步进电机驱动器细分和不细分的区别
- 格式:doc
- 大小:284.50 KB
- 文档页数:9
步进电机的细分控制
步进电机的细分控制是指通过对电机的控制信号进行细分,使电机的转动角度变得更精确。通常情况下,步进电机有固定的步距角度,比如1.8度、0.9度等。但通过细分控制,可以将
这个步距角度进一步细分,从而实现更精确的控制。
细分控制常用的方法是使用微步驱动器。微步驱动器可以将电机的控制信号进行细分,使电机能够以更小的步距角度运动。常见的微步数有2、4、8、16、32、64等。例如,如果一个步进电机的步距角度为1.8度,通过设置微步数为16,就可以将每个步进分为16个微步,从而实现步距角度为0.1125度的细
分控制。
细分控制可以提高步进电机的精度和平滑性,减小震动和噪音。但同时也增加了系统的复杂性和控制难度。细分控制还可以实现步进电机的微调和精确定位,适用于需要高精度的应用场合,如3D打印机、数控机床和精密仪器等。
需要注意的是,细分控制会增加步进电机的功耗和热量产生,需要考虑电机和驱动器的散热问题。此外,选择合适的驱动器和控制方式也是细分控制的关键,不同的电机和应用场景可能需要不同的控制方法和参数设置。
步进电机驱动器及细分控制原理
引言:
步进电机是一种将电脉冲信号转化为机械转动的电动机。步进电机驱
动器是一种用于控制步进电机旋转的设备。步进电机可以通过控制驱动器
提供的电流和脉冲信号来精确地控制旋转角度和速度。本文将介绍步进电
机驱动器的工作原理以及细分控制的原理。
一、步进电机驱动器的工作原理:
1.输入电流转换:驱动器将输入的电流信号转换为电压信号。电流信
号通常由控制器产生,通过选择合适的电阻来控制输入电流的大小。
2.逻辑控制:驱动器还会接收来自控制器的脉冲信号。这些脉冲信号
会相互间隔地改变驱动器输出的电压,从而驱动步进电机旋转。脉冲信号
的频率和脉冲数量会影响步进电机的转速和旋转角度。
3.输出电压控制:驱动器会根据输入的电流和脉冲信号控制输出的电压,使其适应步进电机的工作要求。输出电压的频率和脉冲数有助于控制
步进电机旋转的速度和角度。
二、细分控制原理:
细分控制是指通过控制驱动器输出的电压脉冲信号来实现更精确的步
进电机控制。细分控制可以将步进电机的每个脉冲细分成更小的步进角度,从而提高步进电机的转动分辨率。
1.脉冲信号细分:通过改变驱动器的输出脉冲信号频率和脉冲数来实
现脉冲信号的细分。例如,如果驱动器输入100个脉冲,但只输出50个
脉冲给步进电机,那么每个输入的脉冲就会分为两个输出脉冲,步进电机的旋转角度将更精确。
2.电流细分:通过改变驱动器输出的电流大小来实现电流的细分。通常情况下,驱动器的输出电流会根据步进电机的转动需要进行控制。细分控制可以使驱动器能够实现更精确的电流控制,进而控制步进电机的转动精度。
步进电机细分原理
步进电机细分原理是通过将步进电机的每一步细分为更小的步数,以提高步进电机的精度和平滑性。
细分步进电机的方法有很多种,其中一种常用的方法是电子细分。电子细分是通过改变电流的形式或频率来实现细分效果。具体来说,当电流经过细分驱动器时,驱动器会根据细分的要求将电流细分为更小的步数,并按照指定的步序依次通电给步进电机的各相,从而实现步进电机的细分控制。
在电子细分中,常用的方法包括全流模式细分和半流模式细分。全流模式细分是将每一步细分为两个小步,即电流依次由A
相到AB相再到B相,再由B相到BC相再到C相,依此循环。这样可以提高步进电机的抗负载能力和静态扭矩,但精度相对较低。半流模式细分是将每一步细分为四个小步,即电流分别经过A相、AB相、B相、BC相、C相和CA相,依此循环。
这样可以提高步进电机的精度和平滑性,但抗负载能力和静态扭矩相对较低。
除了电子细分,还有一些其他方法用于步进电机的细分控制。例如,可以通过增加步进电机的极对数来实现细分效果,即增加步进电机的电磁线圈数量,从而提高步进电机的分辨率。此外,还可以通过使用微步驱动器来实现步进电机的细分控制,微步驱动器能够将每一步细分为更小的微步数,从而进一步提高步进电机的精度。
综上所述,步进电机细分原理是通过改变电流的形式或频率,
将每一步细分为更小的步数,以提高步进电机的精度和平滑性。在实际应用中,可以根据具体需求选择不同的细分方法和控制器,以实现最佳的细分效果。
步进电机的细分
步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC 单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。
细分电流波形的选择及量化
步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。
图中,a为电机转子偏离参考点的角度。ib滞后于ia,ic超前于ia。此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。且步进电机在这种情况下也最为平稳。将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。这些工作大部分由计算机来完成。
