SURFACE SCANNING THERMOMETERS FOR DIAGNOSING THE TESLA SRF CAVITIES
- 格式:pdf
- 大小:163.78 KB
- 文档页数:4
赛默飞近红外参数【实用版】目录一、赛默飞近红外光谱仪的概述二、赛默飞近红外光谱仪的参数1.Nicolet iS 5N2.Trudefender 手持红外光谱仪三、赛默飞近红外光谱仪的应用领域四、赛默飞近红外光谱仪的优势五、结语正文一、赛默飞近红外光谱仪的概述赛默飞近红外光谱仪是一款高性能的光谱分析仪器,能够对样品进行近红外区域的光谱分析,被广泛应用于各个领域,如化学、生物学、医学、环境监测等。
赛默飞作为全球知名的科学仪器制造商,在近红外光谱仪领域有着丰富的经验和技术积累。
二、赛默飞近红外光谱仪的参数1.Nicolet iS 5Nicolet iS 5N 是赛默飞一款先进的近红外光谱仪,具有高分辨率、高灵敏度和快速扫描等特点。
其主要参数如下:- 波长范围:0.9μm ~ 1.7μm- 分辨率:≤0.5cm^-1- 灵敏度:≤0.001g/mL- 扫描速度:≤1s/点2.Trudefender 手持红外光谱仪Trudefender 是赛默飞一款手持式近红外光谱仪,具有便携、易操作和实时分析等特点。
其主要参数如下:- 波长范围:0.9μm ~ 1.7μm- 分辨率:≤1.5cm^-1- 灵敏度:≤0.01g/mL- 扫描速度:≤2s/点- 重量:≤3kg三、赛默飞近红外光谱仪的应用领域赛默飞近红外光谱仪广泛应用于各种领域,如生物医学、化学化工、食品饮料、环境和材料科学等。
在生物医学领域,可以用于蛋白质结构分析、疾病诊断和生物分子识别等;在化学化工领域,可以用于分子结构分析、化学反应监测和产品质量控制等;在食品饮料领域,可以用于成分分析、品质控制和食品安全监测等。
四、赛默飞近红外光谱仪的优势赛默飞近红外光谱仪具有以下优势:1.高分辨率和高灵敏度,能够对样品进行精确分析。
2.快速扫描和实时分析,能够提高分析效率。
3.便携式设计,便于携带和现场分析。
4.丰富的应用经验和技术支持,确保分析结果的准确性。
五、结语赛默飞近红外光谱仪凭借其优异的性能和广泛的应用领域,在光谱分析领域具有重要地位。
差示扫描量热法测定钛合金的相变温度一、DSC原理DSC技术是通过测量样品与参考样品在恒定的升温(或降温)速率下的热容差异来研究材料的相变过程。
在实验中,样品和对照样品同时暴露在同一热场中,在升温过程中,当样品发生相变时,会吸收或释放热量,导致样品与对照样品的温度之间出现差异。
通过测量这种温度差异,可以得到样品的热容曲线,从而确定样品的相变温度。
二、DSC测定方法1. 样品制备:将钛合金样品粉末加工成均匀的片状或块状样品,然后进行必要的表面处理和清洁工作,以确保样品表面的状态和性能符合实验要求。
2. 样品安装:将样品和参考样品置于DSC仪器的样品台和对照台上,然后进行密封封闭,以保证恒定的气氛条件。
3. 实验参数设定:设置升温或降温速率,以及实验的起始温度和终止温度。
4. 实验操作:启动DSC仪器,开始实验过程。
在升温过程中,记录样品与对照样品之间的温度差异,并得到样品的热容曲线。
5. 数据处理:通过分析热容曲线的变化,确定样品的相变温度和相变焓等热力学参数。
三、DSC在钛合金相变温度测定中的应用DSC技术在钛合金相变温度的测定中具有以下优点:1. 高灵敏度:DSC仪器具有高灵敏度的温度传感器和热量传感器,能够精确地测量样品与对照样品之间的温度差异和热量变化。
2. 高分辨率:DSC仪器能够实现微焓级甚至纳焓级的热容测量,可以对样品的微观相变过程进行准确分析。
3. 宽温度范围:DSC仪器可以在较宽的温度范围内进行实验,适用于多种金属材料的相变温度测定。
4. 快速实验:DSC技术能够在较短的时间内完成实验过程,提高了实验效率和人力成本的节约。
在钛合金的相变温度测定中,DSC技术的应用十分广泛。
通过DSC测试,可以获取钛合金在不同温度下的相变行为和相变温度,为材料性能的研究和工程应用提供了重要的参考依据。
根据DSC测试得到的相变温度和相变焓等数据,可以评价钛合金的热处理性能、热稳定性能和热膨胀性能,为工程设计和材料选择提供了科学依据。
差示扫描量热法测定钛合金的相变温度差示扫描量热法是一种准确测量物质相变温度的方法,其基本原理是通过测量样品的热容或热量变化来确定物质的相变温度。
本文将介绍使用差示扫描量热法测定钛合金的相变温度。
1. 实验原理首先,在样品温度恒定时,记录样品的热容变化曲线。
然后,通过对样品进行升温,记录样品的热量变化曲线。
最后,通过将升温时的热容变化曲线与热量变化曲线分别与已知的相变温度进行比较,确定钛合金的相变温度。
2. 实验步骤差示扫描量热仪量热杯样品盖2.2.1 样品制备将钛合金样品制成薄片,保证样品在加热和降温的过程中获得均匀的温度和热量变化。
(1)将热容量杯放置在量热仪中,并将待测样品置于量热杯中。
(2)将温度控制器设置在室温,并开启热容量杯的循环水;(3)根据实验要求设置升温和降温速率,并启动差示扫描量热仪;(4)记录样品在升温和降温过程中的热容量变化曲线和热量变化曲线。
2.2.3 数据处理(1)将热容量变化曲线和热量变化曲线与已知的相变温度进行比较,确定钛合金的相变温度;(2)计算样品相变时的热焓变化;(3)即可得到钛合金的相变热和相变热功率。
3. 实验结果与分析通过差示扫描量热法测定钛合金的相变温度,得到相变温度为921.6°C。
根据实验数据计算得到相变热为127.5J/g,相变热功率为2.5W。
这些数据可以帮助我们更好地理解钛合金的性质和应用。
4. 小结本实验介绍了差示扫描量热法测定钛合金的相变温度的方法和步骤。
实验结果表明,差示扫描量热法是一种准确测量物质相变温度的方法,并可以用于研究钛合金的性质和应用。
通过本实验,可以让学生更好地理解差示扫描量热法的基本原理和实验操作,同时也能够提高学生对钛合金材料性质和应用方面的认识。
转动拉曼测温激光雷达实验指导书一、实验任务使用转动拉曼测温激光雷达系统,通过测量散射回波信号结合MATLAB反演程序得到当天的大气垂直温度廓线信息。
二、实验目的1.了解转动拉曼测温激光雷达系统的基本结构和基本操作。
2.掌握转动拉曼法反演垂直温度廓线的基本理论。
3.掌握用MATLAB反演温度廓线的基本算法。
三、实验要求1.运用转动拉曼测温激光雷达系统对大气回波信号进行接收,并通过光电转换器、数据采集卡对回波信号进行采集解调;2.根据激光雷达回波方程推导出温度测量的基本公式,掌握二次项拟合法反演温度廓线的基本理论;3.运用MTLAB温度反演程序,掌握从读入信号到去噪平滑,再到得到温度廓线信息的整个流程。
四、实验设备转动拉曼测温激光雷达系统:转动拉曼测温激光雷达系统是光、机、电及计算机控制相结合的一体化设备,其工作过程一般包括激光发射、回波探测和参数反演三个部分。
五、实验提示(实验理论、实验操作方法和实验技巧)大量直接探测的数据表明,大气温度随高度的变化表现出规律性的变化。
地球大气根据温度的垂直分布特征可以分为以下五层:对流层(troposphere),平流层(stratosphere)、中间层(mesosphere)、热层(thermosphere)和外层(exosphere),如图1所示。
其中与人类活动最为密切的是对流层,因此获取大气垂直温度廓线信息不但具有重要的科学意义,并且也是优化人类生存环境、保障人类社会可持续发展的需求。
图1大气温度随高度的分布目前,无线电探空仪是获取大气垂直温度廓线数据的主要手段之-。
但是由于探空仪自身设备限制,气球上升过程较为缓慢,无线电探空仪每天仅能实现两次测量,不能实现全天候观测,同时由于上升过程中水平风场的影响,很难得到精确的垂直温度廓线。
转动拉曼激光雷达是以激光作为光源,通过遥感激光与大气相互作用产生的回波信号来反演大气参数的光电设备。
由于转动拉曼激光雷达以激光作为探测光源,其探测时间可达到全天候观测,同时由于激光光源的高方向性和单色性,转动拉曼激光雷达可获得高分辨率的垂直温度廓线。
非制冷红外热像仪去温漂标定作者:雷家容来源:《电子技术与软件工程》2015年第09期摘要本文通过实验得出标定方程,并通过不同的热像仪温度进行验证得到误差在±1℃以内,目前市面上的红外热像仪测温精度几乎都在±2℃的范围。
【关键词】红外热像仪温漂标定非制冷本文热像仪将在0~50℃的环境下进行标定,通过多组实验数据拟合出热像仪温度,红外热图像灰度与黑体温度之间的关系,得到目标温度计算公式,误差在±1℃以内。
1 非制冷红外热像仪的标定由于非制冷热像仪不需要制冷装置,工作在环境温度时,热像仪的温度会随着吸收红外辐射和电路散热等因素升高,也会随着环境温度变化而变化,这将对测温产生很大的影响,但稳定后热像仪与环境之间达到动态平衡后热像仪温度保持稳定。
为了提高非制冷红外热像仪的测温精度,需要分析热像仪温度对测温的影响并进行修正。
采用黑体标定温度算法进行温度测量,具有操作简单、反应时间快和实现容易等优点。
标定的目的是找出黑体温度与图像灰度值之间的关系,并将这关系通过拟合曲线法用一个公式来描述。
1.1 主要实验设备(1)热像仪,采用美国FILR的TAUⅡ机芯,分别率为320*240,用于接收红外热辐射;(2)面源黑体,用作标准辐射源;(3)高精度步入室,用于控制热像仪所处的环境温度;(4)电脑,用于采集图像和数据处理。
1.2 实验方法及数据分析1.2.1标定方程选择实验(1)实验。
在常温环境下,设置9个黑体温度分别为308.15、323.15、333.15、358.15、373.15、383.15、408.15、423.15、433.15K,热像仪开机等热像仪温度稳定。
稳定后分别采集以上黑体的热图像并通过图像处理软件得到灰度值。
(2)实验数据分析。
当红外热像仪工作在长波段时,辐射能随温度的变化近似满足4次关系,故先采用四次关系进行拟合,再减少308.15、408.15、423.15、433.15K的温度进行外推,如图2.1蓝线所示:从外推情况可以看出4次拟合曲线并不理想,接下来分别用3次、2次的关系来拟合323.15、333.15、358.15、373.15、383.15K黑体温度与亮度的关系,外推其它点是否在拟合曲线上,如图1。
表面等离子体无掩膜干涉光刻系统的数值分析(英文)
董启明;郭小伟
【期刊名称】《光子学报》
【年(卷),期】2012()5
【摘要】表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm 时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
【总页数】7页(P558-564)
【关键词】干涉光刻;表面等离子体激元;克莱舒曼结构
【作者】董启明;郭小伟
【作者单位】电子科技大学光电信息学院
【正文语种】中文
【中图分类】TN305.7
【相关文献】
1.光胶做挡光层的紫外光刻掩膜用于高聚物芯片表面选择性光化学改性 [J], 孔泳;陈恒武;云晓;郝振霞;方肇伦
2.表面等离子体干涉光刻理论计算 [J], 王向贤;叶松;余建立;许雪艳;许明坤
3.基于DMD无掩膜光刻快速制作亲疏水图案化表面 [J], 陈鹏;李木军
4.一种提高无掩膜光刻机图形质量的方法 [J], 李备;朴林华;王育新;张严
5.基于数字微镜器件的无掩膜光刻技术进展 [J], 张思琪;周思翰;杨卓俊;许智;兰长勇;李春
因版权原因,仅展示原文概要,查看原文内容请购买。
thermof1技术参数
ThermoF1是一种高性能的热成像仪器,广泛应用于工业、科学
研究和医学领域。
它具有许多技术参数,包括但不限于分辨率、灵
敏度、测量范围、温度精度等。
以下是ThermoF1可能涉及的一些技
术参数:
1. 分辨率,ThermoF1的热成像分辨率通常以像素为单位,这
决定了它能够捕捉和显示的细节水平。
高分辨率可以提供更清晰的
图像,有助于准确定位温度异常或热量分布不均的区域。
2. 灵敏度,热成像仪的灵敏度决定了它可以检测的最小温度变化。
通常以毫几度或者小于某个温度范围内的变化来表示。
3. 测量范围,ThermoF1的测量范围指的是它可以测量的最低
和最高温度。
不同的应用领域可能需要不同的测量范围。
4. 温度精度,这是指ThermoF1测量结果的准确度,通常以摄
氏度或华氏度为单位。
高温度精度意味着更可靠和准确的测量结果。
5. 刷新率,热成像仪的刷新率决定了它可以捕捉和显示的图像
帧数,通常以赫兹(Hz)为单位。
高刷新率可以提供更流畅的实时图像,适用于一些需要快速动态变化的场景。
6. 噪声等级,热成像仪的噪声等级影响了图像质量,低噪声等级可以提供更清晰的图像,尤其是在低温差条件下。
以上是一些可能涉及的ThermoF1技术参数,这些参数对于评估热成像仪的性能和适用性都非常重要。
当然,具体的技术参数可能因不同的型号和厂家而有所差异,用户在选购和使用ThermoF1时应当根据具体需求进行详细了解和比较。
tssr温度扫描应力松弛方法宝子们,今天咱们来唠唠这个TSSR温度扫描应力松弛方法。
这TSSR啊,就像是一个超级侦探,专门去探究材料在不同温度下的应力松弛情况。
你想啊,材料在不同温度里就像人在不同环境下,表现是不一样的。
比如说,大夏天的人就懒洋洋的,材料在高温下也会有独特的“反应”。
应力松弛呢,简单说就是材料在固定应变下应力随时间变化的现象。
就好比你拉着一根橡皮筋,一开始拉得紧紧的有很大的力(应力),但是你一直拉着不动,这个力就会慢慢变小,材料也是这样。
TSSR就是要看看在不同温度的时候,这个应力松弛到底是怎么个变化法。
那这个方法怎么操作呢?它会慢慢地改变温度,就像给材料做一个温度的“过山车”,同时精准地测量应力的变化。
这就像是给材料做一个超级详细的体检,看看在温度这个“环境因素”改变的时候,它的“身体状况”(应力松弛)有啥不同。
这TSSR可有用啦。
在工业上,要是知道了材料在不同温度下的应力松弛情况,就能更好地选择材料。
比如说制造飞机的材料,飞机在高空中温度很低,在起飞降落的时候发动机附近温度又很高,要是不了解材料的这种特性,那可就危险啦。
通过TSSR知道了材料的脾气,就能挑到合适的材料,让飞机稳稳当当的。
而且在科研里,TSSR就像是一把钥匙,打开了理解材料微观结构和宏观性能关系的大门。
研究人员可以根据TSSR得到的数据,推测材料内部原子或者分子在不同温度下是怎么运动、怎么排列的,这就像是在探索材料世界的小秘密呢。
不过呢,这个TSSR也不是那么容易的事儿。
测量的时候得特别精准,仪器就像一个特别挑剔的小管家,稍微有点不对就可能影响结果。
但是呢,尽管有困难,科学家们还是很喜欢这个方法,因为它能给我们带来好多关于材料的有用信息呀。
宝子们,现在是不是对TSSR温度扫描应力松弛方法有了一点新的认识呢?这小小的方法背后可藏着大大的学问呢。
Thermometers Operation ManualINTRODUCTIONThank you for purchase of the this Thermometer. This deviceis a non-contact(infrared) thermometer and contact(probe) thermometer .To use the non-contact(infrared) thermometer. Simply aim the thermometer at the target and press the “IRT” button to display the surface temperature. The distance to target ratio is 1:1 therefore the thermometer should be positioned as close to the target as possible. To use the contact(probe) thermometer, open the probe, press the “ON/OFF” button and insert at least “1/2” of the stem into the testing area. The current temperature will be displayed.1. FEATURESz User selectable °C or °Fz Data Holdz Overrange indicationz Automatic Power Offz Emissivity Digitally adjustable from 0.10 to 1.00 z MAX,MIN ,LOCK modesz Resolution 0.1°C (0.1°F)2. WIDE RANGE APPLICATIONFood preparation, Safety inspectors, Plastic molding, Asphalt, Marine and Screen printing, measure ink and Dryer temperature, HVAC/R, Diesel and Fleet maintenance.3. FRONT PANEL DESCRIPTION① IR sensor② Probe Temperature③ LCD Display④ MODE button⑤ Probe Temperature switch⑥ IR Measurement button⑦ UP button⑧ Battery Cover4. INDICATOR⑴ IR Temperature indication① IR Measuring indication② max/min indication③ lock symbols④ Data hold⑤ °C /°F symbol⑥ Symbols for EMS⑦ Low battery indication⑧Current temperature value⑵PROBE Temperature indication① probe Measuring indication② Current temperature value③ Data hold④ °C /°F symbol⑤ Low battery indication5. SPECIFICATIONIR TEMP. Range -35°C to +260°C / -31°F to 500°FIR Response Time less than 500 msInfrared Accuracy±2% of reading ±2°C / (±4°F )Optical Resolution 1:1 Distance to Spot sizeEmissivity Adjustable 0.10~1.00Probe Temperature Range -40°C to 260°C / -40°F to 500°F Temperature Accuracy :-40 to -10°C (-40 to 14°F) ±5°C (9°F )-10 to 180°C (14 to 356°F) ±2 % +2°C / (±4°F )180 to 260°C (356 to 500°F)±3 % +2°C / (±4°F )Overrange Indication Display “ ---- ”Operating Temperature 0°C to 50°CResolution 0.1°C / 0.1°FWeight 83g.Size 140×42×25mmTo utilize this thermometer MIN(minimum) or MAX(maximum) mode, firstly turn the instrument on by pressing the “IRT” button, release the “IRT” button to hold measuring data. Then press the “MODE” button once for MIN or twice for MAX function. The “MIN” or “MAX” icon will flash, then press the “IRT” button to confirm the “MIN” or “MAX” mode. The thermometer will display the MIN or MAX reading only. Press the “△” button to cancel the MIN or MAX function,and the “MIN” or “MAX” icon will disappear.7. LOCK ModeThe LOCK mode is particularly useful for continuous monitoring of temperatures . To utilize this thermometer’s LOCK mode. firstly turn the instrument on by pressing the “IRT” button, release the “IRT” button to hold measuring data.Then press the “MODE” button three times for the LOCK mode function. The “LOCK” icon will flash, then press “IRT” button to confirm the LOCK measurement mode. The thermometer will continuously display the temperature. Press the “△” button to cancel the LOCK function,and the “LOCK” icon will disappear.To change this thermometer from °C to °F, when you using infrared to measuring, firstly turn the instrument on by pressing the “IRT” button, release the “IRT” button to hold measuring data. Then press the “MODE” button four times, the °C or °F icon will flash, press the “IRT” button to change the scale and measuring. When you using Probe to measuring, you can directly press “MODE” button once to change the scale.9.Data Hold ModeWhen you using infrared to measuring, turn the instrument on by pressing the “IRT” button,release the “IRT” to hold measuring data.When you using Probe to measuring, you can press “△” button to hold measuring data.10.Distance & Spot SizeAs the distance (D) from the object increases, the spot size (S) of the area measured by the unit becomes larger. The relationship between distance and spot size for each unit is listed below11. Emissivity Adjustment ModeThe Emissivity Adjustable Mode useful for adjustable the emissivity. firstly turn the instrument on by pressing the “IRT” button, release the “IRT” button to hold measuring data.Then press the “MODE” button five times for the Emissivity Adjustable Mode function. press the “△” button or “IRT” button to adjust the Emissivity.Most (90% of typical applications) organic materials and painted or oxidized surfaces have an emissivity of 0.95 (pre-set in the unit). Inaccurate readings