(2)解:∵AF ∥BD ,AF =BD , ∴四边形AFBD 是平行四边形. ………………3分订单(架) 7 10 15 20 30 45 50客户(家)1 12 10 2 2 2∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.………………4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面积为60⋅=. (5)BD AD分24. 解:(1)x≠0;………………1分(2)令113+=,m∴1m=;………………2分2(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;………………2分(2)解:∵OE=OD,222+=,OF FD OE∴222+=.OF FD OD∴△OFD为直角三角形,且∠OFD=90°.………………3分在Rt△CED中,∠CED=90°,CE=3,4DE=,∴222=+ .CD CE DE∴5CD=. ………………4分又∵1122CD EF CE DE ⋅=⋅,∴125EF =.在Rt △CEF 中,∠CFE=90°,CE=3,125EF =,根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b , ∴. 解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1. 把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分F D B E (3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C .∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE. (3)分(3)连CG, AC.由()P-轴对称可知,EA+EG=EC+EG,4,4CG长就是EA+EG的最小值. ………………4分∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.可求得3.∴EA+EG3.………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-=Λ中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2017-2018级八年级期末测试一、选择题(本题共10小题,满分共30分)1.二次根式21、12 、30 、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子2x-有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠3 3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.1113,4,5222 C.3,4, 5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如下左图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE 交AE于点F,则∠1=()1FEDCBAA.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>28、在方差公式()()()[]2222121xxxxxxnSn-++-+-= 中,下列说法不正确的是()(-1,1)1y(2,2)2yxyO(第7题)ADOA. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫⎪ ⎪⎝⎭+)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30、x+2 、240x 、22y x +中,最简二次根式有()个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为().A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. 是样本个体C. 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)M PFE CBAA D O11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD =cm 。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C(C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2 C.x>2 D.x <-1或x>28、在方差公式()()()[]2222121xxxxxxnSn-++-+-= 中,下列说法不正确的是()A. n是样本的容量B.nx是样本个体C. x是样本平均数D. S是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42(C)中位数是58 (D)每月阅读数量超过40的有4个月(-1,1y(2,2)2yxyO10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)12345678M PFEBA13. 平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm。