步进电机驱动器细分定义
要了解步进电机驱动器的“细分”,先要弄清步进电机“步距角”这个概念:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如电机给出的值为7.5°/15°(表示半步工作时为7.5°、整步工作时为15°),这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。
步进电机通过细分驱动器的驱动,其步距角变小了,如驱动器工作在10细分状态时,其步距角只为“电机固有步距角”的十分之一,也就是说:当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动7.5°;而用细分驱动器工作在10细分状态时,电机只转动了1.5°,这就是细分的基本概念。
细分功能完全是由驱动器靠精确控制电机的相电流所产生的,与电机无关。
2、步进电机驱动器细分的优点
驱动器细分后的主要优点为:
消除了电机的低频振荡:低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。
提高了电机的输出转矩:尤其是对三相反应式步进电机,其力矩比不细分时提高约百分之30-40 。
提高了电机的分辨率:由于减小了步距角、提高了步距的均匀度,“提高电机的分辨率”是不言而喻的。
3、步进电机驱动器细分的缺点
由于要连续将细分数据写入ADC,细分越多,数据量就大,占用CPU资源,所以一般仅仅作为一个单独的模块。
以上这些优点,尤其是在性能上的优点,并不是一个量的变化,而是质的飞跃。根据记录,原来使用不细分驱动器的用户通过比较后,大都改选为细分驱动器。所以建议最好选用细分驱动器。
步进电机驱动器的主要细分作用
摘要: 步进电机驱动器细分的主要作用是提高步进电机的精确率。国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,望广大用户一定要分清两者的本质不同: 1.“平滑”并不精确控制电...
步进电机驱动器细分的主要作用是提高步进电机的精确率。
国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,望广大用户一定要分清两者的本质不同:
1.“平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。
2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。
驱动器细分后的主要优点为:完全消除了电机的低频振荡。低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果
您的步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。提高了电机的输出转矩。尤其是对三相反应式电机,其力矩比不细分时提高约30-40% 。提高了电机的分辨率。由于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率‘是不言而喻的。
很多用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,山社电机工程师建议客户其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000 个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000 个脉冲/转的时候,步进电机驱动器接受好几个脉
步进电机细分原理
步进电机是一种将电能转化为机械能的电动机,它通过控制电流的方向和大小,实现精确的位置控制。在步进电机工作原理中,细分原理是非常重要的一部分。细分原理是指将步进电机的每个步进角度再次分割成更小的角度,以提高步进电机的精度和分辨率。接下来,我们将详细介绍步进电机的细分原理。
首先,步进电机的细分原理基于步进电机的结构特点,步进电机是通过控制电流的方向和大小来实现转动的,而且它的转动是按照一定的步进角度来进行的。在传统的步进电机中,一次步进角度通常为1.8度或者0.9度,这就意味着步进电机的转动是以这个角度为基本单位来进行的。然而,有时候我们需要更高的精度和分辨率,这时就需要采用细分原理来实现。
其次,细分原理是通过改变步进电机驱动器的控制方式来实现的。步进电机驱动器是控制步进电机转动的关键部件,它可以根据输入的脉冲信号来控制电机的转动。在细分原理中,我们可以通过改变驱动器的细分数来实现对步进角度的再次分割。比如,如果我们将步进电机的细分数设置为2,那么每个步进角度就会再次分割成两个小的角度,这样就可以实现更高的精度和分辨率。
