2018年三明市中考数学预测试题及答案
- 格式:doc
- 大小:397.00 KB
- 文档页数:9
2018年三明市初中毕业班学业质量检测数学试卷参考答案及评分标准说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分点评分. 一、选择题 (每题4分,共40分)1.A 2.B 3.C 4.A 5.C 6.B 7.D 8.D 9.B 10.A 二、填空题(每题4分,共24分) 11.1)-1)((a a a + 12.52 13.280 14.4π915.2 16.51≤≤CP 三、解答题(共86分)17.解: 原式= x 2+2xy - (x 2+2x +1)+2x …………2分 = x 2+2xy -x 2-2x -1+2x …………4分=2xy -1. …………5分当x =13+,y =1-3时,原式=2(13+)(1-3)-1 …………6分=2(3-1)-1 …………7分 =3. …………8分 18.解:去分母,得2-x -1=x -3 …………3分-x -x =-3-2+1` …………4分 -2x =-4 …………5分x =2 …………6分经检验,x =2是原方程的根所以原方程的根是x =2 …………8分 19.解:(Ⅰ) B 级人数16人,图略; …………2分(Ⅱ) 360 ; …………4分 (Ⅲ)列表如下:………6分由上表可知,总共有12种等可能结果,其中符合要求有6种,…………8分 (树状图略)20.解:∵A (2,0),B (4,n ),且点B 在第四象限,∴S △OAB =n n -)-221=⨯⨯(. ∵S △OAB =23, ∴n =-23.∴B (4, -23). …………3分把B (4, -23)代入x ky =,得k =-6,∴反比例函数表达式为x y 6-=. …………5分把A (2,0),B (4, -23)代入y =ax +b ,得:⎪⎩⎪⎨⎧=+=+23-402b a b a , ∴3-43. 2a b ⎧=⎪⎪⎨⎪=⎪⎩…………7分 ∴一次函数表达式为33-42y x =+. …………8分21. 解:(Ⅰ)…………3分DE 就是所作的边AB 的垂直平分线. …………4分(Ⅱ)∵∠C =90°,∠B =30°,∴∠CAB =60°. …………5分 ∵DE 垂直平分AB , ∴AE =BE ,∴∠EAB =∠B =30°, …………7分 ∴∠CAE =∠CAB -∠EAB =30°, ∴∠CAE =∠EAB =30°.∴AE 平分∠BAC . …………8分22. 解:(Ⅰ)设购买A ,B 两种树苗每棵分别需x 元,y 元,则 ⎩⎨⎧=+=+4002538043y x y x , …………3分解得⎩⎨⎧==5060y x . …………4分答:购买A ,B 两种树苗每棵分别需60元,50元. …………5分(Ⅱ)设购进A 种树苗m 棵,则5620)100(5060≤-+m m …………7分解得62≤m .∵购进A 种树苗不能少于60棵,且m 为整数,∴m =60或61或62, …………8分 ∴有三种购买方案,分别为:方案一:购进A 种树苗60棵,B 种树苗40棵;方案二:购进A 种树苗61棵,B 种树苗39棵;方案三:购进A 种树苗62棵,B 种树苗38棵. …………10分23.解:(Ⅰ)解法一:连接OD , ∵OA =OD , ∠A =45°, ∴∠ADO =∠A =45°,∴∠AOD =90°. …………………1分 ∵D 是AC 的中点,∴AD =CD .∴OD ∥BC . ……………………2分∴∠ABC =∠AOD =90°. ……………………3分∴BC 是⊙O 的切线. ……………………4分解法二:连接BD , ∵AB 为⊙O 的直径,∴BD ⊥AC . …………………1分 ∵D 是AC 的中点,∴BC =AB . …………………2分 ∴∠C =∠A =45°.∴∠ABC =90°. ……………………3分 ∴BC 是⊙O 的切线. ……………………4分 (Ⅱ)连接OD ,由(Ⅰ)可得∠AOD =90°.∵⊙O 的半径为2, F 为OA 的中点,∴OF=1, BF =3,AD = (5)分∴DF =……………6分∵BD BD =, ∴∠E =∠A . ……………7分 ∵∠AFD =∠EFB ,∴△AFD ∽△EFB. ……………8分 ∴DF BFAD BE =,3BE =. ……………………9分∴BE ……………………10分 (其他解法按相应步骤给分)24. (Ⅰ)证明:∵AD ⊥BC ,∠DAE =90°,∴∠ADB =∠ADC =∠DAE =90°,∴AE ∥CD , ………………1分 ∵△ABC ∽△ADE , ∴∠AED =∠ACB , ∵AD =DA ,∴△ADC ≌△DAE .∴AE =DC . ………………3分 ∴四边形ADCE 为平行四边形, ∵∠ADC =90°,∴□ADCE 为矩形. ………………4分(其他解法按相应步骤给分)(Ⅱ)解:∵∠BAC =90°,AB =6,AC =8, ∴BC =10.∵D 为BC 的中点, ∴ AD =BD =BC 21=5. ………………5分 ∵△ABC ∽△ADE ,∴AEAC AD AB =. ∵∠BAC =∠DAE =90°, ∴∠BAD =∠CAE .∴△ABD ∽△ACE. ………………7分∴AC AB =CE BD. 即CE586=. ∴CE =320. ………………8分(其他解法按相应步骤给分)(Ⅲ)325. ………………12分 25.(Ⅰ) (-2,3); ………………3分(Ⅱ) (ⅰ) ∵抛物线y =c bx x ++22经过点A , ∴3=8-2b +c. ∴c =2b -5.∴B (0, 2b -5). ………………5分∵直线l 经过点B , ∴2k +3=2b -5.∴k =4-b . ………………6分 当b =4时,k =0,当b =6时,k =2, ∵4<b <6,∴0<k <2. ………………8分(ⅱ) k =1时,直线l 的表达式为y =x +5,直线l 交y 轴于点F (0,5), 当点M 在点A 右侧,过点A 作x 轴平行线交y 轴于点E ,过点M 作y 轴的平行线交AE 于点D ,∵A (-2,3),∴AE =EF =2.∴∠EAF =45°. ∴当AM =2时,AD =MD =1.∴M (-1,4). 把M (-1,4)代入y =c bx x ++22,求得b =7,c =9. 由AM =42,A (-2,3),同上可得M (2,7),把A (-2,3),M (2,7)代入y =c bx x ++22,求得b =1,c =-3.………………10分把A (-2,3) 代入y =c bx x ++22,得c =2b -5.又∵c >0,∴25>b . ∴7b 25≤< ………………11分 当点M 在点A 左侧时,由AM =2,A (-2,3),同上可得M (-3,2),把A (-2,3),M (-3,2)代入y =c bx x ++22,求得b =11,c =7, 由AM =42,A (-2,3),同上可得M (-6,-1),把A (-2,3),M (-6,-1)代入y =c bx x ++22,求得b =17,c =29, ∴17b 11≤≤. 综上所述,7b 25≤<或17b 11≤≤. ………………14分 (其他解法按相应步骤给分)。
三明市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共15分)1. (2分)(2018·重庆模拟) 若一个数的倒数是﹣2 ,则这个数是()A .B . ﹣C .D . ﹣2. (2分) (2019七下·峄城月考) 2020×= ()A . 2B . -2C .D .3. (2分)(2019·江汉) 下列说法正确的是()A . 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B . 甲、乙两人跳远成绩的方差分别为S2甲=3,S2乙=4,说明乙的跳远成绩比甲稳定C . 一组数据2,2,3,4的众数是2,中位数是2.5D . 可能性是1%的事件在一次试验中一定不会发生4. (2分)(2019·高新模拟) 如图,AE∥DB,∠1=85°,∠2=28°,则∠C的度数为()A . 55°B . 56°C . 57°D . 60°5. (2分) (2019九上·上街期末) 小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A . 公园离小明家1600米B . 小明出发分钟后与爸爸第一次相遇C . 小明在公园停留的时间为5分钟D . 小明与爸爸第二次相遇时,离家的距离是960米6. (5分)球的三视图是()A . 三个圆B . 三个圆且其中一个包括圆心C . 两个圆和一个半圆弧D . 以上都不对二、填空题 (共6题;共7分)7. (1分)分解因式:ax2﹣a=________.8. (1分) (2017七下·无锡期中) 世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一个微小的无花果,质量只有0.000000076克,这个数用科学记数法表示为________.9. (1分) (2018七上·大庆期中) 如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转________度。
2018年三明市初中毕业班教学质量检测数 学 试 题(满分:150分 考试时间:5月8日下午 15:00-17:00)友情提示:1.作图或画辅助线等需用签字笔描黑.2.未注明精确度的计算问题,结果应为准确数.... 一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡...的相应位置填涂)BC(第6题)(第3题)(第5题)7.某校田径运动会有13名同学参加女子百米赛跑,她们预赛的成绩各不相同,取前6名参加决赛,小玥已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的(▲)A .方差B .极差C .平均数D .中位数8A ..2C .3D . 210.定义运算:a ⋆b =2ab .若a ,b 是方程x 2+x -m =0(m >0)的两个根,则(a +1)⋆a -(b +1)⋆b 的值为(▲) A .0B .2C .4m D .-4m二、填空题(共6题,每题4分,满分24分.请将答案填在答题卡...的相应位置) 1112.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ▲ .13.如图,一名滑雪运动员沿着倾斜角为34°的斜坡从A 滑行至B . 已知AB =500米,则这名滑雪运动员下降的垂直高度 为▲ 米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)14.如图,AB 为半圆的直径,且AB =2,半圆绕点B 顺时针旋转40°,点A 旋转到A ′的位置,则图中阴影部分的面积为▲ (结果 保留π).(第8题)(第14题)(第13题)DC G (第9题)15.二次函数22y x mx m =++-的图象与x 轴有▲个交点 . 16.在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点 P 处,且点P 在直线BC 上.则线段CP 长的取值范围是▲.三、解答题(共9题,满分86分.请将解答过程写在答题卡...的相应位置,解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分8分)先化简,再求值:2(2)(1)2x x y x x +-++,其中1x =,1y =.18.(本题满分8分) 解方程:21133x x x-+=--.19. (本题满分8分)写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A ,B ,C ,D 四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:(Ⅰ) 把条形统计图补充完整;(Ⅱ) 若该校共有2000名学生,估计该校书写等级为“D 级”的学生约有▲人;(Ⅲ)随机抽取了4名等级为“A 级”的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.(第16题)PAFECB(第19题)调查结果扇形统计图20. (本题满分8分)如图,一次函数y=ax +b 的图象经过点A (2,0),与反比例函数ky x的图象在第四象限交于点B (4,n ),△OAB 的面积为32,求一次函数和反比例函数的表达式.21.(本题满分8分)如图,在△ABC 中,∠C =90°,∠B =30°.(Ⅰ)作边AB 的垂直平分线,交AB 于点D ,交BC 于点E (用尺规作图,保留作图痕迹,不写作法);(Ⅱ)在(Ⅰ)的条件下,连接AE ,求证:AE 平分∠CAB .22. (本题满分10分)某乡村在开展“美丽乡村”建设时,决定购买A ,B 两种树苗对村里的主干道进行绿化改造,已知购买A 种树苗3棵,B 种树苗4棵,需要380元;购买A 种树苗5棵,B 种树苗2棵,需要400元.(Ⅰ)求购买A ,B 两种树苗每棵各需多少元?(Ⅱ)现需购买这两种树苗共100棵,要求购买A 种树苗不少于60棵,且用于购买这两种树苗的资金不超过5620元.则有哪几种购买方案?(第20题)(第21题)23.(本题满分10分)如图,在△ABC 中,∠A =45°,以AB 为直径的⊙O 经过AC 的中点D ,E 为⊙O 上的一点,连接DE ,BE ,DE 与AB 交于点F . (Ⅰ)求证:BC 为⊙O 的切线;(Ⅱ)若F 为OA 的中点,⊙O 的半径为2,求BE 的长.24. (本题满分12分)已知:如图①,△ABC ∽△ADE ,∠BAC =∠DAE =90°,AB =6,AC =8,点D 在线段BC 上运动.(Ⅰ) 当AD ⊥BC 时(如图②),求证:四边形ADCE 为矩形; (Ⅱ)当D 为BC 的中点时(如图③),求CE 的长;(Ⅲ)当点D 从点B 运动到点C 时,设P 为线段DE 的中点,求在点D 的运动过程中,点P 经过的路径长(直接写出结论).25.(本题满分14分)已知直线l :y =kx +2k +3(k ≠0),小明在画图时发现,无论k 取何值,直线l 总会经过一个定点A .(Ⅰ)点A 坐标为___▲____; (Ⅱ)抛物线y =c bx x ++22 (c >0) 经过点A ,与y 轴交于点B . (ⅰ)当4<b <6时,若直线l 经过点B ,求k 的取值范围.(ⅱ)当k =1时,若抛物线与直线l 交于另一点MAM ≤≤b 的取值范围.(第23题)(第24题)(图②) (图③) (图①)2018年三明市初中毕业班学业质量检测数学试卷参考答案及评分标准说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分点评分. 一、选择题 (每题4分,共40分)1.A 2.B 3.C 4.A 5.C 6.B 7.D 8.D 9.B 10.A 二、填空题(每题4分,共24分) 11.1)-1)((a a a + 12.5213.280 14.4π915.2 16.51≤≤CP三、解答题(共86分)17.解: 原式=x 2+2xy - (x 2+2x +1)+2x …………2分 = x 2+2xy -x 2-2x -1+2x …………4分=2xy -1.…………5分当x =13+,y =1-3时,原式=2(13+)(1-3)-1…………6分=2(3-1)-1 …………7分 =3. …………8分 18.解:去分母,得2-x -1=x -3 …………3分-x -x =-3-2+1` …………4分 -2x =-4 …………5分x =2 …………6分经检验,x =2是原方程的根所以原方程的根是x =2…………8分19.解:(Ⅰ) B 级人数16人,图略; …………2分(Ⅱ) 360 ; …………4分 (Ⅲ)列表如下:………6分由上表可知,总共有12种等可能结果,其中符合要求有6种,8分 (树状图略)20.解:∵A (2,0),B (4,n ),且点B 在第四象限,∴S △OAB =n n -)-221=⨯⨯(. ∵S △OAB =23, ∴n =-23.∴B (4, -23). …………3分把B (4, -23)代入x ky =,得k =-6,∴反比例函数表达式为x y 6-=. …………5分把A (2,0),B (4,-23)代入y =ax +b ,得:⎪⎩⎪⎨⎧=+=+23-402b a b a , ∴3-43. 2a b ⎧=⎪⎪⎨⎪=⎪⎩…………7分 ∴一次函数表达式为33-42y x =+. …………8分 21. 解:(Ⅰ)…………3分DE 就是所作的边AB 的垂直平分线.…………4分(Ⅱ)∵∠C =90°,∠B =30°,∴∠CAB =60°. …………5分 ∵DE 垂直平分AB , ∴AE =BE ,∴∠EAB =∠B =30°, …………7分 ∴∠CAE =∠CAB -∠EAB =30°, ∴∠CAE =∠EAB =30°.∴AE 平分∠BAC . …………8分22. 解:(Ⅰ)设购买A ,B 两种树苗每棵分别需x 元,y 元,则⎩⎨⎧=+=+4002538043y x y x , …………3分 解得⎩⎨⎧==5060y x . …………4分答:购买A ,B 两种树苗每棵分别需60元,50元. …………5分(Ⅱ)设购进A 种树苗m 棵,则5620)100(5060≤-+m m …………7分解得62≤m . ∵购进A 种树苗不能少于60棵,且m 为整数,∴m =60或61或62, …………8分 ∴有三种购买方案,分别为:方案一:购进A 种树苗60棵,B 种树苗40棵;方案二:购进A 种树苗61棵,B 种树苗39棵;方案三:购进A 种树苗62棵,B 种树苗38棵. …………10分23.解:(Ⅰ)解法一:连接OD , ∵OA =OD , ∠A =45°, ∴∠ADO =∠A =45°,∴∠AOD =90°. …………………1分 ∵D 是AC 的中点,∴AD =CD .∴OD ∥BC . ……………………2分∴∠ABC =∠AOD =90°. ……………………3分∴BC 是⊙O 的切线. ……………………4分解法二:连接BD , ∵AB 为⊙O 的直径,∴BD ⊥AC . …………………1分 ∵D 是AC 的中点,∴BC =AB .…………………2分 ∴∠C =∠A =45°.∴∠ABC =90°.……………………3分 ∴BC 是⊙O 的切线.……………………4分 (Ⅱ)连接OD ,由(Ⅰ)可得∠AOD =90°.∵⊙O 的半径为2, F 为OA 的中点,∴OF=1, BF =3,AD ……………5分∴DF =……………6分∵BD BD =, ∴∠E =∠A .……………7分 ∵∠AFD =∠EFB ,∴△AFD ∽△EFB.……………8分 ∴DF BFAD BE =,3BE =. ……………………9分∴BE =……………………10分 (其他解法按相应步骤给分)24. (Ⅰ)证明:∵AD ⊥BC ,∠DAE =90°, ∴∠ADB =∠ADC =∠DAE =90°,∴AE ∥CD , ………………1分 ∵△ABC ∽△ADE , ∴∠AED =∠ACB , ∵AD =DA ,∴△ADC ≌△DAE .∴AE =DC . ………………3分 ∴四边形ADCE 为平行四边形, ∵∠ADC =90°,∴□ADCE 为矩形. ………………4分(其他解法按相应步骤给分)(Ⅱ)解:∵∠BAC =90°,AB =6,AC =8, ∴BC =10.∵D 为BC 的中点,∴AD =BD =BC 21=5.………………5分 ∵△ABC ∽△ADE ,∴AEACAD AB =. ∵∠BAC =∠DAE =90°, ∴∠BAD =∠CAE .∴△ABD ∽△ACE.………………7分∴AC AB =CE BD. 即CE586=. ∴CE =320. ………………8分(其他解法按相应步骤给分)(Ⅲ)325. ………………12分 25.(Ⅰ) (-2,3); ………………3分(Ⅱ) (ⅰ) ∵抛物线y =c bx x ++22经过点A , ∴3=8-2b +c. ∴c =2b -5.∴B (0, 2b -5). ………………5分∵直线l 经过点B , ∴2k +3=2b -5.∴k =4-b . ………………6分 当b =4时,k =0,当b =6时,k =2, ∵4<b <6,∴0<k <2. ………………8分(ⅱ) k =1时,直线l 的表达式为y =x +5,直线l 交y 轴于点F (0,5), 当点M 在点A 右侧,过点A 作x 轴平行线交y 轴于点E ,过点M 作y 轴的平行线交AE 于点D ,∵A (-2,3),∴AE =EF =2.∴∠EAF =45°. ∴当AM =2时,AD =MD =1.∴M (-1,4). 把M (-1,4)代入y =c bx x ++22,求得b =7,c =9. 由AM =42,A (-2,3),同上可得M (2,7),把A (-2,3),M (2,7)代入y =c bx x ++22,求得b =1,c =-3.………………10分把A (-2,3) 代入y =c bx x ++22,得c =2b -5.又∵c >0,∴25>b . ∴7b 25≤<………………11分 当点M 在点A 左侧时,由AM =2,A (-2,3),同上可得M (-3,2),把A (-2,3),M (-3,2)代入y =c bx x ++22,求得b =11,c =7, 由AM =42,A (-2,3),同上可得M (-6,-1),把A (-2,3),M (-6,-1)代入y =c bx x ++22,求得b =17,c =29, ∴17b 11≤≤. 综上所述,7b 25≤<或17b 11≤≤. ………………14分 (其他解法按相应步骤给分)。
中考模拟试卷数学卷一、仔细选一选。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。
福建省三明市2018年中考数学试卷一、选择题<共10题,每题4分,满分40分,每题只有一个正确选项,请在答题卡的相应位置填涂)1.<4分)<2018•三明)﹣6的绝对值是< )﹣2.<4分)<2018•三明)三明市地处福建省中西部,面积为22900平方千M,将22900用科学记数法表示为< )b5E2RGbCAP3.<4分)<2018•三明)下列图形中,不是轴对称图形的是< )4.<4分)<2018•三明)计算﹣的结果是< )5.<4分)<2018•三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是< )p1EanqFDPw6.<4分)<2018•三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为< )DXDiTa9E3dABC=∠ABC=∠7.<4分)<2018•三明)如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是< )RTCrpUDGiT8.<4分)<2018•三明)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下<单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是< )5PCzVD7HxA9.<4分)<2018•三明)如图,已知直线y=mx与双曲线y=的一个交点坐标为<3,4),则它们的另一个交点坐标是< )jLBHrnAILgy=的两个分支关于原点对10.<4分)<2018•三明)如图,在矩形ABCD中,O是对角线AC的中点,动点P从点C出发,沿DC方向匀速运动到终点C.已知P,Q 两点同时出发,并同时到达终点,连接OP,OQ.设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是< )xHAQX74J0Xb OF=发,并同时到达终点,则=,即OCP=•a+•bS=ab<0<),根据此解读式可判断函数图象线段b a∴=,即=•+•=﹣ayt+=<∴S与t的函数图象为常函数,且自变量的范围为0<t<).二、填空题<共6题,每题4分,满分24分.请将答案填在答题卡的相应位置)11.<4分)<2018•三明)分解因式:x2+6x+9= <x+3)2.12.<4分)<2018•三明)如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.LDAYtRyKfE13.<4分)<2018•三明)八年级<1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数分布直方图<满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是30% .Zzz6ZB2Ltk×100%=30%.14.<4分)<2018•三明)观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…故答案为:15.<4分)<2018•三明)如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=8 .∴CE=AE=4,16.<4分)<2018•三明)如图,已知一次函数y=kx+b的图象经过点P<3,2),与反比例函数y=<x>0)的图象交于点Q<m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是1<m<3 .dvzfvkwMI1y=得y=,,三、解答题<共7题,满分86分.请将解答过程写在答题卡的相应位置)17.<14分)<2018•三明)<1)计算:<﹣2)2+﹣2sin30°;<2)先化简,再求值:<a+2)<a﹣2)+4<a+1)﹣4a,其中a=﹣1.=4+3a=﹣﹣+1=3.18.<16分)<2018•三明)<1)解不等式组并把解集在数轴上表示出来;<2)如图,已知墙高AB为6.5M,将一长为6M的梯子CD斜靠在墙面,梯子与地面所成的角∠BCD=55°,此时梯子的顶端与墙顶的距离AD为多少M?<结果精确到0.1M)<参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)rqyn14ZNXI解:<1),19.<10分)<2018•三明)三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.EmxvxOtOco<1)从中任意抽取一张卡片,该卡片上数字是5的概率为;<2)学校将组织部分学生参加夏令营活动,九年级<1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.SixE2yXPq5的概率,即可得出游戏的公平性.故答案为:2 5 52 <2,2)<4)<2,5)<7)<2,5)<7)5 <5,2)<7)<5,5)<10)<5,5)<10)5 <5,2)<7)<5,5)<10) <5,5)<10)∴P<数字和为7)=,P<数字和为10)=,20.<10分)<2018•三明)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.6ewMyirQFL<1)第一批该款式T恤衫每件进价是多少元?<2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?<利润=售价﹣进价)kavU42VRUs=,由题意,得120×50×+y×50×﹣4950≥650,21.<10分)<2018•三明)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.y6v3ALoS89<1)求证:△BCP≌△DCP;<2)求证:∠DPE=∠ABC;<3)把正方形ABCD改为菱形,其它条件不变<如图②),若∠ABC=58°,则∠DPE= 58 度.22.<12分)<2018•三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点<P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.M2ub6vSTnP<1)判断线段AP与PD的大小关系,并说明理由;<2)连接OD,当OD与半圆C相切时,求的长;<3)过点D作DE⊥AB,垂足为E<如图②),设AP=x,OE=y,求y 与x之间的函数关系式,并写出x的取值范围.0Yuj CfmUCw∴==2∴=.∴=,﹣);2∴=.∴=,x2+4<2<23.<14分)<2018•三明)如图,△ABC的顶点坐标分别为A<﹣6,0),B<4,0),C<0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC 上.eUts8ZQVRd<1)证明四边形ABCD是菱形,并求点D的坐标;<2)求抛物线的对称轴和函数表达式;<3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.sQsAEJkW5TAC==10∴对称轴为直线x=﹣=5.∴解得∴解得y=,),申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
福建省三明市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·上城模拟) 浙江省陆域面积为101800平方千米。
数据101800用科学记数法表示为()A . 1.018×104B . 1.018×105C . 10.18×105D . 0.1018×1062. (2分)(2016·三门峡模拟) 用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A .B .C .D .3. (2分)(2017·东河模拟) 下列说法正确的是()A . “任意一个三角形的外角和等于180°”这一事件是不可能事件B . 必然事件发生的概率为0C . 一组数据1,6,3,9,8的极差为7D . “面积相等的两个三角形全等”这一事件是必然事件4. (2分) (2019九上·西城期中) 如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A . 2B . 4C . 8D . 165. (2分)(2017·齐齐哈尔) 下列算式运算结果正确的是()A . (2x5)2=2x10B . (﹣3)﹣2=C . (a+1)2=a2+1D . a﹣(a﹣b)=﹣b6. (2分)等腰三角形的一个外角为140º,那么它的底角等于()A . 40º或70ºB . 100ºC . 70ºD . 40º7. (2分)(2019·连云港) 要使有意义,则实数x的取值范围是()A . x≥1B . x≥0C . x≥﹣1D . x≤08. (2分)(2018·越秀模拟) 如图,正比例函数y1=k1x和反比例函数y2= 的图象交于A(﹣1,2)、B (1,﹣2)两点,若y1<y2 ,则x的取值范围是()A . x<﹣1或x>1B . x<﹣1或0<x<1C . ﹣1<x<0或0<x<1D . ﹣1<x<0或x>19. (2分)下列说法正确的是()A . 对角线相等且互相垂直的四边形是菱形B . 对角线互相垂直平分的四边形是正方形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形10. (2分)(2014·内江) 如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A . 2.5B . 1.6C . 1.5D . 1二、填空题 (共6题;共6分)11. (1分)(2016·包头) 已知一组数据为1,2,3,4,5,则这组数据的方差为________.12. (1分)(2018·武汉模拟) 将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=________.13. (1分)已知点P(x1 , -2),Q(x2 , 3),H(x3 , 1)在双曲线上,那么x1、x2、x3的大小关系是________ .14. (1分)(2017·官渡模拟) 用一个圆心角为90°半径为16cm的扇形做成一个圆锥的侧面(接缝处不重叠),则这个圆锥底面圆的半径为________ cm.15. (1分)(2012·资阳) 直角三角形的两边长分别为16和12,则此三角形的外接圆半径是________.16. (1分) (2017九上·深圳月考) 如图,点A是双曲线y=- 在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为________。
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的相反数是()C. 3 D.﹣3A.B.﹣试题2:下列计算正确的是()A.(a3)2=a5B. a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2试题3:下列正方形中由阴影部分组成的图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.试题4:PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A. 0.25×10﹣5B. 2.5×10﹣5C. 2.5×10﹣6D. 2.5×10﹣7试题5:不等式组的解集是()A. x≥﹣1 B. x≤2 C. 1≤x≤2 D.﹣1≤x≤2试题6:如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B.C.D.试题7:小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.B.C.D. 1试题8:一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形试题9:如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A. DE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形试题10:已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A. b≥﹣1 B. b≤﹣1 C. b≥1 D. b≤1试题11:计算:×=试题12:甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是(填“甲”或“乙”).试题13:如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是(写出一个即可).试题14:如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是.试题15:有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是试题16:如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.试题17:解不等式2(x﹣2)<1﹣3x,并把它的解集在数轴上表示出来.试题18:先化简,再求值:(1+)•,其中x=+1.试题19:如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.(1)求k和b的值;(2)连接OA,求△AOB的面积.试题20:如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)试题21:某学校在开展“书香校园”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,根据图中的信息,解答下列问题:(1)这次调查的学生人数为人,扇形统计图中m的值为;(2)补全条形统计图;(3)如果这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?试题22:为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?试题23:已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.试题24:如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?试题25:如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(﹣2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.试题1答案: A试题2答案: C试题3答案: B试题4答案: C试题5答案: D试题6答案: B试题7答案: A试题8答案: C试题9答案: B试题10答案:D试题11答案:6 .试题12答案:甲试题13答案:AB=AD(答案不唯一)试题14答案:2π试题15答案:=.试题16答案:﹣1试题17答案:解:去括号得,2x﹣4<1﹣3x,移项得,2x+3x<1+4,合并同类项得,5x<5,系数化为1得,x<1.在数轴上表示为:.试题18答案:解:原式=•=,当x=+1时,原式==试题19答案:解:(1)把A(2,1)代入y=x+b得2+b=1,解得b=﹣1;把A(2,1)代入y=(x>0)得k=2×1=2;(2)一次函数解析式为y=x﹣1,把y=0代入y=x﹣1得x﹣1=0,解得x=1,则B点坐标为(1,0),所以△AOB的面积=×1×1=.试题20答案:解:由题意得:Rt△ACB中,AB=6米,∠A=20°,∴AC=AB•cos∠A≈6×0.94=5.64,∴在5.3~5.7米范围内,∴符合要求试题21答案:解:(1)这次调查的学生人数为=200(人),扇形统计图中军事所占的百分比是:1﹣35%﹣20%﹣30%=15%,则m=15;故答案为:200,15;(2)科普的人数是:200×30%=60(人),补图如下:(3)根据题意得:1500×=450(册),答:“科普”类书籍应添置450册比较合适.试题22答案:解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x﹣20)=2.8x﹣16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x﹣16中,得x=22.所以22﹣19=3吨.答:小颖家五月份比四月份节约用水3吨试题23答案:解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.试题24答案:解:(1)∵∠ACB=90°,点O是AB的中点,∴OC=0B=OA=5.∴∠OCB=∠B,∠ACO=∠A.∵∠DOE=∠B,∴∠FOC=∠OCF.∴FC=FO.∴△COF是等腰三角形.过点F作FH⊥OC,垂足为H,如图1,∵FC=FO,FH⊥OC,∴CH=OH=,∠CHF=90°.∵∠HCF=∠B,∠CHF=∠BCA=90°,∴△CHF∽△BCA.∴=.∵CH=,AB=10,BC=6,∴CF=.∴CF的长为.(2)①若△OMN∽△BCO,如图2,∵∠OCB=∠B,∴∠NMO=∠B.∵∠A=∠A,∴△AOM∽△ACB.∴=.∵∠ACB=90°,AB=10,BC=6,∴AC=8.∵AO=5,AC=8,AB=10,∴AM=.∴CM=AC﹣AM=.②若△OMN∽△BOC,如图3,则有∠MNO=∠OCB.∵∠OCB=∠B,∴∠MNO=∠B.∵∠ACO=∠A,∴△CON∽△ACB.∴==.∵BC=6,AB=10,AC=8,CO=5,∴ON=,CN=.过点M作MG⊥ON,垂足为G,如图3,∵∠MNO=∠B,∠MON=∠B,∴MN=MO.∵MG⊥ON,即∠MGN=90°,∴NG=OG=.∵∠MNG=∠B,∠MGN=∠ACB=90°,∴△MGN∽△ACB.∴=.∵GN=,BC=6,AB=10,∴MN=.∴CM=CN﹣MN=﹣=.∴当CM的长是或时,△OMN与△BCO相似.试题25答案:解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣2,0),∴0=4a﹣2b+4,∵对称轴是x=3,∴﹣=3,即6a+b=0,两关于a、b的方程联立解得 a=﹣,b=,∴抛物线为y=﹣x2+x+4.(2)∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点右下方,即M向下平移4个单位,向右平移2个单位与N重合.设M(x,﹣x2+x+4),则N(x+2,﹣x2+x),∵N在x轴上,∴﹣x2+x=0,解得 x=0(M与C重合,舍去),或x=6,∴x M=6,∴M(6,4).②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.设M(x,﹣x2+x+4),则N(x﹣2,﹣x2+x+8),∵N在x轴上,∴﹣x2+x+8=0,解得 x=3﹣,或x=3+,∴x M=3﹣,或3+.∴M(3﹣,﹣4)或(3+,﹣4)综上所述,M的坐标为(6,4)或(3﹣,﹣4)或(3+,﹣4).(3)∵OC=4,OB=3,∴BC=5.如果△PBD≌△PBC,那么BD=BC=5,∵D在x轴上,∴D为(﹣2,0)或(8,0).①当D为(﹣2,0)时,连接CD,过B作直线BE平分∠DBC交CD于E,交抛物线于P1,P2,此时△P1BC≌△P1BD,△P2BC≌△P2BD,∵BC=BD,∴E为CD的中点,即E(﹣1,2),设过E(﹣1,2),B(3,0)的直线为y=kx+b,则,解得,∴BE:y=﹣x+.设P(x,y),则有,解得,或,则P1(4+,),P2(4﹣,).②当D为(8,0)时,连接CD,过B作直线BF平分∠DBC交CD于F,交抛物线于P3,P4,此时△P3BC≌△P3BD,△P4BC≌△P4BD,∵BC=BD,∴F为CD的中点,即E(4,2),设过E(4,2),B(3,0)的直线为y=kx+b,则,解得,∴BF:y=2x﹣6.设P(x,y),则有,解得或,则P3(﹣1+,﹣8+2),P4(﹣1﹣,﹣8﹣2).综上所述,点P的坐标为(4+,)或(4﹣,)或(﹣1+,﹣8+2)或(﹣1﹣,﹣8﹣2)。
2018年三明市初中毕业班教学质量检测数学试题一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡...的相应位置填涂)1. 的值为()A. B. - C. 9 D. -9【答案】A【解析】【分析】根据绝对值的意义进行求解即可得.【详解】表示的是的绝对值,数轴上表示的点到原点的距离是,即的绝对值是,所以的值为,故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.2. 港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A. 55×103B. 5.5×104C. 5.5×105D. 0.55×105【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 用6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.考点:简单组合体的三视图.视频4. 下列运算中,正确的是()A. (ab2)2=a2b4B. a2+a2=2a4C.D. a6÷a3=a2【答案】A【详解】A. (ab2)2=a2b4,正确,符合题意;B. a2+a2=2a2,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. a6÷a3=a3,故D选项错误,不符合题意,故选A.【点睛】本题考查了有积的乘方,同底数幂的乘、除法,熟练掌握各运算法则是解题的关键.5. 将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A. 50°B. 110°C. 130°D. 140°【答案】C【解析】【分析】如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【详解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.6. 如图,将△ABC绕点A顺时针旋转 60°得到△AED,若AB=4,AC=3,BC=2,则BE的长为()A. 5B. 4C. 3D. 2【答案】B【解析】【分析】根据将△ABC绕点A顺时针旋转 60°得到△AED可得△ABE是等边三角形,根据等边三角形的性质即可得.【详解】∵将△ABC绕点A顺时针旋转 60°得到△AED,∴AE=AB,∠BAE=60°,∴△ABE是等边三角形,∴BE=AB=4,故选B.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,得出△ABE是等边三角形是解题的关键.7. 某校田径运动会有13名同学参加女子百米赛跑,她们预赛的成绩各不相同,取前6名参加决赛,小玥已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A. 方差B. 极差C. 平均数D. 中位数【答案】D【解析】【分析】由于比赛取前6名参加决赛,共有13名选手参加,根据中位数的意义分析即可.【详解】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否能进行决赛,故选D.【点睛】本题考查了统计量的选择,中位数,能根据题意确定出用什么统计量是解题的关键. 8. 如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A. AC=CDB. OM=BMC. ∠A=∠ACDD. ∠A=∠BOD【答案】D【解析】【分析】由直径AB⊥弦CD,根据垂径定理可得CM=DM,,,据此逐一进行分析即可.【详解】∵直径AB⊥弦CD,∴CM=DM,,,A、根据垂径定理不能推出AC=CD,故本选项错误;B、题中没有说明M的具体位置,不能得到OM=BM,故本选项错误;C、根据垂径定理得不到,因此也就得不到∠A=∠ACD ,故本选项错误;D、因为,所以∠A=∠BOD,故D选项正确,故选D.【点睛】本题考查了垂径定理、圆周角定理,熟练掌握垂径定理、圆周角定理是解题的关键. 9. 如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A. B. C. D. 2【答案】B【解析】【分析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【详解】连接AG、GE、EC,∵ABCDEFGH是正八边形,∴AB=BC=CD=DE=EF=FG=GH=HA,∠B=∠BCD=∠D=∠F =∠H =135°,∴△ABC≌△CDE≌△EFG≌△GHA(SAS),∴AC=CE=EG=GA,∴四边形ACEG是菱形,∵AB=BC,∠B=135°,∴∠ACB=22.5°,同理∠ECD=22.5°,∴∠ACE=90°,∴四边形ACEG为正方形,∴,故选B.