2020中考数学一轮基础考点训练18 全等三角形
- 格式:docx
- 大小:187.46 KB
- 文档页数:10
2020年中考数学一轮复习三角形有关概念及全等三角形测试题一、选择题(本大题有6小题,第6小题选做一题,每小题3分,共18分) 1、下列命题中,假命题...是( ) A .对顶角相等 B .三角形两边和小于第三边 C .菱形的四条边都相等 D .多边形的内角和等于360° 2、下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .5cm ,5cm ,11cm D .13cm ,12cm ,20cm3、如图,直线m∥n,∠1=70°,∠2=30°,则∠A 等于( ) A.30° B.35° C.40° D.50°4、如图4,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△CDB 的是( ) A .∠A=∠C B .AB =DC C .∠A DB =∠DBC D.AD =BC5、如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( ) A .65° B .60° C .55° D .45°6~A 、如图,△ABC 中,D 为AB 上一点,E 为BC 上一点, 且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( D ) A .50° B .51° C .51.5° D .52.5°6~B 、如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点M′、N′,则图中的全等三角形共有( )A .2对B .3对C .4对D .5对mn第3题图21CBAD第4题第5题二、填空题(本大题有6小题,第12小题选做一题,每小题3分,共18分) 7、在△ABC 中,∠C=90°,∠A=30°,若AB=6cm ,则BC= . 8、如图,在ΔABC 中,∠B=67°,∠C =33°,AD 是ΔABC 的角平分线,则∠CAD 的度数为9、如图,在▱ABCD 中,E 、F 为对角线AC 上两点,且BE∥DF, 请从图中找出一对全等三角形: .10、将一副直角三角板如图放置,使含30°角的三角板的 直角边和含45°角的三角板一条直角边在同一条直线上, 则∠1的度数为11、如图,OP 平分∠AOB,∠AOP=15°,PC∥OA, PD⊥OA 于点D ,PC=4,则PD= .12~A 、已知3是关于x 的方程x 2﹣(m+1)x+2m=0的 一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为12~B 、如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和 ∠ACF 的平分线交于点E ,则∠AEC=___ __° 三、本大题有5小题,每小题6分,共30分13、如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A=50°,∠ADE=60°,求∠C 的度数.14、如图,在△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,求∠EBC 的度数.CABDBFDE AC15、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.16、如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.17、如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.四、本大题有3小题,每小题8分,共24分18、将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.19、已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.20、如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.五、本大题2小题,第小题9分,共18分 21、问题引入:(1)如图①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A=α,则∠BOC= ___ _(用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=__ ____(用α表示).如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,请猜想∠BOC=______(用α表示).类比研究:(2)BO ,CO 分别是△ABC 的外角∠DBC,∠ECB 的n 等分线,它们交于点O ,∠CBO=1n∠DBC,∠BCO=1n ∠ECB,∠A=α,请猜想∠BOC=______.22、如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD⊥直线m, CE⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2) 如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互OCBA② ABCO①O C B AED③不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DE F 的形状.六、本大题从两小题中选做一题,共12分23~A 、一节数学课后,老师布置了一道课后练习题: 如图,已知在Rt△ABC 中,AB=BC ,∠ABC=90°,BO⊥AC,于点O ,点PD 分别在AO 和BC 上,PB=PD ,DE⊥AC 于点E ,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:ABCE D m(图1)(图2)(图3)mABCDEADEBFC m根据上述思路,请你完整地书写本题的证明过程. (2)特殊位置,证明结论若PB 平分∠ABO,其余条件不变.求证:AP=CD . (3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P′时,满足题中条件的点D 也随之在直线BC 上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)23~B 、某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是 (填序号即可) ①AF=AG=21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB=∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; ●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状. 答: .测试题答案一、选择题(本大题有6小题,第6小题选做一题,每小题3分,共18分) 1、下列命题中,假命题...是( D ) A .对顶角相等 B .三角形两边和小于第三边 C .菱形的四条边都相等 D .多边形的内角和等于360° 2、下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( D ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .5cm ,5cm ,11cm D .13cm ,12cm ,20cm3、如图,直线m∥n,∠1=70°,∠2=30°,则∠A 等于( C ) A.30° B.35° C.40° D.50°4、如图4,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△CDB 的是( D ) A .∠A=∠C B .AB =DC C .∠A DB =∠DBC D.AD =BC5、如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( A ) A .65° B .60° C .55° D .45°mn第3题图21CBAD第4题第5题6~A 、如图,△ABC 中,D 为AB 上一点,E 为BC 上一点, 且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( D ) A .50° B .51° C .51.5° D .52.5°6~B 、如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点M′、N′,则图中的全等三角形共有( C )A .2对B .3对C .4对D .5对二、填空题(本大题有6小题,第12小题选做一题,每小题3分,共18分) 7、在△ABC 中,∠C=90°,∠A=30°,若AB=6cm ,则BC= 3cm . 8、如图,在ΔABC 中,∠B=67°,∠C =33°,AD 是ΔABC 的角平分线,则∠CAD 的度数为 40°9、如图,在▱ABCD 中,E 、F 为对角线AC 上两点,且BE∥DF, 请从图中找出一对全等三角形: △ADF≌△BEC . 10、将一副直角三角板如图放置,使含30°角的三角板的 直角边和含45°角的三角板一条直角边在同一条直线上, 则∠1的度数为 75°11、如图,OP 平分∠AOB,∠AOP=15°,PC∥OA, PD⊥OA 于点D ,PC=4,则PD= 2 .12~A 、已知3是关于x 的方程x 2﹣(m+1)x+2m=0的 一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为 10或1112~B 、如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和 ∠ACF 的平分线交于点E ,则∠AEC=___66.5___° 三、本大题有5小题,每小题6分,共30分13、如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A=50°,∠ADE=60°,求∠C 的度数.解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°, ∵点D ,E 分别是AB ,AC 的中点,CABDBFDE AC∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°14、如图,在△ABC 中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,求∠EBC 的度数.解:在△ABC 中,AB=AC,∠A=36°得:∠ABC=∠C=72°.由AB的垂直平分线交AC得AE=BE,∴∠ABE=∠A=36°,∴∠EBC=72°-36°=36°.15、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.16、如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.17、如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.解:补充条件:EF=BC,可使得△ABC≌△DEF.理由如下:∵AF=DC,∴AF+FC=DC+FC,即:AC=DF,∵BC∥EF,∴∠EFD=∠BCA,在△EFD和△BCA中,,∴△EFD≌△BCA(SAS).四、本大题有3小题,每小题8分,共24分18、将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.19、已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.20、如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.五、本大题2小题,第小题9分,共18分21、问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=___ _(用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=__ ____(用α表示).如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,请猜想∠BOC=______(用α表示).类比研究:(2)BO ,CO 分别是△ABC 的外角∠DBC,∠ECB 的n 等分线,它们交于点O ,∠CBO=1n∠DBC,∠BCO=1n ∠ECB,∠A=α,请猜想∠BOC=______.解:(1)第一个空填:90°+2α;第二个空填:90°+3α.第三个空填:120°-3α.(2) 答案:120°-3α.过程如下:∠BOC=180°-(∠OBC+∠OCB) =180°- 1n (∠DBC+∠ECB)=180°-1n (180°+∠A)=n−1n·180°-αn .22、如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD⊥直线m, CE⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2) 如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DE F 的形状. OCBA② ABCO①O C B AED③ABCE Dm(图1)(图2)(图3)mABCDEADEBFC m证明:(1)∵BD⊥直线m,CE⊥直线m ∴∠B DA =∠CEA=90° ∵∠BAC=90°∴∠BA D+∠CAE=90° ∵∠BAD+∠AB D=90°∴∠CAE=∠AB D又AB=AC ∴△A DB ≌△CEA ∴AE =BD ,AD=CE ∴DE=AE+AD= BD+CE (2)∵∠BDA =∠BAC=, ∴∠DBA+∠BAD=∠BAD +∠CAE=180°— ∴∠DBA=∠CAE∵∠BDA=∠AEC=,AB=AC ∴△A DB ≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE (3)由(2)知,△A DB ≌△CEA , BD=AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形 ∴∠ABF=∠CAF=60° ∴∠DBA+∠ABF=∠CAE+∠CAF ∴∠DBF=∠FAE ∵B F=AF ∴△DBF ≌△EAF ∴DF=EF ,∠BFD=∠AFE ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60° ∴△DEF 为等边三角形.六、本大题从两小题中选做一题,共12分23~A 、一节数学课后,老师布置了一道课后练习题: 如图,已知在Rt△ABC 中,AB=BC ,∠ABC=90°,BO⊥AC,于点O ,点PD 分别在AO 和BC 上,PB=PD ,DE⊥AC 于点E ,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:ααα根据上述思路,请你完整地书写本题的证明过程. (2)特殊位置,证明结论若PB 平分∠ABO,其余条件不变.求证:AP=CD . (3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P′时,满足题中条件的点D 也随之在直线BC 上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程) (1)证明:∵PB=PD,∴∠2=∠PBD, ∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4, ∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°, 在△BPO 和△PDE 中∴△BPO≌△PDE(AAS );(2)证明:由(1)可得:∠3=∠4,∵BP 平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4, 在△ABP 和△CPD 中∴△ABP≌△CPD(AAS ),∴AP=CD.(3)CD′与AP′的数量关系是CD′=AP′.23~B 、某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是 (填序号即可) ①AF=AG=21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB=∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; ●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状.答: .解:●操作发现:①②③④●数学思考:答:MD=ME ,MD ⊥ME , 1、MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG , ∵M 是BC 的中点, ∴MF ∥AC ,MF=21AC . 又∵EG 是等腰Rt △AEC 斜边上的中线, ∴EG ⊥AC 且EG=21AC ,∴MF=EG . 同理可证DF=MG . ∵MF ∥AC ,∴∠MFA +∠BAC=180°.同理可得∠MGA+∠BAC=180°, ∴∠MFA=∠MGA .又∵EG ⊥AC ,∴∠EGA=90°. 同理可得∠DFA=90°,∴∠MFA+∠DFA=∠MGA=∠EGA ,即∠DFM=∠MEG ,又MF=EG ,DF=MG , ∴△DFM ≌△MGE (SAS ), ∴MD=ME . 2、MD ⊥ME ;∵MG ∥AB ,∴∠MFA+∠FMG=180°,又∵△DFM ≌△MGE ,∴∠MEG=∠MDF.∴∠MFA+∠FMD+∠DME+∠MDF=180°, 其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°.即MD ⊥ME ; ●类比探究答:等腰直角三解形。