另外,细分原理还可以通过改变驱动器的微步进模式来实现。微步进是指在每个步进角度中再次分割成更小的角度,并且在每个小角度上都施加不同的电流控制,从而实现对步进电机转动的更精细控制。微步进模式可以将步进电机的精度和分辨率提高到一个更高的水平,这对于一些对精度要求较高的应用来说是非常重要的。
最后,细分原理在步进电机的应用中具有非常重要的意义。通过细分原理,我们可以实现对步进电机转动的精确控制,提高步进电机的精度和分辨率,从而更好地满足各种应用的需求。同时,细分原理也为步进电机的进一步发展提供了技术支持,使得步进电机在各种领域得到了广泛的应用。
步进电机驱动器细分定义
要了解步进电机驱动器的“细分”,先要弄清步进电机“步距角”这个概念:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如电机给出的值为7.5°/15°(表示半步工作时为7.5°、整步工作时为15°),这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。
步进电机通过细分驱动器的驱动,其步距角变小了,如驱动器工作在10细分状态时,其步距角只为“电机固有步距角”的十分之一,也就是说:当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动7.5°;而用细分驱动器工作在10细分状态时,电机只转动了1.5°,这就是细分的基本概念。
细分功能完全是由驱动器靠精确控制电机的相电流所产生的,与电机无关。
2、步进电机驱动器细分的优点
驱动器细分后的主要优点为:
消除了电机的低频振荡:低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。
提高了电机的输出转矩:尤其是对三相反应式步进电机,其力矩比不细分时提高约百分之30-40 。
提高了电机的分辨率:由于减小了步距角、提高了步距的均匀度,“提高电机的分辨率”是不言而喻的。
3、步进电机驱动器细分的缺点
由于要连续将细分数据写入ADC,细分越多,数据量就大,占用CPU资源,所以一般仅仅作为一个单独的模块。
以上这些优点,尤其是在性能上的优点,并不是一个量的变化,而是质的飞跃。根据记录,原来使用不细分驱动器的用户通过比较后,大都改选为细分驱动器。所以建议最好选用细分驱动器。
步进电机驱动方式的分类及比较
步进电机驱动方式的分类及比较:步进电机驱动方法的分类主要有恒电压驱动方式、恒电流斩波驱动方式和细分驱动方式。以下是这几种驱动方式的简介及比较。
1 恒电压驱动方式
1.1 单电压驱动
单电压驱动是指在电机绕组工作过程中,只用一个方向电压对绕组供电。如图2所示,L为电机绕组,VCC为电源。当输入信号In为高电平时,提供足够大的基极电流使三极管T处于饱和状态,若忽略其饱和压降,则电源电压全部作用在电机绕组上。当In为低电平时,三极管截止,绕组无电流通过。
为使通电时绕组电流迅速达到预设电流,串入电阻Rc;为防止关断T时绕组电流变化率太大,而产生很大的反电势将T击穿,在绕组的两端并联一个二极管D和电阻Rd,为绕组电流提供一个泄放回路,也称“续流回路”。
单电压功率驱动电路的优点是电路结构简单、元件少、成本低、可靠性高。但是由于串入电阻后,功耗加大,整个功率驱动电路的效率较低,仅适合于驱动小功率步进电机。
1.2 高低压驱动
为了使通电时绕组能迅速到达设定电流,关断时绕组电流迅速衰减为零,同时又具有较高的效率,出现了高低压驱动方式。
如图3所示,Th、T1分别为高压管和低压管,Vh、V1分别为高低压电源,Ih、I1分别为高低端的脉冲信号。在导通前沿用高电压供电来提高电流的前沿上升率,而在前沿过后用低电压来维持绕组的电流。高低压驱动可获得较好的高频特性,但是由于高压管的导通时间不变,在低频时,绕组获得了过多的能量,容易引起振荡。可通过改变其高压管导通时间来解决低频振荡问题,然而其控制电路较单电压复杂,可靠性降低,一旦高压管失控,将会因电流太大损坏电机。
步进电机的细分
步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC 单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。
细分电流波形的选择及量化
步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。
图中,a为电机转子偏离参考点的角度。ib滞后于ia,ic超前于ia。此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。且步进电机在这种情况下也最为平稳。将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。这些工作大部分由计算机来完成。
步进电机驱动细分原理
步进电机驱动细分原理是通过改变电流波形来实现对步进电机精细控制的一种方法。在传统的双极性驱动方式中,每一相都只有两种状态:激活和不激活。而细分驱动则将每一相的激活状态进行进一步细分,使得电流具有更多个离散的状态。
