七年级数学上册《1.5 有理数的乘方》(第5课时)教案 (新版)新人教版
- 格式:doc
- 大小:45.00 KB
- 文档页数:8
1.5 有理数的乘方第1课时有理数的乘方教学目标1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算.3.掌握含有乘方的有理数的混合运算顺序,能进行有理数的混合运算.教学重点有理数的乘方运算.教学难点灵活应用有理数的运算法则进行混合运算.教学设计(设计者:)教学过程设计一、创设情境明确目标拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就能把这根很粗的面条,拉成许多根很细的面条,你知道捏合几次后可以拉出128根细面条吗?二、自主学习指向目标自主学习教材第41至44页,完成下列问题:1.求n个__相同因数的积__的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,__a__叫底数,__n__叫指数,__a n__叫幂.读作__a的n 次方__或__a的n次幂__.3.在94中,底数是__9__,指数是__4__,读作__9的4次方__,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是__5的一次方__.指数1通常省略不写.4.负数的奇次幂是__负__数,负数的偶次幂是__正__数;正数的任何次幂都是__正__数,0的任何正整数次幂都是__0__.三、合作探究达成目标探究点一有理数乘方的意义活动一:例1 把下列乘法式子写成乘方的形式,然后指出其底数、指数并读出: (1)1×1×1×1×1×1×1=________; (2)3×3×3×3×3=________;(3)(-3)×(-3)×(-3)×(-3)×(-3)=________; (4)(-56)×(-56)×(-56)×(-56)×(-56)=________.【展示点评】一般地,n 个相同的因数a 相乘,即读作a 的n 次方. 【小组讨论】题(2)和(3)的结果有什么相同点和不同点?负数和分数的乘方书写时应注意什么问题?【反思小结】负数和分数的乘方在书写时,一定要注意要把底数(负数和分数)用括号括起来.【针对训练】见“学生用书”. 探究点二 乘方的运算活动二:例2 计算:(1)(-4)3; (2)(-2)4; (3)(-23)3.从例2中,可以发现负数的幂的正负规律是: 当指数是________数时,负数的幂是________数; 当指数是________数时,负数的幂是________数;【展示点评】(-4)3表示3个-4相乘,(-2)4表示4个-2相乘,(-23)3表示3个-23相乘,由此发现进行乘方运算,可以先确定符号,再把绝对值乘方.【小组讨论】负数的奇次幂和偶次幂在结果的正负上有什么区别?正数的奇次幂和偶次幂在结果的正负上有区别吗?0的正整数次幂的结果是什么?其依据是什么?【反思小结】正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何次幂都是0.其依据是有理数的乘法法则.【针对训练】见“学生用书”. 探究点三 有理数的混合运算 活动三:例3 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).【展示点评】(1)先算乘方,后算乘法,最后算加减.(2)先乘方,后乘除,最后算加减. 【小组讨论】:进行有理数的混合运算的一般步骤是怎样的?【反思小结】进行有理数的混合运算时,应按照:先乘方,再乘除,最后加减的运算顺序计算;同级运算,从左到右进行;如有括号,先做括号内的运算.除遵守以上原则外,还需注意灵活使用运算律,使运算快捷、准确.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.乘方的意义.2.有理数乘方的幂的符号规律.3.有理数的加减乘除乘方的混合运算的顺序.实际问题―→有理数的乘方―→有理数的混合运算⎩⎪⎨⎪⎧乘方乘除加减五、达标检测 反思目标1.下列各式,说出它的底数和指数,并说出下列各式的意义.(1)(-1)10; (2)83; (3)-54; (4)m n.解:(1)-1是底数,10是指数,表示10个-1相乘 (2)8是底数,3是指数,表示3个8相乘(3)5是底数,4是指数,表示54的相反数 (4)m 是底数,n 是指数,表示n 个m 相乘 2.下列算式的结果是正数的是( D )A .-[-(-3)]2B .-(-3)2C .-54D .-32×(-3)33.下列各式中,正确的是( C ) A .4×4×4=3×4B .53=35C .(-3)(-3)(-3)(-3)=34D .(-23)3=23×23×234.(-34)3=__-2764__;-32=__-9__;(-112)3=__-278__;-233=__-83__.5.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A .(12)3 mB .(12)5mC .(12)6 mD .(12)12m6.计算: (1)-18×16÷(-2)3;(2)-24+(3-7)2-2;(3)(-10)2+[(-4)2-(3+32)×2]; (4)112×⎣⎢⎡⎦⎥⎤3×(-23)2-1+124×(-2)3.解:(1)2 (2)-2 (3)92 (4)0六、布置作业 巩固目标 课后作业 见“学生用书”.第2课时科学记数法教学目标1.理解科学记数法的意义和特征,能够用科学记数法表示大于10或小于-10的数.2.能解决与科学记数法有关的实际问题.教学重点会用科学记数法表示大于10或小于-10的数.教学难点理解底数是10的指数的规律.教学设计(设计者:)教学过程设计一、创设情境明确目标在日常生活中,我们经常遇到许多与现实生活息息相关的数据,如全世界人口大约是6100000000,光速大约是300000000 m/s,中国的陆地领土面积大约是960万km2等等,我们如何能简单明了表示它们呢?二、自主学习指向目标自学教材第44至45页,完成下列问题:1.把下面各数写成幂的形式,并观察等号左边整数的位数与右边10的指数有什么关系?(1)100=__102__;(2)1000=__103__;(3)10000=__104__;(4)100000=__105__.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是__大于等于1且小于10的数__,n是__正整数__,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是__整数位数-1=指数__.三、合作探究达成目标探究点一用科学记数法表示数活动一:例1 用科学记数法表示下列各数:(1)1000000;(2)57000000;(3)-123000000000.【展示点评】科学记数法的关键是找出a和n,其中a与原数符号相同,它是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【小组讨论】用科学记数法表示一个数时,有什么要求?