【精品】2016年福建省福州十中九年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:353.50 KB
- 文档页数:20
2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a25.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= .14.若二次根式在实数范围内有意义,则的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若+y=10,y=1,则3y+y3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得>﹣1,解不等式②,得>3,由①②可得,>3,故原不等式组的解集是>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为+10﹣=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A 与B关于y轴对称,当>0时,y随的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当>0时,y随的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= (+2)(﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:2﹣4=(+2)(﹣2).故答案为:(+2)(﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则的取值范围是≥﹣1 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出的取值范围.【解答】解:若二次根式在实数范围内有意义,则:+1≥0,解得≥﹣1.故答案为:≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r .(填“<”“=”“<”)下【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若+y=10,y=1,则3y+y3的值是98 .【考点】代数式求值.【分析】可将该多项式分解为y(2+y2),又因为2+y2=(+y)2﹣2y,然后将+y与y的值代入即可.【解答】解:3y+y3=y(2+y2)=y[(+y)2﹣2y]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知+y与y 的值,则2+y2=(+y)2﹣2y,再将+y与y的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB 即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=,则∠ABD=,∠DBC=,∠C=2.∵∠A+∠ABC+∠C=180°,∴+2+2=180°.解得:=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=,则AQ=MQ=1+,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=,则AQ=MQ=1+,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(+1)2=32+2,解得:=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(﹣1)2+2,原点代入即可.(2)设抛物线为y=a2+b,则h=﹣,b=﹣2ah代入抛物线解析式,求出(用a、h表示),又抛物线y=t2也经过A(h,),求出,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣22+4.(2)∵抛物线经过原点,∴设抛物线为y=a2+b,∵h=﹣,∴b=﹣2ah,∴y=a2﹣2ah,∵顶点A(h,),∴=ah2﹣2ah,抛物线y=t2也经过A(h,),∴=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=2﹣上,∴=h2﹣h,又=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前福建省福州市2016年初中毕业会考、高级中等学校招生考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中的无理数是( ) A .0.7B .12C .πD .8- 2.如图是3个相同的小正方体组合成的几何体,它的俯视图是( )AB CD3.如图,直线a ,b 被直线c 所截,1∠与2∠的位置关系是 ( ) A .同位角 B .内错角 C .同旁内角D .对顶角 4.下列算式中,结果等于6a 的是( ) A .42a a +B .222a a a ++C .23a aD .222a aa5.不等式组10,30x x +⎧⎨-⎩>>的解集是( ) A .1x ->B .3x >C .13x -<<D .3x < 6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )ABCD8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是(,)A m n ,(2,1)B -,(,)C m n --,则点D 的坐标是( ) A .(2,1)-B .(2,1)--C .(1,2)--D .(1,2)-9.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB 上一点(不与A ,B 重合),连接OP ,设POB α∠=,则点P 的坐标是( ) A .(sin ,sin )αα B .(cos ,cos )αα C .(cos ,sin )ααD .(sin ,cos )αα10.对于不同的x ,下列关于年龄的统计量不会发生改变的是( )A .平均数,中位数B .众数,中位数毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)C .平均数,方差D .中位数,方差11.已知点(1,)A m -,(1,)B m ,(2,1)C m +在同一个函数图象上,这个函数图象可以是( )ABCD12.下列选项中,能使关于x 的一元二次方程240ax x c -+=一定有实数根的是 ( ) A .0a >B .0a =C .0c >D .0c =第Ⅱ卷(非选择题 共114分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 13.分解因式:24x -= .14.,则x 的取值范围是 .15.已知四个点的坐标分别是(1,1)-,(2,2),23(,)32,1(5,)5--,从中随机选取一个点,在反比例函数1y x=图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下(填“>”“=”“<”).17.若10x y +=,1xy =,则33x y xy +的值是 .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(O ∠)为60,A ,B ,C 都在格点上,则tan ABC ∠的值是 .三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分)计算:0|1|(2016)--.20.(本小题满分7分)化简:2()a b a b a b+--+.21.(本小题满分8分)一个平分角的仪器如图所示,其中AB AD =,BC DC =. 求证:BAC DAC ∠=∠.22.(本小题满分8分) 列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?23.(本小题满分10分)福州市2011—2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人; (2)与上一年相比,福州市常住人口数增加最多的年份是 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由. 24.(本小题满分12分)如图,正方形ABCD 内接于O ,M 为AD 的中点,连接BM ,CM . (1)求证:BM CM =;(2)当O 的半径为2时,求BM 的长.25.(本小题满分12分)数学试卷 第5页(共32页) 数学试卷 第6页(共32页)如图,在ABC △中,1AB AC ==,BC =,在AC 边上截取AD BC =,连接BD . (1)通过计算,判断2AD 与AC CD 的大小关系; (2)求ABD ∠的度数.26.(本小题满分13分)如图,矩形ABCD 中,4AB =,3AD =,M 是边CD 上一点,将ADM △沿直线AM 对折,得到ANM △.(1)当AN 平分MAB ∠时,求DM 的长;(2)连接BN ,当1DM =时,求ABN △的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.27.(本小题满分13分)已知,抛物线2(0)y ax bx c a =++≠经过原点,顶点为(,)(0)A h k h ≠. (1)当1h =,2k =时,求抛物线的解析式;(2)若抛物线2(0)y tx t =≠也经过A 点,求a 与t 之间的关系式; (3)当点A 在抛物线2y x x =-上,且21h -≤<时,求a 的取值范围.备用图福建省福州市2016年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷2.【答案】C【解析】人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】三视图3.【答案】B【解析】直线a,b被直线c所截,∠1与∠2是内错角.故选B.【提示】根据内错角的定义求解.【考点】同位角、内错角、同旁内角;对顶角、邻补角.4.【答案】D【考点】同底数幂的乘法;合并同类项.【解析】A.426a a a+≠,据此判断即可.B.根据合并同类项的方法,可得2222a a a a++=.3C.根据同底数幂的乘法法则,可得235=.a a aD.根据同底数幂的乘法法则,可得2226=.a a a a∵426+≠,a a a∴选项A的结果不等于a6;∵2222++=,3a a a a∴选项B的结果不等于a6;∵235=,a a a∴选项C的结果不等于a6;4∵2226a a a a=,∴选项D的结果等于a6.故选:D.5.【答案】B【解析】1030 xx+>⎧⎨->⎩解不等式①,得1x>-,解不等式②,得3x>,由①②可得,3x>,故原不等式组的解集是3x>.故选B.【提示】根据解不等式组的方法可以求得原不等式组的解集.【考点】解一元一次不等式组.6.【答案】A【解析】A.不可能事件发生的概率为0,所以A选项正确;B.随机事件发生的概率在0与1之间,所以B选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【提示】一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.【考点】概率的意义.7.【答案】B【解析】表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【提示】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【考点】相反数,数轴5 / 1668.【答案】A【解析】∵A (m ,n ),C (-m ,-n ), ∴点A 和点C 关于原点对称, ∵四边形ABCD 是平行四边形, ∴D 和B 关于原点对称, ∵B (2,-1),∴点D 的坐标是(-2,1). 故选:A .【提示】由点的坐标特征得出点A 和点C 关于原点对称,由平行四边形的性质得出D 和B 关于原点对称,即可得出点D 的坐标.【考点】平行四边形的性质,坐标与图形性质 9.【答案】C【解析】过P 作PQ ⊥OB ,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标. 过P 作PQ ⊥OB ,交OB 于点Q , 在Rt OPQ ∆中,1,POQ OP α=∠=, ∴sin ,cos PQ OQOP OPαα==,即 则P 的坐标为(cos sin αα,), 故选C .【考点】解直角三角形,坐标与图形性质 10.【答案】B【解析】由表可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=, 则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:14岁,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B .7 / 16【提示】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【考点】统计量的选择,频数(率)分布表 11.【答案】C【解析】∵点A (-1,m ),B (1,m ), ∴A 与B 关于y 轴对称,故A ,B 错误; ∵B (1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误. 故选C .【提示】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案. 【考点】坐标确定位置,函数的图象 12.【答案】D【解析】∵一元二次方程有实数根, ∴2(4)41640ac ac ∆=--=-≥,且0a ≠, ∴4ac ≤,且0a ≠;A 、若0a >,当1a =、5c =时,54ac =>,此选项错误;B 、0a ≠不符合一元二次方程的定义,此选项错误;C 、若0c >,当1a =、5c =时,54ac =>,此选项错误;D 、若0c =,则04ac =≤,此选项正确; 故选:D .【提示】根据方程有实数根可得4ac ≤,且0a ≠,对每个选项逐一判断即可。