【点睛】本题考查了正多边形的性质,正确作出辅助线是关键.10. 定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为()A. 0B. 2C. 4mD. -4m【答案】A【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a -(b+1)⋆b 用新定义运算展开整理后代入进行求解即可.【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,∴a+b=-1,∵定义运算:a⋆b=2ab,∴(a+1)⋆a -(b+1)⋆b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故选A.【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.二、填空题(共6题,每题4分,满分24分.请将答案填在答题卡...的相应位置)11. 分解因式:____.【答案】【解析】【分析】先提公因式a,然后再利用平方差公式进行分解即可.【详解】a3-a,=a(a2-1),=a(a+1)(a-1),故答案为:a(a+1)(a-1).【点睛】本题考查了综合利用提公因式法和平方差公式分解因式,因式分解时要做到:一提(公因式)、二套(公式),三要分解到不能再分为止,熟练掌握因式分解的方法是解题的关键.12. 在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .【答案】【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率. 【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:,故答案为:.【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比. 13. 如图,一名滑雪运动员沿着倾斜角为34°的斜坡从A滑行至B. 已知AB=500米,则这名滑雪运动员下降的垂直高度为____ 米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)【答案】280【解析】解:如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280m,∴这名滑雪运动员的高度下降了280m.故答案为:280.14. 如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留).【答案】【解析】【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.【详解】∵S阴影=S扇形ABA′+S半圆-S半圆=S扇形ABA′==,故答案为:.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.15. 二次函数的图象与x轴有____个交点.【答案】2【解析】【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,即当y=0时,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,即二次函数y=x2+mx+m-2的图象与x轴有2个交点,故答案为:2.【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.16. 在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.【答案】....... ..........................【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为:1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.三、解答题(共9题,满分86分.请将解答过程写在答题卡...的相应位置,解答应写出文字说明、证明过程或演算步骤.)17. 先化简,再求值:,其中,.【答案】解:原式=2xy-1=3.【解析】【分析】根据单项式乘多项式法则、完全平方公式进行展开,然后合并同类项,最后将x、y的数值代入进行计算即可得.【详解】原式= x2+2xy- (x2+2x+1)+2x,= x2+2xy-x2-2x-1+2x,=2xy-1,当,时,原式=2×()×()-1 =2×(3-1)-1 =3.【点睛】本题考查了整式的混合运算-化简求值,涉及的知识有:单项式乘多项式法则,平方差公式等,熟练掌握公式及法则是解本题的关键.18. 解方程:.【答案】x=2.【解析】【分析】两边同时乘以(x-3),得到整式方程,解整式方程后进行检验即可得.【详解】两边同时乘以(x-3),得2-x-1=x-3,解得:x=2检验:当x=2时,x-3≠0,所以x=2是原方程的根,所以原方程的根是x=2.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.19. 写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A,B,C,D四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:(1)把条形统计图补充完整;(2)若该校共有2000名学生,估计该校书写等级为“D级”的学生约有人;(3)随机抽取了4名等级为“A级”的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.【答案】(1)补图见解析;(2)360;(3)P(抽到两名女生)=.【解析】【分析】(1)根据A级有8人,所点百分比为16%,用8除以16%得到参与测试的学生数,然后减去A级、C级、D级的人数得到B级的人数,据此即可补全条形统计图;(2)用2000乘以D级所占的比例即可得;(3)列表得到所有可能的结果,然后从中找到抽到的两名学生都是女生的情况数,根据概率公式进行计算即可得.【详解】(1)8÷16%=50,B级的人数:50-8-17-9=16,条形图如图所示;(2)估计该校书写等级为“D级”的学生约有:2000×=360(人);(3)列表如下:由上表可知,总共有12种等可能结果,其中符合要求有6种,所以P(抽到两名女生)=.【点睛】本题考查了条形统计图、扇形统计图、概率等,准确识图,能从统计图中得到相关信息是解题的关键.20. 如图,一次函数y=ax+b的图象经过点A(2,0),与反比例函数的图象在第四象限交于点B(4,n),△OAB的面积为,求一次函数和反比例函数的表达式.【答案】反比例函数表达式为,一次函数表达式为.【解析】【分析】根据A(2,0),B(4,n),且点B在第四象限,以及△OAB的面积为,求得n的值,从而得到点B坐标,然后利用待定系数法分别求这两个函数的解析式即可.【详解】∵A(2,0),B(4,n),且点B在第四象限,∴S△OAB=,∵S△OAB=,∴n=-,∴B(4, -),把B(4, -)代入,得k=-6,∴反比例函数表达式为,把A(2,0),B(4,-)分别代入y=ax+b,得:,∴,∴一次函数表达式为.【点睛】本题考查了反比例函数与一次函数的交点问题,涉及到三角形的面积、待定系数法确定函数解析式,结合图形得出点B的坐标是解答本题的关键.21. 如图,在△ABC中,∠C=90°,∠B=30°.(1)作边AB的垂直平分线,交AB于点D,交BC于点E(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AE,求证:AE平分∠CAB.【答案】(1)画图见解析;(2)证明见解析.【解析】【分析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AB 于点D,BC于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠BAE=∠B=30°,然后求出∠CAE=30°,从而得到AE平分∠CAB.【详解】(1)如图所示,DE就是所作的边AB的垂直平分线.;(2)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴∠CAE=∠CAB-∠EAB=30°,∴∠CAE=∠EAB=30°,∴AE平分∠BAC.【点睛】本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,熟练掌握作图方法以及性质是解题的关键.22. 某乡村在开展“美丽乡村”建设时,决定购买A,B两种树苗对村里的主干道进行绿化改造,已知购买A 种树苗3棵,B种树苗4棵,需要380元;购买A种树苗5棵,B种树苗2棵,需要400元.(1)求购买A,B两种树苗每棵各需多少元?(2)现需购买这两种树苗共100棵,要求购买A种树苗不少于60棵,且用于购买这两种树苗的资金不超过5620元.则有哪几种购买方案?【答案】(1)购买A,B两种树苗每棵分别需60元,50元;(2)有三种购买方案,方案一:购进A种树苗60棵,B种树苗40棵;方案二:购进A种树苗61棵,B种树苗39棵;方案三:购进A种树苗62棵,B种树苗38棵.【解析】【分析】(1)设购买A,B两种树苗每棵分别需x元,y元,根据等量关系:买A种树苗3棵,B种树苗4棵,需要380元;购买A种树苗5棵,B种树苗2棵,需要400元,列方程组进行求解即可得;(2)设购进A种树苗m棵,根据购买这两种树苗共100棵,要求购买A种树苗不少于60棵,且用于购买这两种树苗的资金不超过5620元,列出不等式组,解不等式组即可得出答案.【详解】(1)设购买A,B两种树苗每棵分别需x元,y元,则,解得,答:购买A,B两种树苗每棵分别需60元,50元;(2)设购进A种树苗m棵,则,解得,∵m为整数,∴m=60或61或62,∴有三种购买方案,分别为:方案一:购进A种树苗60棵,B种树苗40棵;方案二:购进A种树苗61棵,B种树苗39棵;方案三:购进A种树苗62棵,B种树苗38棵.【点睛】本题考查的是二元一次方程组及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.23. 如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.(1)求证:BC为⊙O的切线;(2)若F为OA的中点,⊙O的半径为2,求BE的长.【答案】(1)证明见解析;(2).【解析】【分析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∵⊙O的半径为2, F为OA的中点,∴OF=1, BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.24. 已知:如图①,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,点D在线段BC上运动. (1)当AD⊥BC时(如图②),求证:四边形ADCE为矩形;(2)当D为BC的中点时(如图③),求CE的长;(3)当点D从点B运动到点C时,设P为线段DE的中点,求在点D的运动过程中,点P经过的路径长(直接写出结论).【答案】(1)证明见解析;(2)CE=;(3).【解析】【分析】(1)由已知先证明AE∥CD,再根据△ABC∽△ADE,得到∠AED=∠ACB,继而证明△ADC≌△DAE,从而得到AE=DC,得到四边形ADCE为平行四边形,再根据∠ADC=90°,即可证明四边形ADCE为矩形;(2)先根据勾股定理求得BC=10,从而得到AD=BD=5,根据△ABC∽△ADE,可得,继而证明△ABD∽△ACE,根据相似三角形的性质即可得;(3)如图,设BC中点为M,CE的中点为Q,连接MQ,当点D在点B时,M即为DE的中点,当点D与点C重合时,DE的中点即为CE的中点,此时MQ的长即为点P经过的路径长,据此进行求解即可得.【详解】(1)∵AD⊥BC,∠DAE=90°,∴∠ADB=∠ADC=∠DAE=90°,∴AE∥CD,∵△ABC∽△ADE,∴∠AED=∠ACB,∵AD=DA,∴△ADC≌△DAE,∴AE=DC,∴四边形ADCE为平行四边形,∵∠ADC=90°,∴平行四边形ADCE为矩形;(2)∵∠BAC=90°,AB=6,AC=8,∴BC=10,∵D为BC的中点,∴ AD=BD==5,∵△ABC∽△ADE,∴,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD∽△ACE,∴=,即,∴CE=;(3)如图,设BC中点为M,CE的中点为Q,连接MQ,当点D在点B时,M即为DE的中点,当点D与点C重合时,DE的中点即为CE的中点,此时MQ的长即为点P经过的路径长,∵△ABC∽△ADE,AB=6,AC=8,∴,即,∴AE=,∵∠BAC=∠DAE=90°,∴∠BAE=180°,即点B、A、E共线,∴BE=AB+AE=,∴MQ=BE=,即点P经过的路径长为.【点睛】本题考查了相似三角形的性质与判定、矩形的判定、三角形的中位线、点的轨迹等知识,熟练应用掌握各性质与判定定理是解题的关键.25. 已知直线l:y =kx+2k+3(k≠0),小明在画图时发现,无论k取何值,直线l总会经过一个定点A.(1)点A坐标为_______;(2)抛物线y=(c>0) 经过点A,与y轴交于点B.①当4<b<6时,若直线l经过点B,求k的取值范围.②当k =1时,若抛物线与直线l交于另一点M,且,求b的取值范围.【答案】(1)(-2,3);(2)①0<k<2;②或【解析】【分析】(1)根据直线的解析式y =kx+2k+3(k≠0),可得k(x+2)=y-3,由“无论k取何值,直线l总会经过一个定点A”,可得:x+2=0,y-3=0,解方程即可得出该定点的坐标;(2)①将点A坐标代入抛物线y=中,可得c=2b-5,从而确定出点B坐标(0, 2b-5),根据直线l经过点B,则可得k=4-b,根据b的取值范围即可得;②k=1时,直线l的表达式为y=x+5,直线l交y轴于点F(0,5),分点M在点A右侧,点M在点A左侧,两种情况分别讨论即可得.【详解】(1)∵y =kx+2k+3(k≠0),∴k(x+2)=y-3,∵无论k取何值,直线l总会经过一个定点A,∴x+2=0,y-3=0,∴x=-2,y=3,∴定点A的坐标为(-2,3),故答案为:(-2,3);(2)①∵抛物线y=经过点A,∴3=8-2b+c. ∴c=2b-5.∴B(0, 2b-5),∵直线l经过点B,∴2k+3=2b-5,∴k=4-b,当b=4时,k=0,当b=6时,k=2,∵4<b<6,∴0<k<2;②k=1时,直线l的表达式为y=x+5,直线l交y轴于点F(0,5),当点M在点A右侧,过点A作x轴平行线交y轴于点E,过点M作y轴的平行线交AE于点D,∵A(-2,3),∴AE=EF=2.∴∠EAF=45°,∴当AM=时,AD=MD=1,∴M(-1,4),把M(-1,4)代入y=,求得b=7,c=9,由AM=4,A(-2,3),同上可得M(2,7),把A(-2,3),M(2,7)代入y=,求得b=1,c=-3.把A(-2,3) 代入y=,得c=2b-5,又∵c>0,∴∴,当点M在点A左侧时,由AM=,A(-2,3),同上可得M(-3,2),把A(-2,3),M(-3,2)代入y=,求得b=11,c=7,由AM=4,A(-2,3),同上可得M(-6,-1),把A(-2,3),M(-6,-1)代入y=,求得b=17,c=29,∴综上所述,或.【点睛】本题考查了二次函数综合题,涉及到待定系数法、等腰直角三角形的性质、不等式等知识,熟练掌握待定系数法是解本题的关键.。
福建省三明市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 2017的绝对值是()A . 2017B . -2017C .D . ±20172. (2分)下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2017·包头) a2=1,b是2的相反数,则a+b的值为()A . ﹣3B . ﹣1C . ﹣1或﹣3D . 1或﹣34. (2分)多边形的边数由4增加到8,则其外角和的度数()A . 增加B . 减少C . 不变D . 无法确定5. (2分)(2019·三亚模拟) 一组数据3,﹣3,0,2,﹣2,3的中位数和众数分别是()A . ﹣1,2B . 0,2C . 1,2D . 1,36. (2分) (2019七上·深圳期末) 地球与月球的距离大约为380000千米,用科学记数法可表示为()千米.A .B .C .D .7. (2分) (2016八上·博白期中) 如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一个条件,某学习小组在讨论这个条件时给出了如下几种方案:①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有()A . 1种B . 2种C . 3种D . 4种8. (2分)(2017·东莞模拟) 如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1 ,弧K1K2 ,弧K2K3 ,弧K3K4 ,弧K4K5 ,弧K5K6 ,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1 , L2 , L3 , L4 , L5 , L6 ,….当AB=1时,L2016等于()A .B .C .D . .9. (2分)当分式的值为0时,x值是()A . 0B . -1C . -2D . 110. (2分)(2017·全椒模拟) 如图,菱形ABCD的边长为2,∠ABC=60°,E是AD的中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是()A .B . 2C .D .二、填空题 (共6题;共7分)11. (2分) (2018八上·沈河期末) 若,则 ________;若,则 ________.12. (1分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________ .13. (1分)已知,则的取值范围是________。
福建省三明市中考模拟数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2018七上·铁西期末) 下列各组数中,互为相反数的是()A .B .C .D .2. (2分)如图所示,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B ,连接AB ,∠α=75°,则b的值为()A . 2B . 3C . 3D . 63. (2分)若有理数m在数轴上对应的点为M,且满足|m|>1且m<0,则下列数轴表示正确的是()A .B .C .D .4. (2分) (2019七下·芜湖期末) 如图所示,一块白色正方形板,边长是18cm,上面横竖各有两道彩条,各彩条宽都是2cm,问白色部分面积()A . 220cm2B . 196cm2C . 168cm2D . 无法确定5. (2分) (2018八上·青山期末) 已知被除式是x3+3x2﹣1,商式是x ,余式是﹣1,则除式是()A . x2+3x﹣1B . x2+3xC . x2﹣1D . x2﹣3x+16. (2分) (2019九上·北京月考) 如图,AB是⊙O的直径,C , D为⊙O上的点,,如果∠CAB =40°,那么∠CAD的度数为()A . 25°B . 50°C . 40°D . 80°7. (2分)△ABC的两边是方程组的解,第三边长为奇数,符合条件的三角形有()A . 1个B . 2个C . 3个D . 4个8. (2分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到新的线段,则点A的对应点坐标为()A . (2,1)B . (2,0)C . (3,3)D . (3,1)9. (2分) (2018八上·江都期中) 在实数中,无理数有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2018·江都模拟) 某校九年级(1)班全体学生体能测试成绩统计如下表(总分30分):成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A . 该班一共有40名同学B . 成绩的众数是28分C . 成绩的中位数是27分D . 成绩的平均数是27.45分11. (2分)若△ABC的三边a、b、c满足(a-b)( a2+b2-c2)=0,则△ABC是()A . 等腰三角形B . 等边三角形C . 等腰直角三角形D . 等腰三角形或直角三角形12. (2分)(2020·鹿邑模拟) 某口罩生产车间接了一个60000个口罩的订单,由于任务紧急改进了生产工艺,效率为之前的倍,完成订单后发现比工艺改进前还少用了10个小时,设工艺改进前每小时生产口罩个,依据题意可得方程为()A .B .C .D .13. (2分)(2020·杭州模拟) 一次函数与的图象如图所示,下列说法:① ;②函数不经过第一象限;③不等式的解集是;④ .其中正确的个数有()A . 4B . 3C . 2D . 114. (2分)用直尺和圆规作一个角等于已知角的示意图如右,则说明∠A′O′B′=∠AOB的依据是()A . SSSB . SASC . ASAD . AAS15. (2分)(2017·南宁模拟) 如图,直线y=x+4与双曲线y=﹣相交于A、B两点,点P是y轴上的一个动点,当PA+PB的值最小时,点P的坐标为()A . (0,)B . (0,)C . (0,﹣)D . (0,﹣)16. (2分) (2017八下·河东期末) 如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A . 体育场离张强家3.5千米B . 张强在体育场锻炼了15分钟C . 体育场离早餐店1.5千米D . 张强从早餐店回家的平均速度是3千米/小时二、填空题 (共3题;共4分)17. (2分) (2016七上·南京期末) ﹣的倒数是________,相反数是________.18. (1分)一个底面直径是80 cm,母线长为90 cm的圆锥的侧面展开图的圆心角的度数为________19. (1分) (2016九上·南浔期末) 如图,已知直线y=﹣ x+1分别交x轴、y轴于点A、B,M是x轴正半轴上一动点,并以每秒1个单位的速度从O点向x轴正方向运动,过点M作x轴的垂线l,与抛物线y=x2﹣ x ﹣2交于点P,与直线AB交于点Q,连结BP,经过t秒时,△PBQ是以BQ为腰的等腰三角形,则t的值是________.三、解答题 (共7题;共65分)20. (1分) 1﹣=________ .21. (7分)在不透明的口袋中,有三张形状、大小、质地完全相同的纸片,三张纸片上分别写有函数:①y=﹣x,②y=﹣,③y=2x2 .