【反思小结】用科学记数法表示一个数时,要先看这个数的整数部分有几位,再写成a×10n 或-a×10n的形式,确定a 时要注意它是只有一位整数的数,确定n 时,它等于原数的整数位数减1,符号要注意.用科学记数法表示数的关键是确定a 与10的指数n ,其中1≤a <10,n 为正整数.【针对训练】见“学生用书”.探究点二 将用科学记数法表示的数还原活动二:例2 把下列用科学记数法表示的数还原成原数.3.24×107=________,5×106=________,5.3×105=________,-8.7×104=________.【展示点评】本题与用科学记数法表示一个数是一个互逆过程,如 3.24×107在――→a ×10n中,n =7原数有8位整数32400000.【小组讨论】说一说把一个用科学记数法表示的数还原成原数的方法.【反思小结】a ×10n 或-a×10n的原数的整数位数等于n +1,原数等于把a 的小数点向右移动n 位所得的数,若向右移动位数不够则用0补上,注意符号.【针对训练】见“学生用书”. 四、总结梳理 内化目标1.概念:科学记数法、底数、指数. 2.科学记数法的基本形式及要求.3.把一个用科学记数法表示的数还原成原数. 实际问题―→科学记数法―→实际运用 五、达标检测 反思目标1.据财政部发布的数据显示,2011年中国全年财政收入首次突破10万亿元大关,达到103740亿元,比2010年增长24.8%,创下历史新高.那么103740亿用科学记数法表示正确的是( D )A .1.0374×1010B .10.374×1012C .1.0374×1012D .1.0374×10132.下列用科学记数法写出的数,原来分别是什么数?(1)1×106=__1000000__;(2)1.5×103=__1500__;(3)2.012×103=__2012__;(4)-1.324×106=__-1324000__. 3.一个废旧电池能够污染60 L 水,某市每年报废的电池有近100000000个,如果废旧电池不回收,一年报废的电池所污染的水大约有__6×109__L .(用科学记数法表示)4.用科学记数法表示下列各数: (1)70000; (2)-868000; 27(3)201200; (4)300万;(5)57000000; (6)-123000000000.解:(1)7×104 (2)-8.68×105 (3)2.012×105 (4)3×106 (5)5.7×107(6)-1.23×10115.某小区要建一种房屋,每幢房屋大约需要12万块砖,而每块砖的体积约为1728 cm 3, (1)建一幢房屋的砖的总体积大约是多少立方米?(2)如果一个小区要建造40幢这样的房屋,则建设用砖的总体积约为多少立方米?(用科学计数法表示)解:(1)207.36 m3(2)8.2944×103 m3六、布置作业巩固目标课后作业见“学生用书”.第3课时近似数教学目标1.了解近似数的意义,给出一个近似数,能准确说出它的精确度.2.能按要求用四舍五入法确定一个数的近似值,并体验近似数在实际生活中的运用.教学重点理解近似数的意义,能按精确度要求对一个数取近似数.教学难点能按精确度要求对一个数取近似数.教学设计(设计者:)教学过程设计一、创设情境明确目标我国的陆地领土面积约为960万 km2,长江长为6300 km2,宇宙现在的年龄约为200亿年,圆周率3.14159,世界上有61亿人,地球储水总量为1.42×1018m3.以上这些数有特点是什么?它们是准确数还是近似数?二、自主学习指向目标自学教材第45至46页,完成下列问题:1.用四舍五入法求下面各数的近似数.(1)0.058(精确到百分位)__0.06__;(2)5.699(精确到0.01)__5.70__.2.近似数与准确数的接近程度用__精确度__表示.3.误差越小,精确度越__高__,误差越大,精确度越__低__.三、合作探究达成目标探究点一按要求取近似数活动一:例1 按括号中的要求,用四舍五入法对下列各数取近似数:(2)304.35(精确到个位); (3)1.804(精确到0.1); (4)1.804(精确到0.01).【展示点评】以(1)为例,0.158――→精确到小数点后第3位从第4位的8进行“入”0.016.有时两个近似数的大小一样,但表示的意义却完全不一样,当按四舍五入法取近似值时,近似数末位数字0不能省略. 【小组讨论】按要求取近似值的一般方法是怎样的?【反思小结】精确到哪一位,在四舍五入时看它的后一位;对较大的数取近似值,通过先将它用科学记数法表示,再按要求取近似值.【针对训练】见“学生用书”. 探究点二 确定近似数的精确度 活动二:例2 下列四舍五入得到的近似数,各精确到哪一位?(1)0.0210;(2)523;(3)5.4万;(4)2.82×105.【展示点评】(1)小数点后有4位,精确到万分位;(2)个位;(5)5.4万即54000,4在千位上,故精确到千位.(2)2.82×105=282000,数字2在千位上,故精确到千位.【小组讨论】如何确定一个近似数的精确度?数字后面有单位的和用科学记数法表示的数如何确定其精确度?【反思小结】确定近似数的精确度必须看清近似数的最后一位所在的数位,当四舍五入得到的近似数带有单位时,该数的最后一位整数即是该单位所表示的数位;用科学记数法表示的近似数判断其精确度时要将该数写出原数后确定.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.求一个数的近似数.2.确定一个近似数的精确度. 3.近似数在实际生活的运用. 实际问题―→近似数―→实际运用 五、达标检测 反思目标1.下面由四舍五入得到的近似数,各精确到哪一位? (1)1.32精确到__百分__位; (2)2000精确到__个__位; (3)1.53万精确到__百__位;(4)3.2×105精确到__万__位. 2.下列说法正确的是( A )A .近似数3.20和近似数3.2相等B .近似数3.20和近似数3.2都精确到十分位C .近似数2千万和近似数2000万的精确度一样D .近似数32.0和近似数3.2的精确度一样3.近似数2.60所表示的精确值x 的取值范围是( A ) A .2.595≤x <2.605 B .2.50≤x <2.70 C .2.595<x≤2.605 D .2.600<x≤2.6054.用四舍五入法,对下列各数按括号中的要求取近似数. (1)4.0056(精确到百分位); (2)9.23456(精确到0.0001);(4)0.02076(精确到千分位).解:(1)4.01(2)9.2346(3)5.68×106(4)0.0215.某学生在进行体检时,量得身高约为1.60 m,他在登记时写成1.6 m,从近似数的意义上去理解,测量结果与登记数是否一致?为什么?解:不一致.因为近似数1.60 m所表示的精确值x m的范围是1.595≤x<1.605,而近似数1.6 m所表示的精确值y m的范围是1.55≤y<1.65.六、布置作业巩固目标课后作业见“学生用书”.。
最新Word 欢送下载
科学记数法和近似数教学目标解析
1.教学目标
〔1〕了解科学记数法的意义,会用科学记数法表示绝对值大于10的数.