细分驱动的基本原理是通过改变驱动器输出的电流波形来实现对步进电机转子位置的微调。具体来说,细分驱动使用一种特殊的电流控制技术,将总电流周期性地细分成多个小的电流脉冲。通过改变电流脉冲的大小和时序,可以在每一个基本步进角度上进行更细致的位置控制。
通常,在步进电机驱动器中使用的细分驱动方式有全步进和半步进两种。全步进是最基本的细分方式,在一个完整的电流周期内将电流波形分为两个相等的部分,每个部分激活的时间持续一个基本步进角度。而半步进则是在全步进的基础上,对激活时间进行了进一步细分,使得每个部分激活的时间只有全步进时间的一半,从而实现了更精细的位置控制。
细分驱动的实现离不开现代步进电机驱动器中的电流控制电路。这些电路通常包括高性能的电流感应器、精确的分流器和多级放大器等。通过这些电路的协同作用,细分驱动器可以在每个细分步进角度上产生相应大小和时序的电流脉冲,实现对步进电机位置的微调控制。
总而言之,步进电机驱动细分原理是通过改变电流波形来实现
对步进电机位置的微调。通过细分驱动方式,可以获得更精细的步进角度控制,提高步进电机的定位精度和运动平滑性。
步进电机的三种驱动方式
步进电机的驱动方式有整步驱动,半步驱动,细分驱动,这三种驱动方式。这三种驱动方式之间既有着联系,又有着他们的区别。现在大部分驱动器都支持细分驱动。
下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。
既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。
有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。
整步驱动
对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。
下图是整步驱动方式中,电机定子的电流次序示意图:
由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下:BB’→A’A→B’B→AA’→BB’
下图是这种驱动方式的电流矢量分割图:
可见,整步驱动方式的电流矢量把一个圆平均分割成四份。
步进电机驱动器有三种基本的步进电机驱动模式:整步、半步、细分。其主要区别在于电机线圈电流的控制精度(即激磁方式)。 1、整步驱动。 在整步运行中,同一种步进电机既可配整/半步驱动器也可配细分驱动器,但运行效果不同。步进电机驱动器按脉冲/方向指令对两相步进电机的两个线圈循环激磁(即将线圈充电设定电流),这种驱动方式的每个脉冲将使电机移动一个基本步距角,即1.80度 (标准两相电机的一圈共有200个步距角)。 2、半步驱动。 在单相激磁时,电机转轴停至整步位置上,驱动器收到下一脉冲后,如给另一相激磁且保持原来相继处在激磁状态,则电机转轴将移动半个步距角,停在相邻两个整步位置的中间。如此循环地对两相线圈进行单相然后双相激磁步进电机将以每个脉冲0.90度的半步方式转动。山社电机供应的所有的整/半步驱动器都可以执行整步和半步驱动,由驱动器拨码开关的拨位进行选择。和整步方式相比,半步方式具有精度高一倍和低速运行时振动较小的优点,所以实际使用整/半步驱动器时一般选用半步模式。 3、细分驱动。 细分驱动模式具有低速振动极小和定位精度高两大优点。对于有时需要低速运行(即电机转轴有时工作在60rpm以下)或定位精度要求小于0.90度的步进应用中,细分型步进电机驱动器获得广泛应用。其基本原理是对电机的两个线圈分别按正弦和余弦形的台阶进行精密电流控制,从而使得一个步距角的距离分成若干个细分步完成。例如十六细分的驱动方式可使每圈200标准步的步进电机达到每圈200*16=3200步的运行精度(即0.1125°)。 总的来说:在整步运行状态下,每输入一个脉冲,电机轴的角位移是一个步矩角,在半步运行状态下,每输入一个脉冲,电机轴的角位移是半个步矩角。步进电机最好不使用整步状态,整步状态时振动大步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下: P= Ω·M Ω=2π·n/60P=2πnM/60 其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米 P=2πfM/400(半步工作) 其中f为每秒脉冲数(简称PPS)步进电机的特点就是随着转速的提高,力矩急剧下降,两者的关系是非线性的。所以对于一台步进电机,不同转速下输出的功率是不同的。 你可以根据公式P=2πnM/60 算出这台电机任意转速下的功率。P = T * n / 9550 ; T = 9550P / nP 功率,千瓦,kw; T 扭矩,牛米,Nm; n 转速,每分钟转数,r / min。 9550是常数。是N/m,扭矩在物理学中就是力矩的大
什么是步进电机细分?是不是驱动器细分越高精度越高?