will result from measuring shiny or polished metal surfaces. To compensate, cove the surface to be measured with masking tape or flat black paint. Allow time for the tape to reach the same temperature as the material underneath it. Measure the temperature of the tape or painted surface.AUTO POWER OFF:To save battery life, When the thermometer in data hold mode, it will automatically turn off after approximately 15 second.When the thermometer work on the Probe measuring mode , it will automatically turn off after approximately 20 minutes.WARNING:1. Don’t to inserted probe in the hard objects.2. As battery power is not sufficient, LCD will display “ ” , the battery should be replaced at this time.Emissivity ValuesSubstance emissivity Substance emissivity Asphalt 0.90 to 0.98 Cloth (black) 0.98skin 0.98 Concrete 0.94 HumanCement 0.96 Lather 0.75 to 0.800.96Sand 0.90 Charcoal(powder)Earth 0.92 to 0.96 Lacquer 0.80 to 0.95Water 0.92 to 0.96 Lacquer (matt) 0.97Ice 0.96 to 0.98 Rubber (black) 0.94Snow 0.83 Plastic 0.85 to 0.95Glass 0.90 to 0.95 Timber 0.90Ceramic 0.90 to 0.94 Paper 0.70 to 0.940.81Marble 0.94 ChromiumoxidesPlaster 0.80 to 0.90 Copper oxides 0.78Mortar 0.89 to 0.91 Lron oxides 0.78 to 0.82Brick 0.93 to 0.96 Textiles 0.90V06/08。
Tackground, target ⽬标本底Tandem scan 串列扫查Target 耙Target 靶Television fluoroscopy 电视X射线荧光检查Temperature envelope 温度范围Tenth-value-layer(TVL) ⼗分之⼀值层Test coil 检测线圈Test quality level 检测质量⽔平Test ring 试环Test block 试块Test frequency 试验频率Test piece 试⽚Test range 探测范围Test surface 探测⾯Testing,ulrasonic 超声检测Thermal neutrons 热中⼦Thermocouple gage 热电偶计Thermogram 热谱图Thermography, infrared 红外热成象Thermoluminescent dosemeter(TLD) 热释光剂量计Thickness sensitivity 厚度灵敏度Third critiical angle 第三临界⾓Thixotropic penetrant 摇溶渗透剂Thormal resolution 热分辨率Threading bar 穿棒Three way sort 三档分选Threshold setting 门限设置Threshold fog 阈值灰雾Threshold level 阀值Threshotd tcnet 门限电平Throttling 节流Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Through-coil technique 穿过式线圈技术Throughput 通⽓量Tight 密封Total reflection 全反射Totel image unsharpness 总的图像不清晰度Tracer probe leak location ⽰踪探头泄漏定位Tracer gas ⽰踪⽓体Transducer 换能器/传感器Transition flow 过渡流Translucent base media 半透明载体介质Transmission 透射Transmission densitomefer 发射密度计Transmission coefficient 透射系数Transmission point 透射点Transmission technique 透射技术Transmittance,τ透射率τTransmitted film density 检测底⽚⿊度Transmitted pulse 发射脉冲Transverse resolution 横向分辨率Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三⾓形阵列Trigger/alarm condition 触发/报警状态Trigger/alarm level 触发/报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Trueattenuation 真实衰减Tube current 管电流Tube head 管头Tube shield 管罩Tube shutter 管⼦光闸Tube window 管窗Tube-shift radiography 管⼦移位射线透照术Two-way sort 两档分选。
一种用于器件模型参数提取的芯片测试数据的获取方法
宋文斌
【期刊名称】《电子世界》
【年(卷),期】2012(000)005
【摘要】半导体器件的建模及模型参数提取是电子设计自动化(EDA)领域的关键性工作.要提取器件参数,获取并处理复杂繁重的测量数据是前提条件,也是非常重要的一个环节,如何简单有效的提取并处理参数提取测试数据就显得格外重要.本文提出了简单易用的用于器件模型参数提取的测试数据的获取方法.实验证明,该方法可以有效的获取大量繁杂的测试数据,具有较高的精确度,而且简单易用,适合推广使用.【总页数】3页(P102-104)
【作者】宋文斌
【作者单位】大连东软信息学院
【正文语种】中文
【相关文献】
1.一种AlGaN/GaN HEMT非线性器件模型参数提取的方法 [J], 常永明;毛维;杜林;郝跃
2.一种用于测试数据压缩的自适应EFDR编码方法 [J], 邝继顺;周颖波;蔡烁
3.一种CAD图纸中WLAN器件连接关系的获取方法 [J], 敖行;江昊;张迅
4.适用于3D裸芯片叠层塑封器件的DPA试验方法研究 [J], 王斌; 江凯; 周帅; 王小强
5.一种用于测试数据压缩的改进型EFDR编码方法 [J], 邝继顺;周颖波;蔡烁;皮霄林
因版权原因,仅展示原文概要,查看原文内容请购买。
差示扫描量热法测定ASA树脂玻璃化转变温度的测量不确定
度评定
王铟琳;王志军;郝定靖
【期刊名称】《塑料工业》
【年(卷),期】2024(52)5
【摘要】依据GB/T 19466.2—2004的方法,使用差示扫描量热仪对丙烯酸丁酯-苯乙烯-丙烯腈(ASA)树脂的玻璃化转变温度进行了测试,结合实验室的情况及实验过程对该法测定玻璃化转变温度可能的影响因素进行了分析,建立数学模型,分析不确定度分量的来源,进行测量不确定度评估。
通过综合考察重复性测量、天平引入的误差、标准物质的标准值等因素,计算出ASA树脂玻璃化转变温度测定结果的合成不确定度,通过本研究,明确了关键控制点。
通过测量不确定度评定,充分反映出中心检测结果的可靠性及准确性,同时起到激励检测人员提高技术水平的目的。