2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是()✌. . .⇨ .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是()✌. . . ..如图,直线♋,♌被直线♍所截, 与 的位置关系是()✌.同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于♋ 的是()✌.♋ ♋ .♋ ♋ ♋ .♋ ❿♋ .♋ ❿♋ ❿♋.不等式组的解集是()✌.⌧>﹣ .⌧> .﹣ <⌧< .⌧<.下列说法中,正确的是()✌.不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次.✌, 是数轴上两点,线段✌上的点表示的数中,有互为相反数的是()✌. . . ..平面直角坐标系中,已知 ✌的三个顶点坐标分别是✌(❍,⏹), ( ,﹣ ), (﹣❍,﹣⏹),则点 的坐标是()✌.(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于✌, 两点, 是上一点(不与✌, 重合),连接 ,设 ↑,则点 的坐标是()✌.(♦♓⏹↑,♦♓⏹↑) .(♍☐♦↑,♍☐♦↑) .(♍☐♦↑,♦♓⏹↑) .(♦♓⏹↑,♍☐♦↑).下表是某校合唱团成员的年龄分布年龄 岁 频数 ⌧ ﹣⌧对于不同的⌧,下列关于年龄的统计量不会发生改变的是()✌.平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,这个函数图象可以是()✌. . . ..下列选项中,能使关于⌧的一元二次方程♋⌧ ﹣ ⌧♍一定有实数根的是()✌.♋> .♋ .♍> .♍二、填空题(共 小题,每小题 分,满分 分).分解因式:⌧ ﹣ ..若二次根式在实数范围内有意义,则⌧的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数⍓图象上的概率是..如图所示的两段弧中,位于上方的弧半径为❒上,下方的弧半径为❒下,则❒上❒下.(填❽<❾❽❾❽<❾).若⌧⍓,⌧⍓,则⌧ ⍓⌧⍓ 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 ,✌, , 都在格点上,则♦♋⏹ ✌的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简:♋﹣♌﹣..一个平分角的仪器如图所示,其中✌✌, .求证: ✌ ✌..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形✌内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 ✌中,✌✌, ,在✌边上截取✌,连接 .( )通过计算,判断✌ 与✌❿的大小关系;( )求 ✌的度数..如图,矩形✌中,✌,✌, 是边 上一点,将 ✌沿直线✌对折,得到 ✌☠.( )当✌☠平分 ✌时,求 的长;( )连接 ☠,当 时,求 ✌☠的面积;( )当射线 ☠交线段 于点☞时,求 ☞的最大值..已知,抛物线⍓♋⌧ ♌⌧♍(♋♊)经过原点,顶点为✌(♒, )(♒♊).( )当♒, 时,求抛物线的解析式;( )若抛物线⍓♦⌧ (♦♊)也经过✌点,求♋与♦之间的关系式;( )当点✌在抛物线⍓⌧ ﹣⌧上,且﹣ ♎♒< 时,求♋的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是()✌. . .⇨ .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是⇨,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,⇨为无限不循环小数,⇨为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题..如图是 个相同的小正方体组合而成的几何体,它的俯视图是()✌. . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线♋,♌被直线♍所截, 与 的位置关系是()✌.同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线♋,♌被直线♍所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于♋ 的是()✌.♋ ♋ .♋ ♋ ♋ .♋ ❿♋ .♋ ❿♋ ❿♋【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】✌:♋ ♋ ♊♋ ,据此判断即可.:根据合并同类项的方法,可得♋ ♋ ♋ ♋ .:根据同底数幂的乘法法则,可得♋ ❿♋ ♋ .:根据同底数幂的乘法法则,可得♋ ❿♋ ❿♋ ♋ .【解答】解: ♋ ♋ ♊♋ ,选项✌的结果不等于♋ ;♋ ♋ ♋ ♋ ,选项 的结果不等于♋ ;♋ ❿♋ ♋ ,选项 的结果不等于♋ ;♋ ❿♋ ❿♋ ♋ ,选项 的结果等于♋ .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:♊底数必须相同;♋按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是()✌.⌧>﹣ .⌧> .﹣ <⌧< .⌧<【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式♊,得⌧>﹣ ,解不等式♋,得⌧> ,由♊♋可得,⌧> ,故原不等式组的解集是⌧> .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法..下列说法中,正确的是()✌.不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 (✌) 、不可能发生事件的概率 (✌) 对✌、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解:✌、不可能事件发生的概率为 ,所以✌选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选✌.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件✌发生的频率❍⏹会稳定在某个常数☐附近,那么这个常数☐就叫做事件✌的概率,记为 (✌) ☐;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 (✌) ;不可能发生事件的概率 (✌) ..✌, 是数轴上两点,线段✌上的点表示的数中,有互为相反数的是()✌. . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段✌上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段✌符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段✌上的点与原点的距离..平面直角坐标系中,已知 ✌的三个顶点坐标分别是✌(❍,⏹), ( ,﹣ ), (﹣❍,﹣⏹),则点 的坐标是()✌.(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点✌和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ✌(❍,⏹), (﹣❍,﹣⏹),点✌和点 关于原点对称,四边形✌是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选:✌.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于✌, 两点, 是上一点(不与✌, 重合),连接 ,设 ↑,则点 的坐标是()✌.(♦♓⏹↑,♦♓⏹↑) .(♍☐♦↑,♍☐♦↑) .(♍☐♦↑,♦♓⏹↑) .(♦♓⏹↑,♍☐♦↑)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ✈,交 于点✈,在直角三角形 ✈中,利用锐角三角函数定义表示出 ✈与 ✈,即可确定出 的坐标.【解答】解:过 作 ✈,交 于点✈,在 ♦✈中, , ✈↑,♦♓⏹↑,♍☐♦↑,即 ✈♦♓⏹↑, ✈♍☐♦↑,则 的坐标为(♍☐♦↑,♦♓⏹↑),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁 频数 ⌧ ﹣⌧对于不同的⌧,下列关于年龄的统计量不会发生改变的是()✌.平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为⌧﹣⌧,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的⌧,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,这个函数图象可以是()✌. . . .【考点】坐标确定位置;函数的图象.【分析】由点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,可得✌与 关于⍓轴对称,当⌧> 时,⍓随⌧的增大而增大,继而求得答案.【解答】解: 点✌(﹣ ,❍), ( ,❍),✌与 关于⍓轴对称,故✌, 错误;( ,❍), ( ,❍),当⌧> 时,⍓随⌧的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于⌧的一元二次方程♋⌧ ﹣ ⌧♍一定有实数根的是()✌.♋> .♋ .♍> .♍【考点】根的判别式.【分析】根据方程有实数根可得♋♍♎,且♋♊,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ♋♍﹣ ♋♍♏,且♋♊,♋♍♎,且♋♊;✌、若♋> ,当♋、♍时,♋♍> ,此选项错误;、♋不符合一元二次方程的定义,此选项错误;、若♍> ,当♋、♍时,♋♍> ,此选项错误;、若♍,则♋♍♎,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式:⌧ ﹣ (⌧)(⌧﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:⌧ ﹣ (⌧)(⌧﹣ ).故答案为:(⌧)(⌧﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则⌧的取值范围是⌧♏﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出⌧的取值范围.【解答】解:若二次根式在实数范围内有意义,则:⌧♏,解得⌧♏﹣ .故答案为:⌧♏﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子(♋♏)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数⍓图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数⍓图象上,再让在反比例函数⍓图象上点的个数除以点的总数即为在反比例函数⍓图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数⍓图象上,在反比例函数⍓图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为❒上,下方的弧半径为❒下,则❒上❒下.