2018新人教版八年级下册数学期末试卷及答案最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .1113,4,5222C .3,4, 5D .114,7,8224、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C(C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1F EDCB AA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数xy=1和34312+=x y的图象相交于(-1,1),(2,2)两点.当21y y>时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nSn -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. nx 是(-1,1)1y (2,2)2yxy O二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫⎪⎪⎝⎭+)13(3--30 -23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()13.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm。
2017-2018级八年级期末测试一、选择题(本题共 小题,满分共 分) .二次根式21、 、 、⌧ 、240x 、22y x +中,最简二次根式有( )个。
✌、 个 、 个 、 个 、个⌧的取值范围为( )✌、⌧♏ 、⌧♊ 、⌧♏或⌧♊ 、⌧♏且⌧♊.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )✌. , , .1113,4,5222 . , , .114,7,822 、在四边形✌中, 是对角线的交点,能判定这个四边形是正方形的是( )(✌)✌,✌∥ ,✌ ( )✌∥ ,∠✌∠ ( )✌,✌⊥ ( )✌, ,✌、如下左图,在平行四边形✌中, = ,✌☜平分 ✌交 于点☜, ☞ ✌☜交✌☜于点☞,则 =( )1FEDCBA✌. . . . 、表示一次函数⍓=❍⌧ ⏹与正比例函数⍓=❍⏹⌧☎❍、⏹是常数且❍⏹♊✆图象是( )(第 题)如图所示,函数x y =1和34312+=x y 的图象相交于(- , ),( , )两点.当21y y >时,⌧的取值范围是( )✌.⌧<- .— <⌧< .⌧> . ⌧<- 或⌧> 、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )✌ ⏹是样本的容量 n x 是样本个体 x 是样本平均数 是样本方差、多多班长统计去年 ~ 月❽书香校园❾活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )(✌)极差是 ( )众数是 ( )中位数是 ( )每月阅读数量超过 的有 个月、如上右图,在 ✌中,✌ ,✌ , , 为边 上一动点, ☜⊥✌于☜, ☞⊥✌于☞, 为☜☞中点,则✌的最小值为【 】✌.54 .5210203040506070809012345678某班学生 ~ 月课外阅读数量折线统计图3670585842287583本数月份12345678M PFECBA(第 题)ADO.53 .65二、填空题(本题共 小题,满分共 分).48 1-⎝⎭)13(3- 23-.边长为 的大正方形中有两个小正方形,若两个小正方形的面积分别为 , ,则 的值为( ) 平行四边形✌的周长为 ♍❍,对角线✌、 相交于点 ,若△ 的周长比△✌的周长大 ♍❍,则 = ♍❍。
文档根源为:从网络采集整理.word版本可编写.支持. 2017-2018学年度第二学期期末教课一致检测初二数学一、选择题(此题共30分,每题3分)下边各题均有四个选项,此中只有一个..是切合题意的.以下函数中,正比率函数是A.y =x2B.y=2C.y=xD.y=x1x22以下四组线段中,不可以作为直角三角形三条边的是A.3cm,4cm,5cmB.2cm ,2cm,2 2cmC.2cm ,5cm,6cmD.5cm,12cm,13cm 以下图中,不是函数图象的是A BC D平行四边形所拥有的性质是A. 对角线相等B. 邻边相互垂直C. 每条对角线均分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学近来几次数学考试成绩的均匀数与方差:1甲乙丙丁均匀数(分)92959592方差要选择一名成绩好且发挥稳固的同学参加数学竞赛,应当选择A.甲B.乙C.丙D.丁6.若x=﹣2是对于x的一元二次方程x23ax a20的一个根,则a的值为2A.1或﹣4B.﹣1或﹣4C.﹣1或4D.1或47.将正比率函数y 2x的图象向下平移2个单位长度,所得图象对应的函数分析式是A.y2x 1B.y2x 2C.y2x 2D.y 2x18.在一次为某位身患大病的小朋友募捐过程中,某年级有50师生经过微信平台奉献了爱心.小东对他们的捐钱金额进行统计,并绘制了以下统计图.师生捐钱金额的均匀数和众数分别是A.20,20B.,30C.,20D.20,309.若对于x的一元二次方程k 1x24x 1 0有实数根,则k的取值范围是A.k≤5 B.k≤5,且k≠1C.k<5,且k≠1D.k<5210.点(x ,y )在第一象限内,且 x+y=6,点A 的坐标为( 4,0).设△ 的面积为 ,POPAS则以下图象中,能正确反应S 与x 之间的函数关系式的是SSS S12126x6O 6xO6x12xO 4OAB C D二、填空题(此题共 24分,每题3分)11.请写出一个过点( 0,1),且y 跟着x 的增大而减小的一次函数分析式.12. 在湖的双侧有 A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并 量取了AC 中点D 和BC 中点E 之间的距离为 16米,则A ,B 之间的距离应为米.3文档根源为:从网络采集整理 .word 版本可编写.支持 .