〔2〕理解近似数及其精确度的意义,能够准确地说出精确数位,以及用四舍五入取近似数.
2.教学目标解析
〔1〕科学记数法是一种简洁明了的记数方法,,特别对表示绝对值大于10的大数或小于1的很小的数,不仅书写简短,而且便于识读.七年级上册学习的科学记数法主要表示绝对值大于10的大数.对于绝对值小于1的很小的数,将在整式的乘除法运算中学习.
〔2〕近似数是指与准确数相接近的数.近似数通常因测量、估算,或用四舍五入等方法得到.近似数与准确数的接近程度,通常用精确度来刻画.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.如:,结果取1,就叫精确到个位(或精确到1);取1.3,就叫精确到十分位(或精确到0.1);取1.33,就叫精确到百分位(或精确到0.01),等等.根据?课标?要求,初中学段学习近似数,不涉及有效数字,只说精确到哪一个数位.。
乘方主备人:审核人:教学目标:1、理解有理数乘方的意义.2、掌握有理数乘方运算3、经历探索有理数乘方的运算,获得解决问题经验.教学重点:有理数乘方的意义教学难点:幂、底数、指数的概念极其表示教学过程:知识回顾]1、几个不等于零的有理数相乘,积的符号是怎样确定的?.2、正方形的边长为2,则面积是多少?列式为 .棱长为2的正方体,则体积为多少?列式为 .3、边长为a的正方形的面积是多少?列式为棱长为a的正方体的体积是多少?列式为 ..4、某种细胞每过30分钟便由1个分裂成2个,经过5个小时,这种细胞由1个分裂成多少个?5、a·a简记作,读作或( ) .a·a·a简记作,读作或( ) .⨯⨯⨯⨯2⨯⨯可以简记作哪种形式呢?⨯⨯⨯222222222[探究研讨]【活动一】乘方的概念自学教材P41- 42,完成以下题目:①什么叫乘方?乘方的结果叫什么?②在a n 中,a叫(),表示什么?,n叫(),表示什么?a n 就是几个几相乘?③94中底数是,指数;51中底数是,指数(指数1通常);43与34有何不同?④怎样用乘方来表示当底数是分数或负数时,怎么写?⑤在(-2)4中指数是(),底数是( ) ;在-24中,指数是( ),底数是( );⑥(-2)4与-24相等吗?怎么读?(-2)3与-23呢?-a n与(-a)n的意义有什么不同?【活动二】有理数乘方的符号法则①计算:;;;;;;;;②你发现了什么规律?(有理数乘方的符号法则)负数的奇次数幂是,负数的偶次幂是。
正数的任何次幂都,0的任何正整数次幂都是。
【活动三】用计算器进行有理数的乘方计算阅读课本P42页例2(带计算器的同学跟着操作、练习)【巩固练习】一选择题1、118表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、一个数的立方是它本身,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-15、如果一个有理数的正偶次幂是非负数,那么这个数是( )A 、正数B 、负数C 、 非负数D 、任何有理数二 填空1、根据幂的意义,(-3)4表示 ,-43表示 ;2、平方等于641的数是 ,立方等于641的数是 ; 三、计算题1、()101-2、()71-3、384、()35- 5、31.0 6、421⎪⎭⎫ ⎝⎛- 7、()410- 8、()510- 四、用计算器计算1、()611-2、7163、31.84、()36.5- 【提升能力】(依据学生实际情况,可选择性安排)1、若a 2=16,则a= ;若a 3= -8,则a= .2、下列运算正确的是( )A .-24=16B .-(-2)2=-4C .(-1)2=-D .(-)3=-3、填空:如果a <0,那么a 6 0;如果-a >0,那么a 5 0.4、给出依次排列的一列数:-2, 4,-8, l6,-32,…,写出后面的2项是____、____,第n 个数是___________.5、若a,b 互为相反数,c,d 互为倒数,且,则 .6、的最小值是 ,此时= 。
七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方(第二课时)教案(新版)新人教版七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方(第二课时)教案(新版)新人教版一、教学目标(一)学习目标1.掌握有理数混合运算的顺序.2.发现、探索根据乘方运算排列的规律.3.能正确地进行有理数的加、减、乘、除、乘方的混合运算.(二)学习重点掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.(三)学习难点能正确、熟练地进行有理数的加、减、乘、除、乘方的混合运算.二、教学设计(一)课前设计1.预习任务阅读教科书P43在有理数的加、减、乘、除、乘方的混合运算中的运算顺序应该是:(1)先乘方,再乘除,最后加减;(2)同级运算,从左向右依次进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.2.预习自测计算下列各题(1)计算(﹣1+2)×21()2-÷(﹣2)的结果是() A.8 B.﹣8 C. 18 D. 18- 【答案】D 【解析】解:原式=1×14×(12-)=18-,【点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. (2)计算:﹣3×2+(﹣2)2﹣3的结果是 .【答案】﹣5.【解析】解:﹣3×2+(﹣2)2﹣3=﹣6+4﹣3=﹣5【点拨】根据有理数的混合运算的运算方法,求出算式的值是多少即可.(3)计算:﹣12016+16÷(﹣2)3×|﹣3|= . 【答案】﹣7【解析】解:原式=﹣1﹣6=﹣7,【点拨】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.(4)计算:﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]. 【答案】16【解析】解:原式=﹣1﹣0.5×13×(2﹣9) =﹣1﹣(﹣76) =16. 【点拨】此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.(二)课堂设计1.知识回顾(1)有理数四则混合运算的运算顺序是先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(2)()22-表示的意义是:2个-2相乘,结果是4 ;22-表示的意义是:2个2相乘的相反数,结果是_-4___.(3)()20181-= 1 ,20181-=-1,2.问题探究探究一:掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.★●活动① 探究有理数的加、减、乘、除、乘方的混合运算运算顺序.观察算式:3+50÷22×(-15)-1师问1:这个算式里有哪几种运算?生答:这个算式里,含有有理数的加、减、乘、除、乘方五种运算.师问2:这五种运算应该按怎样的顺序进行运算?为什么?生答:先乘方,再乘除,最后加减;因为乘方是更高级的运算.师讲:我们将加、减、乘、除、乘方分为三级运算,加减是第一级,乘除是第二级,乘方是最高级的运算,为第三级,如果是混合运算,我们应该从高级运算算到低级运算,同级运算从左至右依次进行.师问3:那你们认为有括号后,又应该先算什么?再算什么?生答:先算小括号里面的,再算大括号里面的.总结:1.先乘方,再乘除,最后加减;2.同级运算,从左往右进行;3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【设计意图】从一个含有五中运算的例题出发,探讨运算顺序,从而引入乘方是最高级的运算,让学生掌握五种运算的运算顺序.探究二发现、探索根据乘方运算排列的规律.●活动① 探索乘方运算的规律▲例1:观察下面三行数:-2, 4,-8, 16,-32, 64,…①0, 6,-6, 18,-30, 66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行数按什么规律排列?(2)第②、③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.师问1:从符号和绝对值的角度观察第①行数,你发现了什么?生答:第奇数个数是负数,偶数个数是正数,从绝对值的角度看从第2个数开始,每一个数的绝对值都是前一个数的绝对值的2倍.师问2:可不可以把第①行的每一个数都写成幂的形式?生答:可以,分别是()12-,()22-,()32-,()42-,()52-,…师问3:根据这样的规律,第n 个数应该是多少?生答:()n2-. 师讲:所以第①行数是按照()12-,()22-,()32-,()42-,()5 2-,…,排列,也就是第n 个数是()n2-. 师问4:第②、③行数与第①行数分别有什么关系?生答:第②行的每一个数在第①行每一个数上相应的加2,第③行的每一个数是第①行每一个数的21. 师问5:如果要求每一行的第8个数,你会先做什么?为什么?生答:先求第①行的第8个数,因为第②、③行数都与第①行相关,求出了第①行的第8个数,就可以求出其他两个数了.师问6:取每行数的第10个数,如果要计算这三个数的和,你会怎么做?生答:先求出每行数的第10个数,再相加.师生活动:老师示范.总结:当规律比较复杂的时候,我们要用“分而治之”的思想,先从局部找规律.【知识点】乘方运算的规律【解析】解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6 ,…(2)对比①②两行中位置对应的数,你有什么发现?222220,46,86,1618,..++++-??→??→-??→-??→ 第②行数是第①行相应的数加2.即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…对比①③两行中位置对应的数,你有什么发现?第③行数是第①行相应的数的一半,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…(3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5.所以每行数中的第10个数的和是:(-2)10+[(-2)10+2]+[(-2)10×0.5]=1024+(1024+2)+1024×0.5=1024+1026+512=2562【点拨】(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,?从绝对值看,它们都是2的乘方;(2)从和差倍分的角度考虑;(3)找到第一行的第10个数,再利用前面的规律找到第②、③行中的第10个数即可.【答案】(1)第①行数按后一个数是前一个数的2倍规律排列;(2)第②数比第①行对应数大2,第③行数是第①行对应数的一半;(3)2562.【设计意图】通过教科书上的例题,引导学生从符号和绝对值的角度探寻规律,结合乘方运算,培养学生探索、归纳、总结的规律.探究三运用有理数混合运算法则进行计算★▲●活动① 有理数的混合运算例3:计算:(1)()()1534323+-?--?;(2)()()()()()322234232??-+-?-+--÷-??. 师生活动:老师示范第1小题,讲解计算题的步骤,①观察运算符号;②确定运算顺序;③不同级别的运算,划横线标注.第2小题先由学生观察,抽问1名学生谈谈运算顺序,再由1名学生板演,其他学生练习,最后学生点评.【教学建议】因为符号问题是易错点也是难点,所以在例题示范的时候,要慢下来,要让学生过手.【知识点】有理数加减乘除乘方的简单应用【解析】解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27(2)原式=-8+(-3)×(16+2)-9÷(-2)=-8+(-3)×18-(-4.5)=-8-54+4.5=-57.5【点拨】分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题.【答案】-57.5练习:计算(1)()()4221310÷-+?-;(2)()432135??? ??-?--;(3)451132131511÷???? ??-?;(4)()()()[] 233410224?+--+-. 【答案】(1)0;(2)163125-;(3)252-(4)9992 【解析】解:(1)()()1031224-?+-÷ ()220=+-=;(2)()432135??-?-- =312516--=163125-;(3)451132131511÷???? ??-? =1113556114-?÷ ; = 252-(4)()()()[]233410224?+--+- =()100001624+-=9992【点拨】分清运算顺序,注意符号问题.【设计意图】通过例题示范,让学生掌握混合运算的运算顺序,通过题目中易错符号问题,培养学生细心的习惯.通过4个小题的练习,强化学生对有理数的加减乘除乘方运算顺序、符号问题的理解.3.课堂总结知识梳理(1)有理数加减乘除乘方混合运算的运算顺序.(2)有理数加减乘除乘方混合运算的解题步骤.(3)在一列数中,当后面一个是前面一个的倍数时,可以考虑从乘方的角度去归纳总结规律.重难点归纳(1)如何确定有理数加减乘除乘方混合运算的运算顺序(2)特别注意符号问题:①幂的符号;②加减乘除中的符号.。
课题:1.5.1乘方(1)教学目标:理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算.重点:理解有理数乘方的意义和表示,会进行乘方运算.难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学流程:一、情境引入棋盘上的学问古时候,有个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋.为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒,…,一直到第64格.”“你真傻!就要这么一点米?”国王哈哈大笑.这位大臣说:“就怕您的国库里没有这么多米!”问题:第5个格该如何列式呢?有没有一种简写形式呢?答案:2×2×2×2×2二、探究1问题:列式计算:边长为2cm的正方形的面积是:____________棱长为2cm的正方体的体积是:____________答案:2×2=4(cm²);2×2×2=8(cm³)追问1:2×2与2×2×2都是相同因数的乘法,有没有简写形式呢?强调:2×2记作:2²,读作:2的平方或2的二次方2×2×2记作:2³,读作:2的立方或2的三次方 追问2:下面的式子应如何呢?(-2)×(-2)×(-2)×(-2)记作:(-2)4,读作:-2的四次方22222()()()()()55555-⨯-⨯-⨯-⨯-记作:52()5-,读作:25-的五次方 归纳:一般地,n 个相同的因数a 相乘,即n a a a ⋅⋅⋅个记作a n,读作“a 的n 次方”. 练习1:填空:222222(1)()()()()()()333333-⨯-⨯-⨯-⨯-⨯-记作:_________,读作:__________答案:62()3-,23-的六次方 (2)2222-⨯⨯⨯记作:___________,读作:________________答案:-24,2的四次方的相反数 想一想:(-2)4与-24一样吗?为什么? 三、探究2指出:求n 个相同因数的积的运算叫做乘方,乘方的结果叫幂.注意: 当a n看作a 的n 次方的结果时,也可读作:a 的n 次幂 练习2: 填空:(1)在94中,底数是______, 指数是______, 读作: __________或__________. 答案:9,4,9的四次方,9的四次幂(2)在5中,底数是______, 指数是______, 提示:一个数可以看作这个数本身的一次方. 如:5=51答案:5,1强调:指数1通常省略不写 四、探究3例1 计算:(1) (-4)3; (2) (-2)4; (3)32()3-.追问1:如何进行乘方运算呢? 答案:乘方运算转化为乘法运算. 追问2:(-4)3表示什么含义? 答案:表示3个-4相乘.解:(1) (-4)3=(-4)×(-4)×(-4)=-64; (2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;322228()()()()()333327-=-⨯-⨯-=-3练习3: 计算:1073334451(1)(1);(2)(1);(3)8;(4)(5);(5)0.1;(6)();(7)(10);(8)(10).2------解:107333445(1)(1)1;(2)(1)1;(3)8512;(4)(5)125;11(5)0.10.001;(6)();216(7)(10)10000(8)(10)100000.-=-=-=-=-=-=-=-=- 五、探究4观察:(-4)3=-64;(-2)4=16;328()327-=-你发现负数的幂的正负有什么规律吗? 当指数是______数时,负数的幂是______数; 当指数是______数时,负数的幂是______数. 答案:奇,负,偶,正归纳:根据有理数乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数; 正数的任何次幂都是正数, 0的任何正整数次幂都是0. 练习4:1.任何一个有理数的偶数次幂( )A.一定是正数B.一定是负数C.一定不是负数D.一定大于它的绝对值答案:C强调:一个数偶次幂总是非负数(正数或0).如:a2≥02.若|x+2|+(y-3)2=0,则x y的值为( )A.8B.-8C.9D.-9分析:∵ |x+2|≥0,(y-3)2≥0又∵ |x+2|+(y-3)2=0∴x+2=0,y-3=0∴x=-2,y=3∴x y=(-2)3=-8答案:B六、应用提高1.你知道国际象棋棋盘上能放多少粒米吗?提示:1000粒大米的重在18至23克, 1kg大米约50000粒左右.216=65536(超过1kg了!)226=67108864(超过1t了!追问:你认为国王的国库里有这么多米吗?2.用计算器计算(-8)5和(-3)6 .七、体验收获今天我们学习了哪些知识?1.什么是乘方、幂、底数、指数?2.如何进行有理数的乘方运算? 八、达标测评1.关于式子(-5)4,下列说法错误的是( )A.表示(-5)×(-5)×(-5)×(-5)B.-5是底数,4是指数C.-5是底数,4是幂D.4是指数,(-5)4是幂 答案:C2.下列式子正确的是( )A.(-6)×(-6)×(-6)×(-6)=-64B.(-2)3=(-2)×(-2)×(-2) C.-54=(-5)×(-5)×(-5)×(-5) D.25×25×25=235 答案:B3.计算(-3)2的结果是( )A.-6B.6C.-9D.9答案:D4.-23等于( )A.6B.-6C.-8D.8答案:C 5.下列计算:①(-1)2=1;②-12=1;③-(-1)2=1;④02=0;⑤(-23)2=43.其中正确的有( )A.1个B.2个C.3个D.4个答案:B6.当n 是正整数时,(-1)2n +1-(-1)2n的值是( )A.2B.-2C.0D.2或-2 答案:B7.a 是任意有理数,下列说法正确的是( )A.(a +1)2的值总是正数B.a 2+1的值总是正数C.-(a +1)2的值总是负数 D.a 2+1的值中最大的是1答案:B8.计算:(1)(-7)2; (2)(-12)3; (3)(-113)4; (4)-22+(-3)2.解:2(1)(7)7749-=⨯=311111(2)()22228-=-⨯⨯=-414444256(3)(1)3333381-=⨯⨯⨯=22(4)2(3)495-+-=-+=9.规定“☆”是一种运算符号,且a ☆b =a b -b a ,例如:2☆3=23-32=8-9=-1,试计算4☆(3☆2)的值.解:4☆(3☆2)=4☆(32-23)=4☆1=41-14=3 所以4☆(3☆2)的值是3. 九、布置作业教材47页习题1.4第1题.。
【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。
教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。
教学用具:电脑多媒体。
课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。
整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。
缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。
第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。
2、培养学生观察,归纳,猜测,推理的才能。
重点:能正确的进展有理数的混合运算。
难点:灵敏的运用运算律,使计算简单。
教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。
教
学
过
程
设
计
自
我
检
测
要用把底数括起来,以体现底数的整体性。
(3)乘方的符号法则:
负数的奇次幂是数,负数的偶次幂是数。
正数的任何次幂都是数,0的任何正整数次幂都是。
(4)参照乘法运算的方法进行乘方运算。
(5)用计算器作乘方运算。
二、例题讲解
例1:计算:
(1)(-4)3(2)(-2)4 (3)
3
2
3
⎛⎫
- ⎪
⎝⎭
(4)33(5)24(6)(-
1
3
)
教师指导,学生完成
例2:用计算器计算(-8)5和(-3)6.