很多雷赛驱动器新用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000个脉冲/转的时候,步进电机驱动器接受好几个脉冲,步进电机才走一步,这样并不能提高步进电机的精度。
步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。细分后电机运行时的实际步距角是基本步距角的几分之一。(两相步进电机的基本步距角是1.8°,即一个脉冲走1.8°,如果没有细分,则是200个脉冲走一圈360°,细分是通过驱动器靠精确控制电机的相电流所产生的,与电机无关,如果是10细分,则发一个脉冲电机走0.18°,即2000个脉冲走一圈360°,电机的精度能否达到或接近0.18°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。以次类推。三相步进电机的基本步距角是1.2°,即一个脉冲走1.2°,如果没有细分,则是300个脉冲走一圈360°,如果是10细分,则发一个脉冲,电机走0.12°,即3000个脉冲走一圈360°,以次类推。在电机实际使用时,如果对转速要求较高,且对精度和平稳性要求不高的场合,不必选高细分。在实际使用时,如果转速很低情况下,应该选大细分,确保平滑,减少振动和噪音。)
怎么设置步进驱动器细分?
步进驱动器细分原理
步进驱动器是一种用于控制步进电机的装置。它通过控制电流变化来驱动步进电机,使步进电机按照预定的步进角度进行旋转。步进驱动器采用细分技术可以提高步进电机的运动精度和平滑性能。
步进电机是一种根据输入的脉冲信号按照一
定角度进行旋转的电机。在正常情况下,步进电
机按照每个脉冲信号旋转固定的角度,称为步距角。然而,步进电机的旋转是离散的,且步距角
是固定的。为了提高步进电机的分辨率和运动平
滑性,需要使用细分技术。
步进驱动器的细分原理基于驱动电流的控制。通常情况下,步进电机的驱动是通过控制电流的
大小和方向来实现的。在细分技术中,步进驱动
器会根据输入的细分信号来对电流进行微调。
细分信号是通过将输入脉冲信号进行处理得
到的。最基本的细分方式是将一个脉冲信号细分
为两个脉冲信号。当细分信号的数量增加时,步
进电机的运动精度和平滑性也会相应提高。通常,细分信号的数量是通过设置细分模式来确定的。
步进驱动器的细分原理主要有以下几个方面。
首先,步进驱动器会根据输入的脉冲信号来
确定步进电机的转动方向。根据脉冲信号的正负,驱动器会选择逆时针旋转或顺时针旋转。
其次,步进驱动器会根据细分信号对驱动电
流进行微调。细分信号的数量越多,驱动电流的
微调程度越高,从而提高了步进电机的分辨率和
平滑性能。
第三,步进驱动器可以通过改变细分模式来
调整细分信号的数量。通常,步进驱动器会提供
多种细分模式供用户选择。用户可以根据具体需
求选择合适的细分模式,以实现所需的运动性能。
最后,步进驱动器还可以通过调整驱动电流
的大小来控制步进电机的速度。通常,驱动电流
步进电机驱动方式(细分)概述
众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述。
如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。
既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。
有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。
整步驱动
对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。
下图是整步驱动方式中,电机定子的电流次序示意图:
由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下:
BB’→A’A→B’B→A A’→B B’
下图是这种驱动方式的电流矢量分割图:
可见,整步驱动方式的电流矢量把一个圆平均分割成四份。