如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则对于x 的不等式kx +6>x +b的解集是_____________.14. 在菱形ABCD 中,∠A =60°,其所对的对角线长为 4,则菱形ABCD 的面积是.15. 《九章算术》是中国传统数学最重要的著作, 确立了中国传统数学的基本框架,书中的算法系统到现在仍在推进着计算机的发展和应用 .《九章算术》中记录:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短 . 横放,竿比门宽长出 4尺;竖 放,竿比门高长出 2尺;斜放,竿与门对角线恰巧相等 .问门高、宽、对角线长分别是多 少?若设门对角线长为 x 尺,则可列方程为 .16.方程x 28x150的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17. 已知直线y2x 2与x 轴、y 轴分别交于点A ,B .若将直线y 1x 向上平移n 个2单位长度与线段AB 有公共点,则n 的取值范围是.在一节数学课上,老师部署了一个任务:已知,如图 1,在Rt △ABC 中,∠B =90°,用尺规作图作矩形ABCD .4文档根源为:从网络采集整理.word版本可编写.支持.图1图2同学们开动脑筋,想出了好多方法,此中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于1AC长为半径画弧,两弧分别交于点E,F,连结EF2交AC于点O;作射线BO,在BO上取点D,使ODOB;③连结AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依照是.三、解答题(此题共46分,第19—21,24题,每题4分,第22,23,25-28题,每题5分)19.用配方法解方程:x26x120.如图,正方形ABCD的边长为9,将正方形折叠,使极点D落在BC边上的点E处,折痕为GH.若BE:EC 2:1,求线段EC,CH的长.5文档根源为:从网络采集整理.word版本可编写.支持.21. 已知对于x的一元二次方程m1x2m1x20,此中m1.1)求证:此方程总有实根;2)若此方程的两根均为正整数,求整数m的值2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国初次依照国际适航标准研制的150座级干线客机,首飞成功标记着我国大型客机项目获得重要打破,是我公民用航空工业发展的重要里程碑.当前,C919大型客机已有国内外多家客户预定六百架表1是此中20家客户的订单状况.表1客户订单(架)客户订单(架)中国国际航空20工银金融租借有限企业45中国东方航空20安全国际融资租借企业50中国南方航空20交银金融租借有限企业306文档根源为:从网络采集整理.word版本可编写.支持.海南航空20中国飞机租借有限企业20四川航空15中银航空租借个人有限20企业河北航空20农银金融租借有限企业45幸福航空20建信金融租借股份有限50企业国银金融租借有限企业15招银金融租借企业30美国通用租借企业GECAS20兴业金融租借企业20泰国都市航空10德国普仁航空企业7依据表1所供给的数据补全表2,并求出这组数据的中位数和众数.表2订单(架)71015203050客户(家)11222(1)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延伸线于F,且AF=BD,连结BF.(2)(3)求证:点D是线段BC的中点;(4)(5)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.7文档根源为:从网络采集整理.word版本可编写.支持.8文档根源:从网采集整理.word 版本可.迎下支持 .24.有一个:研究函数y1 的象与性.1x小明依据学一次函数的,函数y1 1的象与性行了研究.x下边是小明的研究程,充完好:(1)函数y1 ;1的自量x 的取范是x(2)下表是 y 与x 的几.x⋯ -4 -3 -2-1 -m m 1 2 3 4 ⋯3 2 1 345 y ⋯320-1323⋯424求出m 的;(3)如,在平面直角坐系xOy 中,描出了以表中各坐的点.依据描出的点,画出函数的象;9文档根源为:从网络采集整理.word版本可编写.支持.(4)写出该函数的一条性质.已知:如图,平行四边形ABCD的对角线订交于点O,点E在边BC的延伸线上,且OE=OB,联络DE.求证:DE⊥BE;(2)设CD与OE交于点F,若OF2FD2OE2,CE3,DE 4,求线段CF长.10文档根源为:从网络采集整理.word版本可编写.支持.26.如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.1)求线段BC的长度;2)若点D在直线AC上,且DB=DC,求点D的坐标;3)在(2)的条件下,直线BD上应当存在点P,使以A,B,P三点为极点的三角形是等腰三角形.请利用尺规作图作出全部的点P,并直接写出此中随意一个点P的坐标.(保存作图印迹)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延伸交AD于F,连结AE.1)依题意补全图形;2)判断∠DFC与∠BAE的大小关系并加以证明;3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.A AB DB D11文档根源为:从网络采集整理.word版本可编写.支持.备用图28.在平面直角坐标系xOy中,已知点M a,b及两个图形W1和W2,若对于图形W1上任意一点Px,y,在图形W2上总存在点P x,y,使得点P是线段PM的中点,则称点P是点P对于点M的关系点,图形W2是图形W1对于点M的关系图形,此时三个点的坐标x a y b 知足x,y2.2(1)点P2,2是点P对于原点O的关系点,则点P的坐标是;(2)已知,点A 4,1,B 2,1,C 2,1,D 4,1以及点M3,0①画出正方形ABCD对于点M的关系图形;12文档根源为:从网络采集整理.word版本可编写.