学生阅读教材,然后实际操作
三、达标检测
1、教材第42页练习题
2、计算
(1)(-1)258;(2)(-1)101;(3)-12004;(4)(-0.2)2;
(5)(-0.1)3;(6)-(-14)2;(7)-(-
1
5
)3;
(8)(-2
1
3
)2.
理解
学生独
立完成
例题,同
桌对照
检查
学生可
分组练
习,教师
指明学
生板书
整体预设导案设计学案
设计
二次
备课
小结五、课时小结:有理数乘方的意义幂的符号的确定
作业1、教科书习题1.5第1,2题;。
有理数的乘方课型:新授课【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培养探索精神,体验小组交流、合作学习的重要性.【教学方法】讲授法、讨论法。
【教学重点】正确理解乘方的意义,掌握乘方运算法则.【教学难点】正确理解乘方、底数、指数的概念,并合理运算.【课前准备】教师准备教学用课件,学生预习。
【教学过程】【新课讲授】边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.a·a简记作a2,读作a的平方(或二次方).a·a·a简记作a3,读作a的立方(或三次方).一般地,几个相同的因数a相乘,记作a n.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n次幂.例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?()2与呢?(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.(-2)3与-23的意义不相同,其结果一样.(-2)4的底数是-2,指数是4,读作-2的四次幂,表示(-2)×(-2)×(-2)×(-2),•结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.()2的底数是,指数是2,读作的二次幂,表示×,结果是;表示32与5的商,即,结果是.因此,当底数是负数或分数时,一定要用括号把底数括起来.一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:(1)(-4)3;(2)(-2)4;(3)(-)5;(4)33;(5)24;(6)(-)2.解:(1)(-4)3=(-4)×(-4)×(-4)=-64(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16(3)(-)5=(-)×(-)×(-)×(-)×(-)=-(4)33=3×3×3=27。
有理数的乘方教学目标:1知识与技能:正确理解乘方、幂、指数、底数等概念。
2过程与方法:通过对乘方意义的理解,培养学生观察,比较、分析。
归纳、概括的能力。
3情感态度与价值观:培养探究精神,体验小组交流、合作的重要性。
重点:正确理解乘方的意义,掌握乘方的运算法则。
难点:正确理解乘方、指数、底数的概念,并会运算。
情境引入做一做:请同学们把一X长方形的纸多次对折,所产生的纸的层数和对折的次数有关系吗?对折次数1次2次3次4次5次…纸的层数…层数可表示为…如果对折n次,那么纸的层数是_____.一般地,n个相同的因数a相乘,即a · a · … · a(n那个a),记作a n,读作a的n 次方.求n个相同因数的积的运算叫做乘方,乘方的结果叫幂.a n= a ·a ·… ·an个幂运算加法减法乘法除法乘方结果和差积商例1 说出下列乘方的底数、指数且计算: (1)(-4)3; (2)(-2)4; (3) 07;(4) 解:(1) (-4)3 =(-4)×(-4)×(-4)=-64; (2) (-2)4 =(-2)×(-2)×(-2)×(-2)=16; (3) 07 =0×0×0×0 × 0×0×0=0; (4)计算:102 , 103 , 104.解:(1)102=10×10= 100;103 =(2) 104 = 10 ×10×10 × =10 000.(3) 观察结果,你能发现什么规律? 想一想:323⎛⎫- ⎪⎝⎭322228333327⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭10 ×10×10 = 1 000;答:10的几次方,幂的结果中1后面就有几个0.(1)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来.这也是辨认底数的方法;(2)分数的乘方,在书写时一定要把整个分数用小括号括起来.223(3)-≠-,32)32(22≠由上题中 你有什么发现? 和你能迅速判断下列各幂的正负吗?5164256)3(-101)1(-50)41(-5(8)-你能用计算器计算 和 吗? 5(8)-6(3)-加法、减法、乘法、除法、乘方一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.问:算式含有哪几种运算?观察235021+÷⨯--一题多解: ()2253.39⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦解法一:原式 1199⎛⎫=⨯- ⎪⎝⎭11=-解法二:原式 259939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()65=-+-11=-322(2)(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦8(3)(162)9(2)8(3)18( 4.5)854 4.557.5=-+-⨯+-÷-=-+-⨯--=--+=-3(1)2(3)4(3)15⨯--⨯-+2(27)(12)1554121527=⨯---+=-++=-计算:观察下列三行数,你能提出哪些问题?