(1)在上面三个函数中,其函数图象满足在第二象限内y随x的增大而减小的函数有________(请填写序号);现从口袋中随机抽取一张卡片,则抽到的卡片上的函数图象满足在第二象限内y随x的增大而减小的概率为________;(2)王亮和李明两名同学设计了一个游戏,规则为:王亮先从口袋中随机抽取一张卡片,不放回,李明再从口袋中随机抽取一张卡片,若两人抽到的卡片上的函数图象都满足在第二象限内y随x的增大而减小,则王亮得3分,否则李明得2分,请用列表或画树状图的方法说明这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使该游戏对双方公平呢?22. (10分) (2019八下·淮安月考) 如图,、相交于点,,,、分别是、的中点.(1)与有何关系?(2)证明(1)的结论.23. (16分)(2017·竞秀模拟) 在平面直角坐标系中,反比例函数y= (x>0)的图象上有一点A(a,3),过点A作AB⊥x轴于点B,将点B沿x轴正方向平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数于点D,CD= ,直线AD与x轴交于点M,与y轴交于点N.(1)用含a的式子表示点D的横坐标为:________;(2)求a的值和直线AD的函数表达式;(3)请判断线段AN与MD的数量关系,并说明理由;(4)若一次函数y1=k1x+b1经过点(10,9),与双曲线y= (x>0)交于点P,且该一次函数y1的值随x 的增大而增大,请确定P点横坐标n的取值范围(不必写出过程)24. (10分)(2017·河南模拟) 为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.25. (10分)(2020·辽宁模拟) 如图,是的直径,点P是延长线上一点,过点P作的切线,切点是C,过点C作弦于E,连接, .(1)求证:是的切线;(2)若,,求的长.26. (11分)(2019·永年模拟) 如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y =图象的两支上,且PB⊥x轴于点 C ,PA⊥y轴于点D , AB分别与 x轴,y轴相交于点F和E .已知点 B 的坐标为(1,3).(1)填空:k=________;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共4分)17-1、18-1、19-1、三、解答题 (共7题;共65分)20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2018年福建省三明市中考试题数学(满分150分,考试时间120分钟)一、选择题(共10小题,每小题4分)1.(2018福建三明,1,4分)-6的相反数是()A.-6 B.-C.D.6【答案】D2.(2018福建三明,2,4分)据《2018年三明市国民经济和社会发展统计公报》数据显示,截止2018年底,三明市民用汽车保有量约为98200辆,98200用科学记数法表示正确的是()A.9.82×103B.98.2×103C.9.82×104D.0.982×104【答案】C3.(2018福建三明,3,4分)由5个大小相同的正方体组成的几何体如图所示,其主视图是()正面(第3题)A B C D【答案】A4.(2018福建三明,4,4分)点P(-2,1)关于x轴对称的点的坐标是()A.(-2,-1)B.(2,-1)C.(2,1)D.(1,-2)【答案】A5.(2018福建三明,5,4分)不等式组的解集在数轴上表示如图所示,则该不等式组可能是()(第5题)A .B .C .D . 【答案】B6.(2018福建三明,6,4分)有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案..是中心对称图形的概率为( )A .B .C .D . 【答案】C7.(2018福建三明,7,4分)如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C =40°,则∠ABD 的度数为( )(第7题)D BAA .40°B .50°C .80°D .90° 【答案】B8.(2018福建三明,8,4分)下列4个点,不在..反比例函数y =- 图象上的是( ) A .( 2,-3) B .(-3,2) C .(3,-2) D .( 3,2)【答案】D9.(2018福建三明,9,4分)用半径为12㎝,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为( )A .1.5㎝B .3㎝C .6㎝D .12㎝ 【答案】B10.(2018福建三明,10,4分)如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM =DM ;②∠ABN =30°;③AB 2=3CM 2;④△PMN 是等边三角形.正确的有( )(第10题)P NF EDCABMA .1个B .2个C .3个D .4个 【答案】C二、填空题(共6小题,每小题4分)11.(2018福建三明,11,4分)计算:-20180=【答案】112.(2018福建三明,12,4分)分解因式:a 2-4a +4=【答案】(a -2)213.(2018福建三明,13,4分)甲、乙两个参加某市组织的省“农运会”铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:甲 =13.5m ,乙 =13.5m ,S 2甲=0.55,S 2乙=0.50,则成绩较稳定的是 (填“甲”或“乙”).【答案】乙14.(2018福建三明,14,4分)如图,□ABCD 中,对角形AC ,BD 相交于点O ,添加一个..条件,能使□ABCD 成为菱形.你添加的条件是 (不再添加辅助线和字母)(第14题)ODABC【答案】AB =CD (答案不唯一)15.(2018福建三明,15,4分)如图,小亮在太阳光线与地面成35°角时,测得树AB 在地面上的影长BC =18m ,则树高AB 约为 m (结果精确到0.1m )(第15题)C【答案】12.616.(2018福建三明,16,4分)如图,直线l 上有2个圆点A ,B .我们进行如下操作:第1次操作,在A ,B 两圆点间插入一个圆点C ,这时直线l 上有(2+1)个圆点;第2次操作,在A ,C 和C ,B 间再分别插入一个圆点,这时直线l 上有(3+2)个圆点;第3次操作,在每相邻的两圆点间再插入一个圆点,这时直线l 上有(5+4)个圆点;…第n 次操作后,这时直线l 上有 个圆点.(第16题)l l l lB【答案】2n +1三、解答题(共7小题,共86分)17.(1)(2018福建三明,17(1),8分)先化简,再求值:x (4-x )+(x +1)(x -1),其中x =.【答案】解:原式=4 x -x 2+x 2-1=4 x -1当x = 时原式=4×-1=1(2)(2018福建三明,17(2),8分)解方程: =【答案】解:x +4=3 x-2 x =-4x =2经检验:x =2是原方程的根 ∴原方程的解为x =218.(2018福建三明,18,10分)如图,AC =AD ,∠BAC =∠BAD ,点E 在AB 上. (1)你能找出 对全等的三角形;(3分) (2)请写出一对全等三角形,并证明.(7分)(第18题)DA B CE【答案】(1)3(2)△ABC ≌△ABD 证明:在△ABC 和△ABD 中∴△ABC ≌△ABD (SAS )19.(2018福建三明,19,10分)某校为庆祝中国共产党90周年,组织全校1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析(得分为整数,满分为100分),得到如下统计表:根据统计表提供的信息,回答下列问题: (1)a = ,b = ,c = ;(3分)(2)上述学生成绩的中位数落在 组范围内;(2分)(3)如果用扇形统计图表示这次抽样成绩,那么成绩在89.5~100.5范围内的扇形的 圆心角为 度;(2分)(4)若竞赛成绩80分(含80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有人.(3分)【答案】(1)a=0.2,b=24,c=60(2)79.5~89.5(3)126(4)135020.(2018福建三明,20,12分)海崃两岸林业博览会连续六届在三明市成功举办,三明市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用这y1元,选择乙经销商时,所需费用这y2元,请分别写出y1,y2与x之间的函数关系式;(6分)(2)请问该外商选择哪一经销商购买更合算?(6分)【答案】解:(1)y1=0.95×220x=209 x当0<x≤500时,y2=220x,当x>500时,y2=220×500+0.9×220(x-500)即y2=198 x+11000(2)当0<x≤500时,209 x<220x,选择甲经销商;当x>500时,由y1<y2即209 x<198 x+11000,得x<1000;由y1=y2即209 x=198 x+11000,得x=1000;由y1>y2即209 x>198 x+11000,得x>1000;综上所述:当0<x<1000时,选择甲经销商;当x=1000时,选择甲、乙经销商一样;当x>1000时,选择乙经销商。
2018年福建省三明市初中毕业学业考试数学试题(满分:150分 考试时间:6月21日上午8:30——10:30) 考生注意:本卷中凡涉及实数运算,若无特别要求,结果应为准确数。
一、填空题:本大题共10小题,1~6题,每小题3分,7~10题,每小题4分,计34分。
1.-6的绝对值是_______.2.分解因式:2a 2-4ab=_______________.3. “x 的2倍与5的差小于0”用不等式表示为_________________.4. 学校团委组织九年级的共青团员参加植树活动,七个团支部植树的棵树为: 16,13,15,16,14,17,17,则这组数据的中位数是_________.5. 写出含有字母x 、y 的四次单项式___________(只要写出一个).6.如图,AB ∥CD ,AD 与BC 相交于点O ,OA=4,OD=6,则△AOB 与△DOC 的周长比是____.7.计算:3932---a a a =_____________.8.如图,在O 为圆心的两个同心圆中,大圆的直径AB 交小圆于C 、D 两点,AC=CD=DB ,分别以C 、D 为圆心,以CD 的长为半径作半圆。
若AB=6cm,则图中阴影部分的面积为________cm 2.9.在a 2□2ab □b 2的空格中,任意填上“+”或“-”,得到的所有多项式中是完全平方式的概率为________.10.把边长为3的正三角形各边三等分,分别得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分别得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分别得到图③,图中含有6个边长是1的正六边形;……以此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有_______个边长是1的正六边形.二、选择题:本大题共6小题,每小题4分,计24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
2018年三明市初三质检数学试题一、选择题(共40分) 1.91-的值为(). A .91B .91-C .9 D .9-2.港珠大桥是连接香港、珠海、澳门的超大型跨海通道,全长55000米,把55000用科学记数法表示为().A .55×103B .5.5×104C .5.5×105D .0.55×1053.用6个相同的立方体搭成的几何体如图所示,则它的主视图是().4.下列运算中正确的是(). A .4222)(b a ab =B .4222a a a =+C .842a a a =⋅D .236a a a =÷ 5.将一把直尺与一块三角板如图所示放置,若∠1=40o,则∠2的度数为(). A .50°B .110°C .130° D .140°6.如图,△ABC 中,AB=4,AC=3,BC=2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( ) . A .5 B .4 C .3 D .27.某校田径运动会有13名同学参加女子百米赛跑,她们预赛的成绩各不相同,取前6名参加决赛,小英已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的(). A .方差B .极差C .平均数D .中位数 8.如图,在⊙O 中,直径AB ⊥弦CD ,垂足为M ,则下列结论 一定正确的是().A .AC=CDB . OM=BMC .∠A=21∠ACDD .∠A=21∠BOD 9.如图,在正八边形 ABCDEFG 中,连接AC 、AE ,则ACAE的值是 (). A .22B .2C .3D .210.定义运算:a *b =2ab ,若a 、b 是方程x 2+x -m =0(m >0)的两个根, 则(a +1)*a -(b+1)*b 的值为 ().A .0B .2C .4mD .m 4- 二、填空题(共24分)11.分解因式:a a -3=________.12.在一个不透明明的空袋子里放入3个白球和2个红球,每个球除颜色 外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分 搅匀,又从中任意摸出1个球,摸到红球的概率是________. 13.如图,一名滑雪运动员沿若倾斜角为34°的斜坡从A 滑行至B . 已知AB=500米,则这名滑雪运动员下降的垂直高度为________米.A C BD 正面第5题 第9题第13题34° ACB第6题 B CDE第8题14.如图,AB 为半圆的直径,且AB=2,半圆绕点B 顺时针旋转40°, 点A 旋转到A '的位置,则图中阴影部分的而积为________(结留π) 15.二次函数y=x 2+m x+m -2的图象与x 轴有________个交点. 16.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E 、F 分别 在边AB 、AC 上,将△AEF 沿直线EF 翻折,点A 落在点P处,且点P 在直线BC 上,则线段CP 长的取值范围是________.三、解答题(86分)17.(8分)先化简,再求值:x (x +2y )-(x +1)2+2x ,其中x =13+, y=13-.18.(8分)解方程:13132=-+--xx x .19.(8分)写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A ,B ,C ,D 四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:(1)把条形统计图补充完整;(2)若该校共有2000名学生,估计该校书写等级为“D 级”的学生约有_______人;(3)随机抽取了4名等级为“A 级”的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.20.(8分)如图,一次函数y =ax +b 的图象经过点A(2,0),与反比例函数y=xk的图象在第四象限交于 点B(4,n ),△OAB 的面积为23人数调查结果条形统计图第13题A BD第16题21.(8分)如图,在△ABC中,∠C=90°,∠B=30°.(1)作边AB的垂直平分线,交AB于点D,交BC于点E(用尺规作图,保留作图痕不写作法);(2)在(1)的条件下,连接AE,求证:AE平分∠CAB.22.(10分)某乡村在开展“美丽乡村”建设时,决定购买A、B两种树苗对村里的主干道进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要380元:购买A种树苗5棵,B种树苗2棵,需要400元(1)求购买A、B两种树苗每棵各需多少元?(2)现需购买这两种树苗共100棵,要求购买A种树苗不少于60棵,且用于购头这两种树苗的资金不超过5620元,则有哪几种购买方案?23.(10分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE、BE,DE与AB交于点F.(1)求证:BC为⊙O的切线;(2)若F为OA的中点,⊙O的半径为2,求BE的长.AB C24.(12分)已知:如图①,△ABC ∽△ADE ,∠BAC=∠DAE=90°,AB=6,AC=8,点D 在线段BC 上运动. (1)当AD ⊥BC 时(如图②),求证:四边形ADCE 为矩形; (2)当D 为BC 的中点时(如图③),求CE 的长;(3)当点D 从点B 运动到点C 时,设P 为线段DE 的中点,求在点D 的运动过程中,点P 经过的路径长 (直接写出结论).25.(14分)已知直线l :y=kx +2k +3(k ≠0),小明在画图时发现,无论k 取何值,直线l 总会经过 一个定点A .(1)点A 坐标为________;(2)抛物线y=2x 2+bx +c(c>0)经过点A ,与y 轴交于点B . ①当4<b <6时,若直线l 经过点B ,求k 的取值范围; ②当k =1时,若抛物线与直线l 交于另一点M ,且2≤AM≤42,求b 的取值范围. 图① DD 图②AB CD E 图③参考答案及评分标准说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分点评分. 一、选择题(每题4分,共40分)1.A 2.B3.C 4.A 5.C6.B 7.D 8.D 9.B10.A 二、填空题(每题4分,共24分) 11.1)-1)((a a a + 12.5213.28014.4π915.2 16.51≤≤CP三、解答题(共86分)17.解: 原式=x 2+2xy - (x 2+2x +1)+2x …………2分 = x 2+2xy -x 2-2x -1+2x …………4分=2xy -1.…………5分当x =13+,y =1-3时,原式=2(13+)(1-3)-1…………6分=2(3-1)-1 …………7分 =3. …………8分 18.解:去分母,得2-x -1=x -3 …………3分-x -x =-3-2+1` …………4分 -2x =-4 …………5分x =2…………6分经检验,x =2是原方程的根所以原方程的根是x =2…………8分19.解:(Ⅰ)B 级人数16人,图略; …………2分(Ⅱ) 360 ; …………4分 (Ⅲ)列表如下:由上表可知,总共有12种等可能结果,其中符合要求有6种,8分 (树状图略)20.解:∵A (2,0),B (4,n ),且点B 在第四象限,∴S △OAB =n n -)-221=⨯⨯(.∵S △OAB =23, ∴n =-23. ∴B (4,-23). …………3分把B (4,-23)代入x ky =,得k =-6,∴反比例函数表达式为x y 6-=. …………5分把A (2,0),B (4,-23)代入y =ax +b ,得:⎪⎩⎪⎨⎧=+=+23-402b a b a , ∴3-43. 2a b ⎧=⎪⎪⎨⎪=⎪⎩…………7分 ∴一次函数表达式为33-42y x =+. …………8分 21.解:(Ⅰ)…………3分DE 就是所作的边AB 的垂直平分线.…………4分(Ⅱ)∵∠C =90°,∠B =30°,∴∠CAB =60°. …………5分 ∵DE 垂直平分AB , ∴AE =BE ,∴∠EAB =∠B =30°, …………7分 ∴∠CAE =∠CAB -∠EAB =30°, ∴∠CAE =∠EAB =30°. ∴AE 平分∠BAC .…………8分22.解:(Ⅰ)设购买A ,B 两种树苗每棵分别需x 元,y 元,则⎩⎨⎧=+=+4002538043y x y x , …………3分 解得⎩⎨⎧==5060y x . …………4分答:购买A ,B 两种树苗每棵分别需60元,50元. …………5分(Ⅱ)设购进A 种树苗m 棵,则5620)100(5060≤-+m m …………7分62≤m∴m =60或61或62, …………8分 ∴有三种购买方案,分别为:方案一:购进A 种树苗60棵,B 种树苗40棵;方案二:购进A 种树苗61棵,B 种树苗39棵;方案三:购进A 种树苗62棵,B 种树苗38棵. …………10分23.解:(Ⅰ)解法一:连接OD , ∵OA =OD ,∠A =45°, ∴∠ADO =∠A =45°,∴∠AOD =90°. …………………1分∵D 是AC 的中点,∴AD =CD . ∴OD ∥BC . ……………………2分∴∠ABC =∠AOD =90°. ……………………3分 ∴BC 是⊙O 的切线. ……………………4分 解法二:连接BD ,∵AB 为⊙O 的直径,∴BD ⊥AC .…………………1分 ∵D 是AC 的中点,∴BC =AB .…………………2分 ∴∠C =∠A =45°.∴∠ABC =90°.……………………3分∴BC 是⊙O 的切线.……………………4分 (Ⅱ)连接OD ,由(Ⅰ)可得∠AOD =90°.∵⊙O 的半径为2,F 为OA 的中点,∴OF =1,BF =3,AD ==. ……………5分∴DF =……………6分∵BD BD =, ∴∠E =∠A .……………7分 ∵∠AFD =∠EFB ,∴△AFD ∽△EFB.……………8分∴DF BFAD BE =,3BE=. ……………………9分∴BE =……………………10分(其他解法按相应步骤给分)24. (Ⅰ)证明:∵AD ⊥BC ,∠DAE =90°, ∴∠ADB =∠ADC =∠DAE =90°,∴AE ∥CD , ………………1分 ∵△ABC ∽△ADE ,∴∠AED =∠ACB , ∵AD =DA ,∴△ADC ≌△DAE .∴AE =DC . ………………3分 ∴四边形ADCE 为平行四边形, ∵∠ADC =90°,∴□ADCE 为矩形. ………………4分(其他解法按相应步骤给分)(Ⅱ)解:∵∠BAC =90°,AB =6,AC =8, ∴BC =10.∵D 为BC 的中点,∴AD =BD =BC 21=5.………………5分∵△ABC ∽△ADE ,∴ACAB =.D∵∠BAC =∠DAE =90°, ∴∠BAD =∠CAE .∴△ABD ∽△ACE.………………7分∴AC AB =CE BD. 即CE 586=. ∴CE =320. ………………8分 (其他解法按相应步骤给分)(Ⅲ)325. ………………12分 25.(Ⅰ) (-2,3);………………3分(Ⅱ)(ⅰ)∵抛物线y =c bx x ++22经过点A , ∴3=8-2b +c. ∴c =2b -5.∴B (0,2b -5). ………………5分∵直线l 经过点B ,∴2k +3=2b -5. ∴k =4-b . ………………6分 当b =4时,k =0,当b =6时,k =2,∵4<b <6,∴0<k <2. ………………8分(ⅱ)k =1时,直线l 的表达式为y =x +5,直线l 交y 轴于点F (0,5), 当点M 在点A 右侧,过点A 作x 轴平行线交y 轴于点E ,过点M 作y 轴的平行线交AE 于点D ,∵A (-2,3),∴AE =EF =2.∴∠EAF =45°. ∴当AM =2时,AD =MD =1.∴M (-1,4). 把M (-1,4)代入y =c bx x ++22,求得b =7,c =9. 由AM =42,A (-2,3),同上可得M (2,7),把A (-2,3),M (2,7)代入y =c bx x ++22,求得b =1,c =-3.………………10分 把A (-2,3)代入y =c bx x ++22,得c =2b -5.又∵c >0,∴25>b . ∴7b 25≤<………………11分 当点M 在点A 左侧时,由AM =2,A (-2,3),同上可得M (-3,2),把A (-2,3),M (-3,2)代入y =c bx x ++22,求得b =11,c =7, 由AM =42,A (-2,3),同上可得M (-6,-1),把A (-2,3),M (-6,-1)代入y =c bx x ++22,求得b =17,c =29, ∴17b 11≤≤. 综上所述,7b 25≤<或17b 11≤≤. ………………14分 (其他解法按相应步骤给分)。