支持.②在y轴上能否存在点N,使得正方形ABCD对于点N 的关系图形恰巧被直线y x分红面积相等的两部分?若存在,求出点N的坐标;若不存在,说明原因.132018学年度第二学期期末一初二数学参照答案及分准一、(本共30分,每小3分)号12345678910答案C C B D B A C B B B二、填空(本共24分,每小3分)11.y=-x+1等,答案不独一.12.3213.X<314.8315.x2x42x2216.4或许3417.1≤n≤2 2到段两头距离相等的点在段的垂直均分上,角相互均分的四形是平行四形,有一个角是直角的平行四形是矩形.三、解答题(此题共46分,第19—21,24题,每题4分,第22,23,25-28题,每题5分)19.解:x32⋯⋯⋯⋯⋯⋯2分10,解得x1 3 10,x23 10.⋯⋯⋯⋯⋯⋯4分20.解:∵BC 9,BE:EC 2:1,∴EC 3.⋯⋯⋯⋯⋯⋯1分CHx,DH 9 x.⋯⋯⋯⋯⋯⋯2分由折叠可知EH DH 9x.14在Rt△△ECH中,C=90,∴EC2CH2EH2.即32x22⋯⋯⋯⋯⋯⋯3分9x.解得x4.∴CH 4.⋯⋯⋯⋯⋯⋯4分(1)明:由意m1.2m142m1⋯⋯⋯⋯⋯⋯1分m26m92m32∵m 3≥0恒建立,∴方程m 1x2m 1x 2 0有根;⋯⋯⋯⋯⋯⋯2分(2)解:解方程m1x2m1x20,得x112.,x2m1∵方程m1x2m1x20的两根均正整数,且m是整数, m11,或m12.∴m 2,或m 3.⋯⋯⋯⋯⋯⋯4分15(架)710152030455022.解:客(家)11210222⋯⋯⋯⋯⋯⋯3分中位数是20,众数是20.⋯⋯⋯⋯⋯⋯5分23.(1)明:∵点E是AD的中点,∴AE=DE.∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.∴△EAF≌△EDC.⋯⋯⋯⋯⋯⋯1分∴AF=DC.∵AF=BD,∴=,即D 是的中点.⋯⋯⋯⋯⋯⋯2分BD DC BC(2)解:∵AF∥BD,AF=BD,∴四形AFBD是平行四形.⋯⋯⋯⋯⋯⋯3分∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.⋯⋯⋯⋯⋯⋯4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面BD AD 60.⋯⋯⋯⋯⋯⋯5分24.解:(1)x≠0;⋯⋯⋯⋯⋯⋯1分16文档根源:从网采集整理.word版本可.迎下支持.(2)令113,m∴m1;⋯⋯⋯⋯⋯⋯2分2(3)如⋯⋯⋯⋯⋯⋯3分(4)答案不独一,可参照以下的角度:⋯⋯⋯⋯⋯⋯4分①函数没有最大或函数没有最小;②函数在不等于1;③增减性(1)明:∵平行四形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.⋯⋯⋯⋯⋯⋯1分∵OB=OE,17∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;⋯⋯⋯⋯⋯⋯2分(2)解:∵OE=OD,OF2FD2OE2,∴OF2FD2 OD2.∴△OFD直角三角形,且∠OFD=90°.⋯⋯⋯⋯⋯⋯3分在Rt△中,∠CED=90°,CE=3,DE4,CED∴CD2CE2 DE2.∴CD5.⋯⋯⋯⋯⋯⋯4分又∵1CD EF1CEDE, 2212.∴EF5在Rt△CEF中,∠CFE=90°,CE=3,EF12,5依据勾股定理可求得9⋯⋯⋯⋯⋯⋯5分CF.5解:(1)∵B(0,3),C(0,1).∴BC=4.⋯⋯⋯⋯⋯⋯1分(2)直AC的分析式y=kx+b,把A(,0)和C(0,1)代入y=kx+b,18∴.解得:,∴直AC的分析式:y=x 1.⋯⋯⋯⋯⋯⋯2分∵DB=DC,∴点D在段BC的垂直均分上.∴D的坐 1.把y=1代入y=x 1,解得x= 2,∴D的坐(2,1).⋯⋯⋯⋯⋯⋯3分(3)⋯⋯⋯⋯⋯⋯4分当A、B、P三点点的三角形是等腰三角形,点P的坐(3,0),(,2),(3,3),(3,3+),写出此中随意一个即可.⋯⋯⋯⋯⋯⋯5分27.28.29.30.31.解:(1)AFB E D19C⋯⋯⋯⋯⋯⋯1分(2)判断:∠DFC=∠BAE.⋯⋯⋯⋯⋯⋯2分明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四形ABCD菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.⋯⋯⋯⋯⋯⋯3分3)CG,AC.由P4,4称可知,EA+EG=EC+EG,CG就是EA+EG的最小.⋯⋯⋯⋯⋯⋯4分∵∠BAD=120°,四形ABCD菱形,∴∠CAD=60°.∴△ACD2的等三角形.20可求得CG=3.EA+EG的最小3.⋯⋯⋯⋯⋯⋯5分解:(1)∵P(-4,4).⋯⋯⋯⋯⋯⋯1分(2)①接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′所求作.-----------------------------3分②不如N(0,n).∵关正方形被直y=-x分红面相等的两部分,∴中心Q落在直y=-x上.-------------------------------------4分∵正方形ABCD的中心E(-3,0),21文档根源为:从网络采集整理.word版本可编写.支持.22。
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、错误!、错误!、错误!、240x 、22y x +中,最简二次根式有()个。
A 、1 个B 、2 个C 、3 个D 、4个 2。