-2,4,-8,16,-32,64,… ①0,6,-6,18,-30,66,… ②-1,2,-4,8,-16,32,… ③234562,(2),(2),(2),(2),(2)...------第②行2345622,(2)2,(2)2,(2)2,(2)2,(2) 2...-+-+-+-+-+-+第③行2345620.5,(2)0.5,(2)0.5,(2)0.5,(2)0.5,(2)0.5..-⨯-⨯-⨯-⨯-⨯-⨯解: (1) (2) (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3) []101010(2)(2)2(2)0.510241024210240.5102410265122562⎡⎤-+-++-⨯⎣⎦=+++⨯=++=(3)取每行数的第10个数,计算这三个数的和.辨析: ()22146.33⎛⎫⎛⎫--÷-⨯- ⎪ ⎪⎝⎭⎝⎭解:原式 4429=-÷429=-149=-正确解法:解:原式 421933⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭4299=-29=不计算下列各式的值,你能确定其符号吗?你能得到什么规律吗?说出你的根据.(1)(-2)51;(2)(-2)50;(3)250;(4)251;(5)02 012;(6)12 013.归纳:(1)正数的任何次幂是正数;(2)负数的偶次幂是正数;负数的奇次幂是负数;(3)0的任何次幂等于零;(4)1的任何次幂等于1.作业:教科书习题复习巩固第1,3题;1.5 有理数的乘方(第2课时)科学记数法惠东县铁涌中学(4) ;( ) 422222-=-⨯-⨯-⨯-()()()()判断:(对的画“√”,错的画“×”.)(1) 32 = 3×2 = 6;( )(2) (-2)3 = (-3)2; ( )(3) -32 = (-3)2;( )(5) ( )222233=()主备人:彭勇创复备人:饶景文、邓小琼,邹灿、魏淑园、梁春少审核人:饶景文教学目标:1知识与技能:借助身边熟悉的事物体会大数和小数,并会用科学计数表示大数和小数2过程与方法:通过回顾10的n次幂的意义和规律,以帮助理解科学计数法。
第一章有理数1.5 有理数的乘方1.5.1 乘方课时1 乘方运算【知识与技能】(1)理解乘方的意义,能识别指数与底数,了解乘方与幂的关系;(2)会进行有理数的乘方运算.【过程与方法】通过把乘法运算转化为乘方运算,培养学生观察、分析、比较、归纳、概括的能力,向学生渗透转化思想.【情感态度与价值观】让学生经历数学活动,体验主动探究问题的乐趣,从而培养学生勤奋、认真和勇于探究的精神,感受乘方符号的简洁美.正确理解乘方的意义,掌握乘方的运算法则,能进行有理数的乘方运算.有理数的乘方运算的符号法则,乘方和幂的区别多媒体课件情境1:看下面的故事:从前,有个“聪明的乞丐”,他要到了一块面包.他想:天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不用去要饭了!请同学们讨论交流,再算一算,如果把整块面包看成整体“1”,那么第十天他将吃到面包的.情境2:拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多根很细的面条.想想看,捏合次后,就可以拉出32根面条.教师总结:要解决上面两个问题就是我们今天要学的内容.(引入新课,板书课题)一、思考探究,获取新知问题1:请大家拿出一张白纸,对折一次,折成两层,如果继续对折,使新折痕与上次的折痕保持平行,想一想,连续对折6次后可以折成多少层,如果对折10次呢?如果对折n次呢?学生将手中的白纸进行如下对折,并填写下表:二、典例精析,掌握新知1.乘方的概念:求n个相同因数的积的运算叫作乘方,乘方运算的结果叫作幂.2.幂的符号法则:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.教材P42练习第1,2,3题。
1.5 有理数的乘方★目标预设一、知识与能力1、理解近似数和有效数定的概念。
2、给一个近似数后,能说出它精确到哪一位?有几个有效数字?3、给一个数,能按照精确到哪一位或保留几位有效数定的要求,四舍五入取近似数。
二、过程与方法1、正确掌握精确度和有效数字意义的规定2、对于一个整数位数较多的数取近似数一般宜用科学记数法。
3、如果一个近似数小数点后末位是0,这个“0”不能舍去,这主要是与准确数的取值范围有关。
三、情感、态度、价值观培养学生应用数学的意识和能力,培养学生与人合作,并能与人交流思维的意识★教学重难点一、重点:按照所需的精确度和有效数字,取一个准确数的近似数。
二、难点:反过来确定一个近似数的精确度,有效数字及准确数的取值范围。
★教学准备一、教师准备:小黑板二、预习建议:近似数与有效数字的含义,初步会求近似数和有效数字。
★预习导学1、用四舍五入按要求分别取m=2356.37491的近似值。
(1)精确到十分位,则m≈(2)精确到千位,则m≈2、(1)近似数3.47精确到,有个有效数字,它们是。
(2)近似数0.050精确到,有个有效数字,它们是。
3、用四舍五入法,按下列要求对各数取近似值(1)4.454(精确到0.01) (2)4204(精确到百位)(3)0.03564(保留2位有效数字)★教学过程一、创设情景、谈话导入先看一个例子,对于参加同一个会议的人数,有两个报道,一个报道说:“会议秘书处宣布,参加今天会议的有513人,这里数字513确切地反映了实际人数,它是一个准确数。
”另一个报道说:“约有500人参加了今天的会议。
”500这个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