2020年中考数学一轮专项复习——全等三角形基础过关1. (2019安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. ∠A=∠DB. AC=DFC. AB=EDD. BF=EC第1题图2. 如图,△ABC中AB=AC,EB=EC,则由“SSS”可以直接判定()A. △ABD≌△ACDB. △ABE≌△ACEC. △BDE≌△CDED. 以上答案都不对第2题图3. (2019柳州)如图,在▱ABCD中,全等三角形的对数共有()A. 2对B. 3对C. 4对D. 5对第3题图4. 如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°第4题图5. (2019呼和浩特)下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题序号为________.6. (人教八上P56复习题12第9题改编)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E,若AD=2.5 cm,DE=1.7 cm.则BE的长________.第6题图7. 如图,AB=DE,AC=DF,已知点E、C在线段上BF上,BE=CF,求证:△ABC≌△DEF.第7题图8. (2019陕西)如图,点A、E、F、B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.第8题图9.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.第9题图10.已知:在△ABC中,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E、F,且DE=DF. 求证:∠A=∠C.11. 如图,在四边形ABCD中,AB∥CD,∠ADE=∠ECD,DB=DC.求证:△ABD≌△EDC.第11题图能力提升1. 如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD的面积为43,则AC=________.2. (2019温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED 的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.第2题图满分冲关(2019安顺)(1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系为________;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.题图参考答案基础过关1. A 【解析】由题意可知,∵AB ∥ED ,∴∠ABC =∠DEF ,又∵AC ∥DF ,∴∠DFE =∠ACB ,B 、C 、D 选项中已知条件均可与题干中的条件构成角角边或角边角,使得△ABC ≌△DEF ,A 选项中∠A =∠D ,可判定△ABC ∽△DEF ,并不能判定全等.2. B3. C 【解析】△ABD ≌△CDB ,△ADO ≌△CBO ,△AOB ≌△COD ,△ABC ≌△CDA ,共4对全等三角形.4. C 【解析】∵△ACB ≌△A ′CB ′,∴∠A ′CB ′=∠ACB =70°.∵∠ACB ′=100°,∴∠BCB ′=∠ACB ′-∠ACB =30°.∴∠BCA ′=∠A ′CB ′-∠BCB ′=40°.5. ①②6. 0.8 cm 【解析】∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°,∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,⎩⎪⎨⎪⎧∠E =∠ADC ∠EBC =∠DCA BC =CA,∴△CEB ≌△ADC (AAS),∴BE =DC ,CE =AD =2.5 cm.∵DC =CE -DE =2.5-1.7=0.8 cm ,∴BE =0.8 cm.7. 证明:∵BE =CF , ∴BE +EC =CF +EC , ∴BC =EF ,在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE AC =DF BC =EF, ∴△ABC ≌△DEF (SSS).8. 证明:∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE , ∵AC ∥BD , ∴∠CAF =∠DBE , 在△ACF 与△BDE 中, ⎩⎪⎨⎪⎧AC =BD ∠CAF =∠DBE AF =BE, ∴△ACF ≌△BDE (SAS). ∴CF =DE .9. 证明:∵AC ∥DE ,∴∠ACD =∠D ,∠E =∠ACB , 又∵∠ACD =∠B , ∴∠D =∠B ,在△ABC 和△CDE 中, ⎩⎪⎨⎪⎧∠ACB =∠E ∠B =∠D AC =CE, ∴△ABC ≌△CDE (AAS).10. 证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E 、F , ∴∠AED =∠CFD =90°, ∵D 为AC 的中点, ∴AD =DC .在Rt △ADE 和Rt △CDF 中,⎩⎪⎨⎪⎧AD =DC DE =DF , ∴Rt △ADE ≌Rt △CDF (HL), ∴∠A =∠C .11. 证明:∵AB ∥CD , ∴∠ABD =∠EDC , 在△ABD 和△EDC 中, ⎩⎪⎨⎪⎧∠1=∠2DB =DC ∠ABD =∠EDC, ∴△ABD ≌△EDC (ASA).能力提升1. 4 【解析】如解图,将△ACD 绕点A 顺时针旋转60°,得到△AEB .∵四边形内角和360°,∠BAD +∠BCD =120°,∴∠D +∠ABC =180°,∴∠ABE +ABC =180°,∴E 、B 、C 三点共线,根据旋转性质可知∠EAC =60°,AE =AC ,∴△AEC 是等边三角形,S 四边形ABCD =S △AEC =34AC 2=43,解得AC =4(负值已舍).第1题解图2. (1)证明:∵CF ∥AB , ∴∠B =∠FCD ,∠BED =∠F . ∵AD 是BC 边上的中线, ∴BD =CD ,在△BDE 和△CDF 中, ⎩⎪⎨⎪⎧∠EBD =∠FCD ∠BED =∠CFD BD =CD, ∴△BDE ≌△CDF (AAS); (2)解:∵△BDE ≌△CDF , ∴BE =CF =2,∴AB =AE +BE =1+2=3. ∵AD ⊥BC ,BD =CD , ∴AC =AB =3.满分冲关解:(1)AD =AB +DC ;【解法提示】∵AB ∥CD ,∴∠EFC =∠EAB ,又∵AE 平分∠DAB ,∴∠DAE =∠EAB ,∴∠DAE =∠EFC ,∴DF =AD ,又∵DF =DC +CF ,CF =AB ,∴AD =AB +DC .(2)AB =AF +CF .证明:如解图,延长AE 交DF 的延长线于点G ,解图∵E 是BC 的中点, ∴CE =BE , ∵AB ∥DC , ∴∠BAE =∠G .在△AEB 和△GEC 中, ⎩⎪⎨⎪⎧∠BAE =∠G ∠AEB =∠GEC BE =CE,∴△AEB ≌△GEC ,∴AB =GC , ∵AE 是∠BAF 的平分线, ∴∠BAG =∠F AG ,∵∠BAG =∠G ,∴∠F AG =∠G ,∴F A =FG ,∵CG =CF +FG ,∴AB =AF +CF .。
2020年中考数学一轮复习单元检测试卷第十二单元《全等三角形》考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.下列图形是全等图形的是()A .B .C .D .2.如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF 交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB第2题第3题第4题第5题3.如图,已知∠1=∠2,添加下列某条件,未必能判定△ABC≌BAD的是()A.AC=BD B.AD=BC C.∠l=∠2D.∠C=∠D4.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()5.如图,在△PAB中,PA=PB,D、E、F分别是边PA,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°6.已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围得分评卷人分别是()A.4<BC<20,2<AD<10B.4<BC<20,4<AD<20C.2<BC<10,2<AD<10D.2<BC<10,4<AD<207.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE8.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块第7题第8题第9题第10题9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD =CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD 的面积=AC•BD,其中正确的结论有()A.①②B.①③C.②③D.①②③10.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,共20分)11.如图,在△ABC中,AB=3,AC=2,BC边上的中线AD的长是整数,则AD=.得分评卷人第11题第12题第13题第14题12.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数.13.如图,AB=AC,要说明△ADC≌△AEB,添加的条件可以是(填写序号即可)①∠B=∠C②DC=BE③AD=AE④∠ADC=∠AEB14.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.如图,△ACE≌△DBF,AC=6,BC=4.(1)求证:AE∥DF;(2)求AD的长度.16.如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF,求证:△ADE≌△CFE.得分评卷人17.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.18.如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=4,求BC的长.19.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.20.如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,BD、CE、DE有什么数量关系?并证明.21.在△ABC中,D为BC上一点,连接AD,过点B作BE垂直于CA的延长线于点E,BE与DA的延长线相交于点F.(1)如图1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的长;(2)如图2,若AB=AC,∠ADB=45°,求证;BC=DF.22.在△ABC中,AC=BC,D,E,F分别是直线AC,AB,BC上的点,且AD=BE,AE =BF.(1)如图1,若∠DEF=30°,求∠ACB的度数;(2)设∠ACB=x°,∠DEF=y°,∠AED=z°.①求y与x之间的数量关系;②如图2,E为AB的中点,求y与z之间的数量关系;③如图2,E为AB的中点,若DF与AB之间的距离为8,AC=16,求△ABC的面积.23.如图,在△ABC中,∠ABC的平分线BE与∠ACB外角的平分线CE交于点E.(1)如图1,若∠BAC=40°,求∠BEC的度数;(2)如图2,将∠BAC变为60°,则∠BEC=°.并直接写出∠BAC与∠BEC 的关系;(3)在图1的基础上过点E分别作EN⊥BA于N,EQ⊥AC于Q,EM⊥BD于M,如图3,求证:△ANE≌AQE,并直接写出∠NAE的度数.参考答案与试题解析一.选择题(共10小题)1.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.2.解:∵△ABC≌△DEF,∴∠ACB=∠DFE,∵∠AMF=∠ACB+∠DFE,∴∠AMF=2∠ACB,故选:B.3.解:A、∵AC=BD,∠1=∠2,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;C、∵∠1=∠2,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;D、∵∠C=∠D,∠1=∠2,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:B.4.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.5.解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=34°,∴∠P=180°﹣∠A﹣∠B=112°,故选:A.6.解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD(SAS),∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故选:A.7.解:∵CE=BF,∴CE﹣EF=BF=EF,∴CF=BE,∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△CFD和Rt△BEA中,,∴Rt△CFD≌Rt△BEA(HL),∴∠C=∠B,∠D=∠A,∴CD∥AB,故A,B,D正确,∵∠C+∠D=90°,∴∠A+∠C=90°,故C错误,故选:C.8.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.9.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=,故③正确;故选:D .10.解:∵AD 平分∠BAC ,∴∠DAC =∠DAE ,∵∠C =90°,DE ⊥AB ,∴∠C =∠E =90°,∵AD =AD ,∴△DAC ≌△DAE (AAS ),∴∠CDA =∠EDA ,∴①AD 平分∠CDE 正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,∵AC =4BE ,∴AB =5BE ,AE =4BE ,∴S △ADB =5S △BDE ,S △ADC =4S △BDE ,∴S △ABC =9S △BDE ,∴④错误;∵∠BDE =90°﹣∠B ,∠BAC =90°﹣∠B ,∴∠BDE =∠BAC ,∴②∠BAC =∠BDE 正确.故选:B .二.填空题(共4小题)11.解:如右图,AB =3,AC =2,AD 是BC 上的中线,延长AD 到E ,使DE =AD ,连接BE ,∵AD =DE ,∠ADC =∠EDB ,BD =CD ,∴△ADC ≌△EDB (SAS ),∴BE =AC =2,在△ABE 中,BE ﹣AB <AE <AB +BE ,即1<2AD <5,解得<AD<,又∵AD是整数,∴AD=1或2,故答案为:1或2.12.解:∵∠ACB=108°,∠B=48°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣48°﹣108°=24°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=24°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=12°,∴∠EAB=24°+12°+24°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣48°=72°,∴∠DEF=∠AED﹣∠AEB=108°﹣72°=36°.故答案为:36°13.解:在△ADC和△AEB中,∵AC=AB,∠A=∠A,如果根据SAS证明△ADC≌△AEB,需要添加AD=AE,如果根据AAS证明△ADC≌△AEB,需要添加∠ADC=∠AEB,如果根据ASA证明△ADC≌△AEB,需要添加∠C=∠B,故答案为①③④.14.解:以P,O,Q为顶点的三角形与△COQ全等,①如图1所示,当△POQ≌△COQ时,即OP=OC=1,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB==2,∵PE∥BF,∴△POE∽△BOF,∴,∴==,∴PE=,OE=,∴点P的坐标为(,);②如图2,当△POQ≌△CQO时,即QP=OC=4,OP=CQ,∴四边形PQCO是平行四边形,∴PQ∥OA,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB==2,∵PQ∥OA,∴=,∴PB=,∴PE=,∴点P是OB的中点,∵PE∥BF,∴PE=BF=3,OE=EF=1,∴点P的坐标为(1,3),综上所述,点P的坐标为(,)或(1,3).故答案为:(,)或(1,3).三.解答题(共9小题)15.证明:(1)∵△ACE≌△DBF,∴∠A=∠D,∴AE∥DF.(2)∵△ACE≌△DBF,∴AC=DB,∴AB=DC=AC﹣BC=6﹣4=2,∴AD=AC+CD=6+2=8.16.证明:∵AB=BD+CF,又∵AB=BD+AD,∴CF=AD∵AB∥CF,∴∠A=∠ACF,∠ADF=∠F在△ADE与△CFE中,∴△ADE≌△CFE(ASA).17.证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.18.(1)证明:∵AC∥DE,∴∠ACB=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(AAS).(2)解:∵BF=14,EC=4,∴BE+CF=14﹣4=10,∵BE=CF,∴BE=CF=5,∴BC=BE+EC=5+4=9.19.(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.20.证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∴∠DBA+∠DAB=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,且AB=AC,∠D=∠E=90°,∴△ADB≌△CEA(AAS),∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;(2)BD=DE+CE,理由如下:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠ABD+∠EAC=90°,∴∠BAD=∠EAC,且AB=AC,∠ADB=∠AEC=90°,∴△ADB≌△CEA(AAS)∴BD=AE,CE=AD,∵AE=AD+DE,∴BD=CE+DE.21.解:(1)作AH⊥BC于H.∵AB平分∠EBC,AE⊥BF,AH⊥BC,∴AE=AH=3,在Rt△AHD中,∵∠ADH=30°,∴AD=2AH=6,DH==3,在Rt△ACH中,CH==2,∴CD=CH﹣DH=2﹣3.(2)如图,作FM⊥BC于M.AN⊥BC于N,设AE交FM于点O.∵CE⊥BF,FM⊥BC,∴∠OEF=∠OMC,∵∠EOF=∠MOC,∴∠OFE=∠C,∵AB=AC,∴∠C=∠ABC,∴∠OFE=∠B,∵∠FDM=∠MFD=45°,∴FM=DM,DF=FM,∵∠BFA=45°+∠BFM,∠BAF=∠ABC+∠ADB=45°+∠ABD,∴∠BFA=∠BAF,∴BF=BA,∵∠BFA=∠ABN,BF=BA,∠FMB=∠ANB=90°,∴△FMB≌△BNA(AAS),∴FM=BN,∴BC=2BN=2FM=DF.22.(1)解:∵AC=CB,∴∠A=∠B,∵AD=BE,AE=BF,∴△DAE≌△EBF(SAS),∴∠ADE=∠BEF,∵∠ADE+∠AED+∠A=180°,∠BEF+∠DEF+∠AED=180°,∴∠A=∠DEF=30°,∴∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°.(2)①证明:如图1中,由(1)可知△DAE≌△EBF,∴∠ADE=∠BEF,∵∠ADE+∠AED+∠A=180°,∠BEF+∠DEF+∠AED=180°,∴∠A=∠DEF=y°,∴∠A=∠B=y°,∴x+2y=180°,∴y=90°﹣0.5x.②如图2中,连接EC,作EM⊥AC与M,DN⊥AB与N.∵△DAE≌△EBF,∴AD=EB,∵EA=EB,∴AE=EB=BF=AD,∴∠ADE=∠AED=z°,∴y=180﹣2z.(3)如图2﹣1中,连接CE,作DN⊥AB于N,EM⊥AC于M.∵•AD•EM=•AE•DN,AD=AE,∴EM=DN=8,∵AE=EB,∴S△ABC =2S△ACE=2וAC•EM=128.23.解:(1)依据三角形外角性质∠A=∠ACD﹣∠ABC,∠E=∠ECD﹣∠EBD ∵∠ABC的平分线与∠ACB外角的平分线交于点E,∴∠EBD=∠ABC,∠ECD=∠ACD∴∠E=∠ECD﹣∠EBD=∠ACD﹣∠ABC=∠A=20°.(2)由(1)可知∠E=∠A,∴∠BEC=∠A=30°,故答案为30.(3)连接AE.∵CE平分∠ACD,EQ⊥AC,EM⊥BD,∴EQ=EM,同理EN=EM∴EN=EQ,在Rt△ANE和Rt△AQE中,,∴Rt△ANE≌Rt△AQE(HL),∴∠EAQ=∠EAN,∵∠BAC=40°,∴∠NAQ=140°,∴∠NAE=×140°=70°.。
