三角函数公式大全81739

  • 格式:doc
  • 大小:632.50 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数公式大全三角函数定义

函数关系

倒数关系:

商数关系:

平方关系:

诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系:

公式四:与的三角函数值之间的关系:

公式五:与的三角函数值之间的关系:

公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

记忆方法一:奇变偶不变,符号看象限:

其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变

根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限

记忆方法二:无论α是多大的角,都将α看成锐角.

以诱导公式二为例:

若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终

边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数

值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得

到了诱导公式二.

以诱导公式四为例:

若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终

边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的

三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负

值.这样,就得到了诱导公式四.

诱导公式的应用:运用诱导公式转化三角函数的一般步骤:

特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角

的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项

数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

和差角公式

二角和差公式

证明如图,负号的情况只需要用-β代替β即可.cot(α+β)推导只需把角α对边设为1,过程与tan(α+β)相同.

三角和公式

口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.积化和差

倍角公式

二倍角公式

三倍角公式

证明:

sina

=sin(a+2a)

=sin^2a·cosa+cos^2a·sina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

cosa

=cos(2a+a)

=cos^2acosa-sin^2asina

=(2cos^2a-1)cosa-2(1-cos^2a)cosa

=4cos^3a-3cosa

sina

=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)-sina][(√3/2)+sina]

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2]

=4sinasin(60°+a)sin(60°-a)

cosa

=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cosa-cos30°)(cosa+cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得:

tana=tana·tan(60°-a)·tan(60°+a)

四倍角公式

sina=-4*[cosa*sina*(2*sina^2-1)]

cosa=1+(-8*cosa^2+8*cosa^4)

tana=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)

五倍角公式

n倍角公式

应用欧拉公式:

.

上式用于求n倍角的三角函数时,可变形为:

所以,

其中,Re表示取实数部分,Im表示取虚数部分.而

所以,

半角公式

(正负由所在的象限决定)

辅助角公式

证明:

由于

,显然,且

故有:

三角形定理

正弦定理

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有:

正弦定理变形可得: