高一数学上学期第一次月考试卷及答案
- 格式:doc
- 大小:251.64 KB
- 文档页数:8
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
卜人入州八九几市潮王学校泰化2021--2021第一学期第一次月考高一数学一、选择题〔此题一共12小题,每一小题5分,一共计60分〕1.〕A.很小的实数可以构成集合.B.集合与集合是同一个集合.C.自然数集中最小的数是.D.空集是任何集合的子集.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,应选D.考点:集合的概念;子集的概念.,那么集合的真子集一共有〔〕A.个B.个C.个D.个【答案】C【解析】∵,∴∴集合A的真子集一共有个.应选:D相等A. B. C. D.【答案】B【解析】函数的定义域为R,值域为R.A中函数定义域为,D中函数定义域为,排除A,D.C.,不成立;B.,定义域为R,值域为R,满足.应选B.的定义域是〔〕A. B. C. D.【答案】B【解析】试题分析:因为,所以,所以函数的定义域为:.考点:函数的定义域.不.能表示函数图象的是〔〕A. B. C. D.【答案】C【解析】【分析】根据函数概念进展判断选择.【详解】因为对于定义域内每一个自变量有且仅有一个函数值与之对应,所以C不符合,选C.【点睛】此题考察函数概念,考察根本判断识别才能.,,那么的值是〔〕A.13B.C.7D.【答案】B【解析】试题解析:设,函数为奇函数∴考点:此题考察函数性质点评:解决此题的关键是利用函数奇偶性解题7.以下函数中,在区间(0,2)上为增函数的是()A. B.C. D.【答案】B【解析】由于在上是增函数,所以在(0,2)上为增函数.在区间〔-∞,2上是减函数,那么实数的取值范围是〔〕A.-,+∞〕B.〔-∞,-C.,+∞〕D.〔-∞,【答案】B【解析】【分析】根据二次函数单调性确定对称轴与定义区间位置关系,解得实数的取值范围.【详解】因为函数在区间〔-∞,2上是减函数,所以,选B.【点睛】二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要根据其图象的对称轴与定义区间位置关系进展分类讨论.,那么的值是〔〕A.3B.C.6D.【答案】C【解析】由,可得:∴应选:C,那么〔〕A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【答案】D【解析】【分析】根据条件化为底为2的指数,再根据指数函数单调性确定大小.【详解】因为,为单调递增函数,所以即y1>y3>y2,选D.【点睛】此题考察指数函数单调性,考察根本化简应用才能.11.,那么以下各式成立的是〔〕A. B. C. D.【答案】D【解析】【分析】逐个代入验证即得结果.【详解】;因此选D.【点睛】此题考察函数解析式性质,考察根本化简求解才能.12.某地的水电资源丰富,并且得到了较好的开发,电力充足.某供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量(度)与相应电费(元)之间的函数关系如下列图.当月用电量为300度时,应交电费A.130元B.140元C.150元D.160元【答案】D【解析】【分析】根据图象确定函数解析式,再计算用电量为300度时应交电费.【详解】当时,,所以当时,,选D.【点睛】此题考察函数解析式,考察待定系数法以及根本求解才能.二、填空题〔此题一共4小题,每一小题5分,一共计20分〕,的图象必过定点______________【答案】【解析】【分析】根据确定函数图象定点.【详解】因为,所以当时,,即过定点【点睛】此题考察指数函数性质,考察根本化简应用才能.14.化简_______________【答案】1【解析】【分析】先开根号,再根据x范围去绝对值,即得结果.【详解】【点睛】此题考察根式运算,考察根本化简求解才能.15.,求________.【答案】5【解析】【分析】先求,再根据值代入对应解析式得【详解】因为所以【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.16.以下结论中:①对于定义在R上的奇函数,总有;②假设那么函数不是奇函数;③对应法那么和值域一样的两个函数的定义域也一样;其中正确的选项是________________(把你认为正确的序号全写上).【答案】①【解析】【分析】根据奇函数定义可求;举反例可得②③不成立,【详解】定义在R上的奇函数满足所以;①正确;奇函数满足,所以②不成立,为对应法那么和值域一样的两个函数,但定义域不一样,所以③不成立;综上正确的选项是①.【点睛】此题考察奇函数判断与性质,考察根本化简识别才能.三、解答题:一共70分,解答题应写出文字说明.证明过程或者演算步骤.17.是一个一次函数,且,求的解析式.【答案】g(x)=2x+1或者g(x)=-2x+1【解析】【分析】先设解析式,代入计算,再根据恒成立得方程组,解得结果.【详解】设g(x)=ax+b(a≠0)那么f[g(x)]=-2(ax+b)+1==∴{解得:a=±2,b=1∴g(x)=2x+1或者g(x)=-2x+1【点睛】求类型函数的解析式,一般采用待定系数法求解,根据条件得到关于待求参数的恒等式,由系数的对等性得参数的值或者方程(组),进而得出参数的值.18.〔1〕设,,试用表示〔2〕求值:;〔3〕,试用表示【答案】〔1〕〔2〕〔3〕【解析】【分析】(1)先根据换底公式将对数化为常用对数,再根据对数加减运算法那么化简即得结果,(2)先化成分数指数幂,再根据指数运算法那么化简求值,(3)先将指数式化为对数式,再根据换底公式将对数化为3为底的对数,最后根据对数加减运算法那么化简得结果.【详解】〔1〕由lg2=a,lg3=b所以====〔2〕原式===〔3〕因为=5,∴b=,而a===【点睛】此题考察换底公式与分数指数幂运算,考察根本化简求解才能.f〔x〕=x+,且f〔1〕=2.〔1〕求m;〔2〕判断f〔x〕的奇偶性;【答案】〔1〕1〔2〕奇函数【解析】【分析】(1)代入即得m值,(2)先求定义域,判断是否关于原点对称,再计算f〔-x〕,根据与f〔x〕关系确定奇偶性.【详解】〔1〕∵f(1)=2∴f(1)=1+m=2解得m=1(2)∵f(x)=x+,∴函数的定义域为〔-∞,0〕〔0,+∞〕,那么f(-x)=-x-=-(x+)=-f(x)∴f(x)是奇函数。
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
新高一数学月考参考答案1.【答案】D【解析】根据一元二次方程的定义,二次项系数a ≠0.故选:D .2.【答案】D【解析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.∵一月份的营业额为200万元,平均每月增长率为x ,∴二月份的营业额为200×(1+x ),∴三月份的营业额为200×(1+x )×(1+x )=200×(1+x )2,∴可列方程为200+200×(1+x )+200×(1+x )2=1000,即200[1+(1+x )+(1+x )2]=1000.故选D.3.【答案】B【解析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m 的值即可.试题解析:∵方程(m-1)x 2+5x+m 2-3m+2=0是一元二次方程且常数项为0,∴210320m m m -≠-+=⎧⎨⎩,解得:m=2.故选B .4.【答案】C【解析】因为二次函数y =ax 2+4x +a -1的最小值为2,所以4(1)1624a a a --=且a >0,解方程得:a=4或-1,因为a >0,所以a=4,故选:C.5.【答案】C【解析】∵抛物线开口向下,∴a <0,∵抛物线与y 轴交于正半轴,∴c >0,∵对称轴在y 轴左边,02b a-<,∴b <0,abc >0,∵抛物线与x 轴有两个交点,∴240b ac ->,当x=1时,y <0,∴a+b+c <0.故选C .6.【答案】A【解析】根据旋转图形可得∠FAC=60°,根据△AFC 的内角和定理可得∠AFC=180°-36°-60°=84°.7.【答案】D【解析】∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB ⊥CD ,∴在△OBE 中,得BE=4,∴AB=2BE=8.故选D .8.【答案】A【解析】因为反比例函数y =2k x 的图象位于第一、第三象限,所以k-2>0,所以k >2,故选:A .9.【答案】C【解析】:A .∵∠C=∠C ,∠CDB=∠CBA ,∴△CBD ∽△CAB ,故本选项错误;B .∵∠C=∠C ,∠CBD=∠A ,∴△CBD ∽△CAB ,故本选项错误;C .∵∠C=∠C ,BC•AB=BD•AC 不是对应边,∴不能判定△CBD ∽△CAB ,故本选项正确;D .∵∠C=∠C ,BC2=CD•AC ,∴△CBD ∽△CAB ,故本选项错误.故选C .10.【答案】B【解析】解答此题要利用互余角的三角函数间的关系:sin (90°-α)=cosα,cos (90°-α)=sinα:∵在△ABC 中,∠C=90°,∴∠A+∠B=90°,∴cos B=sin A=53.故选B.11.【答案】C【解析】因为主视图共有4个小正方形,左视图共有4个小正方形,俯视图共有5个小正方形,所以俯视图的面积最大,故选:C .12.【答案】D【解析】当k >0时,反比例函数过一、三象限,一次函数过一、二、三象限,原题没有满足的图形;当k <0时,反比例函数过二、四象限,一次函数过二、三、四象限.故选D .13.【答案】±4【解析】∵(±4)2=16,∴16的平方根是±4.14.【答案】6、30、10【解析】因为样本容量与总体个数的比值为46∶9200=1∶200,所以三种型号的轿车依次应抽取的数量为6、30、10.15.【解析】(1)∵关于x 的一元二次方程x 2-(2m +1)x +m (m +1)=0,∴b 2-4ac =(2m +1)2-4m (m +1)=1>0,∴方程总有两个不相等的实数根;(2)∵x =0是此方程的一个根,∴把x =0代入方程中得到m (m +1)=0,∴m =0或m =-1.∵(2m -1)2+(3+m )(3-m )+7m -5=4m 2-4m +1+9-m 2+7m -5=3m 2+3m +5,把m =0代入3m 2+3m +5,得3m 2+3m +5=5;把m =-1代入3m 2+3m +5,得3m 2+3m +5=3×1-3+5=5.16.【解析】∵∠ACB =90°,BC =3,AC =4,∴AB =5.∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠B +∠BCD =90°,∠A +∠ACD =90°.又∵∠BCD +∠ACD =90°,∴∠ACD =∠B ,∠BCD =∠A ,∴sin ∠ACD =sin B =AC AB =45,tan ∠BCD =tan A =BC AC =34.17.所以抛物线的解析式为y=-x 2+2x +3(2)由顶点坐标公式得顶点坐标为(1,4),所以对称轴为直线x=1,A,E 关于直线x =1对称,所以E(3,0).设对称轴与x 轴的交点为F,所以四边形ABDE 的面积=S △ABO +S 梯形BOFD +S △DFE =12AO·BO+12(BO+DF)·OF+12EF·DF=12×1×3+12×(3+4)×1+12×2×4=9.。
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
智才艺州攀枝花市创界学校内蒙古锡林郭勒盟第HY 学二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|}A x x x ==,{1,,2}B m =,假设A B ⊆,那么实数m 的值是〔〕A.2B.0C.0或者2D.1【答案】B 【解析】 【分析】 求得集合{0,1}A =,根据A B ⊆,即可求解,得到答案.【详解】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,应选B.【点睛】此题主要考察了集合交集运算,其中解答中熟记集合的包含关系的运算是解答的关键,着重考察了运算与求解才能,属于根底题.2.在区间(0,+∞)上不是增函数的函数是〔〕 A.21y x =+B.231y x =+C.2y x=D.221y x x =++【答案】C 【解析】 【详解】A 选项在R 上是增函数;B选项在(],0-∞是减函数,在[)0,+∞是增函数;C选项在(),0,(0,)-∞+∞是减函数;D选项221721248y x x x ⎛⎫=++=++ ⎪⎝⎭在1,4⎛⎤-∞- ⎥⎝⎦是减函数,在1,4⎡⎫-+∞⎪⎢⎣⎭是增函数;应选C. 【点睛】对于二次函数断定单调区间通常要先化成2()(0)y a x m n a =-+≠形式再断定.当0a >时,单调递减区间是(],m -∞,单调递减区间是[),m +∞;0a <时,单调递减区间是[),m +∞,单调递减区间是(],m -∞.3.以下哪一组函数相等〔〕A.()f x x =与()2x g x x=B.()2f x x =与()4g x =C.()f x x =与()2g x =D.()2f x x =与()g x =【答案】D 【解析】 【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否一样,从而可求得结果. 【详解】A 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≠∴两函数不相等B 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等C 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等D 选项:()f x 与()g x 定义域均为R ,且()()2g x x f x ===∴两函数相等此题正确选项:D【点睛】此题考察相等函数的判断,关键是明确两函数相等要求定义域和解析式都一样,属于根底题. 4.集合{}2|3280Mx x x =--≤,{}2|60N x xx =-->,那么M N ⋂为〔〕A.{|42x x -≤<-或者37}x <≤B.{|42x x -<≤-或者37}x ≤<C.{|2x x ≤-或者3}x >D.{|2x x <-或者3}x ≥【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合{}2|3280M x x x =--≤,{}2|60N x xx =-->,根据集合交集的定义求解即可. 【详解】∵由{}2|3280Mx x x =--≤,所以{}|47M x x =-≤≤, 因为{}2|60N x x x =-->,所以{|2N x x =<-或者3}x >,∴{}|47{|2MN x x x x ⋂=-≤≤⋂<-或者3}x >{|42x x =-≤<-或者37}x <≤.应选A .点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合M 且属于集合N 的元素的集合.5.2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,那么44()()33f f +-的值等于〔〕A.2-B.4C.2D.4-【答案】B 【解析】【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,应选B.考点:分段函数.6.()f x =A.3(,]2-∞ B.3[,)2+∞ C.(,1]-∞ D.[2,)+∞【答案】D 【解析】 【分析】先求解定义域,然后结合二次函数的对称轴判断增区间. 【详解】因为2320x x -+≥,所以(][),12,x ∈-∞+∞;又因为232y x x =-+的对称轴为:32x =,且322<,所以增区间为[)2,+∞, 应选:D.【点睛】此题考察复合函数的单调性,难度一般.对于复合函数的单调性问题,在利用“同増异减〞的方法判断的同时也要注意到定义域问题. 7.以下对应关系是A 到B 的函数的是()A.A=R,B={x|x>0}.f:x y=|x|→B.2,,:A Z B N f x y x +==→=C.A=Z,B=Z,f:x y →=D.[]{}1,1,0,:0A B f x y =-=→=【答案】D 【解析】 【分析】根据函数的定义,即可得出结论.【详解】对于A 选项:A =R ,B ={x |x >0},按对应关系f :x →y =|x |,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于B 选项:A =Z ,B N +=,f :x →y =x 2,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于C 选项:A =Z ,B =Z ,f :x →y =f :x →y =A 到B 的函数;对于D 选项:A =[﹣1,1],B ={0},f :x →y =0,A 中的任意元素在B 中有唯一元素对应,∴f :x →y =0是从A 到B 的函数. 应选D.【点睛】此题考察函数的定义,考察学生分析解决问题的才能,正确理解函数的定义是关键.8.函数()212f x x =+,那么f 〔x 〕的值域是 A.1{|}2y y ≤ B.1{|}2y y ≥C.1{|0}2y y <≤D.{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域.【详解】由于220,22xx ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,应选C. 【点睛】本小题主要考察函数值域的求法,考察不等式的性质,属于根底题. 9.函数(1)f x +的定义域为[2,3]-,那么(21)f x -的定义域为〔〕A.[]-1,4B.5[0,]2C.[5,5]-D.[3,7]-【答案】B 【解析】 【分析】 由函数(1)f x +的定义域为[2,3]-,得到1[1,4]x +∈-,令1214x -≤-≤,即可求解函数(21)f x -的定义域,得到答案.【详解】由题意,函数(1)f x +的定义域为[2,3]-,即[2,3]x ∈-,那么1[1,4]x +∈-,令1214x -≤-≤,解得502x ≤≤,即函数(21)f x -的定义域为5[0,]2,应选B.【点睛】此题主要考察了抽象函数的定义域的计算,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考察了推理与运算才能,属于根底题. 10.不等式20ax x c -+>的解集为{}21,x x -<<那么函数2y ax x c =++的图像大致为〔〕A. B.C. D.【答案】C 【解析】 【分析】利用根与系数的关系x 1+x 2=−b a ,x 1•x 2=c a结合二次函数的图象可得结果【详解】由题知-2和1是ax 2-x+c=0的两根, 由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2, ∴2y ax x c =++=-x 2+x+2=-〔x-12〕2+94,应选C【点睛】此题考察了一元二次不等式的解法和二次函数的图象,以及一元二次方程根与系数的关系.一元二次不等式,一元二次方程,与一元二次函数的问题之间可互相转化,也表达了数形结合的思想方法. 11.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,假设()1,1A -⊆,那么a 的取值范围〔〕A.1,2⎡⎫+∞⎪⎢⎣⎭ B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】因为2228(2)(4)--=+-x ax a x a x a ,且24a a -<,所以解集[]2,4A a a =-;然后根据()1,1A -⊆,得不等式组2141a a -≤-⎧⎨≥⎩,可得a 的取值范围。
卜人入州八九几市潮王学校第三二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、选择题(本大题一一共12小题,每一小题5分,一共60分) 1.以下说法正确的有〔〕①NBA 联盟中所有优秀的篮球运发动可以构成集合; ②*0N ∈; ③集合{}2| 1y y x=-与集合(){}2,| 1x y y x=-是同一个集合;④空集是任何集合的真子集. A.0个 B.1个 C.2个 D.3个【答案】A 【解析】 【分析】【详解】对于①,优秀的篮球队员概念不明确,不能构成集合,错误; 对于②,元素与集合的关系应为属于或者不属于,即0∉N *,错误; 对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合{〔x ,y 〕|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误; 应选:A .【点睛】此题考察集合确实定性,元素与集合的关系,列举法和描绘法表示集合以及空集的有关性质,属于根底题.{{},0,1,2,3,4A x y B ===,那么A B =〔〕A.φB.{}0,1,2C.{}0,1,2,3D.(]{},34-∞【答案】C 【解析】 【分析】首先求得集合A ,然后进展交集运算即可.【详解】求解函数=y {}|3A x x =≤,结合交集的定义有:{}0,1,2,3A B ⋂=.此题选择C 选项.【点睛】此题主要考察集合的表示方法,交集的定义等知识,意在考察学生的转化才能和计算求解才能. 3.以下各组函数中,表示同一函数的是〔〕A.1y =,x y x=B.y =,y =C.||y x =,2y =D.y x =,y =【答案】D 【解析】【分析】逐一分析各个选项里面的两个函数的定义域、值域、对应关系是否完全一样,只有两个函数的定义域、值域、对应关系完全一样,这两个函数才是同一个函数. 【详解】A 中,1y =与xy x=定义域不同,故不是同一个函数;B 中,y =与y =C 中,y x=与2y =定义域不同,故不是同一个函数;D 中,y x =,y =的两个函数定义域、值域、对应关系完全一样,故是同一个函数,应选 D.此题考察构成函数的三要素,只有两个函数的定义域、值域、对应关系完全一样,这两个函数才是同一个函数.4.以下运算结果中,一定正确的选项是〔〕A.347a a a =B.236()a a -= C.01)1=D.2332()()aa -=-【答案】A 【解析】 【分析】根据指数幂的运算性质,可直接得出结果. 【详解】由指数幂的运算性质,可得:347a a a =,A 正确;236()a a -=-,B 错误;1a =时,001)0=无意义,C 错误;2332()()-=-a a ,D 错误;应选A【点睛】此题主要考察指数幂的运算,熟记指数幂运算的性质即可,属于常考题型. 5.以下函数中,既是奇函数又是减函数的是() A.1y x =+ B.3y x =-C.1y x=D.y x x =【答案】B 【解析】 【分析】根据函数奇偶性,先排除A ;再逐项判断函数单调性,即可得出结果。
高一上学期第一次月考数学试题一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}{}{}1,2,3,4,5,6,7,1,2,3,4,5,3,4,5,6,7U P Q ===,则()U P C Q ⋃=( )A.{}1,2B.{}3,4,5C.{}1,2,6,7D.{}1,2,3,4,52.下列各组函数是相同函数的一组是( )A.()()242,2x f x x g x x -=+=- ;B.()()()01,1f x x g x =-=; C.()()2,f x x g x x ==;D.()()32,2f x x g x x x =-=-.3. 函数2,1()1,1x x f x x x ⎧<=⎨-≥⎩则((4))f f -的值为( )A .15B .16C .5-D .15-4. 下列对应是集合A 到集合B 的映射的是 ( ) A. ,,:|3|A N B N f x x ++==→-B. {}{}:A B f ==平面内的圆,平面内的矩形,每一个圆对应它的内接矩形C. 1{02},{|06},:2A xB y y f x y x =≤≤=≤≤→= D. {0,1},{1,0,1},:A B f A ==-中的数开平方 5. 下列函数在区间(0,1)上是增函数的是( )A. ||y x =B. 32y x =-C. 12y x=+ D. 243y x x =-+6. 已知函数2()f x x bx c =-++的图象的对称轴为直线2x =,则( ) A. (0)(1)(3)f f f << B. (3)(1)(0)f f f <<C. (3)(1)(0)f f f <=D. (0)(1)(3)f f f <=7. 已知函数(1)f x +的定义域为(2,1)--,则函数()f x 的定义域为( )A. 3(,1)2-- B. (1,0)- C.(3,2)-- D. 3(2,)2-- 8. 函数()21f x x x =++的值域是( )A. [0,)+∞B. 1[,)2-+∞C. [0,)+∞ D [1,)+∞9. 已知函数2()2f x x x =+-,则函数()f x 在区间[1,1)-上( ) A.最大值为0,最小值为94- B.最大值为0,最小值为2-C.最大值为0,无最小值D.无最大值,最小值为94-10. 若集合{|12},{|}A x x B x x a =<<=>,满足A B ⊆,则实数a 的取值范围是( )A. 1a ≤B. 1a <C. 1a ≥D 2a ≤11.函数0(23)()332x f x x x+=++-的定义域是( )A. 3[3,]2-B. 333[3,)(,)222--⋃-C. 3[3,)2-D. 333[3,)(,]222--⋃-12. 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .3a =-B .3a <C .3a ≤-D .3a ≥-二、填空题: 本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上。
武汉高一年级第一次月考(数学)(答案在最后)第Ⅰ卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}43A x x =∈-≤≤Z ,{}13B x x =∈+<N ,则A B = ()A.{}0,1 B.{}0,1,2 C.{}1,2 D.{}1【答案】A 【解析】【分析】化简集合,根据交集运算求解.【详解】根据题意,得{}{}=4,3,2,1,0,1,2,30,1A B ----=,,所以{}0,1A B = ,故选:A.2.设{}{}2712|0,0|2A x x x B x ax =-+==-=,若A B B = ,求实数a 组成的集合的子集个数有()A.2B.3C.4D.8【答案】D 【解析】【分析】先解方程得集合A ,再根据A B B = 得B A ⊆,根据包含关系求实数a ,根据子集的定义确定实数a 的取值组成的集合的子集的个数.【详解】{}{}271203,4|A x x x =-+==因为A B B = ,所以B A ⊆,因此B =∅或{}3B =或{}4B =,当B =∅时,=0a ,当{}3B =时,23a =,当{}4B =时,12a =,实数a 的取值组成的集合为210,,32⎧⎫⎨⎬⎩⎭,其子集有∅,{}0,23⎧⎫⎨⎬⎩⎭,12⎧⎫⎨⎬⎩⎭,20,3⎧⎫⎨⎬⎩⎭,10,2⎧⎫⎨⎬⎩⎭,21,32⎧⎫⎨⎬⎩⎭,210,,32⎧⎫⎨⎬⎩⎭,共8个,故选:D .3.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“2,10x R x ∀∈+<”是全称量词命题;③命题“2,210x R x x ∃∈++≤”的否定为“2,210x R x x ∀∈++≤”;④命题“a b >是22ac bc >的必要条件”是真命题;A.0 B.1C.2D.3【答案】C 【解析】【分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“2R 10x x ∀∈+<,”是全称量词命题;故②正确;对于③:命题2:R,210p x x x ∃∈++≤,则2:R,210p x x x ⌝∀∈++>,故③错误;对于④:22ac bc >可以推出a b >,所以a b >是22ac bc >的必要条件,故④正确;所以正确的命题为②④,故选:C4.“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”,利用二次函数的性质,求得实数m 的取值范围,结合充分、必要条件的判定方法,即可求解.【详解】由题意,命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”可得命题“x ∀∈R ,2(1)2(1)30m x m x -+-+>是真命题”当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件,故选:B.【点睛】理解全称命题与存在性命题的含义时求解本题的关键,此类问题求解的策略是“等价转化”,把存在性命题为假命题转化为全称命题为真命题,结合二次函数的性质求得参数的取值范围,再根据充分、必要条件的判定方法,进行判定.5.已知()f x =+,则函数(1)()1f xg x x +=-的定义域是()A.[2,1)(1,2]-⋃B.[0,1)(1,4]U C.[0,1)(1,2]⋃ D.[1,1)(1,3]-⋃【答案】A 【解析】【分析】先求出()f x 的定义域,结合分式函数分母不为零求出()g x 的定义域.【详解】()f x = ,10330x x x +≥⎧∴∴≤≤⎨-≥⎩,-1,()f x ∴的定义域为[]1,3x ∈-.又(1)()1f x g x x +=- ,1132210x x x -≤+≤⎧∴∴-≤≤⎨-≠⎩,且1x ≠.(1)()1f xg x x +∴=-的定义域是[2,1)(1,2]-⋃.故选:A6.已知0a >,0b >,且12111a b+=++,那么a b +的最小值为()A.1-B.2C.1+ D.4【答案】C 【解析】【分析】由题意可得()1211211a b a b a b ⎛⎫+=++++-⎪++⎝⎭,再由基本不等式求解即可求出答案.【详解】因为0a >,0b >,12111a b+=++,则()1211211211a b a b a b a b ⎛⎫+=+++-=++++- ++⎝⎭()2113211a b b a ++=++-++()21111111a b ba ++=++≥+=+++.当且仅当()2111112111a b b a a b⎧++=⎪⎪++⎨⎪+=⎪++⎩即2a b ⎧=⎪⎨⎪=⎩时取等.故选:C .7.若两个正实数x ,y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是()A.{14}mm -≤≤∣ B.{0mm <∣或3}m >C .{41}mm -<<∣ D.{1mm <-∣或4}m >【答案】D 【解析】【分析】首先不等式转化为2min34y m m x ⎛⎫->+⎪⎝⎭,再利用基本不等式求最值,即可求解.【详解】若不等式234y x m m +<-有解,则2min 34y m m x ⎛⎫->+ ⎪⎝⎭,因为141x y +=,0,0x y >>,所以144224444y y x y x x x y y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当44x y y x =,即4y x =时,等号成立,4y x +的最小值为4,所以234m m ->,解得:4m >或1m <-,所以实数m 的取值范围是{1m m <-或4}m >.故选:D8.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a 的取值范围为()A.[2,5]B.[2,)+∞C.[2,6]D.(,5]-∞【答案】A 【解析】【分析】分别求解分段函数在每一段定义区间内的最小值,结合函数在整体定义域内的最小值得到关于a 的不等式组,解不等式组得到a 的取值范围.【详解】当2x >时,3666126x a a a x +-≥=-,当且仅当6x =时,等号成立,即当2x >时,函数()f x 的最小值为126a -;当2x ≤时,2()22f x x ax =--,要使得函数()f x 的最小值为(2)f ,则满足2,(2)24126,a f a a ≥⎧⎨=-≤-⎩解得25a ≤≤.故选:A .二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分)9.下列函数在区间(2,)+∞上单调递增的是()A.1y x x=+B.1y x x =-C.14y x=- D.y =【答案】AB 【解析】【分析】求函数的单调区间,首先要确定函数的定义域,若存在定义域之外的元素,则不符合条件;对其他选项可根据特殊函数的单调性得出.【详解】由“对勾”函数的单调性可知,函数1y x x=+在(2,)+∞单调递增,A 正确;由y x =在(2,)+∞单调递增,1y x =在(2,)+∞单调递减,知1y x x=-在(2,)+∞单调递增,B 正确;函数14y x=-在4x =处无定义,因此不可能在(2,)+∞单调递增,C 错误;函数y =的定义域为(,1][3,)-∞⋃+∞,因此在(2,3)上没有定义,故不可能在(2,)+∞单调递增,D 错误.故选:AB.10.已知函数()221f x x x =++在区间[],6a a +上的最小值为9,则a 可能的取值为()A.2B.1C.12D.10-【答案】AD 【解析】【分析】根据二次函数的对称轴和开口方向进行分类讨论,即可求解.【详解】因为函数()221f x x x =++的对称轴为=1x -,开口向上,又因为函数()221f x x x =++在区间[],6a a +上的最小值为9,当16a a ≤-≤+,即71a -≤≤-时,函数()221f x x x =++的最小值为min ()(1)0f x f =-=与题干不符,所以此时不成立;当1a >-时,函数()221f x x x =++在区间[],6a a +上单调递增,所以2min ()()219f x f a a a ==++=,解得:2a =或4a =-,因为1a >-,所以2a =;当61a +<-,也即7a <-时,函数()221f x x x =++在区间[],6a a +上单调递减,所以2min ()(6)14499f x f a a a =+=++=,解得:10a =-或4a =-,因为7a <-,所以10a =-;综上:实数a 可能的取值2或10-,故选:AD .11.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.228a b +≤B.114ab ≤ C.≤ D.111a b+≤【答案】C 【解析】【分析】利用重要不等式的合理变形可得()()2222a b a b +≥+,即可知A 错误;由基本不等式和不等式性质即可计算B 错误;由()22a b +≥即可求得C 正确;根据不等式中“1”的妙用即可得出111a b+≥,即D 错误.【详解】对于A ,由222a b ab +≥可得()()2222222a bab ab a b +≥++=+,又4a b +=,所以()()222216a ba b +≥+=,即228a b +≥,当且仅当2a b ==时等号成立,故A 错误;对于B ,由4a b +=可得4a b +=≥,即04<≤ab ,所以114ab ≥,当且仅当2a b ==时等号成立,即B 错误;对于C ,由a b +≥可得()22a b a b +≥++=,所以可得28≥+,即≤,当且仅当2a b ==时等号成立,即C 正确;对于D ,易知()11111111121444a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,即111a b +≥;当且仅当2a b ==时等号成立,可得D 错误;故选:C12.公元3世纪末,古希腊亚历山大时期的一位几何学家帕普斯发现了一个半圆模型(如图所示),以线段AB 为直径作半圆ADB ,CD AB ⊥,垂足为C ,以AB 的中点O 为圆心,OC 为半径再作半圆,过O 作OE OD ⊥,交半圆于E ,连接ED ,设BC a =,,(0)AC b a b =<<,则下列不等式一定正确的是().A.2a b+< B.2a b+<C.b >D.2a b+>【答案】AD 【解析】【分析】先结合图象,利用垂直关系和相似关系得到大圆半径2a b R +=,小圆半径2b ar -=,AD =,BD ==,再通过线段大小判断选项正误即可.【详解】因为AB 是圆O 的直径,则90ADB DAB DBA ∠=︒=∠+∠,因为CD AB ⊥,则=90ACD ∠︒,所以90DAB ADC ∠+∠=︒,故DBA ADC ∠=∠,易有ADC DBC ,故AC DCCD BC=,即2CD AC BC ab =⋅=,大圆半径2a b R +=,小圆半径22a b b ar a +-=-=,90ACD ∠=︒ ,222AC CD AD ∴+=,故AD ==,同理BD ==.选项A 中,,显然当0a b <<时AOD ∠是钝角,在AD 上可截取DM DO =,故OD AD <,即大圆半径R OD AD =<,故2a b+<,正确;选项B 中,当60BOD ∠=︒时,大圆半径R OD OB BD ===,有2a b+=选项C 中,Rt BCD △中,BD =,而AC b =,因为,AC BD 大小关系无法确定,故错误;选项D 中,大圆半径2a b R OD +==,小圆半径2b ar OC -==,=OD >2a b+>,故正确.故选:AD.【点睛】本题解题关键在于将选项中出现的数式均与图中线段长度对应相等,才能通过线段的长短比较反馈到数式的大小关系,突破难点.第Ⅱ卷三、填空题(本题共4小题,每小题5分,共20分)13.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合{}1,2A =-,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____.【答案】10,,22⎧⎫⎨⎬⎩⎭【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=-时,解得2a =,当,A B 集合有公共元素2=时,解得12a =,故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭.故答案为:10,,22⎧⎫⎨⎬⎩⎭14.一家物流公司计划建立仓库储存货物,经过市场了解到下列信息:每月的土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比.若在距离车站10km 处建立仓库,则1y 与2y 分别为4万元和16万元.则当两项费用之和最小时x =______(单位:km ).【答案】5【解析】【分析】由已知可设:11k y x=,22y k x =,根据题意求出1k 、2k 的值,再利用基本不等式可求出12y y +的最小值及其对应的x 值,即可得出结论.【详解】由已知可设:11k y x=,22y k x =,且这两个函数图象分别过点()10,4、()10,16,得110440k =⨯=,2168105k ==,从而140y x=,()2805xy x =>,故12408165x y y x +=+≥=,当且仅当4085x x =时,即5x =时等号成立.因此,当5x =时,两项费用之和最小.故答案为:5.15.函数()f x 是定义在()0,∞+上的增函数,若对于任意正实数,x y ,恒有()()()f xy f x f y =+,且()31f =,则不等式()()82f x f x +-<的解集是_______.【答案】()8,9【解析】【分析】根据抽象函数的关系将不等式进行转化,利用赋值法将不等式进行转化结合函数单调性即可得到结论.【详解】()()()f xy f x f y =+ ,(3)f 1=,22(3)(3)(3)(33)(9)f f f f f ∴==+=⨯=,则不等式()(8)2f x f x +-<等价为(8)[](9)f x x f <-,函数()f x 在定义域(0,)+∞上为增函数,∴不等式等价为080(8)9x x x x >⎧⎪->⎨⎪-<⎩,即0819x x x >⎧⎪>⎨⎪-<<⎩,解得89x <<,∴不等式的解集为(8,9),故答案为:()8,9.16.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.【答案】(][),99,-∞-⋃+∞【解析】【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出.【详解】对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则()()110x m x m 轾轾---+£臌臌,设q ⌝表示的集合为B , p ⌝是q ⌝的必要不充分条件,B∴A ,当0m >时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥;当0m =时,{}1B x x =≠,不满足题意;当0m <时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-,综上,m 的取值范围是(][),99,-∞-⋃+∞.故答案为:(][),99,-∞-⋃+∞.【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知集合{0A x x =<或{}2},32x B x a x a >=≤≤-.(1)若A B = R ,求实数a 的取值范围;(2)若B A ⊆R ð,求实数a 的取值范围.【答案】(1)(],0-∞(2)12a ≥【解析】【分析】(1)根据集合的并集运算即可列不等式求解,(2)根据包含关系列不等式求解.【小问1详解】因为{0A x x =<或{}2},32,,x B x a x a A B >=≤≤-⋃=R 所以320322a a a a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤,所以实数a 的取值范围是(],0-∞.【小问2详解】{0A x x =<或{}2},02x A x x >=≤≤R ð,由B A ⊆R ð得当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,12a ≥.18.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >(1b >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y +=时,有222x y k k +≥++恒成立,求k 的取值范围.【答案】(1)1a =,2b =(2)[]3,2-【解析】【分析】(1)方法一:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+=的两个实数根且0a >,利用韦达定理求解;方法二:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+>的两个实数根且0a >,将1代入2320ax x -+=求解.(2)易得121x y+=,再利用“1”的代换,利用基本不等式求解.【小问1详解】解:方法一:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个实数根且0a >,所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩方法二:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+>的两个实数根且0a >,由1是2320ax x -+=的根,有3201a a -+=⇒=,将1a =代入2320ax x -+>,得23201x x x -+>→<或2x >,∴2b =;【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=++>+ ⎪⎝⎭,当且仅当24x y =⎧⎨=⎩时,等号成立,依题意有()2min 22x y k k +≥++,即282k k ≥++,得26032k k k +-≤→-≤≤,所以k 的取值范围为[]3,2-.19.已知函数()212f x x x =+.(1)试判断函数()f x 在区间(]0,1上的单调性,并用函数单调性定义证明;(2)若(]0,1x ∃∈,使()2f x m <+成立,求实数m 的范围.【答案】(1)单调递减;证明见解析(2)()1,+∞【解析】【分析】(1)运用定义法结合函数单调性即可;(2)将能成立问题转化为最值问题,结合单调性求解最值.【小问1详解】()212f x x x=+在区间(]0,1上单调递减,证明如下:设1201x x <<≤,则()()()()2212121212222212121122x x f x f x x x x x x x x x ⎛⎫--=-+-=-- ⎪⎝⎭()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∵1201x x <<≤,∴120x x -<,21211x x >,21211x x >,∴2212121120x x x x ⎛⎫-+< ⎪⎝⎭,∴()()120f x f x ->所以,()212f x x x =+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在(]0,1上单调递减,所以,当1x =时,()f x 取得最小值,即()min ()13f x f ==,又(]0,1x ∃∈,使()2f x m <+成立,∴只需min ()2f x m <+成立,即32m <+,解得1m <.故实数m 的范围为()1,+∞.20.已知函数()21ax b f x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式并判断()f x 在()1,1-上的单调性(不必证明);(2)解不等式()()10f x f x -+<.【答案】(1)()21x f x x=+,在(1,1)-上单调递增(2)1(0,)2【解析】【分析】(1)根据奇函数的性质,以及代入条件,即可求解,并判断函数的单调性;(3)根据函数是奇函数,以及函数的单调性,即可求解不等式.【小问1详解】由题意可得()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩所以()21x f x x =+,经检验满足()()f x f x -=-,设1211x x -<<<,()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以120x x -<,1210x x ->,221210,10x x +>+>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间()1,1-单调递增;【小问2详解】(1)()0f x f x -+< ,(1)()()f x f x f x ∴-<-=-,()f x 是定义在(1,1)-上的增函数,∴111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,得102x <<,所以不等式的解集为1(0,)2.21.2022年某企业整合资金投入研发高科技产品,并面向全球发布了首批17项科技创新重大技术需求榜单,吸引清华大学、北京大学等60余家高校院所参与,实现企业创新需求与国内知名科技创新团队的精准对接,最终该公司产品研发部决定将某项高新技术应用到某高科技产品的生产中,计划该技术全年需投入固定成本6200万元,每生产x 千件该产品,需另投入成本()F x 万元,且()210100,060810090121980,60x x x F x x x x ⎧+<<⎪=⎨+-≥⎪⎩,假设该产品对外销售单价定为每件0.9万元,且全年内生产的该产品当年能全部售完.(1)求出全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)试求该企业全年产量为多少千件时,所获利润最大,并求出最大利润.【答案】(1)()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)该企业全年产量为90千件时,所获利润最大为15600万元【解析】【分析】(1)利用分段函数即可求得全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)利用二次函数求值域和均值定理求值域即可求得该企业全年产量为90千件时,所获利润最大为15600万元.【小问1详解】当060x <<时,()()22900101006200108006200G x x x x x x =-+-=-+-,当60x ≥时,()8100810090090121980620015780G x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.【小问2详解】若060x <<,则()()210409800G x x =--+,当40x =时,()max 9800G x =;若60x ≥,()8100157801578015600G x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当8100x x=,即90x =时,等号成立,此时()max 15600G x =.因为156009800>,所以该企业全年产量为90千件时,所获利润最大为15600万元.22.在以下三个条件中任选一个,补充在下面问题中,并解答此题.①()()()f x y f x f y +=+,()24f =.当0x >时,()0f x >;②()()()2f x y f x f y +=+-,()15f =.当0x >时,()2f x >;③()()()f x y f x f y +=⋅,()22f =.且x ∀∈R ,()0f x >;当0x >时,()1f x >.问题;对任意,x y ∈R ,()f x 均满足___________.(填序号)(1)判断并证明()f x 的单调性;(2)求不等式()148f a +≤的解集.注;如果选择多个条件分别解答,按第一个解答计分.【答案】(1)增函数(2)答案见解析【解析】【分析】(1)根据单调性的定义法,证明单调性即可;(2)根据单调性,列出相应的不等式,解不等式方程可得答案.【小问1详解】若选①:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()0f x x ->.由()()()f x y f x f y +=+得()()()f x y f x f y +-=,所以,2121()()()0f x f x f x x -=->,所以,21()()f x f x >,所以()f x 在(,)-∞+∞上是增函数;若选②:设12,(,)x x ∈-∞+∞,且12x x <.则210x x ->,所以21()2f x x ->.由()()()2+=+-f x y f x f y 得()()()2f x y f x f y +-=-,所以2121()()()20f x f x f x x -=-->,所以21()()f x f x >,所以f (x )在(,)-∞+∞上是增函数;若选③:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()1f x x ->.由()()()f x y f x f y +=⋅得()()()f x y f y f x +=,2211()()1()f x f x x f x =->,又1()0>f x ,所以2()f x >1()f x ,所以函数()f x 为R 上的增函数;【小问2详解】若选①:由(2)4f =得(4)(2)(2)8f f f =+=,所以,(14)8f a +≤可化为(14)(4)f a f +≤,根据()f x 的单调性,得144a +≤,解得34a ≤,所以不等式(14)8f a +≤的解集为3,4⎛⎤-∞ ⎥⎝⎦.若选②:令1x y ==,则(2)2(1)28f f =-=,所以(14)8f a +≤可化为(14)(2)f a f +≤,根据()f x 的单调性,得142a +≤,解得14a ≤,所以不等式(14)8f a +≤的解集为1,4⎛⎤-∞ ⎥⎝⎦.若选③:由(2)2f =得(4)(2)(2)4f f f =⋅=,(6)(4)(2)8f f f =⋅=,所以(14)8f a +≤可化为(14)(6)f a f +≤,根据()f x 的单调性,得146a +≤,解得54a ≤,所以不等式(14)8f a +≤的解集为5,4⎛⎤-∞ ⎥⎝⎦.。
2024-2025学年高一上学期第一次月考数学试卷(基础篇)参考答案与试题解析第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生【解题思路】根据集合的定义依次判断各个选项即可.【解答过程】对于A:2023年参加“两会”的代表具有确定性,能构成集合,故A正确;对于B:北京冬奥会上受欢迎的运动项目,没有明确的标准,即对象不具有确定性,不能构成集合,故B 错误;对于C:π的近似值,没有明确的标准,即对象不具有确定性,不能构成集合,故C错误;对于D:我校跑步速度快的学生,没有明确的标准,即对象不具有确定性,不能构成集合,故D错误;故选:A.2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤0【解题思路】全称量词命题的否定为存在量词命题,求解即可.【解答过程】因为命题pp:∀xx>2,xx2−1>0,所以¬pp:∃xx>2,xx2−1≤0.故选:C.3.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<1【解题思路】利用必要不充分条件的意义,逐项判断即得.【解答过程】对于A,1<xx<3是xx<2的不充分不必要条件,A不是;对于B,xx<3是xx<2的一个必要不充分条件,B是;对于C,xx<1是xx<2的一个充分不必要条件,C不是;对于D,0<xx<1是xx<2的一个充分不必要条件,D不是.故选:B.4.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.4【解题思路】根据元素与集合、集合与集合之间的关系分析判断.【解答过程】对于①:因为0是{0}的元素,所以0∈{0},故①正确;对于②:因为空集是任何非空集合的真子集,所以∅ {0},故②正确;对于③:因为集合{0,1}的元素为0,1,集合{(0,1)}的元素为(0,1),两个集合的元素全不相同,所以{0,1},{(0,1)}之间不存在包含关系,故③错误;对于④:因为集合{(aa,bb)}的元素为(aa,bb),集合{(bb,aa)}的元素为(bb,aa),两个集合的元素不一定相同,所以{(aa,bb)},{(bb,aa)}不一定相等,故④错误;综上所述:正确的个数为2.故选:B.5.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-4【解题思路】利用整体法,结合不等式的性质即可求解.【解答过程】设zz=xx+2yy=mm(2xx+yy)+nn(xx−yy),故2mm+nn=1且mm−nn=2,所以mm=1,nn=−1,故zz=xx+2yy=(2xx+yy)−(xx−yy),由于3≤2xx+yy≤9,6≤xx−yy≤9,所以3+(−9)≤2xx+yy−(xx−yy)≤9+(−6),−6≤xx+2yy≤3,故最小值为−6,此时xx=4,yy=−5,故选:B.6.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}【解题思路】先求出MM,∁UU NN,再求MM∩(∁UU NN),【解答过程】因为UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},所以MM={5,7,9},因为UU={1,3,5,7,9},NN={3,7,9},所以∁UU NN={1,5},所以MM∩(∁UU NN)={5}.故选:B.7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}【解题思路】根据给定的解集求出aa,bb,再解一元二次不等式即得.【解答过程】由不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},得−2,−1是方程aaxx2+bbxx+2=0的两个根,且aa>0,因此−2+(−1)=−bb aa,且−2×(−1)=2aa,解得aa=1,bb=3,不等式2xx2+bbxx+aa<0化为:2xx2+3xx+1<0,解得−1<xx<−12,所以不等式2xx2+bbxx+aa<0为{xx|−1<xx<−12}.故选:C.8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6【解题思路】根据题意可知2aa+bb=32(aa+bb)+12(aa−bb),根据乘1法结合基本不等式运算求解. 【解答过程】因为aa>bb≥0,则aa+bb>0,aa−bb>0,且2aa+bb=32(aa+bb)+12(aa−bb),则2aa+bb=�32(aa+bb)+12(aa−bb)��6aa+bb+2aa−bb�=10+3(aa−bb)aa+bb+3(aa+bb)aa−bb≥10+2�3(aa−bb)aa+bb⋅3(aa+bb)aa−bb=16,当且仅当3(aa−bb)aa+bb=3(aa+bb)aa−bb,即aa=8,bb=0时,等号成立,所以2aa+bb的最小值为16.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
2024-2025学年天津市蓟州区高一数学上学期第一次月考试卷一.选择题1.下列关系中正确的个数是()①12Q ∈R ③*0N ∈④π∈ZA.1B.2C.3D.42.已知全集U R =,{23}A x x =-<≤∣,U A =ð()A.{}2x x ≤- B.{|2x x ≤-或}3x > C.{}3x x ≥ D.{|2x x ≤-或}3x ≥3.已知0x >,则4x x +的最小值为()A.1B.2C.3D.44.《三字经》中有一句“玉不琢,不成器”,其中“打磨玉石”是“成为器物”的()A .充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设命题p :2,25n N n n ∃∈>+,则p 的否定为()A .2,25n N n n ∀∈>+ B.2,25n N n n ∀∈≤+C.2,25n N n n ∃∈≤+ D.2,25n N n n ∃∈=+6.已知集合{1,0,1,2},{|03}A B x x =-=<<,则图中阴影部分的集合为()A.{}1-B.{1,2}C.{1,0}-D.{0,1,2}7.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是()A.若a >b ,c >d ,则a +b >c +dB.若a >-b ,则c -a <c +bC.若a >b ,c <d ,则a b c d>D.若a 2>b 2,则-a <-b8.已知下列命题:①所有素数都是奇数;②R,||11x x ∀∈+≥;③对任意一个无理数x ,2x 也是无理数;④有一个实数x ,使2230x x ++=;⑤有些四边形是菱形.其中,真命题的个数是()A.0个B.1个C.2个D.5个9.设,a b ∈R ,则“0a b >>”是“11a b <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知0a >,0b >,24a b +=,则ab 的最大值是()A. B.2 C. D.4二.填空题11.已知集合{1,2,3,4}A =,{2,3,4,5,6,}B =,若C A B = ,则集合C 子集的个数为____个.12.设集合2{(,R},)|A y x x y x ==∈,()2{,|2,R}B x y y x x x ==-∈,则A B = ______.13.用符号语言表示命题:对于所有的实数x ,满足210x x -+=:__________;该命题的否定为:___________.14.已知集合{}12A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是___________.15.设0a >,0b >,记2a b A +=,G =,2ab H a b=+分别为a ,b 的算术平均数、几何平均数、调和平均数,古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过a b ≠时A ,G ,H 的大小关系,则A ,G ,H 中最大的为______,最小的为______.16.反比例函数23k y x-=的图象所在的每一个象限内,y 随x 的增大而减小的充要条件是______.三.解答题17.已知集合2{3,1,21}A a a a =-+-,若3A -∈.求实数a 的值.18.已知集合{|123}A x a x a =-≤≤+,{|22}B x x =-<<,R a ∈.(1)当0a =时,求A B ,A B ⋂.(2)若A B B = ,求a 的取值范围.19.已知0a b >>,0c d <<,0e <,求证:e e a c b d>--20.已知命题p :x ∃∈R ,2210ax x +-=为假命题.(1)求实数a 的取值集合A ;(2)设非空集合{}64242B x m x m =-<-<,若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值集合.2024-2025学年天津市蓟州区高一数学上学期第一次月考试卷一.选择题1.下列关系中正确的个数是()①12Q ∈R ③*0N ∈④π∈ZA.1B.2C.3D.4【答案】A【解析】【分析】根据集合的概念、数集的表示判断.【详解】12是实数,0不是正整数,π是无理数,当然不是整数.只有①正确.故选:A .【点睛】本题考查元素与集合的关系,掌握常用数集的表示是解题关键.2.已知全集U R =,{23}A x x =-<≤∣,U A =ð()A.{}2x x ≤- B.{|2x x ≤-或}3x > C.{}3x x ≥ D.{|2x x ≤-或}3x ≥【答案】B【解析】【分析】本题根据补集的运算直接计算即可.【详解】解:因为全集U R =,{23}A x x =-<≤∣,所以U A =ð{|2x x ≤-或}3x >故选:B【点睛】本题考查补集的运算,是基础题.3.已知0x >,则4x x +的最小值为()A.1B.2C.3D.4【答案】D【解析】【分析】直接由基本不等式运算即可.【详解】因为0x >,所以44x x +≥=,即4x x +的最小值为4,当且仅当20x =>时,等号成立.故选:D.4.《三字经》中有一句“玉不琢,不成器”,其中“打磨玉石”是“成为器物”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】根据必要不充分条件的定义求解即可.【详解】“打磨玉石”不一定“成为器物”,故充分性不成立,但“成为器物”一定要“打磨玉石”,故必要性成立,所以“打磨玉石”是“成为器物”的必要不充分条件.故选:B.5.设命题p :2,25n N n n ∃∈>+,则p 的否定为()A.2,25n N n n ∀∈>+B.2,25n N n n ∀∈≤+C.2,25n N n n ∃∈≤+ D.2,25n N n n ∃∈=+【答案】B【解析】【分析】本题根据题意直接写出命题p 的否定即可.【详解】解:因为命题p :2,25n N n n ∃∈>+,所以p 的否定p ⌝:2,25n N n n ∀∈≤+,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.6.已知集合{1,0,1,2},{|03}A B x x =-=<<,则图中阴影部分的集合为()A.{}1-B.{1,2}C.{1,0}- D.{0,1,2}【答案】B【解析】【分析】根据维恩图分析阴影部分,利用集合的交集计算即可.【详解】由维恩图可知,阴影部分为集合{1,2}A B = .故选:B.7.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是()A.若a >b ,c >d ,则a +b >c +dB.若a >-b ,则c -a <c +bC.若a >b ,c <d ,则a bc d>D.若a 2>b 2,则-a <-b【答案】B【解析】【分析】利用特殊值排除错误选项,利用不等式的性质证明正确选项.【详解】对于A 选项,如10,21>>,则1021+<+,故A 选项错误.对于B 选项,由于a b >-,所以a b -<,所以c a c b -<+,故B 选项正确.对于C 选项,如10,11>-<,则1011<-,所以C 选项错误.对于D 选项,如()2210->,则()10-->-,所以D 选项错误.综上所述,正确的命题为B.故选:B【点睛】本小题主要考查不等式的性质,属于基础题.8.已知下列命题:①所有素数都是奇数;②R,||11x x ∀∈+≥;③对任意一个无理数x ,2x 也是无理数;④有一个实数x ,使2230x x ++=;⑤有些四边形是菱形.其中,真命题的个数是()A.0个B.1个C.2个D.5个【答案】C【解析】【分析】针对全称命题的判断,若举出一个反例,不满足题意,就可以判断全称命题是假命题;而存在命题的判断,若能举出一个正例,满足题意,就可以判断存在命题是真命题.【详解】对于①所有素数都是奇数,由于2是素数,又是偶数,所以①是假命题;对于②R,||11x x ∀∈+≥,由于这个式子恒成立,所以②是真命题;对于③对任意一个无理数x ,2x 是无理数,但的平方是有理数2,所以③是假命题;对于④有一个实数x ,使2230x x ++=,由于判别式41280∆=-=-<,所以这个方程不存在实数解,即④是假命题;对于⑤有些四边形是菱形,显然四边形中存在菱形,所以⑤是真命题;综上真命题的是②和⑤,故选:C.9.设,a b ∈R ,则“0a b >>”是“11a b <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据题意,分别验证充分性以及必要性即可得到结果.【详解】由0a b >>可得11a b <,故充分性满足;由11a b <不一定得到0a b >>,比如1,2a b =-=-,故必要性不满足,所以“0a b >>”是“11a b <”的充分不必要条件.故选:A10.已知0a >,0b >,24a b +=,则ab 的最大值是()A. B.2 C. D.4【答案】B【解析】【分析】使用基本不等式求解即可【详解】∵0a >,0b >,24a b +=,∴由基本不等式有:22112142222222a b ab a b +⎛⎫⎛⎫=⋅⋅≤⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,当且仅当2a b =,即2a =,1b =时,等号成立.∴当且仅当2a =,1b =时,ab 的最大值为2.故选:B.二.填空题11.已知集合{1,2,3,4}A =,{2,3,4,5,6,}B =,若C A B = ,则集合C 子集的个数为____个.【答案】8【解析】【分析】先求出集合的交集,再根据集合子集个数公式求解.【详解】因为集合{1,2,3,4}A =,{2,3,4,5,6,}B =,所以{}2,3,4C A B == ,所以集合C 子集的个数为328=.故答案为:812.设集合2{(,R},)|A y x x y x ==∈,()2{,|2,R}B x y y x x x ==-∈,则A B = ______.【答案】{(0,0),(1,1)}【解析】【分析】联立方程求出二次函数图象的交点,即可得出集合A ,B 的交集.【详解】由222y x y x x⎧=⎨=-⎩,解得00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,所以()(){}0,0,1,1A B = ,故答案为:{(0,0),(1,1)}13.用符号语言表示命题:对于所有的实数x ,满足210x x -+=:__________;该命题的否定为:___________.【答案】①.x R ∀∈,210x x -+=;②.0x ∃∈R ,20010x x -+≠.【解析】【分析】先根据题意写出命题的符号语言表示,再写出该命题的否定即可.【详解】解:命题“对于所有的实数x ,满足210x x -+=”的符号语言表示:x R ∀∈,210x x -+=;该命题的否定为:0x ∃∈R ,20010x x -+≠.故答案为:x R ∀∈,210x x -+=;0x ∃∈R ,20010x x -+≠.【点睛】本题考查含有一个量词的命题的符号表示、含有一个量词的命题的否定,是基础题.14.已知集合{}12A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是___________.【答案】[2,+∞)【解析】【分析】由A B ⊆列不等式求a 的取值范围,【详解】∵集合{}12A x x =<<,{}B x x a =<,A B ⊆,∴2a ≥.∴a 的取值范围是[2,+∞).故答案为:[2,+∞).15.设0a >,0b >,记2a b A +=,G =,2ab H a b=+分别为a ,b 的算术平均数、几何平均数、调和平均数,古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过a b ≠时A ,G ,H 的大小关系,则A ,G ,H 中最大的为______,最小的为______.【答案】①.A ②.H【解析】【分析】利用作差比较法和配方法,判断0A G ->与0G H ->即可得答案.【详解】解:因为0a >,0b >,a b ≠,所以2220222a b A G -+-=-=>,220a b ab G H a b a b a b +--=-==>+++所以A G >,G H >,所以A G H >>,所以A ,G ,H 中最大的为A ,最小的为H .故答案为:A ;H .16.反比例函数23ky x -=的图象所在的每一个象限内,y 随x 的增大而减小的充要条件是______.【答案】23k <【解析】【分析】利用反比例函数的性质,结合反比例系数k 的正负即可作出判断.【详解】由反比例函数ky x =的性质,当0k >时,函数ky x =在第一象限和第三象限内,y 随x 的增大而减小;当0k <时,函数ky x =在第二象限和第四象限内,y 随x 的增大而增大;所以满足题意的充要条件是230k ->,即23k <,故答案为:23k <.三.解答题17.已知集合2{3,1,21}A a a a =-+-,若3A -∈.求实数a 的值.【答案】0a =或1a =-【解析】【分析】分33a -=-与213a -=-讨论,同时也需要验证是否满足互异性,从而解得.【详解】解:若33a -=-,则0a =,此时211a -=-,211a +=,成立;若213a -=-,则1a =-;此时34a -=-,212a +=,故成立;故实数0a =或1a =-.18.已知集合{|123}A x a x a =-≤≤+,{|22}B x x =-<<,R a ∈.(1)当0a =时,求A B ,A B ⋂.(2)若A B B = ,求a 的取值范围.【答案】(1){|23}A B x x =-<≤ ,{|12}A B x x =-≤< (2){|4a a <-或11}2a -<<-【解析】【分析】(1)确定集合A ,B ,再求A B ,A B ⋂.(2)由A B B = 确定集合A ,B 的包含关系,再求参数的取值范围.【小问1详解】当0a =时,13{|}A x x =-≤≤.{|22}B x x =-<< ,所以{|23}A B x x =-<≤ ,{|12}A B x x =-≤< ;【小问2详解】A B B =Q U A B ∴⊆,①当=∅时,只需123a a ->+,即4a <-,此时A B ⊆.②当≠∅时,要满足A B ⊆,只需要−1≤2+3−1>−22+3<2,即112a -<<-.综上,a 的取值范围是{|4a a <-或11}2a -<<-.19.已知0a b >>,0c d <<,0e <,求证:e e a c b d >--【答案】证明见解析【解析】【分析】根据不等式性质即可证明.【详解】∵0c d <<,∴0c d ->->,又∵0a b >>,∴()()0a c b d +->+->,即0a c b d ->->,∴110a c b d<<--,又∵0e <,∴e e a c b d>--.20.已知命题p :x ∃∈R ,2210ax x +-=为假命题.(1)求实数a 的取值集合A ;(2)设非空集合{}64242B x m x m =-<-<,若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值集合.【答案】(1){}1A a a =<-(2){}|3m m ≤-【解析】【分析】(1)根据一元二次方程无解的条件即0∆<求解即可;(2)根据题意可得BA ,结合B ≠∅得到2132m m m +≤-⎧⎨<+⎩,解得即可.【小问1详解】因为命题p :x ∃∈R ,2210ax x +-=为假命题,所以命题p 的否定为:R x ∀∈,2210ax x +-≠,为真命题,0a ∴≠且Δ440a =+<,解得1a <-.∴{}1A a a =<-.【小问2详解】由64242m x m -<-<解得32m x m +<<,即{}|32B x m x m =<<+,若“x A ∈”是“x B ∈”的必要不充分条件,则B 是A 的真子集,又B ≠∅,所以2132m m m +≤-⎧⎨<+⎩,解得3m ≤-,所以实数m 的取值集合为{}|3m m ≤-.。
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一数学上学期第一次月考试题第I卷(选择题)一、单选题(本大题共8小题,共40.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A;,是x∈A的必要不充分条件.其中与命题A⊆B等价的有()A. 1个B. 2个C. 3个D. 4个2.命题“∃x∈R,x2+2x+2<0”的否定是()A. ∃x∈R,x2+2x+2≥0B. ∃x∈R,x2+2x+2>0C. ∀x∈R,x2+2x+2≥0D. ∀x∉R,x2+2x+2>03.已知t>0,则y=t2−4t+1t的最小值为()A. −2B. 12C. 1D. 24.设a∈R,若关于x的不等式x2−ax+1≥0在1≤x≤2上有解,则()A. a≤2B. a≥2C. a≤52D. a≥525.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A. a+b>0B. a2>b2C. 1a <1bD. a2+b2>2ab6.已知集合,B={x|3<x<22},且A∩B=A,则实数a的取值范围是()A. (−∞,9]B. (−∞,9)C. [2,9]D. (2,9)7.对于实数x,“|x|<1”是“x<1”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.已知实数a>0,b>0,且9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围为()A. [3,+∞)B. (−∞,3]C. (−∞,6]D. [6,+∞)二、多选题(本大题共4小题,共20.0分)9.已知a>0,b>0,则下列说法不正确的有()A. 1a−b >1aB. 若a+b≥2,则ab≥1C. 若a+b≥2,则ab≤1D. a3+b3≥a2b+ab210.下列命题为真命题的是()A.B. a2=b2是a=b的必要不充分条件C. 集合{(x,y)|y=x2}与集合{y|y=x2}表示同一集合D. 设全集为R,若A⊆B,则∁R B⊆∁R A11.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k−2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=⌀D. ∁P M=N12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A. M={−4,−2,0,2,4)为闭集合B. 正整数集是闭集合C. M={n|n=3k,k∈Z)为闭集合D. 若集合A1,A2为闭集合,则A1∪A2也为闭集合第II卷(非选择题)三、单空题(本大题共2小题,共10.0分)13.已知不等式(a−3)x2+2(a−3)x−6<0对一切x∈R恒成立,则实数a的取值范围_______.14.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.四、解答题(本大题共8小题,共96.0分)15.在①A∩B=A,②A∩(∁R B)=A,③A∩B=⌀这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合A={x|a−1<x<2a+3},B={x|x2−2x−8≤0}.(1)当a=2时,求A∪B;(2)若_______________,求实数a的取值范围.注:如果选择多个条件分别解答按第一个解答计分.16.已知集合A={x|0<ax+1≤5},集合B={x|−1<x≤2}.2(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.17.设全集为实数集R,A={x|−1≤x<4},B={x|−5<x<2},C={x|1−2a<x<2a}.(1)若C=⌀,求实数a的取值范围;(2)若C≠⌀,且C⊆(A∩B),求实数a的取值范围.18.设y=mx2+(1−m)x+m−2.(1)若不等式y≥−2对一切实数x恒成立,求实数m的取值范围;(2)在(1)的条件下,求m2+2m+5的最小值;m+1(3)解关于x的不等式mx2+(1−m)x+m−2<m−1(m∈R).19.已知定义在R上的函数f(x)=x2+(x−2)a−3x+2(其中a∈R).(1)若关于x的不等式f(x)<0的解集为(−2,2),求实数a的值;(2)若不等式f(x)−x+3≥0对任意x>2恒成立,求a的取值范围.20.已知集合A={x|x2+2x−3<0},集合B={x||x+a|<1}.(1)若a=3,求A∩B和A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.21.设集合A={|xx2+2x−3<0},集合B={|x−a−1<x<−a+1}.(1)若a=3,求A∪B和A∩B;(2)设命题p:x∈A,命题q:x∈∁R B,若q是p成立的必要不充分条件,求实数a的取值范围.22.已知m>0,n>0,关于x的不等式x2−mx−20<0的解集为{x|−2<x<n}.(1)求m,n的值;(2)正实数a,b满足na+mb=2,求15a +1b的最小值.答案和解析1.【答案】B【解析】【分析】本题主要考查了集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于中档题.根据集合的交集、并集、补集的定义结合Venn图判断集合间的关系,从而求出结论.【解答】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B; ②A∪B=A⇔B⊆A; ③A∩(∁I B)=⌀⇔A⊆B; ④A∩B=I,与A、B是全集I的真子集矛盾,不可能存在;⑤x∈B是x∈A的必要不充分条件⇔A⫋B;故和命题A⊆B等价的有①③共2个,故选:B2.【答案】C【解析】【分析】本题考查存在量词命题的否定,属于基础题.根据存在量词命题的否定为全称量词命题,即可求出结果.【解答】解:因为存在量词命题的否定为全称量词命题, 所以命题“∃x ∈ R ,x 2+2x +2<0”的否定是: ∀x ∈ R ,x 2+2x +2≥0. 故选C .3.【答案】A【解析】 【分析】本题主要考查利用基本不等式求最值,属于基础题.对原式进行化简,利用基本不等式求最值即可,注意等号取得的条件. 【解答】 解:t >0,则 y =t 2−4t+1t=t +1t−4≥2√t ·1t−4=−2,当且仅当t =1t ,即t =1时,等号成立, 则y =t 2−4t+1t的最小值为−2.故选A .4.【答案】C【解析】 【分析】本题主要考查了含参一元二次不等式中参数的取值范围,属于中档题. 根据题意得不等式对应的二次函数f (x )=x 2−ax +1的图象开口向上,分别讨论三种情况即可.【解答】解:由题意得:二次函数f (x )=x 2−ax +1的图象开口向上, 当,满足题意,当{Δ>0f(1)≥0或 f(2)≥0,解得a <−2或2<a ≤52, 当,满足题意,综上所述:a⩽52.故选C.5.【答案】D【解析】【分析】本题考查不等关系,不等式性质,是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,利用不等式性质证明命题正确即可.【解答】解:对于A,令a=−1,b=−2,故A错误,对于B,a2−b2=(a+b)(a−b),符号不确定,故B错误,对于C,令a=1,b=−2,故C错误,对于D,∵a>b,a2+b2−2ab=(a−b)2>0,∴a2+b2>2ab,故D正确.故选D.6.【答案】B【解析】【分析】本题考查了描述法、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力.根据A∩B=A可得出A⊆B,从而可讨论A是否为空集:A=⌀时,a+1>3a−5;A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解出a的范围即可.【解答】解:∵A∩B=A,∴A⊆B,且A={x|a+1≤x≤3a−5},B={x|3<x<22},∴①A=⌀时,a+1>3a−5,解得a<3,满足题意;②A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解得3≤a<9,∴综上得,实数a的取值范围是(−∞,9).故选:B.7.【答案】A【解析】【分析】本题考查充分条件、必要条件的判断,要注意准确理解概念和方法,属于基础题.双向推理,即从左右互推进行判断即可得解.【解答】解:当|x|<1时,显然有x<1成立,但是由x<1,未必有|x|<1,如x=−2<1,但|x|>1,故“|x|<1”是“x<1”的充分不必要条件;故选:A.8.【答案】A【解析】【分析】本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.【解答】解:∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a+9b)=10+ba+9ab⩾10+2√ba⋅9ab=16;当且仅当ba =9ab,即a=4, b=12时,(a+b)min=16;若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A.9.【答案】ABC【解析】【分析】本题考查了不等式性质,灵活运用不等式的性质是解决本题的关键,属于中档题.由题意和不等式的性质,逐个选项验证即可.【解答】解:对于A,若a>0,b>0,且a<b,则a−b<0,则1a−b <1a,故选项A说法不正确;对于B,若a=1.9,b=0.1,则满足a+b≥2,而ab=0.19,不满足ab≥1,故选项B 说法不正确;对于C,若a=3,b=2,满足a+b⩾2,,而ab=6不满足ab≤1,故选项C说法不正确;对于D,已知a>0,b>0,则(a3+b3)−(a2b+ab2)=a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a−b)(a2−b2)=(a+b)(a−b)2⩾0,当a=b时,等号成立,故选项D成立.故选ABC.10.【答案】ABD【解析】【分析】本题考查了真假命题的判定,必要条件、充分条件与充要条件的判断,考查了集合的相等,子集的定义,属于中档题.根据必要条件、充分条件与充要条件的判断、集合的相等及子集的定义逐项判断即可.【解答】解:对于A,当x=0时,x2⩽1,故A是真命题;对于B,当a2=b2时,则a=±b,当a=b时,则a2=b2,则a2=b2是a=b的必要不充分条件,故B是真命题;对于C,集合{(x,y)∣y=x2}与集合{y|y=x2}不表示同一集合,前者为点集,后者为数集,故C是假命题;对于D,根据子集定义,A⊆B时,集合A中元素,全都在集合B中,不在集合B中的元素一定不会在集合A中,当x∈∁R B时,就是x在集合R内,不在集合B中,故x一定不在集合A中,不在集合A中就一定在集合A的补集内,故x∈∁R A,D正确.故选ABD.11.【答案】CD【解析】【分析】本题主要考查了集合的含义、集合的交集、并集、补集运算、集合间的关系,属于中档题.根据集合的意义及集合运算分析解答.【解答】解:集合M表示所有被6除余数为1的整数,集合N表示所有被6除余数为4的整数,所以M不等于N,又因为被6除余数分为0,1,2,3,4,5六类,A选项错误,C选项正确;因为M∪N={x|x=6k+1,k∈Z}∪{x|x=6k+4,k∈Z}={x|x=6k+1或x=6k+4,k∈Z}所以M∪N={x|x=2k·3+1或x=(2k+1)·3+1,k∈Z}={x|x=3m+1,m∈Z},因为P={x|x=3k−2,k∈Z}={x|x=3(n+1)−2,n∈Z}={x|x=3n+1,n∈Z},所以M∪N=P,所以,所以B选项错误,D选项正确,故选CD.12.【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,属于中档题.根据闭集合的定义,对选项进行逐一判断,可得出答案.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a−b<0不是正整数,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,k1,k2∈Z,所以集合M是闭集合.D.设A 1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD故选ABD.13.【答案】(−3,3]【解析】解:由题意,a =3时,不等式等价于−6<0,显然恒成立。
高一上学期第一次月考数学试卷(有答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={2,3,4,5,6},B={x|x2−8x+12≥0},则A∩∁RB=()A. {2,3,4,5}B. {2,3,4,5,6}C. {3,4,5}D. {3,4,5,6}2. 已知集合A=0,1,2,4,B=xx<2,则A∩B的子集的个数为()A. 1B. 2C. 4D. 83. 若关于x的不等式|x−2|+|x+1|<a在R上无解,则实数a的取值范围为()A. (3,+∞)B. [3,+∞)C. (−∞,3)D. (−∞,3]4. 集合A={x|−2≤x≤2},B={x|−1<x<1},则()A. A∩B=BB. A∪B=BC. A∪B=RD. CR(A∪B)=R5. 已知集合A=x,yx2+y2=4,B=x,yx,y∈Z,则A∩B的子集个数为()A. 7B. 8C. 15D. 166. 命题“∀x∈R,3x2−2x−3>0”的否定为()A. ∀x∈R,3x2−2x−3≤0B. ∀x∉R,3x2−2x−3≤0C. ∃x∈R,3x2−2x−3≤0D. ∃x∉R,3x2−2x−3≤07. 命题“∀x>0,x2−x≤1”的否定是()A. ∀x≤0,x2−x≤1B. ∀x>0,x2−x>1C. ∃x≤0,x2−x≤1D. ∃x>0,x2−x>18. 设x1,x2是方程5x2−3x−2=0的两个实数根,则1x1+1x2的值为()A. 35B. −25C. −32D. 32二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9. 设a,b,c,d∈R,且a>b,c>d,则下列命题不正确的是()A. ac>bdB. a−c>b−dC. a+c>b+dD. ad>bc10. “方程x2+x+2m=0没有实数根”的一个充分不必要条件可以是()A. m≥18B. m>2C. m>1D. m<111. 已知全集U,A,B是U的非空子集,且B⊆∁UA,则必有()A. A∩B=⌀B. A⊆∁UBC. A⊇∁UBD. A⊆B12. 图中阴影部分表示的集合可以为()A. (∁UA)∩BB. (∁UB)∩AC. ∁A(A∩B)D. ∁U(∁UA)三、填空题(本大题共4小题,共20.0分)13. 已知函数y=x2+ax+b的零点是3和−1,则a+b=______.14. 已知集合A={x|2x+5x−2<1,x∈R},B={−2,0,2},则A∩B=______.15. 已知x>2,当x+1x−2取到最小值时,x的值为______.16. 已知集合A={x|a−1≤x≤a+2},B={x|x≤0或x≥5},若A∩B=⌀,则实数a的取值范围是______.四、解答题(本大题共6小题,共70.0分。
高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。
绵阳中学高级第一学期第一学月考试数学试题
一、选择题(每小题4分,共40分)
1.下列各组函数中,表示同一个函数的是( )
A .(),()f x x g x ==
B .2()()f x g x =
=
C .21
(),()11
x f x g x x x -=
=+-
D .()1
1,()f x x g x =
-=2.设集合{}
32M m m m Z =-<<∈且,{}
13N n n n Z =-≤≤∈且,
则M N =
( ) A .{}0,1
B .{}1,0,1-
C .{}0,1,2
D .{}1,0,1.2-
3.设函数221(1)
()2(1)x x f x x x x ⎧-≤=⎨+->⎩
,则1(
)(2)f f =( ) A .
15
16
B .2716
-
C .
89
D .16
4.函数0()(2)f x x =+-的定义域是( )
A .{}
1x x ≥-
B .{}
12x x x ≥-≠且
C .{}
12x x x >-≠且
D .{}
1x x >-
6.设全集{}{}
,0,1U R A x x B x x ==>=<-,则()()U U A
B B A =⎡⎤⎡⎤⎣⎦⎣⎦( )
A .∅
B .{}
0x x ≤
C .{}
1x x >-
D .{}
01x x x ><-或
7.设{}12345,,,,M a a a a a ⊆且{}{}12312,,,M a a a a a =,则集合M 的个数是(
)
A .1
B .2
C .3
D .4
8.设全集U R =,{}
{}2
21,M x y x N y y x
==+==-,则M 和N 的关系是( )
A .M N ⊂≠
B .N M ⊂≠
C .M N =
D .{}(1,1)M
N =-
9.设函数()f x 在(1,1)-上是奇函数,且在(-1,1)上是减函数,若(1)()0f m f m -+-<,则m 的取值范围是( )
A .1(0,)2
B .(1,1)-
C .1(1,)2
-
D .1(1,0)
(1,)2
- 10.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则
(3.5)f =( )
A .0.5
B .-1.5
C .-0.5
D .-1.5
二、填空题(每小题4分,共20分) 11.设全集
{}{}23,4,5,3,1a a A a =-+-=-且
{}1U
A =,
则实数a = 。
12.设()f x 是偶函数,当0x <时,()(1)f x x x =+,则当0x >时,
()f x = 。
13.设函数2
()2f x x ax =-+与()a
g x x
=在区间[]1,2上都是减函数,则实数a 的取值范围是。
14.函数y =的增区间是 。
15.若函数
y =
的定义域是R ,则实数a 的取值范围是 。
三、解答题(每小题10分,共40分)
16.设全集{}
4U x x =≤,集合{}23A x x =-<<,{}
33B x x =-<≤,求
(),()
U
U A B A B 。
17.设集合{}{}
25,121A x x B x m x m =-≤≤=+≤≤-。
(1)若{}
25A x x x Z =-≤≤∈且,求A 的非空真子集的个数; (2)若A B B =,求实数m 的取值范围。
18.在某服装批发市场,季节性服装当季节即将来临时,价格呈现上升趋势,设某服装开始时定价10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售,10周后,当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售。
(1)试求价格p (元)与周次t 之间的函数关系式;
(2)若此服装每周进价q (元)与周次t 之间的关系是[]21
(8)12,1,168
q t t =--+∈且t N ∈,试问该服装第几周每件销售利润最大。
19.已知函数22()3mx f x x n +=+是奇函数且5
(2)3
f =。
(1)求实数m 和n 的值;
(2)判断()f x 在(,1)-∞-上的单调性,并加以证明。
绵阳中学高2013级第一学期第一学月考试
数学试题答卷
二、填空题(每小题4分,共20分)
11.12.13.14.15.
三、解答题(每小题10分,共40分)
16.
17.
18.
19.
绵阳中学高2013级第一学期第一学月考试
数学试题答案
二、填空题(每小题4分) 11.-3
12.(1)x x -
13.01a <≤
14.[]1,1-
15.3
04
a ≤<
三、填空题(每小题4分)
16.解:{}23A B x x =-<<
(2分) {}()234U A B x x x ∴=≤-≤≤或
(3分) 又
{}234U
A x x x =≤-≤≤或
(2分)
{}()
323U A B x x x ∴=-<≤-=或
(3分) 17.解:(1){}2,1,0,1,2,3,4,5A =--
(2分)
A ∴的非空真子集有822254-=个
(2分)
(2)
A B B = B A ∴⊆
当B =∅时,121m m +>- 2m ∴< (2分)
当B ≠∅时,1212
1232153m m m m m m m +≤-≥⎧⎧⎪⎪+≥-∴≥-⎨⎨-≤≤⎪⎪⎩⎩
23m ∴≤≤ (3分)
综上:3m ≤
(1分)
18.解:(1)102(15)20(610)402(1116)t t t N p t t N t t t N +≤≤∈⎧⎪=≤≤∈⎨-≤≤∈⎪⎩且(1分)
且(1分)
且(1分)
(2)设销售此服装的利润为y (元),则
2
2216
(15)(1)81
(8)8(610)(1)81
(16)4(1116)8
t t t N y p q t t t N t t t N ⎧+≤≤∈⎪⎪⎪=-=-+≤≤∈⎨⎪⎪-+≤≤∈⎪⎩且分且分且(1分)
当15t ≤≤且t N ∈时,有5t =时,max 73
8
y =
(1分) 当610t ≤≤且t N ∈时,有6t =或10t =时,max 172
y = (1分) 当1116t ≤≤且t N ∈时,有11t =时,max 578
y =
(1分)
综上:5t =时,max 738
y =
答:第5周时,每件销售利润最大为
73
8
元。
(1分)
19.解:(1)()f x 为奇函数 ()()f x f x ∴-=-
222222
333mx mx mx x n x n x n
+++∴=-=-++--
故n n =- 0n ∴=
22
()3mx f x x
+∴=
(2分)
又5
(2)3
f =
425
63
m +∴
=
2m ∴=
(2分)
故2,0m n ==。
(2)由(1)知22221
()()33x f x x x x +=
=+ ()f x 在(,1)-∞-上是增函数,证明如下:
设任意的12,(,1)x x ∈-∞-且12x x <
(1分)
1212122121
()()()()33f x f x x x x x -=
+-+ 2112122()3x x x x x x ⎡⎤-=-+⎢⎥⎣⎦
121212
12
()3x x x x x x -=
-
(3分)
12x x < 120x x ∴-< 11x <- 21x <- 121
x x ∴>
1210x x ->
12()()0f x f x ∴-<
12()()f x f x <
(1分) 故()f x 在(,1)-∞-上是增函数
(1分)。