2020-2021 中考数学一轮训练:全等三角形一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°3. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对4. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°5. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°6. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c7. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°8. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.11. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.12. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.13. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.16. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.三、解答题17. 如图2-Z-20,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.18. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.19. 如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE-AC.20. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.22. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD <60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2020-2021 中考数学 一轮训练:全等三角形-答案一、选择题 1. 【答案】D2. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC =30°,∴∠AOB =60°.3. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中,⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).4. 【答案】C[解析] 对于选项A 来说,AB +BC<AC ,不能画出△ABC ;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.5. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.6. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.7. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.8. 【答案】A[解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.二、填空题9. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.10. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.11. 【答案】70[解析] ∵△ABC≌△ADE,∴∠B=∠D.∵∠GFD=∠AFB,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.12. 【答案】(4,0)或(4,4)或(0,4)13. 【答案】4[解析] ∵△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.14. 【答案】①②③[解析] 由△ABO≌△ADO,得AB=AD,∠AOB=∠AOD=90°,∠BAC=∠DAC.又因为AC=AC,所以△ABC≌△ADC,则CB=CD.所以①②③正确.15. 【答案】8[解析]∵DC⊥BC,∴∠BCD=90°.∵∠ACB=120°,∴∠ACD=30°.延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD.在△ADH与△BDC中,∴△ADH≌△BDC(SAS),∴AH=BC=4,∠H=∠BCD=90°.∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.三、解答题17. 【答案】证明:∵C是AB的中点,∴AC=CB.在△ACD 和△CBE 中,∴△ACD ≌△CBE (SSS). ∴∠A=∠ECB.∴AD ∥CE.∴∠A+∠ECA=180°.18. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10, ∴AB=CD=(AD-BC )=3.19. 【答案】证明:∵AC ∥BE ,∴∠C =∠DBE ,∠A +∠ABE =180°. ∵∠BDE +∠CDE =180°,∠ABE =∠CDE , ∴∠A =∠BDE.在△ABC 和△DEB 中,⎩⎨⎧∠C =∠DBE ,∠A =∠BDE ,AB =DE ,∴△ABC ≌△DEB(AAS). ∴AC =DB ,BC =EB. 又∵DC =BC -BD , ∴DC =BE -AC.20. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高, ∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°. ∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD. ∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .21. 【答案】(1)证明:∵四边形ABCD 是矩形, ∴∠EAM =∠FDM =90°, ∵M 是AD 的中点, ∴AM =DM ,在△AME 和△DMF 中,⎩⎨⎧∠A =∠FDBAM =DM∠AME =∠DMF, ∴△AEM ≌△DFM (ASA);(2)证明:如解图①,过点G 作GH ⊥AD 于H ,解图①∵∠A =∠B =∠AHG =90°, ∴四边形ABGH 是矩形, ∴GH =AB =2, ∵M 是AD 的中点,∴AM =12AD =2,∴AM =GH , ∵MG ⊥EF ,∴∠GME =90° ∴∠AME +∠GMH =90°. ∵∠AME +∠AEM =90°, ∴∠AEM =∠GMH , 在△AEM 和△HMG 中,⎩⎨⎧AM =GH∠AEM =∠GMH ∠A =∠AHG, ∴△AEM ≌△HMG ,∴ME =MG ,∴∠EGM =45°,由(1)得△AEM ≌△DFM ,∴ME =MF ,∵MG ⊥EF ,FMG EMG ≌△△∴,∴GE =GF ,∴∠EGF =2∠EGM =90°,∴△GEF 是等腰直角三角形.(3)解:如解图②,过点G 作GH ⊥AD 交AD 延长线于点H ,解图②∵∠A =∠B =∠AHG =90°,∴四边形ABGH 是矩形,∴GH =AB =23,∵MG ⊥EF ,∴∠GME =90°,∴∠AME +∠GMH =90°,∵∠AME +∠AEM =90°,∴∠AEM =∠GMH ,又∵∠A =∠GHM =90°,∴△AEM ∽△HMG ,∴EM MG =AM GH ,在Rt △GME 中,tan ∠MEG =MG EM = 3.∴n =322. 【答案】 (1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD,∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MGCG ,即382=MG4-MG ,∴MG =127,BG =267,EG =407,∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GBGE , ∴BP =261315.。
2020年中考数学一轮复习:几何基础与三角形过关测试卷一、选择题(本大题共8小题,每小题3分,每小题只有一个正确答案,共24分)1.(3分)如图,AB∥CD,∠DCE=80°,则∠BEF=()A.120°B.110°C.100°D.80°2.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.93.(3分)如图,直线EO⊥AB于O,CD平分∠EOB,则∠BOC的度数为()A.120°B.130°C.135°D.140°4.(3分)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于()A.40°B.65°C.75°D.115°5.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA 6.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.77.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.248.(3分)如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C 个数是()A.2B.3C.4D.5二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=度.10.(3分)如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为.11.(3分)如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=度.12.(3分)某多边形内角和与外角和共1080°,则这个多边形的边数是.13.(3分)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,若BD=5,BD:CD=5:3,AB=10,则△ABD的面积是.14.(3分)如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.15.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=cm.16.(3分)如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF丄BC;②△ADG≌△ACF;③O为BC的中点;④AG:DE=:4,其中正确结论的序号是.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)如图,D是AB上一点,DF交AC于点E,AE=EC,CF∥AB.求证:AD=CF.18.(6分)如图,AB∥CD.(1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法).(2)在(1)中作出的线段CE上取一点F,连接AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).19.(6分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明:猜想:;证明:.四、(本大题共2小题,每小题8分,共16分)20.(8分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.21.(8分)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.五、(本大题共2小题,每小题9分,共18分)22.(9分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.23.(9分)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.六、(本小题共2小题,每小题10分,共20分)24.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求P A+PC的最小值是;(3)如图4,∠AOB=45°,P是∠AOB内一点,PO=5,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.25.(10分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,每小题只有一个正确答案,共24分)1.(3分)如图,AB∥CD,∠DCE=80°,则∠BEF=()A.120°B.110°C.100°D.80°【分析】根据平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.【解答】解:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°﹣80°=100°.故选:C.2.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.9【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.3.(3分)如图,直线EO⊥AB于O,CD平分∠EOB,则∠BOC的度数为()A.120°B.130°C.135°D.140°【分析】根据直线EO⊥AB,可知∠EOB=90°,根据CD平分∠EOB,可知∠BOD=45°,再根据邻补角的定义即可求出∠BOC的度数.【解答】解:∵EO⊥AB,∴∠EOB=90°,∵CD平分∠EOB,∴∠BOD=45°,∴∠BOC=180°﹣45°=135°,故选:C.4.(3分)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于()A.40°B.65°C.75°D.115°【分析】由∠A=40°,∠AOB=75°,根据三角形内角和定理,即可求得∠B的度数,又由AB∥CD,根据两直线平行,内错角相等,即可求得∠C的值.【解答】解:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.故选:B.5.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA 【分析】根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL分别进行分析即可.【解答】解:A、添加BD=CD不能判定△ABD≌△ACD,故此选项符合题意;B、添加AB=AC可利用SAS定理判定△ABD≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用AAS定理判定△ABD≌△ACD,故此选项不合题意;D、添加∠BDA=∠CDA可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;故选:A.6.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.7.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.24【分析】根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.【解答】解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴AD=BE=2,各等边三角形的边长均为4.∴四边形ABFD的周长=AD+AB+BE+FE+DF=16.故选:B.8.(3分)如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C 个数是()A.2B.3C.4D.5【分析】根据三角形ABC的面积为2,可知三角形的底边长为4,高为1,或者底边为2,高为2,可通过在正方形网格中画图得出结果.【解答】解:C点所有的情况如图所示:故选:C.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=110度.【分析】根据等腰三角形的性质得到∠B=∠ACB,根据三角形的内角和定理求出∠B,∠根据三角形的外角性质即可求出答案.【解答】解:∵AB=AC,∴∠B=∠ACB,∵∠A=40°,∴∠B=∠ACB=(180°﹣∠A)=70°,∴∠BCD=∠A+∠B=40°+70°=110°,故答案为:110.10.(3分)如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为120°.【分析】先利用邻补角可计算出∠BDC=30°,再利用平行线的性质得∠ABD=∠BDC =30°,接着根据角平分线定义得∠CBD=∠ABD=30°,然后根据三角形内角和计算∠C的度数.【解答】解:∵∠CDE=150°,∴∠BDC=180°﹣150°=30°,∵AB∥CD,∴∠ABD=∠BDC=30°,∵BE平分∠ABC,∴∠CBD=∠ABD=30°,∴∠C=180°﹣∠BDC﹣∠CBD=180°﹣30°﹣30°=120°.故答案为120°.11.(3分)如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=95度.【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.【解答】解:∵△OAD≌△OBC,∴∠OAD=∠OBC;在△OBC中,∠O=65°,∠C=20°,∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;∴∠OAD=∠OBC=95°.故答案为:95.12.(3分)某多边形内角和与外角和共1080°,则这个多边形的边数是6.【分析】先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.【解答】解:∵多边形内角和与外角和共1080°,∴多边形内角和=1080°﹣360°=720°,设多边形的边数是n,∴(n﹣2)×180°=720°,解得n=6.故答案为:6.13.(3分)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,若BD=5,BD:CD=5:3,AB=10,则△ABD的面积是15.【分析】过D作DE⊥AB于E,由BD=5,BD:CD=5:3,即可求得CD的长,然后由角平分线的性质,求得DE的长,继而求得答案.【解答】解:过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC,∵BD=5,BD:CD=5:3,∴CD=3,∵在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,∴DE=CD=3,∵AB=10,∴△ABD的面积是:AB•DE=×10×3=15.故答案为:15.14.(3分)如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为8cm.【分析】由于DE为AB的垂直平分线,根据线段垂直平分线的性质得到CD=BD,由此推出△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,即可求得△ACD的周长.【解答】解:∵DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=3cm,AB=5cm,∴△ACD的周长为3+5=8cm.故答案为:8.15.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=5cm.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:516.(3分)如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF丄BC;②△ADG≌△ACF;③O为BC的中点;④AG:DE=:4,其中正确结论的序号是①②③④.【分析】①根据已知得出∠CAF=30°,∠GAF=60°,进而得出∠AFB的度数;②利用ASA证明△ADG≌△ACF得出答案;③利用△AGO≌△AFO,得出AO=CO=AC,进而得出BO=CO=AO,即O为BC的中点;④利用假设DG=x,∠DAG=30°,得出AG=x,GE=3x,进而得出答案.【解答】解:∵两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.∴∠CAF=30°,∴∠GAF=60°,∴∠AFB=90°,∴AF丄BC故①正确;∵AD=AC,∠DAG=∠CAF,∠D=∠C=60°,∴△ADG≌△ACF故②正确;∵△ADG≌△ACF,∴AG=AF,∵AO=AO,∠AGO=∠AFO=90°,∴△AGO≌△AFO(HL),∴∠OAF=30°,∴∠OAC=60°,∴AO=CO=AC,BO=CO=AO,∴O为BC的中点故③正确;假设DG=x,∵∠DAG=30°,∴AG=x,∴GE=3x,④∵DE=DG+GE=4x∴AG:DE=:4故④正确;故答案为:①②③④.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)如图,D是AB上一点,DF交AC于点E,AE=EC,CF∥AB.求证:AD=CF.【分析】求证边相等,要先想到利用全等三角形的性质,这是一般思路.根据ASA证明△AED≌△CEF求解.【解答】证明:∵AB∥CF,∴∠A=∠ECF.又∵∠AED=∠CEF,AE=CE,∴△AED≌△CEF.∴AD=CF.18.(6分)如图,AB∥CD.(1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法).(2)在(1)中作出的线段CE上取一点F,连接AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).【分析】(1)本题首先作出图形.(2)要使△ACF≌△AEF,添加AF⊥CE或∠CAF=∠EAF后可分别根据AAS判定△ACF ≌△AEF.【解答】解:(1)作图如右;(2)取点F和画AF正确(如图);添加的条件可以是:添加AF⊥CE,可根据AAS判定△ACF≌△AEF;添加∠CAF=∠EAF,可根据AAS判定△ACF≌△AEF等.(选一个即可)19.(6分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明:猜想:BE∥DF,BE=DF;证明:连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE∥DF,BE=DF.【分析】首先连接BD,交AC于点O,连接DE,BF.由四边形ABCD是平行四边形,可得BO=OD,AO=CO,又由CE=AF,可得OE=OF,即可证得四边形BEDF是平行四边形,则可得BE∥DF,BE=DF【解答】答:猜想:BE∥DF,BE=DF.证明:证法一:如图1,∵四边形ABCD是平行四边形.∴BC=AD,∠1=∠2,∵在△BCE和△DAF中,,∴△BCE≌△DAF(SAS),∴BE=DF,∠3=∠4,∴BE∥DF.证法二:如图2,连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE∥DF,BE=DF.故答案为:BE∥DF,BE=DF;连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE∥DF,BE=DF.四、(本大题共2小题,每小题8分,共16分)20.(8分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=5;【解答】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.21.(8分)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【分析】(1)因为这两个三角形是直角三角形,BC=BD,因为AD∥BC,还能推出∠ADB =∠EBC,从而能证明:△ABD≌△ECB.(2)因为∠DBC=50°,BC=BD,可求出∠BDC的度数,进而求出∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∵∠A=∠CEB,AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠BCE,又∵BC=BD∴△ABD≌△ECB;(2)解:∵∠DBC=50°,BC=BD,∴∠EDC=(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.五、(本大题共2小题,每小题9分,共18分)22.(9分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.【分析】(1)由OB=OC,即可求得∠OBC=∠OCB,又由,锐角△ABC的两条高BD、CE相交于点O,根据三角形的内角和等于180°,即可证得△ABC是等腰三角形;(2)首先连接AO并延长交BC于F,通过证△AOB≌△AOC(SSS),得到∠BAF=∠CAF,即点O在∠BAC的角平分线上.【解答】(1)证明:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:点O在∠BAC的角平分线上.理由:连接AO并延长交BC于F,在△AOB和△AOC中,∴△AOB≌△AOC(SSS).∴∠BAF=∠CAF,∴点O在∠BAC的角平分线上.23.(9分)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.【解答】解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠F AC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B∴∠FED=2∠B,∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.六、(本小题共2小题,每小题10分,共20分)24.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求P A+PC的最小值是2;(3)如图4,∠AOB=45°,P是∠AOB内一点,PO=5,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【分析】(1)由题意易得PB+PE=PD+PE=DE,在△ADE中,根据勾股定理求得即可;(2)作A关于OB的对称点A′,连接A′C,交OB于P,求A′C的长,即是P A+PC 的最小值;(3)作出点P关于直线OA的对称点M,关于直线OB的对称点N,连接MN,它分别与OA,OB的交点Q、R,这时三角形PEF的周长=MN,只要求MN的长就行了.【解答】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE==;(2)作A关于OB的对称点A′,连接A′C,交OB于P,P A+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=,∴A′C=2,即P A+PC的最小值是2;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB 于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=5,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===5.即△PQR周长的最小值等于5.故答案为:;2.25.(10分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CQM 的度数.(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ =90°时利用直角三角形的性质定理求得t的值.(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°。
2020初中数学中考一轮复习能力达标训练:三角形(附答案)1.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中AC边上的高是()A B C D2.用长分别为5,7,9,13(单位:厘米)的四段木棒为边摆三角形,可摆出不同的三角形的个数为( )A.1个B.2个C.3个D.4个3.下列命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为()A.1个B.2个C.3个D.4个4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.(A)B.(B)C.(C)D.(D)5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD 6.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=()7.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5 B.1 C.1.5 D.28.等腰ABC△的周长为10,则其腰长x的取值范围是().A.52x>B.5x<C.552x<<D.552x≤≤9.在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠C=∠C′,AC=A′C′,BC=B′C′B.∠B=∠B′,∠C=∠C′,AB=A′B′C.∠A=∠A′,AB=A′B′,BC=B′C′D.AB=A′B′,BC=B′C′,AC=A′C10.下列说法:①若C是AB的中点,则AC=BC;②若AC=BC,则点C是AB的中点;③若OC是∠AOB的平分线,则∠AOC=12∠AOB;④若∠AOC=12∠AOB,则OC是∠AOB的平分线,其中正确的有()A.1个B.3个C.2个D.4个11.在△ABC中,若AB=4,BC=2,且AC的长为偶数,则AC=_____.12.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.13.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,已知BAC ∠.求作: BAC ∠的角平分线AP .小霞的作法如下:(1)如图,在平面内任取一点O ;(2)以点O 为圆心,AO 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作射线OP 垂直线段DE ,交⊙O 于点P ;(4)连接AP .所以射线AP 为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是___________________________________________.14.若等腰三角形的腰长为6,则它的底边长a 的取值范围是________;若等腰三角形的底边长为4,则它的腰长b 的取值范围是_______.15.如图,AB CD ,一副三角板按如图所示放置,AEG 30∠=︒.则HFD ∠的度数为_______.16.若一个三角形的三边长分别为3 m ,4 m ,5 m ,那么这个三角形的面积为___. 17.如图三角形ABC 中,∠C = 90° ,AC=23,BC=32,把AC 、BC 、AB 的大小关系用“>”号连接:__________________________.18.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=_____cm.19.如图:△ABC中,∠C=90°,AD 平分∠BAC交CB于点D.现将直角边AC沿直线AD折叠,AC边恰好落在斜边上,且点C与斜边AB的中点E刚好重合,若CD=3,则BD=________________.20.如图,在矩形ABCD中,点G在AD上,且GD=AB=1,AG=2,点E是线段BC上的一个动点(点E不与点B,C重合),连接GB,GE,将△GBE关于直线GE对称的三角形记作△GFE,当点E运动到使点F落在矩形任意一边所在的直线上时,则所有满足条件的线段BE的长是__________.21.如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AB=弧AE,BE 分别交AD ,AC 于点F ,G.(1)求证:FA =FG ;(2)若BD =DO =2,求弧EC 的长度.22.如图,△ABC 中,∠ACB=90°,AD 平分∠BAC ,DE ⊥AB 于E .(1)若∠BAC=50°,求∠EDA 的度数;(2)求证:直线AD 是线段CE 的垂直平分线.23.已知:如图,四边形ABCD 是平行四边形.(1)用直尺和圆规在BC 、AD 上分别求作点E ,F 使AECF 为菱形(不要求写作法,保留作图痕迹);(2)求证:AECF 为菱形.24.如图,在△ABC 中,AB 的垂直平分线ED 交AC 于D ,如果AC =7,BC =5,求△BDC 的周长.25.如图,已知⊙O 的半径长为1,AB 、AC 是⊙O 的两条弦,且AB =AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ∆∽ABD ∆;(2)记A O B ∆、AOD ∆、COD ∆的面积分别为1S 、2S 、3S ,若2213S S S =,求OD 的长.26.如图,在△ABC中,AB=3,AC=5,BC边上的中线AD=2,延长AD到点E,使DE=AD,连接CE.(1)求证:AE⊥CE;(2)求BD的长。