三明市中考数学模拟测试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2018七上·辛集期末) 一个数是10,另一个数比10的相反数小2,则这两个数的和为()A . 18B . ﹣2C . ﹣18D . 22. (2分)(2020·泰安) 2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A . 元B . 元C . 元D . 元3. (2分) (2018九上·建昌期末) 方程x2-4x+3=0的解是()A . x1=3,x2=1B . x1=3,x2=-1C . x1=-3,x2=1D . x1=-3,x2=-14. (2分) (2019八下·随县期末) 小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是()分数202122232425262728人数2438109631A . 该组数据的众数是24分B . 该组数据的平均数是25分C . 该组数据的中位数是24分D . 该组数据的极差是8分5. (2分)(2017·莱西模拟) 下列图形中,是中心对称图形但不是轴对称图形的是()A . 等边三角形B . 平行四边形C . 一次函数图象D . 反比例函数图象6. (2分)(2020·无锡模拟) 若双曲线与直线的一个交点的横坐标为-2,则K的值是()A . -1B . 1C . -2D . 27. (2分) (2016七上·滨州期中) 下列计算正确的是()A . x2+x2=x4B . x2+x3=2x5C . 3x﹣2x=1D . x2y﹣2x2y=﹣x2y8. (2分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A . πB .C . 2πD . 3π9. (2分)如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为()A . 10°B . 12.5°C . 15°D . 20°二、填空题 (共5题;共5分)10. (1分)(2018·宜宾模拟) 分解因式:2xy2+4xy+2x=________.11. (1分)﹣的相反数是________;比较大小:﹣π________﹣3.14.12. (1分) (2019九下·揭西期中) 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是________.13. (1分) (2019八下·北京期末) 如果,那么的值是________.14. (1分) (2019八下·蜀山期末) 如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=________.三、解答题 (共9题;共94分)15. (5分)(2020·上海模拟) 计算:.16. (5分) (2019七下·阜宁期中) 计算:(1)(2)17. (5分)(2017·天桥模拟) 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出I辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.求每辆A型车和B型车的售价各为多少元.18. (10分) (2019八上·利辛月考) 如图,在单位长度为1的正方形网格中有一个△ABC,A、B点坐标分别为(-3,4),(-1,-1)(1)请在如图所示的网格平面内画出平面直角坐标系并写出C点坐标;(2)请求出△ABC的面积。
三明市中考数学模拟试卷(a卷)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018七上·昌图月考) 已知m是6的相反数,n比m的相反数小2,则m-n等于()A . 4B . 8C . -2D . -102. (2分)(2018·天桥模拟) 如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A .B .C .D .3. (2分)(2017·河南模拟) 2016年8月25日,有媒体报道说,国家发展和改革委员会近日对外发布了推进东北振兴三年滚动实施方案,其中涉及到国家将在东北投入1.6万亿元人民币资金,则1.6万用科学记数法表示为()A . 1.6×1012B . 1.6×1010C . 1.6×104D . 1.6×1034. (2分) (2018七下·深圳期中) 若、、是正整数,则 =()A .B .C .D .5. (2分)(2018·岳阳) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A . 90,96B . 92,96C . 92,98D . 91,926. (2分)直线y=-2x+a经过(3,y1)和(-2,y2),则y1与y2的大小关系是()A . y1> y2B . y1< y2C . y1= y2D . 无法确定7. (2分)如图,已知平行四边形ABCD的对角线的交点是0,直线EF过O点,且平行于AD,直线GH过0点且平行于AB,则图中平行四边形共有()A . 15个B . 16个C . 17个D . 18个8. (2分)如图是二次函数y=ax2+bx+c图像的一部分,其对称轴是直线x=-1,且过点(-3,0),下列说法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是抛物在线两点,则y1>y2 ,其中正确的是()A . ②B . ②③C . ②④D . ①②二、填空题 (共7题;共7分)9. (1分)(2017·重庆模拟) 2sin60°﹣()﹣2+(π﹣)0=________.10. (1分) (2018九上·兴化月考) 如图,l1∥l2∥l3 ,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知,若DF=10,则DE=________.11. (1分)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为________。
2018年福建省三明市中考数学试卷一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡的相应位置填涂)1.﹣2的倒数是()A.﹣2 B.﹣ C.D.22.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.3.下列计算正确的是()A.a3+a2=2a5B.a3•a2=a6C.a3÷a2=a D.(a3)2=a94.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.115.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大6.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20° B.35° C.45° D.70°7.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A.众数是82 B.中位数是82 C.极差是30 D.平均数是828.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.59.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35° B.mcos35° C.D.10.如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S 1,△QAB的面积为S2,△QAC的面积为S3,则有()A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S3二、填空题(共6题,每题4分,满分24分.请将答案填在答题卡的相应位置)11.因式分解:2x2﹣18= .12.若一元二次方程x2+4x+c=0有两个不相等的实数根,则c的值可以是(写出一个即可).13.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE= .14.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是 .15.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 60的坐标是 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是 .三、解答题(共9题,满分86分.请将解答过程写在答题卡的相应位置)17.先化简,再求值:(a ﹣b )2+b (3a ﹣b )﹣a 2,其中a=,b=.18.解方程: =1﹣. 19.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.20.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.21.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.22.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.24.如图,已知点A (0,2),B (2,2),C (﹣1,﹣2),抛物线F :y=x 2﹣2mx+m 2﹣2与直线x=﹣2交于点P .(1)当抛物线F 经过点C 时,求它的表达式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤﹣2,比较y 1与y 2的大小;(3)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.25.如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD ,CE 的交点.(1)求证:BD=CE ;(2)若AB=2,AD=1,把△ADE 绕点A 旋转,①当∠EAC=90°时,求PB 的长;②直接写出旋转过程中线段PB长的最小值与最大值.2018年福建省三明市中考数学试卷参考答案与试题解析一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡的相应位置填涂)1.﹣2的倒数是()A.﹣2 B.﹣ C.D.2【考点】倒数.【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.【考点】由三视图判断几何体.【专题】推理填空题.【分析】解答此题首先要明确主视图是从物体正面看到的图形,然后根据几何体的主视图,判断出这个几何体可以是哪个图形即可.【解答】解:∵几何体的主视图由3个小正方形组成,下面两个,上面一个靠左,∴这个几何体可以是.故选:A.【点评】此题主要考查了三视图的概念,要熟练掌握,解答此题的关键是要明确:主视图是从物体正面看到的图形.3.下列计算正确的是()A.a3+a2=2a5B.a3•a2=a6C.a3÷a2=a D.(a3)2=a9【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、积的乘方法则计算,判定即可.【解答】解:a3与a2不是同类项,不能合并,A错误;a3•a2=a5,B错误;a3÷a2=a,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,掌握相关的法则是解题的关键.4.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【考点】多边形内角与外角.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选C.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.5.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【考点】概率的意义.【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.6.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20° B.35° C.45° D.70°【考点】平行线的性质.【分析】根据角平分线的定义可得∠AOC=∠BOC,再根据两直线平行,内错角相等即可得到结论.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC=AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.【点评】本题考查了等腰三角形的判定与性质,角平分线的定义,平行线的性质,熟记各性质并准确识图是解题的关键.7.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A.众数是82 B.中位数是82 C.极差是30 D.平均数是82【考点】极差;算术平均数;中位数;众数.【分析】根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.【解答】解:将数据从小到大排列为:65,76,82,82,86,95,A、众数是82,说法正确;B、中位数是82,说法正确;C、极差为95﹣65=30,说法正确;D、平均数==81≠82,说法错误;故选:D.【点评】本题考查了极差、中位数、众数及平均数的知识,属于基础题,解答本题的关键是掌握各部分的定义.8.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.5【考点】垂径定理;勾股定理.【分析】根据垂径定理由OC⊥AB得到AD=AB=4,再根据勾股定理开始出OD,然后用OC﹣OD即可得到DC.【解答】解:∵OC⊥AB,∴AD=BD=AB=×8=4,在Rt△OAD中,OA=5,AD=4,∴OD==3,∴CD=OC﹣OD=5﹣3=2.故选A.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.9.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35° B.mcos35° C.D.【考点】锐角三角函数的定义.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.10.如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S 1,△QAB的面积为S2,△QAC的面积为S3,则有()A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S3【考点】反比例函数系数k的几何意义;反比例函数的性质.【分析】根据题意可以证明△DBA和△DQP相似,从而可以求出S1,S2,S3的关系,本题得以解决.【解答】解:延长QB与PA的延长线交于点D,如右图所示,设点P的坐标为(a,b),点Q的坐标为(c,d),∴DB=a,DQ=a﹣c,DA=﹣d,DP=b﹣d,∵DB•DP=a•(b﹣d)=ab﹣ad=k﹣ad,DA•DQ=﹣d(a﹣c)=﹣ad+cd=﹣ad+k=k﹣ad,∴DB•DP=DA•DQ,即,∵∠ADB=∠PDQ,∴△DBA∽△DQP,∴AB∥PQ,∴点B到PQ的距离等于点A到PQ的距离,∴△PAB的面积等于△QAB的面积,∵AB∥QC,AC∥BQ,∴四边形ABQC是平行四边形,∴AC=BQ,∴△QAB的面积等于△QAC,∴S1=S2=S3,故选D.【点评】本题考查反比例函数系数k的几何意义、反比例函数的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.二、填空题(共6题,每题4分,满分24分.请将答案填在答题卡的相应位置)11.因式分解:2x2﹣18= 2(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【分析】提公因式2,再运用平方差公式因式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一元二次方程x2+4x+c=0有两个不相等的实数根,则c的值可以是 1 (写出一个即可).【考点】根的判别式.【分析】直接利用根的判别式,得出△>0,进而求出c的值.【解答】解:∵一元二次方程x2+4x+c=0有两个不相等的实数根,∴△=16﹣4c>0,解得:c<4,故c的值可以是1.故答案为:1【点评】此题主要考查了根的判别式,正确得出△符号是解题关键.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.13.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE= 4.5 .【考点】位似变换;坐标与图形性质.【分析】根据位似图形的性质得出AO,DO的长,进而得出==,求出DE的长即可.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A点坐标为(1,0),D点坐标为(3,0),∴AO=2,DO=5,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.【点评】此题主要考查了位似图形的性质以及坐标与图形的性质,根据已知点的坐标得出==是解题关键.14.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中两次都摸到红球的结果数为2,所以随机摸出1个球,两次都摸到红球的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.15.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 60的坐标是 (20,0) .【考点】规律型:点的坐标.【分析】根据图形分别求出n=3、6、9时对应的点的坐标,可知点P 3n (n ,0),将n=20代入可得.【解答】解:∵P 3(1,0),P 6(2,0),P 9(3,0),…,∴P 3n (n ,0)当n=20时,P 60(20,0),故答案为:(20,0).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=3、6、9时对应的点的对应的坐标是解题的关键.16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .【考点】轴对称的性质;等边三角形的性质.【分析】当点P为BC的中点时,MN最短,求出此时MN的长度,当点P与点B(或C)重合时,BN(或CM)最长,求出此时BN(或CM)的长度,由此即可得出MN的取值范围.【解答】解:如图1,当点P为BC的中点时,MN最短.此时E、F分别为AB、AC的中点,∴PE=AC,PF=AB,EF=BC,∴MN=ME+EF+FN=PE+EF+PF=6;如图2,当点P和点B(或点C)重合时,此时BN(或CM)最长.此时G(H)为AB(AC)的中点,∴CG=2(BH=2),CM=4(BN=4).故线段MN长的取值范围是6≤MN≤4.故答案为:6≤MN≤4.【点评】本题考查了轴对称的性质以及等边三角形的性质,解题的关键是找出MN最短和最长时点P的位置.本题属于基础题,难度不大,解决该题型题目时,确定MN取最值时,点P的位置是关键.三、解答题(共9题,满分86分.请将解答过程写在答题卡的相应位置)17.先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=,b=.【考点】整式的混合运算—化简求值.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:(a﹣b)2+b(3a﹣b)﹣a2=a2﹣2ab+b2+3ab﹣b2﹣a2=ab,当a=,b=时,原式=×=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.解方程: =1﹣.【考点】解分式方程.【专题】方程与不等式.【分析】根据解分式方程的方法先将分式方程转化为整式方程,然后解答即可,最好要验根.【解答】解: =1﹣方程两边同乘以x﹣2,得1﹣x=x﹣2﹣3解得,x=3,检验:当x=3时,x﹣2≠0,故原分式方程的解是x=3.【点评】本题考查解分式方程,解题的关键是明确分式方程的解法,注意最后要验根.19.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了120 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是30% ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有450 名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,然后利用百分比的意义求得安全意识为“很强”的学生占被调查学生总数的百分比;(2)利用总人数乘以对应的百分比即可求解;(3)利用总人数1800乘以对应的比例即可.【解答】解:(1)调查的总人数是:18÷15%=120(人),安全意识为“很强”的学生占被调查学生总数的百分比是: =30%.故答案是:120,30%;(2)安全意识“较强”的人数是:120×45%=54(人),;(3)估计全校需要强化安全教育的学生约1800×=450(人),故答案是:450.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.【考点】菱形的判定;含30度角的直角三角形;平行四边形的判定与性质.【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可.【解答】证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠AC B=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键.21.