(填❽<❾❽❾❽<❾)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,❒上 ❒下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ⇨ ( )弧长公式:●(弧长为●,圆心角度数为⏹,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若⌧⍓,⌧⍓,则⌧ ⍓⌧⍓ 的值是 .【考点】代数式求值.【分析】可将该多项式分解为⌧⍓(⌧ ⍓ ),又因为⌧ ⍓ (⌧⍓) ﹣ ⌧⍓,然后将⌧⍓与⌧⍓的值代入即可.【解答】解:⌧ ⍓⌧⍓⌧⍓(⌧ ⍓ )⌧⍓☯(⌧⍓) ﹣ ⌧⍓( ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知⌧⍓与⌧⍓的值,则⌧ ⍓ (⌧⍓) ﹣ ⌧⍓,再将⌧⍓与⌧⍓的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 ,✌, , 都在格点上,则♦♋⏹ ✌的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接☜✌、☜,先证明 ✌☜,根据♦♋⏹ ✌,求出✌☜、☜即可解决问题.【解答】解:如图,连接☜✌,☜,设菱形的边长为♋,由题意得 ✌☜☞, ☜☞,✌☜♋,☜♋✌☜,♦♋⏹ ✌ .故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣ .【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简:♋﹣♌﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ♋﹣♌﹣(♋♌)♋﹣♌﹣♋﹣♌﹣ ♌.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中✌✌, .求证: ✌ ✌.【考点】全等三角形的性质.【分析】在 ✌和 ✌中,由三组对边分别相等可通过全等三角形的判定定理( )证得 ✌☹✌,再由全等三角形的性质即可得出结论.【解答】证明:在 ✌和 ✌中,有,✌☹✌( ),✌ ✌.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 ✌☹✌.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了⌧张,乙种票买了⍓张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了⌧张,乙种票买了⍓张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ☟,年增加: ☟,年增加: ☟,年增加: ☟,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形✌内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形✌是正方形,✌,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ⇨,的长 ⇨⇨.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 ✌中,✌✌, ,在✌边上截取✌,连接 .( )通过计算,判断✌ 与✌❿的大小关系;( )求 ✌的度数.【考点】相似三角形的判定.【分析】( )先求得✌、 的长,然后再计算出✌ 与✌❿的值,从而可得到✌ 与✌❿的关系;( )由( )可得到 ✌❿,然后依据对应边成比例且夹角相等的两三角形相似证明 ✌,依据相似三角形的性质可知 ✌, ,然后结合等腰三角形的性质和三角形的内角和定理可求得 ✌的度数.【解答】解:( ) ✌, ,✌, ﹣ .✌ ,✌❿ .✌ ✌❿.( ) ✌,✌ ✌❿, ✌❿,即.又 ,✌., ✌.✌.✌ ✌, .设 ✌⌧,则 ✌⌧, ⌧, ⌧.✌ ✌ ,⌧⌧⌧.解得:⌧.✌.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 ✌是解题的关键..如图,矩形✌中,✌,✌, 是边 上一点,将 ✌沿直线✌对折,得到 ✌☠.( )当✌☠平分 ✌时,求 的长;( )连接 ☠,当 时,求 ✌☠的面积;( )当射线 ☠交线段 于点☞时,求 ☞的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ✌☠ ✌,证出 ✌ ✌☠ ☠✌,由三角函数得出 ✌❿♦♋⏹ ✌即可;( )延长 ☠交✌延长线于点✈,由矩形的性质得出 ✌ ✌✈,由折叠性质得出✌ ✌✈,✌☠✌, ☠,得出 ✌✈ ✌✈,证出 ✈✌✈,设☠✈⌧,则✌✈✈⌧,证出 ✌☠✈,在 ♦✌☠✈中,由勾股定理得出方程,解方程求出☠✈,✌✈,即可求出 ✌☠的面积;( )过点✌作✌☟☞于点☟,证明 ✌☟☞,得出对应边成比例 ,得出当点☠、☟重合(即✌☟✌☠)时,✌☟最大, ☟最小, ☞最小, ☞最大,此时点 、☞重合, 、☠、 三点共线,由折叠性质得:✌✌☟,由✌✌证明 ✌☟☹☞,得出 ☞☟,由勾股定理求出 ☟,得出 ☞,即可得出结果.【解答】解:( )由折叠性质得: ✌☠☹✌,✌☠ ✌,✌☠平分 ✌, ✌☠ ☠✌,✌ ✌☠ ☠✌,四边形✌是矩形,✌,✌,✌❿♦♋⏹ ✌♦♋⏹ ;( )延长 ☠交✌延长线于点✈,如图 所示:四边形✌是矩形,✌,✌ ✌✈,由折叠性质得: ✌☠☹✌,✌ ✌✈,✌☠✌, ☠,✌✈ ✌✈,✈✌✈,设☠✈⌧,则✌✈✈⌧,✌☠,✌☠✈,在 ♦✌☠✈中,由勾股定理得:✌✈ ✌☠ ☠✈ ,(⌧) ⌧ ,解得:⌧,☠✈,✌✈,✌,✌✈, ☠✌ ☠✌✈ ✌☠❿☠✈ ;( )过点✌作✌☟☞于点☟,如图 所示:四边形✌是矩形,✌,☟✌ ☞,✌☟ ☞,✌☟☞,,✌☟♎✌☠,✌,当点☠、☟重合(即✌☟✌☠)时,✌☟最大, ☟最小, ☞最小, ☞最大,此时点 、☞重合, 、☠、 三点共线,如图 所示:由折叠性质得:✌✌☟,✌,✌☟,在 ✌☟和 ☞中,,✌☟☹☞(✌✌),☞☟,由勾股定理得: ☟ ,☞,☞的最大值 ﹣ ☞﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线⍓♋⌧ ♌⌧♍(♋♊)经过原点,顶点为✌(♒, )(♒♊).( )当♒, 时,求抛物线的解析式;( )若抛物线⍓♦⌧ (♦♊)也经过✌点,求♋与♦之间的关系式;( )当点✌在抛物线⍓⌧ ﹣⌧上,且﹣ ♎♒< 时,求♋的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为⍓♋(⌧﹣ ) ,原点代入即可.( )设抛物线为⍓♋⌧ ♌⌧,则♒﹣,♌﹣ ♋♒代入抛物线解析式,求出 (用♋、♒表示),又抛物线⍓♦⌧ 也经过✌(♒, ),求出 ,列出方程即可解决.( )根据条件列出关于♋的不等式即可解决问题.【解答】解:( ) 顶点为✌( , ),设抛物线为⍓♋(⌧﹣ ) ,抛物线经过原点,♋( ﹣ ) ,♋﹣ ,抛物线解析式为⍓﹣ ⌧ ⌧.( ) 抛物线经过原点,设抛物线为⍓♋⌧ ♌⌧,♒﹣,♌﹣ ♋♒,⍓♋⌧ ﹣ ♋♒⌧,顶点✌(♒, ),♋♒ ﹣ ♋♒,抛物线⍓♦⌧ 也经过✌(♒, ),♦♒ ,♦♒ ♋♒ ﹣ ♋♒ ,♦﹣♋,( ) 点✌在抛物线⍓⌧ ﹣⌧上,♒ ﹣♒,又 ♋♒ ﹣ ♋♒ ,♒,﹣ ♎♒< ,﹣ ♎< ,♊当 ♋> 时,即♋>﹣ 时,,解得♋> ,♋当 ♋< 时,即♋<﹣ 时,解得♋♎﹣,综上所述,♋的取值范围♋> 或♋♎﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
2016年福建省福州市中考数学试卷一、选择题1.(2016•福州)下列实数中的无理数是()A. 0.7B.C. πD. ﹣82.(2016•福州)如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.3.(2016•福州)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 对顶角4.(2016•福州)下列算式中,结果等于a6的是()A. a4+a2B. a2+a2+a2C. a2•a3D. a2•a2•a25.(2016•福州)不等式组的解集是()A. x>﹣1B. x>3C. ﹣1<x<3D. x<36.(2016•福州)下列说法中,正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.(2016•福州)A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.8.(2016•福州)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A. (﹣2,1)B. (﹣2,﹣1)C. (﹣1,﹣2)D. (﹣1,2)9.(2016•福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A. (sinα,sinα)B. (cosα,cosα)C. (cosα,sinα)D. (sinα,cosα)10.(2016•福州)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差11.(2016•福州)已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B.C. D.12.(2016•福州)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A. a>0B. a=0C. c>0D. c=0二、填空题(共6小题,每小题4分,满分24分)13.(2016•福州)分解因式:x2﹣4=________.14.(2016•福州)若二次根式在实数范围内有意义,则x的取值范围是________.15.(2016•福州)已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.16.(2016•福州)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r下.(填“<”“=”“<”)17.(2016•福州)若x+y=10,xy=1,则x3y+xy3的值是________.18.(2016•福州)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是________.三、解答题(共9小题,满分90分)19.(2016•福州)计算:|﹣1|﹣+(﹣2016)0.20.(2016•福州)化简:a﹣b﹣.21.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.(2016•福州)列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(2016•福州)福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了________万人;(2)与上一年相比,福州市常住人口数增加最多的年份是________;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(2016•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.(2016•福州)如图,在△ABC中,AB=AC=1,BC= ,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.(2016•福州)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、选择题1.(2016•福州)下列实数中的无理数是()A. 0.7B.C. πD. ﹣8【答案】C【考点】无理数的认识【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为整数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.(2016•福州)如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【分析】根据从上边看得到的图形是俯视图,可得答案.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2016•福州)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 对顶角【答案】B【考点】对顶角、邻补角,同位角、内错角、同旁内角【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【分析】根据内错角的定义求解.本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.(2016•福州)下列算式中,结果等于a6的是()A. a4+a2B. a2+a2+a2C. a2•a3D. a2•a2•a2【答案】D【考点】同底数幂的乘法【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.(2016•福州)不等式组的解集是()A. x>﹣1B. x>3C. ﹣1<x<3D. x<3【答案】B【考点】解一元一次不等式组【解答】解:解不等式,得x>﹣1,解不等式,得x>3,由可得,x>3,故原不等式组的解集是x>3.故选B.【分析】根据解不等式组的方法可以求得原不等式组的解集.本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.(2016•福州)下列说法中,正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【考点】概率的意义【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.(2016•福州)A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.【答案】B【考点】数轴及有理数在数轴上的表示,相反数及有理数的相反数【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.(2016•福州)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A. (﹣2,1)B. (﹣2,﹣1)C. (﹣1,﹣2)D. (﹣1,2)【答案】A【考点】坐标与图形性质,平行四边形的性质【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.(2016•福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A. (sinα,sinα)B. (cosα,cosα)C. (cosα,sinα)D. (sinα,cosα)【答案】C【考点】坐标与图形性质,解直角三角形【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα= ,cosα= ,即PQ=sinα,OQ=cosα,则P的坐标为(c osα,sinα),故选C.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.(2016•福州)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差【答案】B【考点】频数(率)分布表,常用统计量的选择【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.(2016•福州)已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B.C. D.【答案】C【考点】坐标确定位置,函数的图象【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A 与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.(2016•福州)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A. a>0B. a=0C. c>0D. c=0【答案】D【考点】根的判别式【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.(2016•福州)分解因式:x2﹣4=________.【答案】(x+2)(x﹣2)【考点】因式分解﹣运用公式法【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.(2016•福州)若二次根式在实数范围内有意义,则x的取值范围是________.【答案】x≥﹣1【考点】二次根式有意义的条件【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【分析】根据二次根式的性质可求出x的取值范围.主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.(2016•福州)已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.【答案】【考点】概率公式,反比例函数图象上点的坐标特征【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y= 图象上,∴在反比例函数y= 图象上的概率是2÷4= .故答案为:.【分析】先判断四个点的坐标是否在反比例函数y= 图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y= 图象上的概率,依此即可求解.考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(2016•福州)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r下.(填“<”“=”“<”)【答案】<【考点】弧长的计算【解答】解:如图,r上<r下.故答案为<.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.(2016•福州)若x+y=10,xy=1,则x3y+xy3的值是________.【答案】98【考点】代数式求值,因式分解-提公因式法【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2﹣2xy,然后将x+y 与xy的值代入即可.本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.(2016•福州)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是________.【答案】【考点】菱形的性质,解直角三角形【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE= a,EB=2a∴∠AEB=90°,∴tan∠ABC= = = .故答案为.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC= ,求出AE、EB即可解决问题.本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.(2016•福州)计算:|﹣1|﹣+(﹣2016)0.【答案】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【考点】有理数的混合运算,立方根,零指数幂【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(2016•福州)化简:a﹣b﹣.【答案】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【考点】分式的加减法【分析】先约分,再去括号,最后合并同类项即可.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【答案】证明:在△ABC和△ADC中,有,所以△ABC≌△ADC(SSS),所以∠BAC=∠DAC.【考点】全等三角形的性质【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(2016•福州)列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【答案】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张【考点】二元一次方程组的实际应用-鸡兔同笼问题【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(2016•福州)福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了________万人;(2)与上一年相比,福州市常住人口数增加最多的年份是________;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【答案】(1)7(2)2014(3)解:预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人【考点】折线统计图【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;故答案为:(1)7;(2)2014.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(2016•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴= ,∵M为中点,∴= ,∴+ = + ,即= ,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长= ×4π= π【考点】正方形的性质,圆内接四边形的性质【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.(2016•福州)如图,在△ABC中,AB=AC=1,BC= ,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【答案】(1)解:∵AB=BC=1,BC= ,∴AD= ,DC=1﹣= .∴AD2= = ,AC•CD=1× = .∴AD2=AC•CD(2)解:∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°【考点】相似三角形的判定【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【答案】(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB= S△NAQ= ×AN•NQ= ××3×4= ;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH= = = ,∴CF= ,∴DF的最大值=DC﹣CF=4﹣【考点】角平分线的性质,矩形的性质【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM= 即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例= ,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(2016•福州)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【答案】(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h= ,∵﹣2≤h<1,∴﹣2≤ <1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣【考点】抛物线与x轴的交点,二次函数的应用【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a 的不等式即可解决问题.本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a25.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= .14.若二次根式在实数范围内有意义,则的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若+y=10,y=1,则3y+y3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得>﹣1,解不等式②,得>3,由①②可得,>3,故原不等式组的解集是>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B 关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为+10﹣=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当>0时,y随的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当>0时,y随的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= (+2)(﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:2﹣4=(+2)(﹣2).故答案为:(+2)(﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则的取值范围是≥﹣1 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出的取值范围.【解答】解:若二次根式在实数范围内有意义,则:+1≥0,解得≥﹣1.故答案为:≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r .(填“<”“=”“<”)下【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若+y=10,y=1,则3y+y3的值是98 .【考点】代数式求值.【分析】可将该多项式分解为y(2+y2),又因为2+y2=(+y)2﹣2y,然后将+y与y的值代入即可.【解答】解:3y+y3=y(2+y2)=y[(+y)2﹣2y]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知+y与y 的值,则2+y2=(+y)2﹣2y,再将+y与y的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB 即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=,则∠ABD=,∠DBC=,∠C=2.∵∠A+∠ABC+∠C=180°,∴+2+2=180°.解得:=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=,则AQ=MQ=1+,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=,则AQ=MQ=1+,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(+1)2=32+2,解得:=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(﹣1)2+2,原点代入即可.(2)设抛物线为y=a2+b,则h=﹣,b=﹣2ah代入抛物线解析式,求出(用a、h表示),又抛物线y=t2也经过A(h,),求出,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣22+4.(2)∵抛物线经过原点,∴设抛物线为y=a2+b,∵h=﹣,∴b=﹣2ah,∴y=a2﹣2ah,∵顶点A(h,),∴=ah2﹣2ah,抛物线y=t2也经过A(h,),∴=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=2﹣上,∴=h2﹣h,又=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
福州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形()A . 与原图形关于y轴对称B . 与原图形关于x轴对称C . 与原图形关于原点对称D . 向x轴的负方向平移了一个单位2. (2分)方程x2=2x的解是()A . x=0B . x=2C . x=0或x=2D . x=±3. (2分)若抛物线的顶点在轴正半轴上,则的值为()A .B .C . 或D .4. (2分)(2017·益阳) 关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A . b2﹣4ac>0B . b2﹣4ac=0C . b2﹣4ac<0D . b2﹣4ac≤05. (2分)如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣的图象上,OA'交反比例函数y= 的图象于点C,且OC=2CA',则k的值为()A . 4B .C . 8D . 76. (2分)如图,E,B,A,F四点共线,点D是正三角形ABC的边AC的中点,点P是直线A上B异于A,B 的一个动点,且满足,则()A . 点P一定在射线BE上B . 点P一定在线段AB上C . P可以在射线AF上,也可以在线段AB上D . 点P可以在射线BE上,也可以在线段7. (2分)已知函数y=k(x+1)(x﹣),下列说法:①方程k(x+1)(x﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k>3时,抛物线顶点在第三象限;④若k<0,则当x<﹣1时,y随着x的增大而增大.其中正确的序号是()A . ①②B . .②③C . .①③D . .①③④8. (2分)为了让返乡农民工尽快实现再就业,某区加强了对返乡农民工培训经费的投入.2008年投入3000万元,预计2010年投入5000万元.设培训经费的年平均增长率为x,根据题意,下面所列的方程正确的是()A . 3000(1+x)2=5000B . 3000(1+x)+3000(1+x)2=5000C . 3000x2=5000D . 3000+3000(1+x)+3000(1+x)2=50009. (2分)下列四个命题中,①直径是弦;②经过三点可以作圆;③三角形的外心到各顶点的距离都相等;④钝角三角形的外心在三角形的外部.正确的有()A . 1个B . 2个C . 3个D . 4个10. (2分) (2019九上·襄阳期末) 已知二次函数的图象如图所示,则下列结论:① ;②方程有两个不相等的异号根;随的增大而增大;④ ,其中正确的个数()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共7分)11. (1分) (2016九上·宁江期中) 在平面直角坐标系中,点P(2,4)关于原点对称点的坐标是________.12. (1分)将二次函数y=x2﹣2x+4化成y=(x﹣h)2+k的形式,则k=________13. (2分)(2017·江阴模拟) 已知关于x的方程x2+x+m=0的一个根是2,则m=________,另一根为________.14. (1分) (2017九上·临海期末) 已知⊙O的半径为5厘米,当OP=6厘米时,点P在⊙O________.(填“内”或“外”或“上”)15. (1分)把抛物线y=x2 向右平移3个单位,再向下平移1个单位,则得到抛物线________.16. (1分) (2017八下·民勤期末) 已知a、b、c是△ABC的三边长,且满足关系式 +|a﹣b|=0,则△ABC的形状为________.三、解答题 (共8题;共82分)17. (5分)阅读材料,解答问题.解方程:(4x﹣1)2﹣10(4x﹣1)+24=0解:把4x﹣1视为一个整体,设4x﹣1=y,则原方程可化为:y2﹣10y+24=0解得:y1=6,y2=4∴4x﹣1=6 或4x﹣1=4∴x1=, x2=以上方法就叫换元法,达到了降次的目的,体现了转化的思想.请仿照上例,请用换元法解答问题:已知(x2+y2+1)(x2+y2﹣3)=5,求x2+y2的值.18. (5分) (2019九上·鄂尔多斯期中) 如图,△ABC的∠BAC=120º,以BC为边向形外作等边△BCD,把△ABD 绕着D点按顺时针方向旋转60º后到△ECD的位置。
2015-2016学年福建省福州十中九年级(上)期中数学试卷一.选择题(每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)若关于x的方程(m﹣1)x2﹣3x+2=0是一元二次方程,则()A.m>1 B.m≠0 C.m≥0 D.m≠12.(4分)已知一元二次方程(x﹣1)(x﹣2)=0,则下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个负数根3.(4分)下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个4.(4分)二次函数y=x2﹣2x+1的图象与y轴的交点坐标是()A.(0,1) B.(2,0) C.(1,1) D.(2,2)5.(4分)将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)26.(4分)若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.27.(4分)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知E′D′=2,则BC的值是()A.1 B.2 C.4 D.58.(4分)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°9.(4分)已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2013 B.2015 C.2014 D.201010.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题,每小题4分,满分20分;请将答案填在答题卡相应位置)11.(4分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.12.(4分)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.13.(4分)如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是△DAC绕点C逆时针旋转°得到.14.(4分)二次函数y=x2+(m+1)x+m的图象与x轴的两个交点A、B,且AB=2,那么m=.15.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),且对称轴为x=1,给出下列四个结论:①b2﹣4ac>0;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论的序号是.(把你认为正确的序号都写上)三、解答题:(7题,共90分)16.(14分)解方程:(1)3x(x﹣1)=2(x﹣1);(2)x2﹣3x+1=0.17.(14分)(1)如图,正方形网格中,△ABC的顶点及点O都在格点上.①画出△ABC关于点O中心对称的对称图形;②画出△ABC绕点O顺时针旋转90°的图形.(2)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1﹣x2=0,求实数m的值.18.(11分)二次函数y=x2+bx+c的图象经过点(1,0),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴方程;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象,并根据图象直接写出不等式x2+bx+c>0的解集.19.(12分)“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:(1)降价后每件商品盈利元,商场日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,商场日盈利可达到2240元?20.(12分)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上一点,BE=DF.矩形AEGF的边EG与边CD相交于点H.设BE=x,四边形DHGF的面积为y.(1)求:y与x之间的函数关系式,并写出x的取值范围;(2)当BE为何值时,四边形DHGF的面积最大?21.(13分)如图,已知四边形ABCD是正方形,△AEF是等边三角形,E、F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.22.(14分)已知平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)过坐标系的原点O,与x轴的另一个交点为B,顶点坐标为A(,1).