若式子23x x --有意义,则x 的取值范围为().A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD,AB ∥CD,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7。
如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A 。
n 是样本的容量B 。
是样本个体C 。
是样本平均数D 。
S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)M PFE CBAB C A D O11.48—133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30—23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13。
2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是 A .y =x 2B. y =x 2 C. y =2x D. y =21x2. 下列四组线段中,不能作为直角三角形三条边的是A. 3cm ,4cm ,5cmB. 2cm ,2cm ,,5cm ,6cm D. 5cm ,12cm ,13cm 3. 下图中,不是函数图象的是A BC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:xS612OxS612OxS124O方差 3.6 3.6 7.4 8.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择 A .甲 B .乙 C .丙 D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为 A .1或﹣4 B .﹣1或﹣4 C .﹣1或4 D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是 A .21y x =- B .22y x =+ C .22y x =- D . 21y x =+ 8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 309. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是A .k ≤5B .k ≤5,且k ≠1C .k <5,且k ≠1D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A B C D 二、填空题(本题共24分,每小题3分)x S 66O11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.13. 如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式kx +6>x +b 的解集是_____________.14. 在菱形ABCD 中,∠A =60°,其所对的对角线长为4,则菱形ABCD 的面积是 .15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用. 《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何? 译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为 .16. 方程28150x x -+= 的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .第12题图 第13题图图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法: ① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ;② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形. 老师说:“小亮的作法正确.”小亮的作图依据是 .三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19. 用配方法解方程: 261x x -=20. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若:2:1BE EC =,求线段EC ,CH 的长.21. 已知关于x 的一元二次方程()()21120m x m x --++= ,其中1m ≠ .(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m 的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架 表1是其中20家客户的订单情况.根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.24.有这样一个问题:探究函数11yx=+的图象与性质.小明根据学习一次函数的经验,对函数11yx=+的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数11yx=+的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …-4 -3 -2 -1 -m m 1 2 3 4 …y (3)423120 -1 3 2324354…求出m的值;图1 图2(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE .(1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.BDB26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点. (1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.备用图28.在平面直角坐标系xOy 中,已知点(),M a b 及两个图形1W 和2W ,若对于图形1W 上任意一点(),P x y ,在图形2W 上总存在点(),P x y ''',使得点P '是线段PM 的中点,则称点P '是点P 关于点M 的关联点,图形2W 是图形1W 关于点M 的关联图形,此时三个点的坐标满足2x a x +'=,2y by +'=. (1)点()2,2P '-是点P 关于原点O 的关联点,则点P 的坐标是 ; (2)已知,点()4,1A -,()2,1B -,()2,1C --,()4,1D --以及点()3,0M①画出正方形ABCD 关于点M 的关联图形;②在y 轴上是否存在点N ,使得正方形ABCD 关于点N 的关联图形恰好被直线y x =-分成面积相等的两部分?若存在,求出点N 的坐标;若不存在,说明理由.2018学年度第二学期期末统一检测 初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案CCBDBACBBB二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 83 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19. 解:()2310x -=, ………………2分 解得1310x =2310x = ………………4分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. ………………1分 设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=.即()22239x x +=-. ………………3分 解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ ………………1分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分(2)解:解方程()()21120m x m x --++=,得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数,∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. ………………5分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC . ………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分 (2)解:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形. ………………3分 ∵AB =AC ,又由(1)可知D 是BC 的中点,订单(架)710 15 20 30 45 50 客户(家) 11210222∴AD ⊥BC . ………………4分 在Rt △ABD 中,由勾股定理可求得AD =12,∴ 矩形AFBD 的面积为60BD AD ⋅=. ………………5分24. 解:(1)x ≠0;………………1分(2)令113m +=, ∴ 12m = ; ………………2分(3)如图………………3分(4)答案不唯一,可参考以下的角度: ………………4分 ①该函数没有最大值或 该函数没有最小值; ②该函数在值不等于1; ③增减性25. (1)证明:∵平行四边形ABCD ,∴OB =OD . ∵OB =OE , ∴OE =OD .∴∠OED =∠ODE . ………………1分 ∵OB =OE , ∴∠1=∠2.∵∠1+∠2+∠ODE +∠OED =180°,∴∠2+∠OED =90°.∴DE ⊥BE ; ………………2分 (2)解:∵OE =OD ,222OF FD OE +=, ∴222OF FD OD +=.∴△OFD 为直角三角形,且∠OFD=90°. ………………3分 在Rt △CED 中,∠CED=90°,CE=3,4DE =, ∴222CD CE DE =+ .∴5CD =. ………………4分又∵1122CD EF CE DE ⋅=⋅, ∴125EF =.在Rt △CEF 中,∠CFE=90°,CE=3,125EF =,根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b ,∴.解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1. 把y=1代入y=﹣x ﹣1,解得x=﹣2,FCDBAE ∴D 的坐标为(﹣2,1). ………………3分(3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C . ∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC. 又∵BE=BE ,∴△ABE ≌△CBE (SAS ). ∴∠BAE =∠BCE . ∵AD ∥BC , ∴∠DFC =∠BCE .∴∠DFC =∠BAE . ………………3分 (3)连CG , AC .由()4,4P -轴对称可知,EA +EG =EC +EG ,CG 长就是EA +EG 的最小值. ………………4分∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.可求得3∴EA+EG3………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。