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)由条件可先求得B点坐标,再利用待定系数法可求得直线l的表达式;(2)先求得P点坐标,再代入反比例函数解析式可求得m的值.【解答】解:(1)∵A(2,0),∴OA=2.∵tan∠OAB==,∴OB=1,∴B(0,1),设直线l的表达式为y=kx+b,则,解得,∴直线l的表达式为y=﹣x+1;(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为﹣1,又∵点P在直线l上,∴点P的纵坐标为:﹣×(﹣1)+1=,∴点P的坐标是(﹣1,),∵反比例函数y=的图象经过点P,∴=,∴m=﹣1×=﹣.【点评】本题主要考查函数图象上点的坐标特征,掌握待定系数应用的关键是求得点的坐标,注意三角函数定义的应用.22.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?【考点】一次函数的应用.【分析】(1)根据题意列出关于x、y的关系式即可;(2)根据每月加工A型服装数量应不少于B型服装数量的列出关于x的不等式,求出x的取值范围即可.【解答】解:(1)由题意得,y=20×4x+12×8×(22﹣x)+900,即y=﹣16x+3012;(2)∵依题意,得4x≥×8×(22﹣x),∴x≥12.在y=﹣16x+3012中,∵﹣16<0,∴y随c的增大而减小.∴当x=12时,y取最大值,此时y=﹣16×12+3012=2820.答:当小李每月加工A型服装12天时,月收入最高,可达2820元.【点评】本题考查的是一次函数的应用,根据题意列出关于x的不等式是解答此题的关键.23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【考点】直线与圆的位置关系;线段垂直平分线的性质.【专题】计算题;与圆有关的位置关系.【分析】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE 的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【点评】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.24.如图,已知点A (0,2),B (2,2),C (﹣1,﹣2),抛物线F :y=x 2﹣2mx+m 2﹣2与直线x=﹣2交于点P .(1)当抛物线F 经过点C 时,求它的表达式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤﹣2,比较y 1与y 2的大小;(3)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.【考点】二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【专题】函数及其图象.【分析】(1)根据抛物线F :y=x 2﹣2mx+m 2﹣2过点C (﹣1,﹣2),可以求得抛物线F 的表达式;(2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题【解答】解:(1)∵抛物线F 经过点C (﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m ×(﹣1)+m 2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,yp=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,yp的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或,解得,﹣2≤m≤0或2≤m≤4.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.【考点】三角形综合题.【分析】(1)欲证明BD=CE,只要证明△ABD≌△ACE即可.(2)①分两种情形a、如图2中,当点E在AB上时,BE=AB﹣AE=1.由△PEB∽△AEC,得=,由此即可解决问题.b、如图3中,当点E在BA延长线上时,BE=3.解法类似.②a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.分别求出PB即可.【解答】(1)证明:如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,∴△ADB≌△AEC,∴BD=CE.(2)①解:a、如图2中,当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=b、如图3中,当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=,综上,PB=或.②解:a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,∵AE⊥EC,∴EC===,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=1,∴PB=BD﹣PD=﹣1.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最,大,因此PB最大,∵AE⊥EC,∴EC===,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=1,∴PB=BD+PD=+1.综上所述,PB长的最小值是﹣1,最大值是+1.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题,属于中考压轴题.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围。
2018年三明市初中毕业暨高级中等学校招生统一考试数学试题<满分:150分考试时间:120分钟)友情提示:1.作图或画辅助线等需用签字笔描黑.2.未注明精确度的计算问题,结果应为准确数.3.抛物线(>的顶点坐标为,对称轴.一、选择题<共10小题,每小题4分,满分40分.每小题只有一个正确选项,请在答题卡的相应位置填涂)1. 在-2,-,0,2四个数中,最大的数是(▲ >A. -2B. -C. 0D. 2 2.据《2018年三明市国民经济和社会发展统计公报》数据显示,截止2018年末三明市常住人口约为 2 510 000人,2 510 000用科学记数法表示为<▲)A. B.C.D.3.如图,AB//CD,∠CDE=,则∠A的度数为<▲)A. B. C.D.4.分式方程的解是(▲>A.B.C.D.5.右图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是<▲)b5E2RGbCAP6.一个多边形的内角和是,则这个多边形的边数为<▲)A.4 B.5 C.6 D.77.下列计算错误的是(▲>A.B.C.D.8.如图,AB是⊙O的切线,切点为A,OA=1,∠AOB=,则图中阴影部分的面积是<▲)A. B.C. D.9.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为<▲)A. B. C. D.10.如图,在平面直角坐标系中,点A在第一象限,点P在轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有<▲)A. 2个 B. 3个 C.4个 D.5个二、填空题<共6小题,每小题4分,满分24分.请将答案填在答题卡的相应位置)11.分解因式:=▲.12.如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=▲.13.某校九<1)班6位同学参加跳绳测试,他们的成绩<单位:次/分钟)分别为:173,160,168,166,175,168.这组数据的众数是▲.14.如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是▲.(不再添加辅助线和字母>15.如图,点A在双曲线上,点B在双曲线上,且AB//轴,点P是轴上的任意一点,则△PAB的面积为▲.16.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是▲.三、解答题<共7题,满分86分.请将解答过程写在答题卡的相应位置)17.(本题满分14分)<1)计算:;<7分)<2)化简:.<7分)18. (本题满分16分><1)解不等式组并把解集在数轴上表示出来;<8分)<2)如图,已知△ABC三个顶点的坐标分别为A<-2,-1),B<-3,-3),C<-1,-3).①画出△ABC关于轴对称的△,并写出点的坐标;<4分)②画出△ABC关于原点O对称的△,并写出点的坐标.<4分)19. (本题满分10分>为了解某县2018年初中毕业生数学质量检测成绩等级的分布情况,随机抽取了该县若干名初中毕业生的数学质量检测成绩,按A,B,C,D四个等级进行统计分析,并绘制了如下尚不完整的统计图:p1EanqFDPw请根据以上统计图提供的信息,解答下列问题:<1)本次抽取的学生有___▲名;<2分)<2)补全条形统计图;<2分)<3)在抽取的学生中C级人数所占的百分比是__▲;<2分)<4)根据抽样调查结果,请你估计2018年该县1430名初中毕业生数学质量检测成绩为A级的人数.<4分)DXDiTa9E3d 20.(本题满分10分>某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.<1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?<5分)<2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?<5分)RTCrpUDGiT21. (本题满分10分>如图,在△ABC中,点O在AB上,以O为圆心的圆经过A,C两点,交AB于点D,已知∠A=,∠B=,且2+=.<1)求证:BC是⊙O的切线;<5分)<2)若OA=6,,求BC的长.<5分)22.<本题满分12分)已知直线与轴和轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.<1)如图①,当点M与点A重合时,求:①抛物线的解读式;<4分)②点N的坐标和线段MN的长;<4分)<2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.<4分)5PCzVD7HxA23.<本题满分14分)在正方形ABCD中,对角线AC,BD 交于点O,点P在线段BC上<不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.<1)当点P与点C重合时<如图①).求证:△BOG≌△POE;<4分)<2)通过观察、测量、猜想:=▲,并结合图②证明你的猜想;<5分)<3)把正方形ABCD改为菱形,其他条件不变<如图③),若∠ACB=,求的值.<用含的式子表示)<5分)2018年三明市初中毕业暨高级中等学校招生统一考试数学试卷参考答案及评分标准说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分点评分.一、选择题(每小题4分,共40分>1. D2. C3. D4. A5. B6. C7. B8. C9. A10. CjLBHrnAILg二、填空题<每小题4分,共24分)11. 12. 3 13. 168 14. 答案不唯一;如:AB=AC;或∠B=∠C;或∠BED=∠CFD;或∠AED=∠AFD等;15. 1 16. 900三、解答题<共86分)17.<1)解:原式=……………6分=1.……………7分<2)解法一:原式=……………2分=……………6分=.……………7分解法二:原式=……………4分= ……………6分=.……………7分18.解:<1)解不等式①,得,……………2分解不等式②,得-2.……………4分不等式①,②的解集在数轴上表示如下:……………6分所以原不等式组的解集为. (8)分<2)①如图所示,;画图正确3分,坐标写对1分;②如图所示,.画图正确3分,坐标写对1分;19.解:<1)100;…………2分<2)如图所示;…………4分<3)30%;…………6分<4)1430×20%=286<人)…………9分答:成绩为A级的学生人数约为286人.…10分20.解:<1)解法一:设A种商品销售x 件,则B种商品销售<100- x)件. (1)分依题意,得……………3分解得x=30.∴100- x=70.……………4分答:A种商品销售30件,B种商品销售70件.……………5分解法二:设A种商品销售x 件, B种商品销售y件.……1分依题意,得……………3分解得……………4分答:A种商品销售30件,B种商品销售70件.……………5分<2)设A种商品购进x 件,则B种商品购进<200- x)件.………6分依题意,得0≤200- x ≤3x解得50≤x≤200 ……………7分设所获利润为w元,则有w=10x+15<200- x)= -5x +3000 ……………8分∵-5<0,∴w随x的增大而减小.∴当x=50时,所获利润最大=2750元.……………9分200- x=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.……………10分21.(1>证明:证法一:连接OC(如图①>,∴∠BOC =2∠A=2,……2分∴∠BOC+∠B=2+=90.∴∠BCO=90.即OC⊥BC.……4分∴BC是的⊙O切线.……5分证法二:连接OC(如图①>,∵OA=OC,.∴∠ACO =∠A =.……1分∵∠BOC =∠A+∠ACO=2, (2)分∴∠BOC+∠B=2+=90.……3分∴∠BCO=90.即OC⊥BC. (4)分∴BC是的⊙O切线.……5分证法三:连接OC(如图①>,∵OA=OC,∴∠OCA=∠A=.……1分在△ACB中,∠ACB=-<∠A+∠B)=-<+)∴∠BCO=∠ACB-∠ACO =-<+)-=-<2+).……3分∵2+=90,∴∠BCO.即OC⊥BC.……4分∴BC是⊙O的切线. ……5分证法四:连接OC,延长BC(如图②>,∴∠ACE=∠A+∠B=+. …… 1分又∵OA=OC,∴∠OCA=∠A=. …… 2分∴∠OCE=∠OCA+∠ACE=++=2+=. … 4分即OC⊥BC.∴BC是⊙O的切线. … 5分证法五:过点A作AE⊥BC,交BC的延长线于点E,连接OC(如图③>,在△AEB中,∠EAB+∠B=90. …… 1分∵∠CAB=,∠B=,且 2+=90,∴∠EAB=2.∴∠EAC=∠CAB=.…… 2分∵OC=OA,∴∠OAC=∠OCA=,∠EAC=∠OCA.…… 3分∴OC//AE.∴OC⊥BC.…… 4分∴BC是⊙O的切线. …… 5分(2>∵OC=OA =6,由(1>知,OC⊥BC,在△BOC中,=,∵=,∴=.…… 8分∴OB=10.…… 9分∴BC===8.…… 10分22.<1)解:①∵直线与轴和轴交于点A和点B,∴,.……1分解法一:当顶点M与点A重合时,∴. ……2分∴抛物线的解读式是:.即. (4)分解法二:当顶点M与点A重合时,∴. ……2分∵,∴.又∵,∴. ……3分∴抛物线的解读式是:.……4分②∵N在直线上,设,又N在抛物线上,∴.……5分解得,<舍去)∴.……6分过N作NC⊥轴,垂足为C(如图①>.∵,∴.∴..……7分∴.……8分<2)存在.………………10分. ………………12分23.<1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°.……2分∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO,∴∠GBO=∠EPO.……3分∴△BOG≌△POE.……4分<2).……5分证明:如图②,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB =,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°—∠BMN,∠NPE=90°—∠BMN,∴∠MBN=∠NPE.……6分xHAQX74J0X∴△BMN≌△PEN.……7分LDAYtRyKfE∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=. 又PF=PF,∴△BPF≌△MPF.……8分Zzz6ZB2Ltk∴BF=MF.即BF=BM.∴BF=PE.即.……9分<3)解法一:如图③,过P作PM//AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=,∠PNE=∠BOC=90°. ……10分由<2)同理可得BF=BM,∠MBN=∠EPN.……11分∵∠BNM=∠PNE=90°,∴△BMN∽△PEN.……12分∴.……13分在△BNP中,,∴.即.∴.……14分解法二:如图③,过P作PM//AC交BG于点M,交BO于点N,∴BO⊥PM,∠BPN=∠ACB=. ……10分∵∠BPE=∠ACB=,PF⊥BM,∴∠EPN=. ∠MBN=∠EPN=∠BPE=.设,在△PFB中,,……11分∵PF=PE+EF=,∴……12分在△BFE中,,∴.∴. .. ……13分∴. 即. ……14分解法三:如图③,过P作PM//AC交BG于点M,交BO于点N,∴∠BNP=∠BOC=90°.∴∠EPN+∠NEP=90°.又∵BF⊥PE,∴∠FBE+∠BEF=90°.∵∠BEF=∠NEP,∴∠FBE=∠EPN. ……10分∵PN//AC,∴∠BPN=∠BCA=.又∵∠BPE=∠ACB=,∴∠NPE=∠BPE=.∴∠FBE=∠BPE=∠EPN=.∵,∴.……11分∵,∴.……12分∵,∴. ……13分∴. ∴.∴.……14分申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
福建省三明市数学中考模拟试卷(5月)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)数6,-1,15,-3中,任取三个不同的数相加,其中和最小的是()A . -3B . -1C . 3D . 22. (2分)(2020·广西模拟) 下图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .3. (2分)下列计算正确的是()A .B . (a+2b)(a-2b)=a2-2b2C . (ab3)2=a2b6D . 5a-2a=34. (2分)将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A .B .C .D .5. (2分)如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.能说明射线OC是∠AOB的角平分线的依据是()A . SASB . SSSC . ASAD . AAS6. (2分)(2011·遵义) 若a、b均为正整数,且,则a+b的最小值是()A . 3B . 4C . 5D . 67. (2分) (2016七上·宁江期中) 下列运用等式的性质,变形不正确的是()A . 若x=y,则x+5=y+5B . 若a=b,则ac=bcC . 若 = ,则a=bD . 若x=y,则8. (2分)数学老师对小明参加中考前的5次模拟考试进行统计分析,判断小明的数学成绩是否稳定,老师需要知道小明这5次数学成绩的A . 平均数或中位数B . 众数或频率C . 方差或极差D . 频数或众数9. (2分)(2011·无锡) 菱形具有而矩形不一定具有的性质是()A . 对角线互相垂直B . 对角线相等C . 对角线互相平分D . 对角互补10. (2分)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m-1;②;③;④40m+10=43m+1,其中符合题意的是()A . ①②B . ②④C . ①③D . ③④二、填空题 (共6题;共6分)11. (1分)分解因式:a3﹣4a=________.12. (1分) (2017九上·杭州月考) 某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500…击中靶心次数(m)8194492178450…击中靶心频率()估算最后一行的各个频率,由此表推断这个射手射击 1 次,击中靶心的概率的约为________13. (1分)如图,有八个全等的三角形拼成一个大四边形ABCD和中间一个小四边形MNPQ,连接EF、GH得到四边形EFGH,设S四边形ABCD=S1 , S四边形EFGH=S2 , S四边形MNPQ=S3 ,若S1+S2+S3=10,则S2= ________ .14. (1分)若关于x的不等式组的解集为x<2.则k的取值范围是________ 。