【总页数】4页(P136-139)
【作者】王铟琳;王志军;郝定靖
【作者单位】上海中化科技有限公司
【正文语种】中文
【中图分类】TQ325
【相关文献】
1.示差扫描量热法测定防老剂D纯度的不确定度评定
2.差示扫描量热法测定聚乙烯结晶度的不确定度评定
3.差示扫描量热法测定合成树脂乳液玻璃化转变温度的
研究4.示差扫描量热计示值误差测量不确定度评定5.探索差示扫描量热法测定聚酯树脂玻璃化转变温度的影响因素
因版权原因,仅展示原文概要,查看原文内容请购买。
SURFACE SCANNING THERMOMETERSFOR DIAGNOSING THE TESLA SRF CAVITIEST. Junquera, A. Caruette, M. Fouaidy, IPN (CNRS - IN2P3) 91406 ORSAY cedex, France Q.S. Shu, DESY, 2000 HAMBURG 52, GermanyABSTRACTIn order to investigate the field emission and the thermal breakdown of 9-cell TESLA SRF cavities, 150 specially developed surface scanning thermometers have been built. The description of the thermometers and their calibration in superfluid helium are presented. A special test chamber equipped with a heated niobium plate is used to study the thermometer thermal response versus the heater power at different bath temperature. The comparison of thermometer response with numerical simulations results and experimental data obtained with reference thermometers mounted on the Nb plate using a thermal bonding agent, allows to get an estimation of the measurement efficiency of scanning thermometers. Experimental data obtained with cavities are analysed with the help of the calibration results and numerical simulations.INTRODUCTIONThe development of He II surface thermometers for diagnosing and studying the thermal effects in supercoducting RF cavities has been a major activity of the Orsay Group during the recent past years. Several papers describe the different types of thermometers and the main experimental features : fixed thermometers for studies of the anomalous heating of samples mounted on special cavities [1], scanning thermometers for monocell cavities [2] and special vacuum thermometers for Kapitza conductance measurements [3].In this paper we present the first results of a new development in collaboration with the DESY laboratory, for constructing a diagnostic system for the 9-cell TESLA cavities. As compared to the older devices, a large number of thermometers (> 100) are mounted around the cavity which raises different mechanical and cabling problems. The complete description and the first results are given in an another paper at this conference [5]. In this paper we focuse on the calibration of the thermometers and the thermal analysis of the first temperature mapping results obtained.DESCRIPTIONThe surface thermometer design [Fig. 1] is very close to the model developed earlier for the CERN group [2]. The sensitive part is an Allen-Bradley carbon resistor (100 Ohm, 1/8 W) housed in a silver block with a sensor tip of 1 mm diameter for the thermal contact to the external surface of the cavity. This housing is thermally insulated against the surrounding He II by an epoxy envelope (Stycast) moulded around the silver block and into a bronze piece which allows the sensor mounting on the rotating thermometric arm. The thermometers tip must present a good contact with the cavity wall when scanning: two springs located inside two holes in the body of the rotating arm are used for this purpose, the contact pressure control and adjustement is allowed by means of two screws. Each thermometer has two independent manganin wires thermally anchored to the silver block with ~ 15 cm free length for connecting to each cell board (14 thermometers). At the level of the boards the connectors ensure the cabling dispatching inside the cryostat allowing the motion of therotating arm.Fig. 1 : Cross section of a HeII surface thermometerCALIBRATIONSuperfluid heliumA representative batch (32) of the 150 thermometers fabricated for this device were tested using a special calibration chamber [1] allowing the mounting of 16 thermometers at every test. In principle all thermomters are located in a region subjected to the same heat flux density. In this experiment the thermometers tip were glued to the Nb heated plate by means of a good thermal bonding agent (Apiezon N Grease) in order to verify the fabrication process. The two thermometers batches (2 x 16) give a mean thermal response <∆T>1 = 8.0 mK and <∆T>2 = 8.8 mK respectively for a total heater power of 195 mW at T bath = 1.8 K. Numerical simulation of the plate heater assembly for the same experimental conditions gives ∆T = 56 mK. This calculation was performed in order to evaluate the thermometer efficiency η defined as the ratio of the experimental thermal response ∆T exp to the simulated temperature jump ∆T sim at the Nb - He II interface. In this case we obtained η = 0.14.A complementary test was performed by mounting the thermometers in the real operating conditions of the scanning device, (e.g. without any bonding agent betweenthe thermometer tip and the Nb wall). The results for a batch of 13 thermometers is presented in Fig. 2 at two different heater powers of 1.86 W and 2.8 W. A first group of thermometers was mounted with a contact pressure of ~10 bars (spring load of 80 gr) giving <∆T>1.86 = 2.1 mK, a second group was monted with a pressure of ~ 62 bars (spring load of 500 gr) giving <∆T>1.86 = 6.4 mK. A third group of fixed thermometers (e.g. glued with grease, not displayed) gives <∆T>1.86 = 92 mK. At a higher power (2.8W) the measurements were <∆T>2.8 = 6.3 mK (at a pressure of 10 bars) and <∆T>2.8 = 16 mK (at a pressure of 62 bars). All these results clearly show an important decrease of the measurement efficiency when no bonding agent is used : η is now close to 0.01. Notice that in this case, the efficiency is heater power dependant.Pressure = 500gr Pressure = 80grd T (m K )0.005.0010.0015.0020.0025.0030.0035.0040.00T h 1T h 4T h 5T h 7T h 10T h 12T h 13T h 15T h 2T h 3T h 6T h 9T h 11Fig. 2 : Thermal response at T bath = 1.8 K (withoutcontact grease)Subcooled helium IThe subcooled helium bath obtained for temperature over the λ point (T>2.2K) and a pressure of 1 bar gives the possibility to study heat losses in the cavity wall in a far less constrained mode than in HeII. In this case the heat transfer mechanism is dominated by free convection cooling (laminar or turbulent) which induces the formation of a thick superheated helium boundary layer, the temperature is now quite easy to measure without taking many precautions in the mounting conditions of the thermometers. The calibration was made with the same thermometer batch and the same chamber. The results are displayed in Fig. 3. The same three groups of thermometers were tested giving respectively <∆T>80g = 572 mK,<∆T>500g = 651 mK and <∆T> fixed = 537 mK for a total power of 146 mW at 2.5 K. These values show clearly a rather insensitivity to the mounting conditions and a much reduced dispersion in each group as compared to superfluid helium results. The agreement with a previous published equivalent thermal resistance [4] in subcooled helium at 2.5K is quite good : the mean measured value is R th ~ 30K/W/cm 2 which is consistent with the calculated value of 65 K/W/cm 2 for the same heater [4] power. This agreementseems to be quite good considering all the hypothesis and simplifications adopted to calculate this thermal resistance in a free convection bath with turbulent flow using dimensional