在许多情况下,往往只能用近似数,一方面搞得完全准确有时是办不到的,另一方面,往往也没有必要搞得完全准确。
如宇宙现在的年龄约为200亿年,长江长约6300千米,圆周率π约为3.14,这些数都是近似数。
二、精讲点拨、质疑问难近似数与准确数的接近程度,可以用精确度表示。
例如,前面的500是精确到百位的近似数,它与准确数513的误差为13。
按四舍五入对圆周率π取近似数时,有π≈3(精确到个位)π≈3.1(精确到0.1,或叫做精确到十分位)π≈3.14(精确到0.01,或叫做精确到百分位)……一般地一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
从一个数的左边第一个非0数字起,到末位数定止,所有数字都是这个数的有效数字。
例如 0.025有两个有效数字:2,5;1500有4个有效数字:1,5,0,0;0.103有3个有效数字:1,0,3;对于用科学记数法表示的数a×10n中,规定它的有效数字就是a中的有效数字。
例如:5.104×106中就有4个有效数字:5,1,0,4。
规定有效数字的个数也是对近似数精确程度的一种要求,一般说,对于同一个数取近似值时,有效数字个数越多,精确程度就越高。
三、课堂活动、强化训练例1 按括号内的要求,用四舍五入法对下列各数取近似数(1)0.0158(保留2个有效数字)(2)30435(保留3个有效数字)(3)1.804(保留2个有效数字)(4)1.804(保留3个有效数字)(教师讲解,注意格式)例2 下列由四舍五入得到的近似数,各精确到哪一位,各有哪几个有效数字。
1、(1)43.8 (2)0.03086 (3) 5.040×10(独立思考,个别回答,学生点评)2、(1)2.4万 (2)24000 (3) 2.4×10例3 2000年我国第五次人口普查资料表明,我国的人口总数为12.9553亿,用科学记数法表示我国的人口总数(保留2个有效数字)(小组讨论,畅所欲言,得出结论)例4 若四舍五入a=3.5,则a的取值范围是什么?四、延伸拓展、巩固内化例5 已知2.95=2.567×10,分别求棱长为2.95米的正方体,直径为2.95米的球,底面直径为2.95米,高是2.95米的圆柱体的体积(球的体积公式为V=πR,且都精确到百分位),并比较它们的大小(取π=3)(独立思考,巩固新知,学生点评,得出结论)例6 已知把a精确到百分位的近似值是5.28,把b精确到千分位的近似值为6.246,求a+b 与a-b的范围。
(小组讨论,代表发言,学生点评)五、当堂反馈、布置作业书P58 练习书P59 6中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。
②今文字系统隶书——草书——行书——楷书到了秦末、汉初这一时期,各地交流日见繁多而小篆书写较慢,不能满足需要,隶书便在这种情况下产生了,隶书另一层意思是平民使用,同时还出现了一种草写的章草(独草),这时笔墨纸都已出现,对书法的独立创作起到了积极的推动作用。
狂草在魏晋出现,唐朝的张旭、怀素将它推向顶峰;行书出现于晋,是一种介于楷、行之间的字体;楷书也是魏晋出现,唐朝达到顶峰,著名的书法家有欧阳询、颜真卿、柳公权。
(请学生谈一下对今文字是怎样理解的?),教师进行归纳:它们的共同特点是已经摆脱了象形走向抽象化。
B主要书体的形式特征①古文字:甲骨文,由于它处于文明的萌芽时期,故字形错落有致辞,纯古可爱,目前发现的总共有3000多字,可认识的约1800字。
金文,处在文明的发展初期,线条朴实质感饱满而丰腴,因它多附在金属器皿上,所以保存完整。
石鼓文是战国时期秦的文字,记载的是君王外出狩猎和祈祷丰年,秦篆是一种严谨刻板的纯实用性的字体,艺术价值很小。
②今文字:隶书是在秦篆严谨的压抑下出现的一种潇洒开放型的新字体,课本图例《张迁碑》结构方正,四周平稳,刚劲沉着,是汉碑方笔的典范,章草是在隶书基础上更艺术化,实用化的字体,索靖《急就章》便是这种字体的代表作,字字独立,高古凝重,楷书有两大部分构成:魏碑、唐楷魏碑是北魏时期优秀书法作品的统称。
《郑文公碑》和《始平公造像》是这一时期的代表,前者气势纵横,雄浑深厚,劲健绝逸是圆笔的典型;唐楷中的《醴泉铭》法度森严、遒劲雄强,浑穆古拙、浑厚刚健,《神策军碑》精练苍劲、风神整峻、法度谨严,以上三种书体分别代表了唐楷三个时期的不同特点。
《兰亭序》和《洛神赋》作者分别是晋代王羲之、王献之父子是中国书法史上的两座高峰,前者气骨雄骏、风神跌宕、秀逸萧散的境界,后者在技法上达到了由拙到巧、笔墨洗练、丝丝入扣的微妙的境界。
他们都是不拘泥于传统的章法和技能,对后世学书者产生了深远的影响;明代文征明的书法文雅自如,现代书家沈尹默在继承传统书法方面起到了不可魔灭的作用。
3、欣赏要点:先找几位同学说一下自己评价书法作品的标准或原则是什么?[或如何来欣赏一幅书法作品?]学生谈完后,对他们的观点进行归纳总结。
然后自己要谈一下自己的观点:书法艺术的欣赏活动,有着不同于其它艺术门类的特征,欣赏书法伤口不可能获得相对直接的印象、辨识与教益,也不可能单纯为了使学生辨识书写的内容,去探讨言词语汇上的优劣。
进而得出:书法主要是通过对抽象的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受(结合讲授出示古代书法名作的图片,并与一般的书法作品进行比较,让学生在比较中得出什么是格调节器高雅,什么是粗庸平常)。
书法可以说是无声的音乐,抽象的绘画,线条流动的诗歌。
四、课堂评价:根据本节课所学的内容结合板书。
让学生体会到祖国书法艺术的博大精深,着重分析学生在书体形式特点和审美欣赏方面表现出的得失。
让学生懂得在欣赏书法时主要是通过对抽像的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受。