福建省三明市中考数学模拟试卷一、选择题:本大题共10小题,每小题4分,共40分1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.32.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6 D.()2=3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.30°B.40°C.50°D.60°4.移动互联网已全面进入人们的日常生活,某市4G用户总数达到3820000,数据3820000用科学记数法表示为()A.3.8×106B.3.82×105 C.3.82×106 D.3.82×1075.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.6.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.100元B.150元C.200元D.250元8.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4 B.3,4 C.4,3 D.3,39.如图,▱ABCD的周长为28,对角线AC、BD相交于点O.点E是CD的中点,BD=10,则△DOE的周长为()A.28 B.24 C.12 D.1710.如图,在直角坐标系中,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时,反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P 的坐标是()A.(0,3)B.(5,0)C.(0,5)D.(7,4)二、填空题:本大题共6小题,每小题4分,共24分11.计算:|﹣2|=.12.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.13.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD=.14.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.15.若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是.16.如图,正方形A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,则点P2的坐标为.三、解答题:共86分17.计算:()2﹣﹣1.18.先化简,再求值:÷,其中a=﹣3.19.如图,港口A在观测站O的正东方向相距4km,某船从A出发,沿北偏东15°方向航行5分钟后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的速度(精确到整数位).参考数值:≈1.414,≈1.732.20.如图,在四边形ABCD中,H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.21.某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.22.某数学兴趣小组在全校范围内,对四种沙县小吃:馄饨、拌面、烧麦、芋饺进行“我最喜爱的沙县小吃”调查活动,并随即抽取了50名同学的调查问卷,整理后绘制成如图所示的条形统计图,请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若该校有2000名学生,请估计全校同学中,最喜爱“馄饨”的同学有多少人;(3)将标号为A,B,C,D的四个完全相同的小球分别代表馄饨、拌面、烧麦、芋饺,并把它们放在一个不透明的口袋中,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树状图的方法,求出恰好两次都摸到“A”的概率.23.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.(1)利用尺规作⊙O,使⊙O经过点A,D,且圆心O在AB上,并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);(2)在你所作的图中,①判断直线BC与⊙O的位置关系,并说明理由;②若AB=6cm,BD=2cm,求:线段BD,BE与劣弧所围成的图形面积(结果保留根号和π)24.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=8cm,∠ADB=30°.(1)试探究线段BD与线段MF的关系,并简要说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.25.如图,在平面直角坐标系中,直线y=﹣2x+42交x轴于点A,交直线y=x交于点B.抛物线y=ax2﹣2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4.(1)求抛物线的解析式;(2)若点Q为线段OB上一点,点P为抛物线上一点,且P、Q两点的纵坐标都为5,求线段PQ的长;(3)若点Q为线段OB或线段BC上一点,点P为抛物线上一点,PQ⊥x轴.设P、Q两点之间的距离为d,点Q的横坐标为m,求m为何值时,d取得最大值,最大值是多少.并直接写出d随m的增大而减小时m的取值范围.福建省三明市中考数学模拟试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.2.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6 D.()2=【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项根据幂的乘方与积的乘方和同底数幂的乘法的运算法则求解即可.【解答】解:A、a2+a3=a2(1+a)≠a5,本选项错误;B、a2•a3=a5≠a6,本选项错误;C、(a2)3=a6,本选项正确;D、()2=≠,本选项错误.故选C.3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.30°B.40°C.50°D.60°【考点】平行线的性质;垂线.【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【解答】解:在△DEF中,∠1=∠F=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故选B.4.移动互联网已全面进入人们的日常生活,某市4G用户总数达到3820000,数据3820000用科学记数法表示为()A.3.8×106B.3.82×105 C.3.82×106 D.3.82×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3820000=3.82×106,故选:C.5.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.6.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2【考点】解直角三角形;坐标与图形性质.【分析】设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.【解答】解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.7.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.100元B.150元C.200元D.250元【考点】一元一次方程的应用.【分析】设商品的标价是x元,根据全场商品一律打八折,比标价少付了50元,可列方程求解.【解答】解:设商品的标价是x元,根据题意得x﹣80%x=50,解得x=250,250×80%=200.他购买这件商品花了200元.故选C.8.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4 B.3,4 C.4,3 D.3,3【考点】中位数;算术平均数;众数.【分析】根据题意由有唯一的众数4,可知x=4,然后根据平均数、中位数的定义求解即可.【解答】解:∵这组数据有唯一的众数4,∴x=4,将数据从小到大排列为:1,2,3,3,4,4,4,则平均数=(1+2+3+3+4+4+4)÷7=3,中位数为:3.故选:D.9.如图,▱ABCD的周长为28,对角线AC、BD相交于点O.点E是CD的中点,BD=10,则△DOE的周长为()A.28 B.24 C.12 D.17【考点】平行四边形的性质;三角形中位线定理.【分析】由平行四边形的性质和已知条件得出OD=5,CD+BC=14,再证明OE是△BCD的中位线,得出DE+OE=7,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵▱ABCD的周长为28,∴CD+BC=14,∵点E是CD的中点,∴DE=CD,OE是△BCD的中位线,∴OE=BC,∴DE+OE=(CD+BC)=7,∴△DOE的周长=OD+DE+OE=5+7=12;故选:C.10.如图,在直角坐标系中,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时,反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P 的坐标是()A.(0,3)B.(5,0)C.(0,5)D.(7,4)【考点】规律型:点的坐标.【分析】动点的反弹与光的反射入射是一个道理,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,动点回到起始的位置,将除以6得到336,且没有余数,说明点P第次碰到矩形的边时为第336个循环组的第6次反弹,因此点P的坐标可求出.【解答】解:如图,根据反射角与入射角的定义作出图形,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵÷6=336,当点P第次碰到矩形的边时为第336个循环组的第6次反弹,点P的坐标为(0,3),故选A.二、填空题:本大题共6小题,每小题4分,共24分11.计算:|﹣2|=2.【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.12.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.13.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD=135°.【考点】圆内接四边形的性质.【分析】根据圆周角定理求出∠A的度数,根据圆内接四边形的性质计算即可.【解答】解:由圆周角定理得,∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=180°﹣∠A=135°,故答案为:135°.14.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.【考点】概率的意义.【分析】求出一次抛一枚硬币正面朝上的概率即可.【解答】解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.15.若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是k≥4.【考点】根的判别式.【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【解答】解:当k=0时,原方程为﹣4x+1=0,解得:x=,∴k=0符合题意;当k≠0时,∵方程kx2﹣4x﹣1=0有实数根,∴△=(﹣4)2+4k≥0,解得:k≥﹣4且k≠0.综上可知:k的取值范围是k≥4.故答案为:k≥4.16.如图,正方形A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,则点P2的坐标为(2,1).【考点】反比例函数图象上点的坐标特征;正方形的性质.【分析】作P1C⊥y轴于C,P2D⊥x轴于D,设P1(a,),则CP1=a,OC=,易得Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,则OB1=P1C=A1D=a,所以OA1=B1C=P2D=﹣a,则P2的坐标为(,﹣a),然后把P2的坐标代入反比例函数y=,得到a的方程,解方程求出a,得到P2的坐标.【解答】解:作P1C⊥y轴于C,P2D⊥x轴于D,如图,设P1(a,),则CP1=a,OC=,∵四边形A1B1P1P2为正方形,∴Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,∴OB1=P1C=A1D=a,∴OA1=B1C=P2D=﹣a,∴OD=a+﹣a=,∴P2的坐标为(,﹣a),把P2的坐标代入y=(x>0),得到(﹣a)•=2,解得a=﹣1(舍)或a=1,∴P2(2,1),故答案为:(2,1).三、解答题:共86分17.计算:()2﹣﹣1.【考点】二次根式的乘除法;零指数幂;负整数指数幂.【分析】直接利用二次根式的性质以及零指数幂的性质和负整数指数幂的性质化简求出答案.【解答】解:原式=5﹣1+3=7.18.先化简,再求值:÷,其中a=﹣3.【考点】分式的化简求值.【分析】分子分母因式分解,把除法化为乘法,约分化简,最后代入计算即可.【解答】解:原式=÷=•=,当a=﹣3时,原式==2.19.如图,港口A在观测站O的正东方向相距4km,某船从A出发,沿北偏东15°方向航行5分钟后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的速度(精确到整数位).参考数值:≈1.414,≈1.732.【考点】解直角三角形的应用-方向角问题.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD的长度,再由△ABD是等腰直角三角形,得出BD=AD=2km,则易得AB、AD的长度;最后结合速度=路程÷时间解答问题.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离(即AB的长)为2km.∴2÷=24×1.414÷5≈34(km/h).答:该船航行的速度约为34km/h.20.如图,在四边形ABCD中,H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请添加一个条件,使得△BEH≌△CFH,你添加的条件是EH=FH,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.【考点】矩形的判定;全等三角形的判定与性质.【分析】(1)求出BH=CH,根据SAS推出两三角形全等即可;(2)根据平行四边形的判定得出四边形是平行四边形,求出BC=EF,根据矩形的判定得出即可.【解答】解:(1)添加条件:EH=FH;理由如下:∵点H是BC的中点,∴BH=CH,在△BEH和△CFH中,,∴△BEH≌△CFH(SAS);故答案为:EH=FH;(2)当BH=EH时,四边形BFCE是矩形,理由如下:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形,∵BH=CH,EH=FH,BH=EH,∴BC=EF,∴四边形BFCE是矩形.21.某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,根据“由甲队先做30天,剩下的工程由乙队做45天可完成”列方程求解.(2)求出甲、乙两队施工天数得出需要施工费用,再与500万元进行比较,即可得出答案.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,根据题意得:30×+45×=1解得:x=90,经检验x=90分式方程的解,则甲队单独完成这项工程需要的天数是:90×=60(天).答:甲需要60天,乙需要90天.(2)设甲、乙两队合作,完成这项工程需y天,则:y(+)=1,解得y=36,需要施工费用(8.4+5.6)×36=468(万元).∵500>468,∴工程预算的费用够用.22.某数学兴趣小组在全校范围内,对四种沙县小吃:馄饨、拌面、烧麦、芋饺进行“我最喜爱的沙县小吃”调查活动,并随即抽取了50名同学的调查问卷,整理后绘制成如图所示的条形统计图,请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若该校有2000名学生,请估计全校同学中,最喜爱“馄饨”的同学有多少人;(3)将标号为A,B,C,D的四个完全相同的小球分别代表馄饨、拌面、烧麦、芋饺,并把它们放在一个不透明的口袋中,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树状图的方法,求出恰好两次都摸到“A”的概率.【考点】列表法与树状图法;用样本估计总体;条形统计图.【分析】(1)总人数以及条形统计图求出喜欢“烧麦”的人数,补全条形统计图即可;(2)求出喜欢“馄钝”的百分比,乘以2000即可得到结果;(3)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:喜欢“烧麦”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“馄钝”的同学有560人;(3)列表如下:A B C DA (A,A)(B,A)(C,A)(D,A)B (A,B)(B,B)(C,B)(D,B)C (A,C)(B,C)(C,C)(D,C)D (A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.23.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.(1)利用尺规作⊙O,使⊙O经过点A,D,且圆心O在AB上,并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);(2)在你所作的图中,①判断直线BC与⊙O的位置关系,并说明理由;②若AB=6cm,BD=2cm,求:线段BD,BE与劣弧所围成的图形面积(结果保留根号和π)【考点】圆的综合题.【分析】(1)分别以A、D为圆心,以大于AD为半径画弧,交于点M、N,作直线MN,交线段AB于点O,再以O为圆心,以OA或OD为半径画圆交AB于E,则⊙O就是所求作的圆;(2)①连接OD,证AC∥OD得∠ODB=∠C=90°,则BC与⊙O相切;②设⊙O半径为x,根据勾股定理求出圆O的半径,则所求图形面积=S△ODB﹣S,扇形ODE代入面积公式计算即可.【解答】解:(1)如图1所示:(2)①如图2,BC与⊙O相切,理由是:连接OD,∵AD平分∠CAB,∴∠1=∠2,∵OA=OD,∴∠2=∠3,∴∠1=∠3,∴AC∥OD,∴∠ODB=∠C=90°,∴BC与⊙O相切;②如图2,设⊙O半径为x,则OA=OD=x,OB=6﹣x,在Rt△ODB中,OD2+BD2=OB2,∴x2+(2)2=(6﹣x)2,x=2,∴OD=2,OB=6﹣2=4,∴∠B=30°,∠DOB=90°﹣30°=60°,设线段BD,BE与劣弧所围成的图形面积为S,=×2×2﹣=2﹣;则S=S△ODB﹣S扇形ODE∴线段BD,BE与劣弧所围成的图形面积为(2﹣)cm2.24.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=8cm,∠ADB=30°.(1)试探究线段BD与线段MF的关系,并简要说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.【考点】几何变换综合题.【分析】(1)有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出:=,解得A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1中,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2中,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK==75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;∴β的度数为60°或15°(3)如图3中,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=8,∴A2M2=4,A2F2=4,∴AF2=4﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=4﹣x.∴PD=AD﹣AP=4﹣4+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB.∴=,∴=,解得x=6﹣2.即A2A=6﹣2.答:平移的距离是(6﹣2)cm.25.如图,在平面直角坐标系中,直线y=﹣2x+42交x轴于点A,交直线y=x交于点B.抛物线y=ax2﹣2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4.(1)求抛物线的解析式;(2)若点Q为线段OB上一点,点P为抛物线上一点,且P、Q两点的纵坐标都为5,求线段PQ的长;(3)若点Q为线段OB或线段BC上一点,点P为抛物线上一点,PQ⊥x轴.设P、Q两点之间的距离为d,点Q的横坐标为m,求m为何值时,d取得最大值,最大值是多少.并直接写出d随m的增大而减小时m的取值范围.【考点】二次函数综合题.【分析】(1)易求得点C,D坐标,将C,D代入y=ax2﹣2x+c即可求得抛物线的解析式;(2)根据纵坐标为5可以求得点P,Q的横坐标,即可求得PQ的长,即可解题;(3)由题意知P、Q两点横坐标相同,分类讨论求得PQ的长,即可解题.【解答】解:(1)∵点C横坐标为16,且点C在直线y=﹣2x+42上,∴点C坐标为(16,10),∵点D横坐标为4,且点C在直线y=x上,∴点D坐标为(4,4),将C,D两点代入y=ax2﹣2x+c得:,解得:a=,c=10,∴抛物线的解析式为y=x2﹣2x+10;(2)抛物线上点P纵坐标为5,则有5=x2﹣2x+10,解得:x=8±2,∴点P坐标(8+2,5),(8﹣2,5)∵点Q为线段OB上一点,直线OB解析式为y=x,纵坐标为5,∴点Q坐标为(5,5),∴PQ长度为(8+2﹣5)或(5﹣8+2),即3+2或2﹣3;(3)∵PQ⊥x轴,∴P、Q两点横坐标相同,∵直线y=﹣2x+42交直线y=x交于点B,∴点B坐标为(14,14),①当0≤m<4时,d=m2﹣2m+10﹣m=m2﹣3m+10,此时d有最大值m=0时,d=10,且此时d随m的增大而减小;②当4≤m<14时,d=m﹣m2+2m﹣10=﹣m2+3m﹣10,此时d有最大值m=12时,d=8,∴m<12时,d随m的增大而增大,m≥12时,d随m的增大而减小;③当14≤m<16时,d=﹣2m+42﹣(m2﹣2m+10)=﹣m2+32,此时d有最大值m=14时,d=7.5,且此时d随m的增大而减小;综上所述,m=0时,d有最大值10,且d随m的增大而减小时m的取值范围为[0,4],[12,16].8月27日。