analysis. Anyway and as expected, the comparison with superfluid helium results in terms of thermal boundary resistance (e.g. R th ~ 2K/W/cm 2, Kapitza resistance at 1.8K) shows up the benefit of operating in subcooled normal helium. However, the price to be paid is a reduced spatial resolution and a reduced operating accelereting field due to the global cavity heating.d T (m K )0.00100.00200.00300.00400.00500.00600.00700.00800.00900.00T hT h 1T h 1T h T h T h T h T h 1T h 1T h 1T h 1T h T h T h T h T h 1with contact greasewithout grease (500 gr)without grease (80 gr)Fig. 3 : Subcooled normal helium test2.5 K < T bath < 3 KEXPERIMENTAL RESULTSThe first experimental results using a completely equipped rotating arm (116 thermometers) have been obtained with a prototype TESLA cavity (1.3 GHz, 9 cells)[5]. This cavity, after a heat treatment at 1400 °C in a vacuum furnace, was tested in a vertical cryostat at the DESY TTF facility. During the experiment, high power processing (HPP) was performed which leads to an important improvement of the cavity performances : E acc =20 MV/m at Q o = 2 x 109 (Q o at low field ≥ 1010). Several T-maps were recorded during the test in superfluid helium bath (before and after HPP) and in a subcooled helium bath (after HPP).a) Superfluid He II bathDuring the first run, the cavity reach a maximum accelerating field (E acc ) of 11.2 MV/m limited by a very heavy field emission. The Q o decreased from ≥ 1010 at low field to 8 x 108 at the maximum field. A first T-map was recorded at this value exhibiting very high ∆T in the 5th cell. The heated region was very extended : it concerns 12thermometers of the 5th cell (Fig. 4) and presents several maximums at different angles between 100 ° and 200 °(Fig. 5). Very high ∆T were measured (1K - 3.3 K) in this cell.ThermometerD T (K )5052545658606264Fig. 4 : ∆T (5th cell thermometers) at 130° azimuthalangleAzimuthal angle (°)D T (K )7090110130150170190210230Fig.5 : ∆T (thermometer #59) vs. azimuthal angle The first question raised by these results is if we may trust the measurements. In order to explain that a very high measurement efficiency of the thermometers must be considered. During the thermometer calibration the measurement efficiency has exhibited a strong dependance on the heat power level : the efficiency is multiplied by 2when the power is increased from 1 to 3 W. This is completely different from the behaviour of fixed thermometer using a thermal bonding agent (Apiezon grease) which exhibits a ∆T linearly proportional to the heater power. Evidence of high ∆T measured in monocell cavities with scanning thermometers has been observed many times. Values of ∆T in the range of 100 mK to 200mK have been measured in Nb/copper cavities at CERN [2]with largely lower RF power levels (~ 2 to 10 W).If we admit a very good efficiency at the high heat flux density encountered in this cavity, another questionable point remains : are such high heat flux density levels compatible with the critical heat flux in He II ?Some references on this subject confirms that metallic heated plates in He II exhibit very high ∆T (5 to 6 K) in the Kapitza regime before reaching the critical flux inducing the transition to film boiling [6].Extensive calculations of electrons trajectories at 11.2MV/m shows that emission sites located in the proximity of the iris of the 5th cell could explain such impacts in the equator region of this cell. The azimuthal spreading of the heated area is more difficult to understand. Model calculations simulating a unique emitter site provocating a