2.2.4_平面与平面平行的性质_课件
- 格式:ppt
- 大小:240.50 KB
- 文档页数:14
2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质1.文字语言:一条直线与一个平面平行,则__过这条直线的任一平面与此平面的交线__与该直线平行.2.图形语言:3.符号语言:⎭⎪⎬⎪⎫a ∥α__a ⊂β____α∩β=b __⇒a ∥b 4.作用:线面平行⇒线线平行.要点二 面面平行的性质定理1.文字语言:如果两个平行平面同时和第三个平面__相交__,那么它们的交线__平行__.2.图形语言:3.符号语言:⎭⎪⎬⎪⎫α∥β__α∩γ=a ____β∩γ=b __⇒a ∥b 4.作用:面面平行⇒线线平行.要点三 平行关系性质的应用1.若平面α与平面β平行,则α上的任何直线与平面β的位置关系是__平行__. 2.若两个面互相平行,则分别在这两个平行平面内的直线的关系是__平行或异面__. 3.A 是异面直线a ,b 外一点,过A 最多可作__0或1__个平面同时与a ,b 平行. 4.过平面外一点能作__无数__条直线和这个平面平行.思考: 如果两个平面平行,那么分别位于两个平面内的直线也互相平行,这句话正确吗?为什么?提示 不正确,因为这两个平面平行,那么位于两个平面内的直线没有公共点,它们平行或异面.考点一线面平行、面面平行的性质定理定理可简记为“线面平行,则线线平行”“面面平行,则线线平行”.定理揭示了直线与平面平行中蕴涵着直线与直线平行,即通过直线与平面平行、平面与平面平行可得到直线与直线平行,这给出了一种作平行线的方法.【例题1】在下列命题中,正确的有__④__(填序号).①若α∩β=a,b⊂α,则a∥b;②若a∥平面α,b⊂α,则a∥b;③若平面α∥平面β,a⊂α,b⊂β,则a∥b;④平面α∥平面β,点P∈α,a∥β且P∈a,则a⊂α.思维导引:此类题一般是以符号语言为载体的判断题,熟悉相关定理是前提,全面分析是关键,一般通过合理利用模型及排除法解题.解析①若α∩β=a,b⊂α,则a,b可能平行也可能相交,①不正确;②若a∥α,b⊂α,则a与b异面或a∥b,②不正确;③若α∥β,a⊂α,b⊂β,则a∥b或a与b异面,③不正确;④若α∥β,点P∈α,知P∉β,所以过点P且平行于β的直线a必在α内,故④正确.【变式1】(1)若直线a,b均平行于平面α,那么a与b的位置关系是__平行、相交或异面__.(2)若直线a∥b,且a∥平面β,则b与β的位置关系是__b∥β或b⊂β__.(3)若直线a,b是异面直线,且a∥β,则b与β的关系是__b∥β或b⊂β或b与β相交__.解析(1)a∥α,b∥α,则知a,b与α无公共点,而a,b平行、相交、异面都有可能.(2)a∥b,a∥β知b∥β或b在β内.(3)b与β的三种位置关系都有可能.考点二线面平行的性质及应用利用线面平行的性质定理判断两直线平行的步骤:(1)先找过已知直线且与已知平面相交的平面;(2)再找两个平面的交线;(3)由定理得出结论.【例题2】如图,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形.思维导引:AB∥平面MNPQ,CD∥平面MNPQ→MN∥PQ,NP∥MQ→四边形MNPQ是平行四边形证明因为AB∥平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,所以AB∥MN.又过AB的平面ABD交平面MNPQ于PQ,所以AB∥PQ,所以MN∥PQ.同理可证NP ∥MQ.所以四边形MNPQ为平行四边形.【变式2】如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于点F.求证:EF∥B1C.证明由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD 为平行四边形,从而B1C∥A1D,又A1D⊂平面A1DFE,B1C⊄平面A1DFE,于是B1C∥平面A1DFE.又B1C⊂平面B1CD1,平面A1DFE∩平面B1CD1=EF,所以EF∥B1C.考点三面面平行的性质及应用应用平面与平面平行的性质定理的基本思路:【例题3】在长方体ABCD-A1B1C1D1中,E为棱DD1上的点.当平面AB1C∥平面A1EC1时,点E的位置是__与D重合__.思维导引:平面AB1C∥平面A1EC1,且都与对角面BB1D1D相交,则交线平行.在平行四边形BB1D1D中再来论证平行线的位置.解析如图,连接B1D1,BD,设B1D1∩A1C1=M,BD∩AC=O.连接ME,B1O,因为平面AB1C∥平面A1EC1,平面AB1C∩平面BDD1B1=B1O,平面A1EC1∩平面BDD1B1=ME,所以B1O∥ME.又由长方体的性质可知四边形B1MDO为平行四边形,则B1O∥MD.故E与D重合.【变式3】已知三棱柱ABC-A′B′C′中,D是BC的中点,D′是B′C′的中点,设平面A′D′B∩平面ABC=a,平面ADC′∩平面A′B′C′=b,判断直线a,b的位置关系,并证明.解析直线a,b的位置关系是平行.如图所示,连接DD′.因为平面ABC∥平面A′B′C′,平面A′D′B∩平面ABC=a,平面A ′D ′B ∩平面A ′B ′C ′=A ′D ′, 所以A ′D ′∥a . 同理可证AD ∥b .又D 是BC 的中点,D ′是B ′C ′的中点,所以DD ′BB ′,又BB ′AA ′,所以DD ′AA ′,所以四边形AA ′D ′D 为平行四边形,所以A ′D ′∥AD ,所以a ∥b .考点四 空间平行关系的相互转换线线平行、线面平行、面面平行这三种关系是紧密相连的,可以进行转换.相互间的转换关系如下.【例题4】 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别是AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1; (2)求PQ 的长;思维导引:通过作辅助线构造平面,从而证得线面平行;或通过线线平行证得线面平行. 解析 (1)证明:方法一 如图,连接AC ,CD 1.AC 与BD 交于点Q .因为P ,Q 分别是AD 1,AC 的中点,所以PQ ∥CD 1. 又PQ ⊄平面DCC 1D 1, CD 1⊂平面DCC 1D 1, 所以PQ ∥平面DCC 1D 1.方法二 取AD 的中点G ,连接PG ,GQ , 则有PG ∥DD 1,GQ ∥DC ,且PG ∩GQ =G , 则平面PGQ ∥平面DCC 1D 1.又因为PQ ⊂平面PGQ ,则PQ ∥平面DCC 1D 1. (2)由(1)易知PQ =12D 1C =22a .【变式4】 如图,在正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F .求证:EF ∥平面ABCD .证明 过E 作EG ∥AB 交BB 1于点G ,连接GF ,则B 1E B 1A =B 1GB 1B.因为B 1E =C 1F ,B 1A =C 1B ,所以C 1F C 1B =B 1GB 1B .所以FG ∥B 1C 1∥BC ,又因为EG ∩FG =G ,AB ∩BC =B , 所以平面EFG ∥平面ABCD ,又因为EF ⊂平面EFG ,EF ⊄平面ABCD , 所以EF ∥平面ABCD .。