专题4.3 全等三角形考点1:全等形和全等三角形性质例1.(1)(2022秋·江苏连云港·八年级校考阶段练习)下列图标中,不是由全等图形组合成的是()A.B.C.D.(2)(2023秋·浙江台州·八年级统考期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F=______°.(3)(2022秋·湖南岳阳·八年级校考期中)如图,△ABC≌△DEC,点B、C、D在同一直线上,且BD=12,AC=7,则CE长为____________.知识点训练1.(2023秋·河北邢台·八年级统考期末)与下图全等的图形是()A.B.C.D.2.(2020秋·江苏常州·八年级常州市清潭中学校考期中)找出下列各组图中的全等图形()A.②和⑥B.②和⑦C.③和④D.⑥和⑦3.(2022秋·福建龙岩·八年级统考期末)如图,△DBC≌△ECB,且BE与CD相交于点A,下列结论错误的是()A.BE=CD B.AB=ACC.∠D=∠E D.BD=AE4.(2023秋·四川自贡·八年级统考期末)如图所示,△ABC≌△AEF,∠B=∠E,有以下结论:①AC=AE;②EF=BC;③∠EAB=∠FAC;④∠EFA=∠AFC.其中正确的个数是()5.(河北省唐山市2022-2023学年八年级上学期期末考试数学试题)如图,△ABC≌△DEC,点B,C,D在同一条直线上,且CE=1,CD=3,则BD的长是()A.1.5B.2C.3.5D.46.(2023秋·四川南充·八年级统考期末)如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC的长为()A.3B.5C.8D.117.(2023秋·天津·八年级统考期末)如图,已知△ABC≌△DEF,CD平分∠BCA,DF与BC交于点G.若∠A=26°,∠CGF=83°,则∠E的度数是()A.34°B.36°C.38°D.40°8.(2022秋·河南许昌·八年级统考期中)如图所示的图案是由全等的图形拼成的,其中AD=0.8,BC=1.6,则AF=()9.(2022秋·山东菏泽·八年级统考期中)下列说法正确的是()A.形状相同的两个三角形全等B.三个角都分别相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等10.(2022秋·山东烟台·七年级统考期中)下列说法:①角是轴对称图形;②等腰三角形有三条对称轴;③关于某直线成轴对称的两个三角形全等;④两个全等三角形一定关于某条直线成轴对称.其中正确的个数是()A.1个B.2个C.3个D.4个11.(2022秋·江苏宿迁·八年级统考期中)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1−∠2−∠3的度数为().A.30°B.45°C.55°D.60°12.(2023·福建南平·统考一模)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E.当点A、D、E在同一条直线上时,下列结论不正确...的是()A.△ABC≌△DEC B.AE=AB+CDC.AD=√2AC D.AB⊥AE13.(2021秋·陕西商洛·八年级统考期末)在平面直角坐标系内,点O为坐标原点,A(−4,0),B(0,3).若在该坐标平面内有一点P(不与点A、B、O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P 为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为()A.3个B.4个C.6个D.7个14.(2023秋·云南曲靖·八年级统考期末)如图,在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,6),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当以点C、O、D为顶点的三角形与△AOB全等时,则点D的坐标为______.15.(2023秋·江苏镇江·八年级统考期末)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=150°,则∠COD=______°.16.(2023秋·四川南充·八年级统考期末)如图,△ABC绕点C旋转得到△DEC,点E在边AB上,若∠B=75°,则∠ACD的度数是_________.考点2:全等三角形的判定及应用例2.(1)(2023秋·山东威海·七年级统考期末)为了测量湖的宽度AB,小明同学先从A点走到点O处,再继续向前走相同的距离到达点C(即OC=OA),然后从点C沿与AB平行的方向,走到与点O,B共线的点D处,测量C,D间的距离就是湖的宽度.下列可以判断△OCD≌△OAB的是()A.SSS B.SSA C.SAS D.ASA(2)(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,已知∠CAE=∠DAB,AC=AD,请你再添加一个条件:___________,使△ABC≌△AED.(3)(2023秋·江苏徐州·八年级统考期末)根据下列条件,能确定△ABC(存在且唯一)的是()A.AB=2,BC=3,AC=6B.AC=4,BC=3,∠A=60°C.AB=5,BC=3,∠B=30°D.∠A=45°,∠B=45°,∠C=90°(4)(2023秋·广东汕头·八年级统考期末)如图,在△ABC中,∠ACB=65°,∠BAC=70°,AD⊥BC于点D,BM⊥AC于点M,AD与BM交于点P,则∠BPC=______.例3(2022秋·浙江宁波·八年级校考期末)如图,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,P是OC的中点,D是BC延长线上一点,满足PB=PD.(1)求证∠1=∠2;(2)探究CD与AP之间的数量关系,并给出证明.例4.(2023秋·黑龙江齐齐哈尔·八年级统考期末)综合与实践【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图(1),△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:(1)由已知和作图得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是___________.【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图(2),AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.知识点训练1.(2022秋·浙江温州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90∘,∠ABC=25∘,O为斜边中点,将线段OA绕点O逆时针旋转a(0∘<α<90∘)至OP,若CB=CP,则α的值为()A.80∘B.65∘C.50∘D.40∘2.(2023秋·山东威海·七年级统考期末)如图,△ABC和△BDE都是等边三角形,点A,D,E在同一条直线上,BE=2,CE=4,则AE=()A.6B.5C.8D.73.(海南省海口市(部分校)2022-2023学年八年级上学期期末检测数学试题(A))如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,等腰直角△ABC的三个顶点A、B、C分别在直线l2、l1、l3上,∠ACB=90°,则△ABC的面积为()D.25A.10B.12C.2524.(2022秋·黑龙江双鸭山·八年级统考期末)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠2+∠3的度数为()A.30°B.45°C.55°D.60°5.(2022秋·安徽黄山·八年级统考期末)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于点M,连接BM,有下列结论:①AP=CE;②∠PME=60°;③MB平分∠AME;④AM+MC=BM,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④6.(2022秋·山西吕梁·八年级统考期末)如图,点E,F在线段AC上,AE=CF,AD⊥DF,CB⊥BE,要根据“HL”证明Rt△ADF≌Rt△CBE,则还需添加的一个条件是()A.AF=CE B.∠A=∠C C.AD=CB D.AD∥BC7.(2023·全国·九年级专题练习)如图,点O为△ABC的内心,∠B=60°,BM≠BN,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是()A.只有甲正确B.只有乙错误C.乙、丙都正确D.只有丙错误8.(2023秋·浙江台州·八年级统考期末)如图,AB与CD相交于点O,且OA=OB,添加下列选项中的一个条件,不能判定△AOC和△BOD全等的是()A.OC=ODB.∠A=∠BC.AC=BDD.AC∥BD9.(2023秋·浙江台州·八年级统考期末)如图,射线OC为∠AOB的平分线,点M,N分别是边OA,OB上的两个定点,且OM<ON,点P在OC上,满足PM=PN的点P的个数有()A.0个B.1个C.2个D.无数个10.(2023秋·河南新乡·八年级统考期末)在△ABC和△DEF中,已知AB=DE,∠A=∠D,下列条件:①AC= DF;②∠B=∠E;③∠C=∠F;④BC=EF.其中一定能判定△ABC≌△DEF的个数为()A.1B.2C.3D.411.(2022秋·四川广安·八年级统考期末)如图,AB=DC,若要用“SSS”证明△ABC≌△DCB,需要补充一个条件,这个条件是__________.12.(2022秋·福建莆田·八年级统考期末)数学社团活动课上,甲乙两位同学玩数学游戏.游戏规则是:两人轮流对△ABC及△A′B′C′的对应边或对应角添加一组等量条件(点A′,B′,C′分别是点A,B,C的对应点),某轮添加条件后,若能判定△ABC与△A′B′C′全等,则当轮添加条件者失败,另一人获胜.1甲AB=A′B′=2cm2乙∠A=∠A′=35°3甲…上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号)①若第3轮甲添加∠C=∠C′=45°,则甲获胜;②若第3轮甲添加BC=B′C′=3cm,则甲必胜;③若第2轮乙添加条件修改为∠A=∠A′=90°,则乙必胜;④若第2轮乙添加条件修改为BC=B′C′=3cm,则此游戏最多4轮必分胜负.13.(2023秋·山东淄博·七年级统考期末)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC∥DF.14.(2023秋·江苏南京·八年级统考期末)如图AB=AD,CB=CD,AC,BD相交于点E.(1)求证△ABC≅△ADC;(2)求证BE=DE.15.(2022秋·山西吕梁·八年级统考期末)如图,△ABC是等边三角形,点D,E分别在BC,CA的延长线上,且CD=AE.求证:∠D=∠E.16.(2023秋·广东汕头·八年级统考期末)如图,已知点O在等边△ABC的内部,∠AOB=105°,∠BOC=α,以OC为边作等边△COD,连接AD.(1)求证:AD=BO;(2)当α=150∘时,试判断△AOD的形状,并说明理由;17.(2023秋·江苏南京·八年级统考期末)如图,在四边形ABCD中,连接BD,AB∥CD,且AB=CD.(1)求证:△ABD≅△CDB;(2)若AB=BD,∠ABD=48°,求∠C的度数.18.(2023秋·浙江宁波·八年级校考期末)如图,在四边形ABCD中,P为CD边上的一点,BC∥AD.AP、BP 分别是∠BAD、∠ABC的角平分线.(1)若∠BAD=70°,则∠ABP的度数为_______,∠APB的度数为____________;(2)求证:AB=BC+AD;(3)设BP=3a,AP=4a,过点P作一条直线,分别与AD,BC所在直线交于点E、F,若AB=EF,直接写出AE的长(用含a的代数式表示)考点3:角平分线性质定理和逆定理例5.(2023秋·广东汕头·八年级统考期末)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.例6.(2022秋·湖北武汉·八年级校考期末)如图,在△ABC 中,E 是BC 中垂线上一点,EM ⊥AB 于M ,EN ⊥AC 于N ,BM =CN .求证:AE 平分∠BAC .知识点训练1.(2022秋·贵州铜仁·九年级统考期中)如图,在平面直角坐标系中,△OAB 的顶点B 的坐标为(6,0),OC 平分∠AOB 交AB 于点C ,反比例函数y =k x (x >0)的图象经过点A ,C .若S △AOC :S △BOC =2:3,则k 的值为( )A .5√716B .45√716C .454D .916 2.(2023秋·山东济宁·八年级统考期末)如图,Rt △ABC 中,∠C =90°,∠ABC =60°,以顶点B 为圆心、适当长为半径作弧,在边BC 、BA 上截取BE 、BD ;然后分别以点D 、E 为圆心、以大于DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若AC =6,P 为边AB 上一动点,则GP 的最小值为( )A.3B.2C.1D.无法确定3.(2023秋·山东淄博·七年级统考期末)如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于点M,以下结论:①△BCD是等腰三角形;②BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+ BC;④△ADM≌△BCD.正确的有()A.①③B.①②C.①②③D.③④4.(2023秋·黑龙江牡丹江·八年级统考期末)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②∠AEF=∠ADF;③BD⊥CE;④AF 平分∠CAD;⑤∠AFE=45°,其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤5.(2022秋·福建泉州·八年级统考期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角两边距离相等的点在这个角的平分线上.B.角平分线上的点到角两边的距离相等.C.三角形三个内角的平分线交于同一个点.D.三角形三个内角的平分线的交点到三条边的距离相等.6.(2023秋·河北邢台·八年级统考期末)如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=().A.4B.6C.12D.247.(2023秋·江苏泰州·八年级统考期末)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°8.(2023秋·河北沧州·八年级统考期末)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=108∘,连接AC,BD交于点M,连接OM.甲、乙、丙三人的说法如下,下列判断正确的是()甲:AC=BD;乙:∠CMD>∠COD;丙:MO平分∠BMCA.乙错,丙对B.甲和乙都对C.甲对,丙错D.甲错,丙对9.(2023秋·重庆大足·八年级统考期末)如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.5:3:2C.2:3:4D.3:4:510.(2022秋·甘肃庆阳·八年级统考期中)庆阳市是传统的中药材生产区,优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种,素有“天然药库”“中药之乡”的美称.如图,三条公路把A、B、C三个盛产中药材的村庄连成一个三角形区域,此地区决定在这个三角形区域内修建一个中药材批发市场,要使批发市场到三条公路的距离相等,则这个批发市场应建在()A.三角形的三条中线的交点处B.三角形的三条角平分线的交点处C.三角形的三条高的交点处D.以上位置都不对11.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为__________.12.(2023·湖南衡阳·校考一模)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=_______度.13.(2023秋·湖北省直辖县级单位·八年级统考期末)如图,△ABC与△BDE都为等边三角形,连接AE与CD,延长AE交CD于点F,连接FB.给出下面四个结论:①AE=CD;②∠AFC=60°;③BF平分∠EBD;④FB 平分∠EFD.其中所有正确结论的序号是__________.14.(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP平分∠MON,点A,B分别在边OM,ON上,且∠OAP+∠OBP=180°.(1)如图1,当∠OAP=90°时,求证:OA=OB;(2)如图2,当∠OAP<90°时,作PC⊥OM于点C.求证:①PA=PB;②请直接写出OA,OB,AC之间的数量关系.15.(2022春·广东茂名·八年级统考期中)如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB 于点M,过点M作MN∥BC交AC于点N,若AN=1,求BC的长.考点4:线段垂直平分线性质定理和逆定理例7. (1)(2023秋·浙江宁波·八年级宁波市第七中学校考期末)如图,△ABC中,AB<AC<BC,如果要使用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是()A.B.C.D.(2)(2023秋·云南曲靖·八年级统考期末)如图,在△ABC中,∠BAC=110°,EF是边AB的垂直平分线,垂足为E,交BC于F.MN是边AC的垂直平分线,垂足为M,交BC于N.连接AF、AN则∠FAN的度数是()A.70B.55C.40D.30(3)(2022秋·新疆乌鲁木齐·八年级校考期末)电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处例8.(2023春·重庆沙坪坝·八年级重庆南开中学校考开学考试)如图,在△ABC中,EF是AB的垂直平分线,AD⊥BC于点D,且D为CE的中点.(1)求证:BE=AC;(2)若∠C=70°,求∠BAC的度数.知识点训练1.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,DE垂直平分BC,若AB=6,AC=8,则△ABD 的周长等于()A.11B.13C.14D.162.(2023秋·河南南阳·八年级统考期末)如图,等腰△ABC的底边BC长为6,面积是24,E为腰AB的垂直平分线MN上一动点.点D为BC的中点,则△BDE的周长的最小值为()A.6B.8C.10D.113.(2023秋·福建泉州·八年级校联考期末)如图,根据尺规作图的痕迹,计算∠α的度数为()A.56∘B.68∘C.28∘D.34∘4.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③AO=交AB于点E,∠BCD=60°,AD=12DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个5.(2022秋·河北石家庄·八年级统考期末)如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)连接AD,BD,CD,AD与BC交于点E,则下列结论中错误的是()A.△ABD≌△ACD B.△DBE≌△DCEC.△BCD是等边三角形D.BC垂直平分AD6.(2023秋·黑龙江牡丹江·八年级统考期末)如图,在△ABC中,∠ACB=90°,∠A=75°,DE垂直平分AB,交AB于点D,交BC于点E,若BE=8cm,则AC为______cm.7.(2023秋·重庆万州·八年级统考期末)如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E,连接AD,若AD是∠BAC的角平分线,且AB=AD时,则∠B=___________°.8.(2023秋·山东淄博·七年级统考期末)如图,已知AB是线段CD的垂直平分线,垂足为点F.E是AB上的一点,∠CEF=30°,CF=2.试求△CED的周长.9.(2022秋·山西吕梁·八年级统考期末)如图,在△ABC中,AB=BC,EF是AB的垂直平分线,交AB于点E,交BC于点F.(1)按要求作图:作∠ABC的平分线BD,交AC于点D,交EF于点O,连接OA,OC(尺规作图,保留痕迹,不写作法);(2)求证:点O在BC的垂直平分线上;(3)若∠CBD=20°,求∠COF的度数.10.(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,∠AOB=30°,M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=9,则△PMN的周长的最小值为()C.6D.27A.9B.9211.(2022秋·山东临沂·八年级校考期末).如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)12.(2023·全国·九年级专题练习)如图,∠HAB=30°,点B与点C关于射线AH对称,连接AC.D点为射线AH 上任意一点,连接CD.将线段CD绕点C顺时针旋转60°,得到线段CE,连接BE.(1)求证:直线EB是线段AC的垂直平分线;(2)点D是射线AH上一动点,请你直接写出∠ADC与∠ECA之间的数量关系.13.(2023秋·山西运城·九年级统考期末)综合与实践问题情境:课堂上老师展示了一张直角三角形纸片.请同学们进行折纸活动,已知在Rt△ABC中.