(1)求:a、b、c的值;(2)将△OAB绕原点O顺时针旋转120°,旋转后的三角形设为△OA′B′(点A′对应点A,点B′对应点B),试判断点B′是否在抛物线y=ax2+bx+c(a≠0)上;(3)设点P是抛物线y=ax2+bx+c(a≠0)上的一点,且PA=PA′,写出点P的坐标.2015-2016学年福建省福州十中九年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)若关于x的方程(m﹣1)x2﹣3x+2=0是一元二次方程,则()A.m>1 B.m≠0 C.m≥0 D.m≠1【解答】解:∵关于x的方程(m﹣1)x2﹣3x+2=0是一元二次方程,∴m﹣1≠0,∴m≠1.故选:D.2.(4分)已知一元二次方程(x﹣1)(x﹣2)=0,则下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个负数根【解答】解:∵(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2,∴方程有两个不相等的实数根,故选:A.3.(4分)下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选:C.4.(4分)二次函数y=x2﹣2x+1的图象与y轴的交点坐标是()A.(0,1) B.(2,0) C.(1,1) D.(2,2)【解答】解:x=0时,y=1,所以.图象与y轴交点的坐标是(0,1).故选:A.5.(4分)将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)2【解答】解:y=2x2向上平移3个单位得y=2x2+3.故选:A.6.(4分)若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.2【解答】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故选:C.7.(4分)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知E′D′=2,则BC的值是()A.1 B.2 C.4 D.5【解答】解:∵E′D′是△A′B′C′的中位线,∴B′C′=2D′E′=4,∵△ABC以点O为旋转中心,旋转180°后得到△A′B′C′,∴B′C′=BC=4.故选:C.8.(4分)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°【解答】解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC﹣∠DOC=50°.故选C.9.(4分)已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2013 B.2015 C.2014 D.2010【解答】解:∵抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2014=1+2014=2015,故选:B.10.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:根据图表,抛物线与y轴交与(0,6),①正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x==,∴②正确;设抛物线经过点(x,0),∴x==解得:x=3∴抛物线一定经过(3,0),故③错误;在对称轴左侧,y随x增大而增大,④错误故选:B.二.填空题(共5小题,每小题4分,满分20分;请将答案填在答题卡相应位置)11.(4分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).12.(4分)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是a<1.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a>0,解得:a<1.∴a的取值范围是a<1.故答案为:a<1.13.(4分)如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是△DAC绕点C逆时针旋转60°得到.【解答】解:∵△ABC和△ECD都是等边三角形,与△EBC的边相等的线段有AC=BC,CD=CE,线段AD,CD构成△DAC,∴△EBC可以看作是△DAC绕点C逆时针旋转60°得到.故答案是:60.14.(4分)二次函数y=x2+(m+1)x+m的图象与x轴的两个交点A、B,且AB=2,那么m=﹣1或3.【解答】解:依题意得:x2+(m+1)x+m=0,则抛物线与x轴的两个交点横坐标是a、b,所以|a﹣b|===2,即(m+1)2﹣4m=4,解得m1=﹣1,m2=3.故答案是:﹣1或3.15.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),且对称轴为x=1,给出下列四个结论:①b2﹣4ac>0;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论的序号是①③.(把你认为正确的序号都写上)【解答】解:①由图象可知:抛物线与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故①正确;②抛物线交y轴的正半轴,所以c>0,∵抛物线对称轴为x=﹣=1>0,且抛物线开口向下,∴a<0,b>0∴bc>0,故②错误;③∵x=﹣=1,∴2a+b=0,故③正确;④由图象可知:当x=1时,y=a+b+c>0,故④错误.故答案为①③.三、解答题:(7题,共90分)16.(14分)解方程:(1)3x(x﹣1)=2(x﹣1);(2)x2﹣3x+1=0.【解答】解:(1)3x(x﹣1)=2(x﹣1),3x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(3x﹣2)=0,x1=1,x2=;(2)x2﹣3x+1=0,∵a=1,b=﹣3,c=1,∴△=(﹣3)2﹣4=5>0,∴x=,∴x1=,x2=.17.(14分)(1)如图,正方形网格中,△ABC的顶点及点O都在格点上.①画出△ABC关于点O中心对称的对称图形;②画出△ABC绕点O顺时针旋转90°的图形.(2)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1﹣x2=0,求实数m的值.【解答】(1)解:①△ABC关于点O中心对称的对称图形△A′B′C′如图所示;②△ABC绕点O顺时针旋转90°的图形△A″B″C″如图所示;(2)解:∵x1﹣x2=0,∴x1=x2,∴△=b2﹣4ac=0,∴(2m﹣1)2﹣4m2=0,∴4m=1,解得m=.18.(11分)二次函数y=x2+bx+c的图象经过点(1,0),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴方程;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象,并根据图象直接写出不等式x2+bx+c>0的解集.【解答】解:(1)将(1,0),(3,0)代入y=x2+bx+c,得:,解得:b=﹣4,c=3;(2)由(1)知抛物线解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,顶点坐标为(2,﹣1),对称轴为直线x=2;(3)函数图象如下:由图象可知,不等式x2+bx+c>0的解集为x<1或x>3.19.(12分)“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:(1)降价后每件商品盈利(20﹣x)元,商场日销售量增加10x件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,商场日盈利可达到2240元?【解答】解:(1)(20﹣x),10x(2)根据题意得:(20﹣x)(100+10x)=2240,整理得,x2﹣10x+24=0,解得x1=4,x2=6答:每件商品降价4或6元时,商场日盈利可达到2240元.20.(12分)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上一点,BE=DF.矩形AEGF的边EG与边CD相交于点H.设BE=x,四边形DHGF的面积为y.(1)求:y与x之间的函数关系式,并写出x的取值范围;(2)当BE为何值时,四边形DHGF的面积最大?【解答】解:(1)∵AEGF为矩形,ABCD为正方形,∴∠F=∠G=∠HDF=90°,∴四边形DHGF是矩形,又DH=AE=AB﹣BE=4﹣x,∴y=DF•DH=x(4﹣x)=﹣x2+4x(0<x<4);(2)y=﹣x2+4x=﹣(x﹣2)2+4,∵a=﹣1<0,∴当x=2时,y有最大值为4,则当BE为2时,四边形DHGF的面积最大,最大值是4.21.(13分)如图,已知四边形ABCD是正方形,△AEF是等边三角形,E、F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=AD,AF=AE,∠B=∠D=90°,在Rt△ABF与Rt△ADE,,∴Rt△ABF≌Rt△ADE,∴∠DAE=∠BAF又∠DAE+∠BAF=∠BAD﹣∠EAF=90°﹣60°=30°∴∠DAE=15°;(2)设BF=x,由(1)可知DE=BF=x,则,CF=CE=1﹣xAB2+BF2=AF2,CF2+CE2=EF2,AF=EF,得:12+x2=2(1﹣x)2x1=2+,x2=2,∵0<x<1,∴x1=2+(舍去),x=2,∴S=S四边形ABCD﹣2S△ABF﹣S△EFC=12﹣2×1×(2﹣)﹣(﹣1)2=2△AEF﹣3;(3)依题意,点A可落在AB边上或BC边上.当点A落在AB边上时,设此时点A的对应点为M,则EA=EM,∵∠EAB=75°,∴∠AME=75°,∴m=∠AEM=180°﹣75°﹣75°=30°,当点A落在边BC上时,∵EA=EF,点A旋转后与点F重合,∴m=∠AEF=60°,综上,m=30°或m=60°.22.(14分)已知平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)过坐标系的原点O,与x轴的另一个交点为B,顶点坐标为A(,1).(1)求:a、b、c的值;(2)将△OAB绕原点O顺时针旋转120°,旋转后的三角形设为△OA′B′(点A′对应点A,点B′对应点B),试判断点B′是否在抛物线y=ax2+bx+c(a≠0)上;(3)设点P是抛物线y=ax2+bx+c(a≠0)上的一点,且PA=PA′,写出点P的坐标.【解答】解:(1)∵抛物线的顶点坐标为A(,1),∴抛物线解析式可变形为y=a+1,又∵抛物线过原点O(0,0),∴0=a+1,解得:a=﹣.∴y=﹣+1=﹣x2+x,∴a=﹣,b=,c=0.(2)令y=0,则﹣x2+x=0,解得:x1=0,x2=2.△OAB绕原点O顺时针旋转120°,即∠BOB′=120,则点B′在第三象限.过点B′作B′E⊥x轴于点E,则∠B′OE=60°,∵OB=OB′=2,∴B′E=OB′•sin∠B′OE=3,OE=OB′•cos∠B′OE=,∴点B′(﹣,﹣3).把x=﹣代入抛物线的解析式,得:y=﹣+1=﹣3,∴点B′(﹣,﹣3)在抛物线上.(3)∵A(,1),∴tan∠AOB=,OA==2,∴∠AOB=30°,∵△OAB绕原点O顺时针旋转120°,∴点A′在y轴负半轴上,∴A′(0,﹣2).设点P的坐标为(m,﹣m2+m),则PA=,PA′=,∵PA=PA′,∴=,整理,得:m2﹣3m=0,解得:m1=0,m2=3,经检验m1=0,m2=3均为方程的解,∴点P的坐标为(0,0)或(3,﹣3).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。
在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。