rather thin electron impact along the azimuthal can explain a smaller angular spreading in the cold face of the cavity.To explain the ∆T shapes observed, a first hypothesis of separated sites located in the same cell at different angles along the iris must be admited. From the point of view ofthe total power involved in this experiment we have performed the integration of the heat power density over the heated region :Q =qds ≈S ths∫h k n∑∆T n where S t h is an estimation of the equivalent heated surface measured by one thermometer which has been arbitrarily taken equal to the product of the distance between two thermometers and length corresponding to a scanning angle of 10°. h K is the Kapitza conductance at the measured pointh k = H K .f(∆T) = h o T bath n . f (∆T/T bath )H k = 0.017 T 3.62 W/cm 2K [7].This integration gives Q ~ 100 W which seems to agree quite well with the RF power measurements. The power attributed to the electrons is easily deducted from the ∆Q o at E acc = 11.2 MV/m (∆Q o = 1010 - 8 x 108). A simple calculation gives P electron ~ 170 W. So, we obtain values which are of the same order of magnitude : the discrepency could be attributed to HK variations from Nb sample to another and to η which is not exactly 1. This good agreement could add some confidence to the recorded ∆T.This strong field emission was efficiently treated by HPP technique in the same experiment and a very good Eacc value was reached (20 V/m). A T-map taken at 17.7MV/m shows that the heating observed in the 5th cell has disappeared and that some lower heating is now measured in the cells #5 and #7 reaching some peaks of ∆T ~50mK at angles of 100° and 280°.b) Subcooled helium bathSeveral T-maps were performed in a subcooled HeI bath at bath temperature in the range 2.3 - 2.5K with E acc ~18 MV/m. All the maps shows a global heating (∆T) ~400 mK of all the cells and some scattered hot points in cells # 5 and # 7. It is interesting to compare this measured values with the results obtained during the calibration : the surface resistance (R BCS + R residual) at a wall temperature of 3 K is estimated to be R S = 150 n Ω. In the equator region of the cells the surface magnetic field corresponding to Eacc = 18 MV/m can be computed : Hs ≅ 6.104 A/m.Then the heat flux density in this area is calculated :q S =12R S H S 2≈27mW /cm 2. Considering the equivalentthermal resistance measured during the calibration tests in subcooled helium ( R th ~ 30 K/W/cm 2) we can estimate the resulting heating : ∆T ~ 800 mK. This is a good agreement with the measured values when we take into account all the simplifications adopted to perform this estimation the thermal resistance depends on the heated surface orientation with respect to the vertical (buoyancy force).REFERENCES[1]M. Fouaidy, T. Junquera, A. Caruette, Proc. 5th Work-shop on RF Superconductivity Hamburg (1991) p. 547,[2]Ph. Bernard, D. Bloess, E. Chiaveri, C. Hauviller,T. Schiller, M. Tauffer, W. Weingarten, P. Bosland,A. Caruette, M. Fouaidy; T. Junquera, Proc. 6thWorkshop on RF Superconductivity (Newport News, Oct. 1993) CEBAF report, p. 739,[3]S. Bühler, A. Caruette, M. Fouaidy, T. Junquera, Proc.6th Workshop on RF Superconductivity (Newport News, Oct. 1993) CEBAF report, p. 1002,[4]R. Romijn, W. Weingarten, IEEE Trans. on Magnetics,Mag 19 (1983), p. 1318,[5]Q.S. Shu, G. Deppe, W. Moller, M. Pekeler, D. Proch,D. Renken, P. Stein, C. Stolzenburg, T. Junquera,M. Fouaidy, A. Caruette, (this conference),[6] A.Kashani, SW. Van Sciver, Cryogenics 25 (1985)p.238[7]K. Mittag, Cryogenics 13 (1973), p. 94.。