∠ACB=90°,点D、F分别是BC、AB上的一点.连接DF.(1)如图1.小红将△BDF 沿直线DF 折叠,点B 恰好落在BC 上点E 处,若S △BDF S 四边形ACEF=17,则DEDC的值______.(2)如图2,小明将△BDF 沿直线DF 折叠,点B 落在AC 上点E 处,若FE ⊥AC ,求证:四边形BDEF 是菱形; (3)如图3.小亮将△BDF 沿直线DF 折叠,点B 落在AC 延长线上点E 处,且EF 平分∠AED ,若AC =3,BC =4,求CE 的长.14.(2023秋·江苏南京·八年级统考期末)(1)如图1,在△ABC 中,∠A =30°,∠C =90°.求证BC =12AB .①补全证明过程.证明:如图2,取AB 中点D ,连接CD . ∴BD =AD =12AB .在△ABC 中,∠C =90°, ∴______; ∴CD =BD . 又∠A =30°,∴∠B =90°−∠A =60°. ∴△BCD 为______三角形. ∴BC =BD =12AB .②请用文字概括①所证明的命题:____________.(2)如图3,某市三个城镇中心D,E,F恰好分别位于一个等边三角形的三个顶点处,在三个城镇中心之间铺设通信光缆,以城镇D为出发点设计了三种连接方案:方案1:DE+EF;方案2:DG+EF(G为EF的中点);方案3:OD+OE+OF(O为△DEF三边的垂直平分线的交点).①设DE=6,通过计算,比较三种连接方案中铺设的光缆长度的长短;②不计算,比较三种连接方案中铺设的光缆长度的长短,并说明理由.15.(2023秋·河南洛阳·八年级统考期末)我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图1,直线MN是线段AB的垂直平分线,P是MN上任一点,连接PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.解答下列问题:(1)请你结合图形把已知和求证补充完整,并写出证明过程.已知:如图1,MN⊥AB,垂足为点C,______,点P是直线MN上的任意一点.求证:______.(2)证明:如图2,CD是线段AB垂直平分线,则∠CAD与∠CBD有何关系?请说明理由.考点5:全等三角形的综合问题例9.(2023秋·河南南阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.(1)求证:DF∥BC;(2)若AE=6,CE=8,求线段GF的长.例10.(2022秋·湖北黄冈·八年级统考期末)已知OM是∠AOB的平分线,点P是射线OM上一定点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是___________;(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90∘,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?请说明理由.(3)在问题(2)中,若OC+OD=6,则四边形ODPC的面积S是否为定值?若是,请求出该定值,若不是,请说明理由.知识点训练1.(2022秋·河南商丘·八年级统考期中)如图,在△ABC中,∠ABC=90°,D,E分别为边AC,BC上一点,连接BD,DE.已知AB=BE,AD=DE.(1)求证:BD平分∠ABC;(2)若∠A=55°,求证:∠CDE=14∠ADB.2.(2023秋·湖北荆州·八年级统考期末)如图,在△ABC中,BC=2AB,D是AC上一点,∠ABD=20°,E 是BD上一点,EA⊥AB,EB=EC.(1)求证:BD平分∠ABC;(2)求∠DEC的度数.3.(2023秋·重庆长寿·九年级统考期末)在图(1)至图(2)中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图(1),若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图(1)中的MN绕点O顺时针旋转得到图(2),其中AO=OB.求证:AC=BD,AC⊥BD.4.(2023秋·重庆万州·八年级统考期末)小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠进小球时,小球从OA摆到OB位置,此时过点B作BD⊥OA于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的A、B、O、C在同一平面上),过点C作CE⊥OA于点E,测得CE=15cm,AD=2cm.(1)试说明OE=BD;(2)求DE的长.5.(2022秋·海南海口·八年级校联考期末)如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△BDE≌△ADF;(2)如图2,若DM=DN,连接BM、NA,求证:BM=AN.6.(2023秋·江苏宿迁·八年级统考期末)如图,已知AC平分∠BAF,CE⊥AB于点E,CF⊥AF于点F,且BC= DC.(1)求证:BE=DF;(2)若AB=21,AD=9,求DF的长.7.(2023秋·广西南宁·九年级统考期末)如图,将矩形ABCD绕点B旋转得到矩形BEFG,点E在AD上,延长DA交GF于点H.(1)求证:△ABE≅△FEH;(2)连接BH,若∠EBC=30°,求∠ABH的度数.8.(2023秋·山东威海·七年级统考期末)在四边形ABDE中,点C是BD边的中点.(1)如图①,AC平分∠BAE,∠ACE=90°,写出线段AE,AB,DE间的数量关系及理由;(2)如图②,AC平分∠BAE,EC平分∠AED,∠ACE=120°,写出线段AB,BD,DE,AE间的数量关系及理由.9.(2022秋·广西柳州·八年级统考期末)在平面直角坐标系中,点O为坐标原点,A(a,0),B(0,b),且a,b满足(a−3)2+|b−3|=0,连接AB.(1)求点A,B点的坐标;(2)如图1,动点C从点O出发,以1个单位/秒的速度沿y轴正半轴运动,运动时间为t秒(0<t<3),连接AC,过点C作CD⊥AC,且CD=CA,点D在第一象限,请用含有t的式子表示点D的坐标;(3)在(2)的条件下,如图2,连接并延长DB交x轴于点E,连接AD和AB,过点B作线段BF交x轴于点F,使得∠OBF=∠DCB,已知此时点F的坐标为(−1,0),求△ADE的面积.10.(2023秋·福建福州·八年级统考期末)在平面直角坐标系xOy中,点A(0,a),B(b,0),C(c,0),点D在第四象限,其中a>0,b<0,c>0,∠BAC+∠BDC=180°,AC⊥CD.(1)如图1,求证:∠BAO=∠CBD;(2)若|a−c|+b2+6b+9=0,且AB=BD.①如图1,求四边形ACDB的面积;(用含a的式子表示)②如图2,BD交y轴于点E,连接AD,当E关于AD的对称点K落在x轴上时,求CK的长.。
中考数学一轮复习《全等三角形》练习题(含答案)(建议答题时间:60分钟)基础过关1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB第1题图第2题图2. (人教八上第44页11题改编)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC3. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对第3题图第4题图第5题图4. 注重开放探究(2017怀化)如图,AC=DC,BC=EC,请你添加一个适当的条件:____________________________,使得△ABC≌△DEC.5. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=________.6. 如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.第6题图7. (2017福建)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.第7题图8. (2017武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.第8题图9. (2017南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.第9题图10. (2017重庆巴南区期中检测)如图,在四边形ABCD中,点E在对角线AC上,AB∥DE,∠ACB=∠ADE,AB=EA,求证:AC=ED.第10题图11. (人教八上第44页4题改编)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是________________;(2)请写出证明过程.第11题图12. (2017重庆一中期中考试)如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.(1)求证:BE∥CF;(2)若CF=BE,求证:AB=CD.第12题图13. (2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (2017哈尔滨)已知,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.第14题图满分冲关1. (2017滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1第1题图第2题图2. (2018原创) 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个3. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD互相平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC·BD,正确的是________.(填写所有正确结论的序号)第3题图4. (2017温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第4题图5. (2017荆门)如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.第5题图6. (2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.第6题图7. (2017德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE ⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG;(2)若AB=4,求四边形AGCD的对角线GD的长.第7题图8. (2017北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.第8题图9. (2018原创)已知△ABC和△ADE都是等边三角形,点B,D,E在同一条直线上.(1)如图①,当AC⊥DE,且AD=2时,求线段BC的长度;(2)如图②,当CD⊥BE时,取线段BC的中点F,线段DC的中点G,连接DF,EG,求证:DF=EG.第9题图答案基础过关 1. A 2. C3. D 【解析】∵AB =AC ,D 为BC 中点,∴CD =BD ,∠BDO =∠CDO =90°,在△ABD 和△ACD 中,⎩⎨⎧AB =AC AD =AD BD =CD ,∴△ABD ≌△ACD (SSS ),∵EF 垂直平分AC ,∴OA =OC ,AE =CE ,在△AOE 和△COE 中,⎩⎨⎧OA =OCOE =OE AE =CE ,∴△AOE ≌△COE (SSS ); 在△BOD 和△COD 中,⎩⎨⎧BD =CD∠BDO =∠CDO OD =OD ,∴△BOD ≌△COD (SAS );在△AOC和△AOB 中,⎩⎨⎧AC =ABOA =OA OC =OB,∴△AOC ≌△AOB (SSS ).4. AB =DE (答案不唯一)5. 4 【解析】∵AB ∥CF ,∴∠ADE =∠CFE ,∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠CFEDE =FE∠AED =∠CEF,∴△ADE ≌△CFE (ASA ),∴AD =CF ,∵AB =10,CF =6,∴BD =AB -AD =10-6=4.6. 120° 【解析】∵△ACD 和△BCE 均为等边三角形,∴∠DCA =∠BCE =60°,AC =DC ,BC =EC ,∴∠DCB =∠DCA +∠ACB =∠BCE +∠ACB =∠ACE ,∴△DCB ≌△ACE (SAS ),∴∠CDB =∠CAE ,∴∠AOB =∠DAO +∠ADO =∠DAC +∠CAE +∠ADC -∠CDB =∠ADC +∠DAC =120°.7. 证明:∵BE =CF , ∴BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ), ∴∠A =∠D .8. 解:CD ∥AB ,CD =AB . 证明: ∵CE =BF , ∴CF =BE ,又∵∠CFD =∠BEA ,DF =AE , ∴△CFD ≌△BEA (SAS ), ∴CD =AB ,∠C =∠B , ∴CD ∥AB .9. 证明:∵DE ⊥AB ,CF ⊥AB , ∴∠BED =∠AFC =90°, 又∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE .在△ACF 和△BDE 中,⎩⎨⎧AF =BE∠AFC =∠BED CF =DE,∴△ACF ≌△BDE (SAS ), ∴∠A =∠B , ∴AC ∥BD .10. 证明:∵AB ∥DE , ∴∠BAC =∠AED ,在△ABC 和△EAD 中,⎩⎨⎧∠ACB =∠ADE∠BAC =∠AED AB =EA,∴△ABC ≌△EAD (AAS ), ∴AC =ED .11. (1)解:∠B =∠C 或∠ADB =∠ADC 等;(2)证明:若添加的条件为∠B =∠C ,在△ABD 和△ACD 中,⎩⎨⎧∠B =∠C∠1=∠2AD =AD,∴△ABD ≌△ACD (AAS ), ∴AB =AC ;若添加的条件为∠ADB =∠ADC ,在△ABD 和△ACD 中,⎩⎨⎧∠1=∠2AD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD (ASA ), ∴AB =AC .12. 证明:(1)∵AF ∥DE , ∴∠E =∠AGE , ∵∠E =∠F , ∴∠F =∠AGE , ∴BE ∥CF ; (2)∵AF ∥DE ∴∠A =∠D ,在△ACF 和△DBE 中,⎩⎨⎧∠A =∠D∠F =∠E CF =BE,∴△ACF ≌△DBE (AAS ), ∴AC =DB , ∴AB =CD .13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2, 又∵∠1=∠2, ∴∠1=∠BEO , ∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎨⎧∠A =∠BAE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ); 解:(2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE ,在△EDC 中 ,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°, ∴∠BDE =∠C =69°.14. (1)证明:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD , ∴∠BCD =∠ACE , ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)解:△ACB ≌△DCE ,△AON ≌△DOM ,△AOB ≌△DOE ,△NCB ≌△MCE . 满分冲关1. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 一定,∴OC =OD .∵∠AOB 是定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角.∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD (ASA ),∴CM =DN ,MP =NP .故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长.故(2)正确;∵△MPC ≌△NPD ,∴S四边形MONP=S △CMP +S四边形CONP=S △NPD +S 四边形CONP =S 四边形CODP .∴四边形MONP 面积为定值.故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =kCP ,∴PN =kDP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =kCD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化.故(4)错误.第1题解图2. A 【解析】∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确,在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△BDF (ASA ),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A .3. ①④【解析】在△ABC 与△ADC 中,⎩⎨⎧AB =ADBC =DC AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 、∠BCD ,故③错误;又∵AB =AD ,∠BAC =∠DAC ,∴OB =OD ,∴AC ,BD 互相垂直,但不平分,故②错误;∵AC ,BD 互相垂重,∴四边形ABCD 的面积S =12AC ·BO +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④. 4. (1)证明:∵AC =AD , ∴∠ACD =∠ADC ,∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠EDA ,在△ABC 与△AED 中,BC =ED ,∠BCA =∠EDA ,AC =AD , ∴△ABC ≌△AED (SAS ); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°,∴∠BAE =540°-2×90°-2×140°=80°. 