新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D)A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D)A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH ⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°.∴四边形CBEG 是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y =2x 2-1的顶点坐标是(A)A .(0,-1)B .(0,1)C .(-1,0)D .(1,0) 2.如果x =-1是方程x 2-x +k =0的解,那么常数k 的值为(D) A .2 B .1 C .-1 D .-23.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-1 4.小明在解方程x 2-4x -15=0时,他是这样求解的:移项,得x 2-4x =15,两边同时加4,得x 2-4x +4=19,∴(x -2)2=19.∴x -2=±19.∴x 1=2+19,x 2=2-19.这种解方程的方法称为(B)A .待定系数法B .配方法C .公式法D .因式分解法 5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y =-2x 2+x 经过A(-1,y 1)和B(3,y 2)两点,那么下列关系式一定正确的是(C)A .0<y 2<y 1B .y 1<y 2<0C .y 2<y 1<0D .y 2<0<y 17.已知a ,b ,c 分别是三角形的三边长,则方程(a +b)x 2+2cx +(a +b)=0的根的情况是(D)A .有两个不相等的实数根B .有两个相等的实数根C .可能有且只有一个实数根D .没有实数根8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D) A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH 绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A 1AC 1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°.∴四边形CBEG是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元. 22.(本题12分)综合与实践: 问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE.∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新九年级(上)数学期中考试试题(含答案)(1)一、选择题(本大题共10小题,共30.0分) 1. 下列运算中,结果正确的是( )A. B. C.D.2. 若是关于x .y 的方程2x -y +2a =0的一个解,则常数a 为( )A. 1B. 2C. 3D. 43. 下列由左到右边的变形中,是因式分解的是( )A.B.C.D.4. 如图,直线a ∥b ,∠1=120°,则∠2的度数是( ) A. B. C. D.5. 已知a m =6,a n =3,则a 2m -3n的值为( )A.B.C. 2D. 96. 下列代数式变形中,是因式分解的是( )A.B. C.D.7. 已知4y 2+my +9是完全平方式,则m 为( )A. 6B.C.D. 12 8. 803-80能被( )整除.A. 76B. 78C. 79D. 82 9. 如果x =3m +1,y =2+9m ,那么用x 的代数式表示y 为( )A. B. C. D. 10. 已知关于x ,y 的方程组,则下列结论中正确的是( )①当a =5时,方程组的解是 ; ②当x ,y 的值互为相反数时,a =20; ③不存在一个实数a 使得x =y ; ④若22a -3y =27,则a =2.A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.在方程4x-2y=7中,如果用含有x的式子表示y,则y=______.12.将方程3x+2y=7变形成用含y的代数式表示x,得到______.13.若要(a-1)a-4=1成立,则a=______.14.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______°.15.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要C类卡片______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共2小题,共20.0分)17.计算:(1)(8a3b-5a2b2)÷4ab(2)(2x+y)2-(2x+3y)(2x-3y)18.我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材______张,B型板材______张;y个,根据题意完成表格:③做成的竖式和横式两种无盖礼品盒总数最多是______个;此时,横式无盖礼品盒可以做______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共5小题,共36.0分)19.化简:(1)(2a2)4÷3a2(2)(1+a)(1-a)+a(a-3)20.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.21.已知a-b=7,ab=-12.(1)求a2b-ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.23.已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.(1)请问BD和CE是否平行?请你说明理由.(2)AC和BD的位置关系怎样?请说明判断的理由.答案和解析1.【答案】A【解析】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选:A.A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.【答案】B【解析】解:将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选:B.将x=-1,y=2代入方程中计算,即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.【答案】D【解析】解:A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选:D.直接利用因式分解的意义分别判断得出答案.此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【答案】C【解析】解:∵a∥b∴∠3=∠2,∵∠3=180°-∠1,∠1=120°,∴∠2=∠3=180°-120°=60°,故选C.如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.本题考查平行线的性质,利用两直线平行同位角相等是解题的关键,记住平行线的性质,注意灵活应用,属于中考常考题型.5.【答案】A【解析】解:∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=,故选:A.原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式乘积的形式是解题关键.7.【答案】C【解析】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.原式利用完全平方公式的结构特征求出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:∵803-80=80×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80能被79整除.故选:C.先提取公因式80,再根据平方查公式进行二次分解,即可得803-80=80×81×79,继而求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关键.9.【答案】C【解析】解:x=3m+1,y=2+9m,3m=x-1,y=2+(3m)2,y=(x-1)2+2,故选:C.根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.本题考查了幂的乘方与积的乘方,先化成要求的形式,把3m代入得出答案.10.【答案】D【解析】解:把a=5代入方程组得:,解得:,本选项错误;由x与y互为相反数,得到x+y=0,即y=-x,代入方程组得:,解得:a=20,本选项正确;若x=y,则有,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确;方程组解得:,由题意得:2a-3y=7,把x=25-a,y=15-a代入得:2a-45+3a=7,解得:a=,本选项错误,则正确的选项有,故选:D.把a=5代入方程组求出解,即可做出判断;根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;假如x=y,得到a无解,本选项正确;根据题中等式得到2a-3y=7,代入方程组求出a的值,即可做出判断.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】【解析】解:4x-2y=7,解得:y=.故答案为:将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【答案】x=【解析】解:由题意可知:x=故答案为:x=根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.13.【答案】4,2,0【解析】解:a-4=0,即a=4时,(a-1)a-4=1,当a-1=1,即a=2时,(a-1)a-4=1.当a-1=-1,即a=0时,(a-1)a-4=1故a=4,2,0.故答案为:4,2,0.根据任何非0的数的0次幂等于1,以及1的任何次幂等于1、-1的偶次幂等于1即可求解.本题考查了整数指数幂的意义,正确进行讨论是关键.14.【答案】25【解析】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=180°-55°-100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.根据三角形的内角和定理求出∠A,再根据平移的性质可得AB∥A′B′,然后根据两直线平行,内错角相等可得∠AB′A′=∠A.本题考查了平移的性质,三角形的内角和定理,平行线的性质,熟记平移的性质得到AB∥A′B′是解题的关键.15.【答案】5【解析】解:长方形的面积=(2a+b)(a+2b)=2a2+5ab+b2,所以要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要A类卡片2张,B类卡片1张,C类卡片5张.故答案为5.计算长方形的面积得到(2a+b)(a+2b),再利用多项式乘多项式展开后合并,然后确定ab的系数即可得到需要C类卡片的张数.本题考查了多项式乘多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.【答案】4【解析】解:∵x2-(y+z)2=8,∴(x-y-z)(x+y+z)=8,∵x+y+z=2,∴x-y-z=8÷2=4,故答案为:4.首先把x2-(y+z)2=8的左边分解因式,再把x+y+z=2代入即可得到答案.此题主要考查了因式分解的应用,关键是熟练掌握平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).17.【答案】解:(1)原式=2a2-ab;(2)原式=4x2+4xy+y2-4x2+9y2=10y2+4xy.【解析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】64 38 20 16或17或18【解析】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.由上表可知横式无盖款式共5y个面,用A型3y张,则B型需要2y张.则做两款盒子共需要A型4x+3y张,B型x+2y张.则4x+3y≤64;x+2y≤38.两式相加得5x+5y≤102.则x+y≤20.4.所以最多做20个.两式相减得3x+y≤26.则2x≤5.6,解得x≤2.8.则y≤18.则横式可做16,17或18个.故答案为:20,16或17或18.(1)由图示列出关于a、b的二元一次方程组求解.(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,同样由图示完成表格,并完成计算.本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,再是根据图示解答.19.【答案】解:(1)原式=24a8÷3a2=.(2)原式=1-a2+a2-3a=1-3a.【解析】(1)根据单项式的幂的乘方法则和除法法则进行计算.(2)根据多项式的乘法法则以及单项式乘多项式的法则进行计算.本题考查单项式的乘方法则、单项式除以单项式的法则、乘法公式等知识,正确运用法则是解题的关键.20.【答案】解:(2x+3)(2x-3)-(x-2)2-3x(x-1)=4x2-9-x2+4x-4-3x2+3x=7x-13,当x=2时,原式=7×2-13=1.