2018年福建省三明市宁化县中考数学模拟试卷(5月份)一、选择题(本题40分,共10小题,每题4分)1.(4分)2018的相反数是()A.B.C.2018D.﹣20182.(4分)函数中,自变量x的取值范围是()A.x≤﹣5B.x≠﹣5C.x>﹣5D.x≥﹣53.(4分)将五个相同的小正方体堆成如图所示的物体,它的俯视图是()A.B.C.D.4.(4分)第九届海峡交易会5月18日在榕城开幕,推出的重点招商项目总投资约450亿元人民币,将450亿元用科学记数法表示为()A.0.45×1011元B.4.50×109元C.4.50×1010元D.450×108元5.(4分)抛物线y=﹣(x+1)2﹣1的顶点坐标是()A.(1,﹣1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,1)6.(4分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=28°,那么∠2为()A.28°B.52°C.62°D.72°7.(4分)下列命题中为真命题的是()A.相等的角是对顶角B.矩形的对角线互相平分且相等C.垂直于半径的直线是圆的切线D.同位角相等8.(4分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<09.(4分)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米10.(4分)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是()A.3B.5C.6D.8二、填空题(本题24分,共6小题,每小题4分)11.(4分)分解因式2x2y﹣8x的结果是.12.(4分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.13.(4分)如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).14.(4分)如图,在矩形ABCD中,CD=4,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为.15.(4分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D 在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题(本题86分,共9小题)17.(8分)计算:(+1)0+()﹣1﹣2×(﹣3).18.(8分)解方程:﹣2x2+3x﹣1=0.19.(8分)请按要求,只用无刻度的直尺作图(请保留画图痕迹,用圆规作图不给分).如图已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请在图中画出∠AOB 的平分线,并说明理由.20.(8分)2011年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形的圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树状图法,求获A等级的小明参加市比赛的概率.21.(8分)求证:两组对角分别相等的四边形是平行四边形.22.(10分)2017年11月第十届厦门国际动漫节盛大举行.某动漫公司预测某种动漫玩具能够畅销,购进两批这种玩具.购进第一批这种玩具花费24000元,上市后很快脱销,动漫公司又购进第二批这种玩具,花费50000元所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?23.(10分)如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.24.(12分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.25.(14分)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).(1)①点的限变点的坐标是;②在点A(﹣2,﹣1),B(﹣1,2)中有一个点是函数图象上某一个点的限变点,这个点是;(2)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点Q的纵坐标b′的取值范围是﹣5≤b′≤2,求k的取值范围;(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.2018年福建省三明市宁化县中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本题40分,共10小题,每题4分)1.(4分)2018的相反数是()A.B.C.2018D.﹣2018【解答】解:2018的相反数是:﹣2018.故选:D.2.(4分)函数中,自变量x的取值范围是()A.x≤﹣5B.x≠﹣5C.x>﹣5D.x≥﹣5【解答】解:根据题意得,x+5≥0,解得x≥﹣5.故选:D.3.(4分)将五个相同的小正方体堆成如图所示的物体,它的俯视图是()A.B.C.D.【解答】解:从上面可看到第一横行右下角有一个正方形,第二横行有3个正方形.故选:B.4.(4分)第九届海峡交易会5月18日在榕城开幕,推出的重点招商项目总投资约450亿元人民币,将450亿元用科学记数法表示为()A.0.45×1011元B.4.50×109元C.4.50×1010元D.450×108元【解答】解:450亿元=450×108元=4.50×1010元.故选:C.5.(4分)抛物线y=﹣(x+1)2﹣1的顶点坐标是()A.(1,﹣1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,1)【解答】解:∵y=﹣(x+1)2﹣1,∴该抛物线的顶点坐标是(﹣1,﹣1),故选:B.6.(4分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=28°,那么∠2为()A.28°B.52°C.62°D.72°【解答】解:∵a∥b,∴∠4+∠3=180°,∵∠2+∠4=180°,∠3+∠1=90°,∴∠1+∠2=90°,∵∠1=28°,∴∠2=62°,故选:C.7.(4分)下列命题中为真命题的是()A.相等的角是对顶角B.矩形的对角线互相平分且相等C.垂直于半径的直线是圆的切线D.同位角相等【解答】解:相等的角不一定是对顶角,A是假命题;矩形的对角线互相平分且相等,B是真命题;经过半径的外端垂直于半径的直线是圆的切线,C是假命题;两直线平行,同位角相等,D是假命题;故选:B.8.(4分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<0【解答】解:由图象可以看出:y随x的增大而增大,∴a﹣1>0,∴a>1.故选:A.9.(4分)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【解答】解:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x≈75m,DE=75m,CE=2.4x=180m,(方法二:由i=1:2.4=5:12,设DE=5xm,CE=12xm,由勾股定理,得CD=13x,∴13x=195,∴x=15,∴DE=75m,CE=180m)EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG==0.364.AF=EB=126m,tan∠1==0.364,DF=0.364AF=0.364×126=45.9,AB=FE=DE﹣DF=75﹣45.9≈29.1m,故选:A.10.(4分)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是()A.3B.5C.6D.8【解答】解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60゜得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,∵,∴△AOP≌△CDO,∴AP=CO=6,故选:C.二、填空题(本题24分,共6小题,每小题4分)11.(4分)分解因式2x2y﹣8x的结果是2x(xy﹣4).【解答】解:2x2y﹣8x=2x(xy﹣4).故答案为:2x(xy﹣4).12.(4分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.13.(4分)如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO =∠CEO(只需一个即可,图中不能再添加其他点或线).【解答】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.14.(4分)如图,在矩形ABCD中,CD=4,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为6﹣π.【解答】解:∵四边形ABCD是矩形,CD=4,∴AB=CD=4,∠DCB=∠B=90°,∵E为AB中点,∴BE=2,根据以点C为圆心,CD长为半径画弧,交AB边于点E得出CE=CD=4,∴CE=2BE,∴∠ECB=30°,∴∠DCE=90°﹣30°=60°,在Rt△CBE中,由勾股定理得:BC==2,∴阴影部分的面积S=S矩形ABCD﹣S△BCE﹣S扇形DCE=2×4﹣﹣=6﹣π,故答案为:6﹣π.15.(4分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D 在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.16.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.三、解答题(本题86分,共9小题)17.(8分)计算:(+1)0+()﹣1﹣2×(﹣3).【解答】解:原式=1+2+6=9.18.(8分)解方程:﹣2x2+3x﹣1=0.【解答】解:﹣2x2+3x﹣1=0(2x﹣1)(﹣x+1)=0∴2x﹣1=0或﹣x+1=0,解得,x1=0.5,x2=1.19.(8分)请按要求,只用无刻度的直尺作图(请保留画图痕迹,用圆规作图不给分).如图已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请在图中画出∠AOB 的平分线,并说明理由.【解答】解:作图为:连接A、B和E、F,AB和EF相交于点P,连接OP,射线OP即为∠AOB的平分线,20.(8分)2011年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有40人,并把条形图补充完整;(2)扇形统计图中,m=10,n=40;C等级对应扇形的圆心角为144度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树状图法,求获A等级的小明参加市比赛的概率.【解答】解:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40﹣4﹣16﹣12=8(人).(2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;(3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)==.21.(8分)求证:两组对角分别相等的四边形是平行四边形.【解答】已知:四边形ABCD,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形,证明:∵∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,∴2∠A+2∠B=360°,∴∠A+∠B=180°,∴AD∥BC,同理AB∥CD,∴四边形ABCD是平行四边形.22.(10分)2017年11月第十届厦门国际动漫节盛大举行.某动漫公司预测某种动漫玩具能够畅销,购进两批这种玩具.购进第一批这种玩具花费24000元,上市后很快脱销,动漫公司又购进第二批这种玩具,花费50000元所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?【解答】解:(1)设动漫公司第一次购x套玩具,由题意得:=10,解这个方程,x=100,经检验x=100是原方程的根.∴2x+x=2×100+200=300答:动漫公司两次共购进这种玩具300套.(2)设每套玩具的售价y元,由题意得:≥20%,解这个不等式,y≥296,答:每套售价至少是296元.23.(10分)如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.【解答】(1)证明:连接OE,则∠BOE=2∠BDE,又∠A=2∠BDE,∴∠BOE=∠A,∵∠C=∠ABD,∠A=∠BOE,∴△ABD∽△OCE∴∠ADB=∠OEC,又∵AB是直径,∴∠OEC=∠ADB=90°∴CE与⊙O相切;(2)解:连接EB,则∠A=∠BED,∵∠A=∠BOE,∴∠BED=∠BOE,在△BOE和△BEF中,∠BEF=∠BOE,∠EBF=∠OBE,∴△OBE∽△EBF,∴=,则=,∵OB=OE,∴EB=EF,∴=,∵BF=2,EF=,∴=,∴OB=.24.(12分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.【解答】解:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CF A,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.25.(14分)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).(1)①点的限变点的坐标是(,1);②在点A(﹣2,﹣1),B(﹣1,2)中有一个点是函数图象上某一个点的限变点,这个点是点B;(2)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点Q的纵坐标b′的取值范围是﹣5≤b′≤2,求k的取值范围5≤k≤8;(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围s≥2.【解答】解:(1)①根据限变点的定义可知点的限变点的坐标为(,1);②(﹣1,﹣2)限变点为(﹣1,2),即这个点是点B.(2)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点必在函数y=的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=﹣2时,﹣2=﹣x+3.∴x=5.当b′=﹣5时,﹣5=x﹣3或﹣5=﹣x+3.∴x=﹣2或x=8.∵﹣5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(3)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.故答案为(,1);点B;5≤k≤8;s≥2.。
2018年三明市中考数学预测试题及答案(试卷满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.-1.5的绝对值是 ( )A .0B .-1.5C .1.5 D. 232.肥皂泡的泡壁厚度大约是0.000 07mm ,用科学记数法表示为( )A .7×10-4B .7×10-5C .0.7×10-4D .0.7×10-53.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A .30°B .35°C .40°D .50°4.如图,小明从正面观察一个圆柱体邮筒和一个正方体箱子,看到的是( )。
5.下列计算正确的是( )A .2a 2-a 2=1B .(a +b )2=a 2+b 2C .(3b 3)2=6b 6D .(-a )5÷(-a )3=a 26. 已知关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为. ( ) A. 1 B. -1 C. 1或-1 D. 21 7.不等式组⎩⎨⎧-≥+1305>x x 的解集在数轴上表示为( ) A .B .C. D.8.在平面直角坐标系中,若将抛物线y=2x 2﹣4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是( )A .(﹣2,3)B .(﹣1,4)C .(1,4)D .(4,3)9.现有四张完全相同的卡片,上面分别标有数字1,4,5,7,把卡片背面朝上洗匀,两个人依次从中随机抽取一张卡片不放回,则这两个人抽取的卡片上的数字都是奇数的概率是( )A .B .C .D .10.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给下以下结论:①2a ﹣b=0;②9a+3b+c <0;③关于x 的一元二次方程ax 2+bx+c+3=0有两个相等实数根;④8a+c <0.其中正确的个数是( )A .2B .3C .4D .5 二、填空题(本题共6题,每小题4分,共24分)11.函数1y x =-中,自变量x 的取值范围是 . 12.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为 °.13.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为 .14.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE=8,BF=5,则EF 的长为 .16.如图,已知点A ,C 在反比例函数y =ax(a >0)的图象上,点B ,D 在 反比例函数y =b x(b <0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的 两侧,AB =3,CD =2,AB 与CD 的距离为5,则a -b 的值是__ __.三、解答题(一)(本题共3题,每小题6分,共18分)17.计算:()﹣2+(﹣)0+||+(﹣3)×tan60°.18.先化简,再求值:÷,其中m 是方程x 2+2x ﹣3=0的根.19. 不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14. (1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.四、解答题(二)(本大题3小题,每小题8分,共24分)20.如图,AB 是半圆O 的直径,点C 是半圆O 上一点,∠C OB=60°,点D 是OC 的中点,连接BD ,BD 的延长线交半圆O 于点E ,连接OE ,EC ,BC .(1)求证:△BDO ≌△EDC .(2)若OB=6,则四边形OBCE 的面积为 .21.如图,在平面直角坐标系xOy 中,反比例函数y=的图象与一次函数y=k (x ﹣2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式及B 点坐标;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.22.如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得BC=6米,CD=4米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,试求电线杆的高度(结果保留根号)五、解答题(三)(本大题2小题,每小题12分,共24分)23.如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至点E,使得OE=OB,交⊙O于点F,连接AE,CE.(1)求证:AE是⊙O的切线;(2)求证:四边形ADCE是矩形;(3)若BD=AD=4,求阴影部分的面积.24. 如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q 为动点,设运动时间为t秒.(1)点A的坐标为;抛物线的解析式为.(2)如图1,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)如图2,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P作PF ⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?参考答案:一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.C2.B3.C4.C5.D6.B7.C8.D9.B 10.A二、填空题(本题共6题,每小题4分,共24分)11. x≤3且x≠1 12. 145 13.3 14. 30 15. 13 16. 6三、解答题(一)(本题共3题,每小题6分,共18分)17. 解:原式=9+1+﹣1+(2﹣3)×=9+﹣3=6+.18. 解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===19.解:(1)袋中黄球的个数为1个;(2)列表或树状图略所以两次摸到不同颜色球的概率为:105126P==.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(1)证明:∵∠COB=60°且OB=OC,∴△BOC为等边三角形,∠OBC=60°,又∵点D是OC的中点,∴OD=CD,∠OBD==30°,又∵点C是半圆上一点且∠COB=60°,∴∠CEB==30°,∴∠OBD=∠CEB,在△BDO与△EDC中,,∴△BDO≌△EDC(AAS);(2)∵△BDO≌△EDC,∴EC=OB,∵△OBC是等边三角形,∴OB=BC=EC=EO,∴四边形OBCE是菱形,∴S菱形OBCE=•OC•EB=•6•6=18.21.解:(1)∵点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上;∴2=,2=k(3﹣2),解得m=6,k=2;∴反比例函数解析式为y=,和一次函数解析式为y=2x﹣4;∵点B是一次函数与反比例函数的另一个交点,∴=2x﹣4,解得x1=3,x2=﹣1;∴B点的坐标为(﹣1,6);(2)∵点M是一次函数y=2x﹣4与y轴的交点,∴点M的坐标为(0,﹣4),设C点的坐标为(0,y c),由题意知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,解得|y c+4|=5,当y c+4≥0时,y c+4=5,解得y c=1,当y c+4≤0时,y c+4=﹣5,解得y c=﹣9,∴点C的坐标为(0,1)或(0,﹣9).22.解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.五、解答题(三)(本大题2小题,每小题12分,共24分)23.解:(1)证明:∵AB=AC,AD是BC边上的中线,∴∠ODB=90°,在△BOD和△EOA中,,∴△BOD≌△EOA,∴∠OAE=∠ODB=90°,∵点A在圆上,∴AE是⊙O的切线;(2)由(1)知,△BOD≌△EOA,∴BD=AE,∵AD是BC边上的中线,∴CD=BD,∴AE=CD,∵∠OAE=∠ODB=90°,∴AE ∥BC ,∴四边形ADCE 是平行四边形∵∠OAE=90°,∴平行四边形ADCE 是矩形;(3)∵∠ODB=90°,BD=OD ,∴∠BOD=45°,∴∠AOE=45°∵∠OAE=90°,∴AE=OA=AD=4∴S △OAE =×OA ×AE=×4×4=8,S 扇形OAF =π×42×=2π,∴S 阴影部分=S △OAE ﹣S 扇形OAF =8﹣2π.24.(1)(1,4) 322++-=x x y(2)∵C (3,0),E (0,4) ∴OC =3,OE =4 在Rt △COE 中,根据勾股定理得 5432222=+=+=OE OC CE △PCQ 为直角三角形,共有2种可能的情况: ①当∠QPC =90°时 ∵CE OC CQ PC QCP ==∠cos ∴5323=-t t 解得1115=t ②当∠PQC =90°时 ∵CE OC PC CQ QCP ==∠cos∴5332=-t t 解得139=t 综上所述,当1115=t 或139=t 时, △PCQ 为直角三角形.(3)设直线AC 的解析式为b kx y +=,(0≠k ).将C (3,0),E (0,4)代入得 ⎩⎨⎧=+=+034b k b k 解得⎩⎨⎧=-=62b k ∴直线AC 的解析式为62+-=x y∵P (1,4-t )∴F ⎪⎭⎫ ⎝⎛-+t t 4,21 ∴Q ⎪⎪⎭⎫ ⎝⎛-+44,212t t ∴QF =()444422t t t t -=--⎪⎪⎭⎫ ⎝⎛- ∴CFQ AFQ ACQ S S S ∆∆∆+= DG FQ AG FQ ⋅+⋅=2121 ()DG AG FQ +⋅=21 AD FQ ⋅=21⎪⎪⎭⎫ ⎝⎛-⨯⨯=42212t t ()12412+--=t ∵041<- ∴当2=t 时,△ACQ 的面积最大,最大值是1.。