5. (1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF , ∴∠BAF =∠AFC ,在△ADE 与△FCE 中,⎩⎨⎧∠DAE =∠CFE ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ); (2)解:由(1)知CD =2DE , ∵DE =2, ∴CD =4,在Rt △ABC 中,点D 为AB 的中点, ∴AB =2CD =8,AD =CD =12AB . ∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12×60°=30°, ∴在Rt △ABC 中,BC =12AB =12×8=4. 6. (1)证明:∵AD ⊥BC , ∴∠ADB =∠ADC =90°,在△BDG 和△ADC 中,⎩⎨⎧BD =AD∠BDG =∠ADC DG =DC,∴△BDG ≌△ADC (SAS ), ∴BG =AC ,∠BGD =∠C ,∵∠ADB =∠ADC =90°,E ,F 分别是BG ,AC 的中点, ∴DE =12BG =EG ,DF =12AC =AF ,∴DE =DF ,∠EDG =∠EGD ,∠FDA =∠F AD , ∴∠EDG +∠FDA =90°,∴DE ⊥DF ; (2)解:∵AC =10, ∴DE =DF =5,由勾股定理得,EF =DE 2+DF 2=5 2. 7. (1)证明:∵E 是AB 的中点,且CE ⊥AB , ∴CA =CB .∵F 是BC 的中点,且AF ⊥BC , ∴AB =AC , ∴AB =AC =BC ,∴12AB =12BC ,∴AE =CF ,在△CFG 和△AEG 中,⎩⎨⎧∠CGF =∠AGE∠CFG =∠AEG CF =AE,∴△CFG ≌△AEG (AAS ); (2)解:如解图,连接GD ,第7题解图∵AB =AC =BC ,∴△ABC 为等边三角形,从而△CAD 也为等边三角形, ∵AF ⊥BC ,∴∠GAC =∠EAF =30°, 又∵AE =12AB =2, ∴在Rt △AEG 中,AG =23AE =433, ∵∠GAD =∠GAC +∠CAD =90°,∴在Rt △ADG 中,根据勾股定理得:GD 2=AG 2+AD 2,即GD 2=(433)2+42,∴GD 2=643, ∴GD =833.8. 解:(1) ∵∠ACP =90°,∴在Rt △ACP 中,∠CAP +∠APC =90°, ∵HQ ⊥AP ,∴在Rt △HPQ 中,∠Q +∠HPQ =90°, 又∵∠APC =∠HPQ ,∠CAP =α, ∴∠Q =α,又∵在等腰Rt △ABC 中,∠B =∠BAC =45°, ∴∠AMQ =∠B +∠Q =45°+α; (2)PQ =2BM .证明:如解图,连接AQ ,过点M 作MN ⊥BQ 于点N .第8题解图∵∠ACP =90°,CQ =CP ,∠CAP =α, ∴∠CAQ =∠CAP =α,AP =AQ ,PQ =2CP , 又∵∠BAC =45°,∴∠MAQ =∠BAC +∠CAQ =45°+α=∠AMQ , ∴AQ =MQ , ∴AP =MQ , 又∵MN ⊥BQ , ∴∠ACP =∠QNM =90°.在Rt △APC 和Rt △QMN 中,⎩⎨⎧∠CAP =∠NQM∠ACP =∠QNM =90°AP =MQ,∴Rt △APC ≌Rt △QMN (AAS ), ∴CP =MN ,∴PQ =2MN , 又∵在Rt △BMN 中,∠B =45°, ∴BM =2MN ,∴PQ =2BM .9. (1)解:∵△ABC 和△ADE 都是等边三角形,AC ⊥DE ,AD =2, ∴BC =AC ,DE =AD =2,DF =12DE =1,AF =CF , ∴AF =AD 2-DF 2=3, ∴AC =2AF =23,∴BC =23; (2)证明:连接CE ,FG ,如解图所示:第9题解图∵△ABC 和△ADE 都是等边三角形,点B ,D ,E 同一在一条直线上. ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠AED =60°, ∴∠ADB =120°,∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠AEC =∠ADB =120°, ∴∠CED =∠AEC -∠AED =60°, ∵CD ⊥BE , ∴∠DCE =30°, ∴DE =12CE ,∵线段BC的中点为F,线段DC的中点为G,∴FG∥BD,FG=12BD,∴FG∥DE,FG=DE,∴四边形DFGE是平行四边形,∴DF=EG.。
1. (2015江苏泰州,6,3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是 A .1对 B .2对 C .3对 D .4对【答案】D2. (2015浙江省绍兴市,7,4分)如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS第7题【答案】D【解析】本题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形常见判定方法.由图和条件可知:AB=AD ,BC=DC ,AC 是公共边,即AC=AC ,根据三角形全等的判定方法可得这两个三角形全等的依据是“边边边”,因此,本题的正确答案为D .3. (2015义乌7,3分)如图,小敏做了一个角平分仪 ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可说明△ABC ≌△ADC ,这样就有∠QAE =∠P AE .则此两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS【答案】D(第6题图)CAFODE1. (2015江西省,第9题,3分)如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB .则图中有 对全等三角形.【答案】3【解析】∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE ≌△POF(AAS), 又OA=OB,∠POA=∠POB,OP=OP,∴△POA ≌△POB(AAS), ∴PA=PB,∵PE=PF, ∴Rt △PAE ≌Rt △PBF(HL). ∴图中共有3对全的三角形. 故答案为32. (2015娄底市,13,3分)已知AB=BC ,要使△ABD ≌△CBD ,还需要加一个条件,你添加的条件是 .(只需写一个,不添加辅助线)【答案】AD=CD 或∠ABD=∠CBD 【解析】解:△ABD 和△CBD 中,AB=BC ,BD=BD ,根据全等三角形的判定定理可知AD=CD 或∠ABD=∠CBD 时,两三角形全等.3. (2015湖南省永州市,15,3分)如下图,在△ABC 中,己知∠1=∠2,BE =CD ,AB =5,AE =2,则CE=__ __12FA BCE D(第15题图)【答案】CE =3.【解析】解:∵∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD .∴AD =AE =2,AB =AC =5.∴CE =AC -AE=5-2=3.三、解答题1. (2015年四川省宜宾市,18,6分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE 。
第12讲 全等三角形[基础篇]一、全等三角形1、全等三角形的概念:经过平移、翻折、旋转能够重合的两个三角形叫做全等三角形。
注意:(1)互相重合的顶点叫做对应顶点;(2)互相重合的边叫做对应边;(3)互相重合的角叫做对应角。
2、两个全等三角形的表示:ABC DEF ∆∆≌把对应顶点的字母写在对应的位置上。
3、全等三角形的性质:全等三角形对应边相等,对应角相等。
B 1C1BCAACA BC C 1B A1CBF E二、全等三角形的判定判定定理1:有两角和它们的夹边对应相等的两个三角形全等.简称:A .S .A (角边角)如图所示:已知:F C E B EF BC ∠=∠∠=∠=,,;则DEF ABC ∆≅∆:。
判定定理2:有两角和任意一角的邻边对应相等的两个三角形全等.简称:A .A .S (角角边)如图所示:已知:E B D A EF BC ∠=∠∠=∠=,,;则DEF ABC ∆≅∆.判定定理3:有两条边和它们的夹角对应相等的两个三角形全等. 简称:S .A .S (边角边)如图所示:已知:E B EF BC DE AB ∠=∠==,,;则DEF ABC ∆≅∆判定定理4:有三条边对应相等的两个三角形全等. 简称:S .S .S (边边边)如图所示:已知:,,AB DE BC EF AC DF ===;则DEF ABC ∆≅∆.C BF EC BF EC BFEC BF E[技能篇]类型一:全等三角形的概念例1-1 下列每组中的两个图形,是全等图形的为( )A. B .C .D .例1-2 如图,在5个条形方格图中,图中由实线围成的图形与①全等的有___________例1-3 如图,ABN ACM ∆∆≌,B ∠和C ∠是对应角,AB 与AC 是对应边,写出其他对应边和对应角。
例1-4 如图,ABD ACE ∆∆≌,AB AC =,写出图中的对应边和对应角。
N M C B AE DB A例1-5 如图所示,ABC DCB ∆∆≌.(1)若74D ∠=︒,38DBC ∠=︒,则A ∠=_____,ABC ∠=(2)如果AC BD =,请指出其他的对应边_________(3)如果AOB DOC ∆∆≌,请指出所有的对应边________,对应角________例1-6 如图,如果将ABC ∆向右平移CF 的长度,则与DEF ∆重合,那么图中相等的线段有__________;若46A ∠=︒,则D ∠=________.类型二:全等三角形的性质例2-1 已知ABC DEF ∆∆≌,60A ∠=︒,70B ∠=︒,2AB cm =.求DE 的长度及D ∠、F ∠的度数.例2-2 如图ABC EDF ∆∆≌,DF BC =,AB ED =,20AF =,10EC =,求AE 的长.B FE DC BAAF例2-3 已知:如图所示,Rt EBC ∆中,9035EBC E ∠=︒∠=︒,.以B 为中心,将Rt EBC ∆绕点B 逆时针旋转90°得到ABD ∆,求ADB ∠的度数.解:∵9035Rt EBC EBC E ∆∠=︒∠=︒中,,,∴ECB ∠=__________°.∵将Rt EBC ∆绕点B 逆时针旋转90°得到ABD ∆,∴∆________≌∆_________.∴________________ADB ∠=∠=°.例2-4 如图,把ABC ∆绕C 点顺时针旋转35︒,得到''ABC ∆,''AB 交AC 于点D ,则'AB D ∠=________°.例2-5 如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.EDCB A B'A'D C BA例2-6 如图,已知ABC DEF ∆∆≌,30502A B BF ∠=︒∠=︒=,,,求DFE ∠的度数与EC 的长。
专题18 全等形和全等三角形考点总结【思维导图】【知识要点】知识点1 全等三角形及其性质全等图形概念:能完全重合的图形叫做全等图形.特征:①形状相同。
②大小相等。
③对应边相等、对应角相等。
全等三角形概念:两个能完全重合的三角形叫做全等三角形.小结:把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:全等用符号“≌”,读作“全等于”。
书写三角形全等时,要注意对应顶点字母要写在对应位置上。
全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。
变换方式(常见):平移、翻折、旋转。
全等三角形的性质:对应边相等,对应角相等。
1.(2017·四川中考模拟)已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3B.5C.6D.10【答案】D【详解】∵四边形OPEF≌四边形ABCD∴PE=BC=10,故选D.2.(2019·福建中考模拟)如图,若△MNP≌△MEQ,则点Q应是图中的()A.点A B.点B C.点C D.点D【答案】D【详解】∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.(2018·广西中考模拟)下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【答案】D【详解】根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.考查题型一利用全等三角形性质求线段与角1.(2019·武冈市第七中学中考模拟)如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B 的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm【答案】A【解析】解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.2.(2017·江苏南京溧水孔镇中学中考模拟)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm【答案】C【详解】解:∵△ABC≌△BAD,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=EF-CF=3 cm,故选C.3.(2016·广东中考模拟)如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为( )A.20°B.30°C.35°D.40°【答案】B【详解】∵△ACB≌△A′CB′,∴∠ACB=∠A′C′B′,∴∠ACB-∠A′CB=∠A′C′B′-∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,故选:B.4.(2019·沂源县中庄中学初一月考)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.(1)求△ABC的周长;(2)求△ACE的面积.【答案】(1)24;(2)50【详解】解:(1))∵△ABC≌△CDE∴AC=CE∴△ABC的周长=AB+BC+AC=24(2)∵△ABC≌△CDE∴AC=CE,∠ACB=∠CED,∠BAC=∠DCE又∠B=90°∴∠ACB+∠BAC=90°∴∠ACB+∠DCE=90°∴∠ACE=180°-(∠ACB+∠DCE)=90°×AC×CE=50∴△ACE的面积=12考查题型二利用全等三角形性质证明线段、角相等1.(2019·湖北黄石十四中初二期中)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.【答案】见解析【详解】∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.2.(2018·颍上县第五中学初二期中)若△ABC≌△DCB,求证:∠ABE=∠DCE.【答案】见解析【详解】证明:∵△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴∠ABC-∠DBC=∠DCB-∠ACB即∠ABE=∠DCE知识点2:全等三角形的判定(重点)注:①判定两个三角形全等必须有一组边对应相等;②全等三角形周长、面积相等.证题的思路(重点):考查题型三 已知一边一角(若边为角的对边,找任意角AAS )1.(2018·四川中考模拟)如图,AB=AE ,∠1=∠2,∠C=∠D .求证:AC=AD .【答案】见解析 【解析】 详解:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC ∴∠BAC=∠EAD在ΔABC 和ΔAED 中{∠BAC =∠EAD∠C =∠DAB =AE∴ΔABC ≌ΔAED (AAS) ∴AC=AD2.(2014·北京中考模拟)已知:如图,E 是AC 上一点,AB=CE ,AB ∥CD ,∠ACB =∠D .求证:BC =ED .【答案】证明见解析. 【详解】∵AB∥CD,∴∠A=∠ECD.在△ABC和△ECD中,∵∠A=∠ECD,∠ACB=∠D,AB=CE,∴△ABC≌△ECD(AAS).∴BC=DE.3.(2018·四川中考模拟)已知,如图,E、F分别为□ABCD的边BC、AD上的点,且∠1=∠2,.求证:AE=CF.【答案】详见解析【详解】∵四边形ABCD为平行四边形∴∠B=∠D,AB=CD在△ABE与△CDF中,∠1=∠2,∠B=∠D,AB=CD∴△ABE≌△CDF∴AE=CF4.(2016·福建中考模拟)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.求证:△ACD≌△CBE.【答案】证明详见解析.【详解】∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵∠B+∠BCE=90°,∴∠B=∠ACD,在△BEC和△CDA中,∠ADC=∠E=90°,∠B=∠ACD,AC=BC,∴△ACD≌△CBE(AAS).考查题型四已知一边一角(边为角的邻边(找已知角的另一边SAS))1.(2016·四川中考真题)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【答案】见解析【详解】∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,∵AC=CB,∠ACD=∠B,CD=BE,∴△ACD≌△CBE(SAS),∴∠D=∠E.2.(2018·云南中考模拟)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:∠C=∠D.【答案】证明见解析【详解】证明:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCE (SAS ), ∴∠C =∠D .3.(2019·辽宁中考真题)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:AF =DE .【答案】见解析; 【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE , 在ΔABF 和ΔDCE 中, {AB =DC ∠B =∠C BF =CE, ∴ΔABF ≌ΔDCE (SAS) ∴AF =DE .考查题型五 已知一边一角(边为角的邻边(找已知边的对角AAS ))1.(2013·浙江中考真题)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数。
