最全的热设计基础知识及flotherm热仿真共118页
- 格式:ppt
- 大小:12.06 MB
- 文档页数:118
基于Flotherm的某机载设备热仿真分析摘要:热设计对提高电子设备运行的可靠性具有十分重要的意义,是电子设备结构设计中的重要环节。
本文首先简单介绍了电子设备传热类型,然后利用热分析软件Flotherm通过建立计算模型、边界条件、网格划分等,对某机载设备进行仿真分析,得到了温度分布,为该设备热设计提供理论参考,同时本文对于应用该软件分析其他电子设备热性能具有一定的参考意义。
关键词:电子设备;热仿真分析;Flotherm1引言随着电子技术的高速发展,电子设备朝着集成化、设备小型化等方向发展,由此使得电子设备过热的问题越来越突出[1]。
研究表明65%的电子设备失效是由温度过高引起的,过热是电子设备损坏的主要形式,严重限制了电子产品性能及可靠性的提高,降低了设备的工作寿命。
在产品设计阶段对其进行热仿真,能够确定模型中的温度分布,找出模型中温度最高点,从而改进结构设计,能够有效减少设计费用,缩短设计周期,提高产品的可靠性。
2 电子设备传热电子设备热传递主要有热传导、对流换热和辐射换热三种方式[2]。
热传导,是其于傅里叶定律,一般发生于同一种物质之中的传递;对流,可分为自然换热是流体流过某物体表面时所发生的热交换过程对流和强迫对流,对流一般发生于流体中。
辐射是物体以电磁波形式传递能量的过程。
3热仿真分析热仿真分析就是根据分析对象建立热分析模型,并设定模型各种属性、环境条件、功率大小等因素,模拟计算出温度场等数据,从而对其分析研究[3]。
该型设备工作温度为65℃,本文采用热分析软件Flotherm对该型电子设备高温工作时的温度场进行仿真分析。
3.1建模该机载设备为一密闭电子设备,包括一块PCB处理板及铝合金壳体。
PCB处理板上有诸多电子元器件,其中主要器件通过与壳体接触热传递,其余电子元器件通过壳体内空气对流换热将热量传递到铝合金壳体上,壳体再将热量散失到外部环境。
在建模过程中,由于PCB板上电子元器件多而密集,考虑到在保证结果精度的条件下减少计算量和运算时间,需要对印制电路板进行了适当简化,保留功耗和体积较大的元器件[4];简化后的主要发热器件有射频芯片、FPGA芯片、DSP、电源等,它们的功耗分别为0.8w、3w、1.5w、0.5w。
FloTHERM优化电子设备热设计FloTHERM作为电子行业热分析软件的市场领导者,拥有相当广泛的用户群。
很多公司都喜欢使用FloTHERM进行热传-流动分析,并对投资回报率信心十足。
在最近的一次调查中显示,98%的用户愿意向同行推荐FloTHERM,本文将详细介绍FloTHERM是如何帮助各行业的企业解决其所面临的热管理问题的。
一、概述FloTHERM是一款强大的应用于电子元器件以及系统热设计的三维仿真软件。
在任何实体样机建立之前,工程师就可以在设计流程初期快速并简易地创建虚拟模型,运行热分析以及测试设计更改。
FloTHERM采用先进的CFD(计算流体力学)技术,预测元器件、PCB板以及整机系统的气流、温度和传热,。
不同于其他热仿真件,FloTHERM是一款专为各类电子应用而打造的分析工具,其应用行业包含:◎电脑和数据处理;◎电信设备和网络系统;◎半导体设备,集成电路(ICs)以及元器件;◎航空和国防系统;◎汽车和交通运输系统;◎消费电子。
FloTHERM以专业、智能和自动而著称,区别于其他传统分析软件。
这些功能可协助热设计专家们将产能最大化,帮助机械设计工程师将学习过程减到最少,并为客户提供分析软件行业最高比率的投资回报率。
在中小型企业,一年时间,投资FloTHERM所带来的收益就是投资成本的数倍,公司规模越大,成本回收的速度越快。
用户可以从以下方面体验到使用FloTHERM解决电子热设计问题所带来的惊人利益:◎生产硬件前解决热设计问题;◎减少重新设计工作,降低每单位产品成本;◎增强可靠性和提高整体的工程设计程度;◎显著地缩短上市时间。
建模功能#e#二、建模功能1.SmartPartsFloTHERM软件提供了专门应用于电子设备热分析的参数化模型创建宏(SmartParts),能够迅速、准确地为大量电子设备建模。
SmartParts技术应用范围:散热器、风扇、印刷电路板、热电冷却器、机箱、元器件、热管、多孔板和芯片。
2 热设计的基础知识2.1基本术语2.1.1 热环境设备或元器件的表面温度、外形及黑度,周围流体的种类、温度、压力及速度,每一个元器件的传热通路等情况2.1.2 热特性设备或元器件温升随热环境变化的特性,包括温度、压力和流量分布特征。
2.1.3 热阻热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,表明了1W热量所引起的温升大小,单位为℃/W或K/W,可分为导热热阻,对流热阻,辐射热阻及接触热阻四类(热扩展效应)2.1.4 导热系数表征材料导热性能的参数指标,它表明单位时间、单位面积、负的温度梯度下的导热量,单位为W/m.K或W/m.℃2.1.5 对流换热系数反映两种介质间对流换热过程的强弱,表明当流体与壁面的温差为1 ℃时,在单位时间通过单位面积的热量,单位为W/m2.K或W/m2.℃2.1.6 流阻反映流体流过某一通道时所产生的压力差。
单位帕斯卡或mm.H2O或巴2.1.7 定性温度确定对流换热过程中流体物理性质参数的温度2.1.8 肋片的效率表示某一扩展表面单位面积所能传递的热量与在同样条件下光壁所能传递的热量之比2.1.9 黑度实际物体的辐射力和同温度下黑体的辐射力之比,它取决于物体种类、表面状况、表面温度及表面颜色。
2.1.10 雷诺数R e(Reynlods)雷诺数的大小反映了流体流动时的惯性力与粘滞力的相对大小,雷诺数是说明流体流态的一个相似准则。
2.1.11普朗特数P r(Prandtl)普朗特数是说明流体物理性质对换热影响的相似准则。
2.1.12 格拉晓夫数G r(Grashof)格拉晓夫数反映了流体所受的浮升力与粘滞力的相对大小,是说明自然对流换热强度的一个相似准则,G r越大,表面流体所受的浮升力越大,流体的自然对流能力越强。
2.1.13努谢尔特数N u(Nusseltl)反映出同一流体在不同情况下的对流换热强弱,是一个说明对流换热强弱的相似准则。
2.1.14 传热单元数NTU为无因次量,其数值反映了在给定条件下所需传热面积的大小,是一个反映冷板散热器综合技术经济性能的指标。