2024年广东省九年级数学一轮复习:全等三角形模拟练习一、单选题1.(2023·广东·模拟预测)如图,,A的对应顶点是B,C的对应顶点是D,若,,,则的长为()A.3B.7C.8D.以上都不对2.如图,≌,,,垂足分别为,,,则等于()A.B.C.D.3.(2023·广东广州·一模)如图,在锐角三角形中,,的面积为,平分,若、分别是、上的动点,则的最小值为( )A.B.C.D.4.(2023·广东深圳·二模)下列说法中,正确的是( )A.同位角相等B.两点之间直线最短C.两边及一角相等的两个三角形全等D.对顶角相等5.(2022·广东佛山·一模)一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1、4或2、3去就可以了C.带1、4或3、4去就可以了D.带1、2或2、4去就可以了6.(2021·广东深圳·二模)如图,AB=AD,∠BAC=∠DAC=25°,,则∠BCA的度数为( )A.25°B.50°C.65°D.75°7.(2023·广东汕头·一模)如图,中,平分交于点,则的长为( )A.2.4B.3C.3.6D.48.(2023·广东广州·一模)如图,在C中,的面积为,,平分,E、F 分别为、上的动点,则的最小值是( )A.B.C.2D.9.(2023·广东东莞·模拟预测)如图,以的顶点O为圆心作弧与的两边交于C,D两点,分别以C,D两点为圆心,大于的长度为半径画弧,两弧交于点E,点P为射线上一点,,且,则点P到的距离为()A.1B.C.2D.210.(2023·浙江嘉兴·一模)如图,过直线外的点P作直线的平行线,下列作法错误的是()A.B.C.D.二、填空题11.若△ABC≌△DEF,AB=3,AC=7,且△DEF的周长为奇数,则EF的值为12.(如图,在中,,,,,平分交于点,点、分别是、边上的动点,则的最小值为.13.如图,为的中线,点在的延长线上,连接,且,过点作于点,连接,若,,则的长为.14.(2023·广东茂名·一模)如图,点、、、在同一直线上,,,添加一个条件,使,这个条件可以是.(只需写一种情况)15.如图,在和中,,以点为顶点作,两边分别交于点,连接,则的周长为.16.如图是用直尺和圆规作的平分线,具体作法:①以点为圆心,任意长为半径作弧,交于,交于;②分别以点、为圆心,以大于的同样长为半径作弧,两弧交于点;③作射线.所以射线就是的平分线.这种作图方法之所以正确,那是因为我们可以证明,其证明依据是.17.如图,在中,是的平分线,若点P、Q分别是和上的动点,则的最小值是.18.图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于.三、解答题19.(2023·广东广州·中考真题)如图,B是的中点,,.求证:.20.(2023·广东·模拟预测)如图,,请添加一个条件,使.(1)你添加的条件是______(只需添加一个条件);(2)利用(1)中添加的条件,求证:.21.(2023·广东广州·一模)已知:如图,,,是的延长线上一点.求证:(1);(2).22.(2023·广东佛山·一模)如图,已知的三个内角的平分线交于点,点在的延长线上,且,,连接.(1)求证:;(2)若,求的长度.23.(2023·广东广州·模拟预测)如图,已知,,.求证:.24.(2023·广东广州·一模)如图,点E、F在线段上,.求证:.25.(2023·陕西西安·模拟预测)如图,点E在边上,,,.求证:26.(2023·广东中山·模拟预测)如图,在中,,.(1)请用尺规作图法,作的角平分线交于(不要求写作法,保留作图痕迹);(2)在(1)条件下,求的度数.参考答案:1.B【分析】根据全等三角形的对应边相等即可得出结果.【详解】解:∵,A的对应顶点是B,C的对应顶点是D,∴,∵∴.故选:B.【点睛】本题考查了全等三角形的性质,解题的关键是根据全等三角形找出对应边.2.B【分析】依据直角三角形两锐角互余,即可得到的度数,再根据全等三角形的对应角相等,即可得到结论.【详解】解:∵,∴中,又∵≌∴故选:B.【点睛】本题考查了全等三角形对应角相等的性质,直角三角形两锐角互余,熟记性质并准确识图判断出对应角是解题的关键.3.D【分析】本题考查了线段的最值问题,过点作于,当、、共线,且垂直于时,最小,掌握角平分线的性质、三角形的面积公式是解题的关键.【详解】解:在边上取,连接,∵平分,∴,在和中,,∴,∴,∴,即当、、共线,且垂直于时,最小,过点作于,∵的面积为,∴,∴,∴的最小值为,故选:.4.D【分析】由全等三角形的判定,对顶角的性质,线段的性质,同位角的概念,即可判断.【详解】解:A、两直线平行,同位角相等,故A不符合题意;B、两点之间,线段最短,故B不符合题意;C、两边及夹角对应相等的两个三角形全等,故C不符合题意;D、对顶角相等,正确,故D符合题意.故选:D.【点睛】本题考查全等三角形的判定,对顶角的性质,线段的性质,同位角的概念,掌握以上知识点是解题的关键.5.C【分析】带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,没有完整边,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形.即可得出答案【详解】解:带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,所以A、B、D不符合题意,C符合题,故选:C.【点睛】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.6.D【分析】根据证明,可得,根据三角形内角和定理即可求得的度数.【详解】解:在与中,,,,.故选D.【点睛】本题考查了全等三角形的判定以及性质,三角形内角和定理,熟练掌握全等三角形的性质与判定是解题的关键.7.B【分析】本题考查了角平分线的性质和三角形的面积,能熟记角平分线上的点到角两边的距离相等是解此题的关键.过D作于M,根据角平分线的性质得出,根据三角形的面积得出,再代入求出答案即可.【详解】解:过D作于M,∵,平分,∴∵,∴,∵∴解得:,故选:B.8.D【分析】本题考查的是角平分线的性质,垂线段最短,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.过点C作,垂足为H,交于F点,过F点作,垂足为,则为所求的最小值,根据的面积为,,结合三角形的面积公式求出,即可解答.【详解】解:如图,过点C作,垂足为H,交于F点,过F点作,垂足为,则为所求的最小值,∵是的平分线,∴,∴是点C到直线的最短距离(垂线段最短),∵的面积为,,∴,∵的最小值是.故选:D.9.C【分析】根据角平分线的性质求解.【详解】解:由作图得:平分,所以P到两边的距离相等,∵,且,∴点P到的距离为2,故选:C.【点睛】本题考查了基本作图,掌握角的平分线的性质是解题的关键.10.C【分析】根据平行线的判定定理,结合尺规作图的意义理解判断即可.【详解】A、根据内错角相等,两直线平行判定,不符合题意;B、根据同位角相等,两直线平行判定,不符合题意;C、是角的平分线作图,无法判定,符合题意;D、,根据基本作图,以的点Q为圆心,以为半径画弧,交于点B,分别以P,B为圆心,以为半径画弧,二弧交于点Q,C,根据作图,得到故都等边三角形,得到,根据内错角相等,两直线平行判定,不符合题意;故选:C.【点睛】本题考查了平行线的判定定理,尺规作图,正确理解尺规作图,熟练掌握平行线的判定是解题的关键.11.5或7或9【分析】根据全等三角形的性质和三角形三边长的关系,即可求解.【详解】解:∵△ABC≌△DEF,∴BC=EF,∵3+7=10,7-3=4∴4<BC<10,即4<EF<10,∵△DEF的周长为奇数,∴EF的长为奇数,∴EF=5或7或9.故答案为:5或7或9.【点睛】本题主要考查全等三角形的性质,三角形三边长关系,掌握三角形三边长关系是解题的关键.12.【分析】在上取一点,使,连接,判断出,得出,进而得出当点C,E,在同一条线上,且时,最小,即最小,其值为,最后用面积法,即可求出答案.【详解】解:如图,在上取一点,使,连接,作,平分,,,∴,,,∴当点C,E,在同一条线上,且时,最小,即最小,其值为,,,即的最小值为,故答案为:.【点睛】此题主要考查了角平分线的定义,全等三角形的判定和性质,点到直线的距离,垂线段最短,三角形的面积公式,作出辅助线构造出全等三角形是解本题的关键.13.【分析】过点作于点,证明,,得出,再由为的中线及,根据的面积列出关于的方程,求解即可.【详解】解:如图,过点作于点为的中线,,又,在和中,即,,为的中线,又解得:故答案为:3.【点睛】本题考查了全等三角形的判定与性质、等底同高三角形的面积关系及直角三角形的面积公式,属于中档题.14.或或或(答案不唯一)【分析】先证明及,然后利用全等三角形的判定定理分析即可得解.【详解】解∶或或或,理由是∶∵,∴,∵,∴即,当时,有,则,当时,则,当时,则,当时,则,故答案为∶或或或.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有,,,是解题的关键.15.8【分析】延长到点E,使,连接,先由证明,再由得,即可证明,再证明,得,,再证明,得,即可推导出.【详解】解:如图,延长到点E,使,连接,∵∴,∵,∴,∴,∴,∴,∴,在和中,,∴,∴,∵,∴,∴,在和中,∴,∴,∴,故答案为:8.【点睛】此重点考查等腰三角形的性质、全等三角形的判定与性质、多边形的内角和等知识,正确地作出所需要的辅助线是解题的关键.16.SSS【分析】由作法可知:,,根据全等三角形的判定定理判断即可.【详解】解:由作法可知:,,又∵,∴根据SSS可推出全等,故答案为:SSS【点睛】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.//7.2【分析】过点D作于点E,过点E作于点Q,交于点P,连接,先根据角平分线的性质得到,进而根据证明,再根据证明,然后根据证明,最后根据三角形的面积公式计算即可.【详解】解:过点D作于点E,过点E作于点Q,交于点P,连接,此时取最小值,如图所示.在中,.∵是的平分线,,∴,在和中,,∴,∴.在和中,,∴,∴,延长,交于F,在和中,,∴,∴,∴,∴,∴.∴的最小值是,故答案为.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,三角形的面积公式,熟练掌握全等三角形的判定和性质是解题的关键.18.4.【分析】过点D作DF⊥BC,垂足为F,根据角平分线的性质得到FD=DE,再利用面积求DE即可.【详解】解:过点D作DF⊥BC,垂足为F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴FD=DE,,,,,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE.19.见解析【分析】根据已知条件证得,,然后证明,应用全等三角形的性质得到.【详解】证明:∵B是的中点,∴,∵,∴,在和中,∴,∴.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.20.(1)(答案不唯一)(2)见解析【分析】本题考查全等三角形的判定和性质,直角三角形的两锐角互余,三角形的内角和定理,垂直的定义.解题的关键是正确寻找判定三角形全等的条件,灵活运用所学知识解决问题.(1)由题意得到,推出,,再根据判定定理得添加一个条件为,即可使;(2)根据三角形全等的判定定理证明即可.【详解】(1)解:∵,∴,∴,,由得添加一个条件为,故答案为:(答案不唯一);(2)证明:,,,即,在和中,,.21.(1)证明见解析;(2)证明见解析.【分析】()根据推出,根据全等三角形的性质得出即可;()根据推出,根据全等三角形的性质得出即可;本题考查了全等三角形的性质和判定的应用,掌握全等三角形的判定定理和性质定理是解题的关键.【详解】(1)在和中,∴,∴;(2)∵,∴,在和中,∴,∴.22.(1)见解析(2)【分析】本题考查了全等三角形的判定和性质,角平分线的性质;(1)由“”可证,可得,即可得结论;(2)根据,得,由角平分线可得,从而得出,根据,可得出,即可得出,则,最后算出.【详解】(1)解:证明:三个内角的平分线交于点,,在和中,,,,,;(2)解:,,,,,,,,.23.证明见解析.【分析】根据全等三角形的判定定理推出即可.【详解】证明:在和中,,∴.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有,两直角三角形全等还有等.24.见解析【分析】根据平行线的性质可得,进而根据证明即可.【详解】证明:∵,∴,在和中,,∴.【点睛】本题考查了平行线的性质和全等三角形的判定,熟练掌握是解题的关键.25.证明见解析【分析】根据平行线的性质,得到,再根据三角形外角的性质,得出,即可利用“”证明.【详解】证明:,,,,,,在和中,,.【点睛】本题考查了全等三角形的判定,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定定理是解题关键.26.(1)见解析(2)【分析】(1)利用基本作图作的平分线;(2)先利用三角形内角和计算出,再利用角平分线的定义得到,然后根据三角形外角性质计算的度数.【详解】(1)如图所示,线段即为所求;(2)在中,,,,,【点睛】本题考查了基本作图;熟练掌握基本作图,作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线等基本作图方式是解题的关键;角度计算的解题技巧主要是运用三角形内角和以及三角形内外角之间的关系与角平分线的性质相结合解答.。
2020中考数学一轮基础考点训练18 全等三角形
(建议时间:40分钟)
基础达标训练
1. (北师七下P109习题2改编)如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )
A. 边边边
B. 角边角
C. 边角边
D. 角角边
第1题图
2. (2019安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )
第2题图
A. ∠A=∠D
B. AC=DF
C. AB=ED
D. BF=EC
3. (2019柳州)如图,在▱ABCD中,全等三角形的对数共有( )
A. 2对
B. 3对
C. 4对
D. 5对
第3题图
4.(2019临沂)如图,D是AB上的一点,DF交AC于点E,DE=EF,FC∥A B.若AB=4,CF=3,则BD的
长是( )
第4题图
A. 0.5
B. 1
C. 1.5
D. 2
5.(2019成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为________.
第5题图
6.(人教八上P56复习题12第9题改编)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=2.5 cm,DE=1.7 cm,则BE的长为________cm.
第6题图
7. (2019南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=C B.连接DE.那么量出DE的长就是A,B的距离.为什么?
第7题图
8.如图,F,C是AD上两点,且AF=C D.点E,F,G在同一直线上,且F,G分别是AC,AB的中点,BC=EF.
求证:△ABC≌△DEF.
第8题图
9.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E. 求证:BD=CE.
第9题图
10. (2019桂林)如图,AB=AD,BC=DC,点E在AC上.
(1)求证:AC平分∠BAD;
(2)求证:BE=DE.
第10题图
能力提升拓展
1. (2019温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.
(1)求证:△BDE≌△CDF;
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
第1题图
2. (2019宜昌)如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.
(1)求证:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度数.
第2题图
参考答案
基础达标训练
1. C
2. A 【解析】由题意可知,∵AB ∥ED ,∴∠ABE =∠DEF ,又∵AC ∥DF ,∴∠DFE =∠ACB ,B 、C 、D 选项中已知条件均可与题干中的条件构成角角边或角边角,使得△ABC ≌△DEF ,A 选项中∠A =∠D ,可判断△
ABC ∽△DEF ,并不能判断全等.
3. C 【解析】△ABD ≌△CDB ,△ADO ≌△CBO ,△AOB ≌△COD ,△ABC ≌△CDA ,共4对全等三角形.
4. B 【解析】∵FC ∥AB ,∴∠A =∠ECF ,∠ADE =∠F .∵DE =EF ,∴△ADE ≌△CFE .∴AD =CF =3.∵
AB =4,∴BD =AB -AD =4-3=1.
5. 9 【解析】∵在△ABC 中,AB =AC ,∴∠B =∠C .∵∠BAD =∠CAE ,∴△BAD ≌△CAE (ASA),∴CE =BD =9.
6. 0.8 【解析】∵BE ⊥CE ,AD ⊥CE ,∴∠BEC =∠CDA =90°,∠DCA +∠DAC =90°,又∵∠ACB =90°,∴∠DCA +∠ECB =90°,∴∠ECB =∠DAC ,又∵BC =AC ,∴△CEB ≌△ADC (AAS ),∴CE =AD ,BE =CD ,∴BE =CD =CE -DE =AD -DE =2.5-1.7=0.8 cm.
7. 解:如解图,连接AB ,在△ABC 和△DEC 中,
⎩⎪⎨⎪
⎧CA =CD ,∠ACB =∠DCE ,CB =CE ,
∴△ABC ≌△DEC (SAS), ∴AB =DE .
∴DE 的长就是A ,B 的距离.
第7题解图
8. 证明:∵AF =CD , ∴AF +FC =CD +FC . ∴AC =FD .
∵点F ,G 分别是AC ,AB 的中点, ∴GF ∥BC .
∴∠BCA =∠GFA =∠EFD . 又∵BC =EF ,
∴△ABC ≌△DEF (SAS). 9. 证明:∵CD ⊥AB ,BE ⊥AC , ∴∠BDC =∠CEB =90°. ∵AB =AC , ∴∠ABC =∠ACB . 在△BCD 和△CBE 中, ⎩⎪⎨⎪
⎧∠BDC =∠CEB ,∠DBC =∠ECB ,BC =CB ,
∴△BCD ≌△CBE (AAS ). ∴BD =CE .
10. 证明:(1)∵AB =AD ,BC =DC ,AC 为公共边, ∴△ABC ≌△ADC (SSS). ∴∠BAC =∠DAC , ∴AC 平分∠BAD ;
(2)由(1)知,∠BAC =∠DAC ,即∠BAE =∠DAE . 又∵AB =AD ,AE 为公共边,
∴△ABE ≌△ADE (SAS), ∴BE =DE . 能力提升拓展
1. (1)证明:∵CF ∥AB , ∴∠B =∠FCD ,∠BED =∠F . ∵AD 是BC 边上的中线, ∴BD =CD ,
在△BDE 与△CDF 中, ⎩⎪⎨⎪
⎧∠EBD =∠FCD ,∠BED =∠CFD ,BD =CD ,
∴△BDE ≌△CDF (AAS ); (2)解:∵△BDE ≌△CDF , ∴BE =CF =2,
∴AB =AE +BE =1+2=3. ∵AD ⊥BC ,BD =CD , ∴AC =AB =3.
2. (1)证明:由BE 平分∠ABC ,得∠ABE =∠DBE . 在△ABE 与△DBE 中,
⎩⎪⎨⎪
⎧AB =DB ,∠ABE =∠DBE ,BE =BE ,
∴△ABE ≌△DBE (SAS); (2)解:∵△ABE ≌△DBE ,
∴∠BDE =∠A =100°,∠AEB =∠BED ,
∵∠BDE =∠C +∠CED ,∠C =50°, ∴∠CED =100°-50°=50°, ∴∠AED =180°-50°=130°, ∴∠AEB =12∠AED =1
2
×130°=65°.。