【解析】利用平方差及完全平方公式化简,再把x=2代入求解即可.本题主要考查了整式的化简求值,解题的关键是正确的化简.21.【答案】解:(1)∵a-b=7,ab=-12,∴a2b-ab2=ab(a-b)=-12×7=-84;(2)∵a-b=7,ab=-12,∴(a-b)2=49,∴a2+b2-2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25-24=1,∴a+b=±1.【解析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.此题主要考查了完全平方公式以及提取公因式法分解因式,正确应用完全平方公式是解题关键.22.【答案】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°.【解析】由平行线的性质知∠DEF=∠EFB=20°,进而得到图b中∠GFC=140°,依据图c中的∠CFE=∠GFC-∠EFG进行计算.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:物线y=ax2+bx+c的开口向下;抛物线y=ax2+bx+c的对称轴为直线x=﹣1;方程ax2+bx+c=0的根为0和2;当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.B.C.D.8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:函数有最大值3;对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图作线段AB的垂直平分线m;作线段BC的垂直平分线n,与直线m交于点O;以点O为圆心,OA为半径作△ABC的外接圆;在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.。
福建省九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2 3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣124.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤16.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm27.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.108.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是个.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是时,有y1>y2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.24.(12分)如图,点A是反比例函数y1=(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2=(k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2=(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.福建省九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形【解答】解:A、是必然事件,故A符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:A.2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【解答】解:A、y=x2对称轴为x=0,此选项不符合题意;B、y=x2+1对称轴为x=0,此选项不符合题意;C、y=(x﹣1)2对称轴为x=1,此选项符合题意;D、y=(x+1)2对称轴为x=﹣1,此选项不符合题意;故选:C.3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣12【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选:A.4.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤1【解答】解:根据题意得△=(﹣2)2﹣4m≥0,解得m≤1.故选:D.6.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:C.7.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选:B.8.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S=BC•AE=AB2,菱形ABCDS阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选:A.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选:B.10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3【解答】解:方程x2+2x﹣1=0的实数根可以看作函数y=x+2和y=的交点.函数大体图象如图所示:A.由图可得,第三象限内图象交点的横坐标小于﹣2,故﹣1<x0<0错误;B.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故0<x0<1正确;C.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故1<x0<2错误;D.当x=2时,y1=2+2=4,y2=,而4>,根据函数的增减性可知,第一象限内的交点的横坐标小于2,故2<x0<3错误.故选:B.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.【解答】解:∵从数﹣2,﹣1,2,5,8中任取一个数记作k,有5种情况,其中使反比例函数的图象经过第二、四象限的k值只有2种,即k=﹣1和k=﹣2,∴满足条件的概率为.故答案为:.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是12个.【解答】解:根据题意得:20×(1﹣0.1﹣0.3)=12(个),答:袋中白色球的个数很可能是12个;故答案为:12.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=,故答案是:.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为7.5.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为5,∴AB=OA=OB=5,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:5×2=10,∴GE+FH的最大值为:10﹣=7.5.故答案为:7.5.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.【解答】解:设这个反比例函数的解析式为y=(k≠0),依题意得:﹣2=,∴k=﹣8,这个反比例函数解析式为y=﹣.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.【解答】解:连接OC,如图∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.【解答】解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是﹣1<x<0或x>2时,有y1>y2.【解答】解:(1)∵M、N在反比例函数的图象上,∴m==2,﹣4=,解得n=﹣1,∴m的值为2,n的值为﹣1;(2)当y1>y2时,即一次函数图象在反比例函数图象的上方,结合图象可知﹣1<x<0或x>2,故答案为:﹣1<x<0或x>2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.【解答】(1)证明:连接OC,如图,∵DE为切线,∴OC⊥DE,而AD⊥EF,∴OC∥AD,∴∠OCA=∠CAD,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠CAD;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵∠B=30°,∴AC=AB=×12=6.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥B D.∵△ABC是等边三角形,∴DC =BC =×6=3,FC =AC =3.∵∠EDC =30°,∴EC =DC =.∴FE =FC ﹣EC =3﹣=1.5.24.(12分)如图,点A 是反比例函数y 1=(x >0)图象上的任意一点,过点A 作 AB ∥x轴,交另一个比例函数y 2=(k <0,x <0)的图象于点B . (1)若S △AOB 的面积等于3,则k 是= ﹣4 ;(2)当k =﹣8时,若点A 的横坐标是1,求∠AOB 的度数; (3)若不论点A 在何处,反比例函数y 2=(k <0,x <0)图象上总存在一点D ,使得四边形AOBD 为平行四边形,求k 的值.【解答】解:(1)如图1,设AB交y轴于点C,∵点A是反比例函数y1=(x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC=×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;(2)∵点A的横坐标是1,∴y==2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA==,OB==2,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2=上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC=,∴BE=OC=a,DE=AC=,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=|﹣|=a,即﹣=a,∴k=﹣4.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.【解答】解:(1)当m=t=0时,y=﹣nx2+nx﹣n,△=n2﹣4×n×(﹣n)=﹣n2,当n=0时,△=0,该函数图象与x轴有1个交点;当n≠0时,△<0,该函数图象与x轴没有交点;(2)若n=t=3m,抛物线的解析式为:y=(m﹣3m)x2+3mx=﹣mx2+3mx=﹣m(x﹣)2+,当﹣m>0,即m<0时,所以当x=时,函数有最小值为,当﹣m<0,即m>0时,所以当x=时,函数有最大值为;(3)y=(m﹣n)x2+nx+t﹣n,△=n2﹣4×(m﹣n)(t﹣n)=﹣n2+2(m+t)n﹣2mt,设w=﹣n2+2(m+t)n﹣2mt,∵该函数图象和x轴有交点,∴w≥0,∵n的最大值和最小值分别为8和4,∴新二次函数w与n轴有两个交点为(4,0)和(8,0),则w=﹣(n﹣4)(n﹣8)=﹣n2+12n﹣32,∴,,此方程组无实数解,∴不存在实数m和t,使该函数图象和x轴有交点.。
2016年福建省福州市中考数学试卷(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1 •下列实数中的无理数是( A. 0.7 B.-2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是(A .不可能事件发生的概率为B •随机事件发生的概率为:C .概率很小的事件不可能发生-n ),则点D 的坐标是(A •(- 2, 1)B .(- 2,- 1)C .(- 1,- 2)D • (-1, 2)C .同旁内角D .对顶角5. 6. a 6的是(a 4+a 2B . 不等式组x >- 1 a 2+a 2+a 2 C . a 2?a 3 D . a 2?a 2?a 2i+l>0:■的解集是(B . x >3C .1 v x v 3 D . x v 3F 列说法中,正确的是(D •投掷一枚质地均匀的硬币100次,正面朝上的次数一定为 50次7 . A , B 是数轴上两点,线段 AA * •B •、逬加飞:B •AB 上的点表示的数中,有互为相反数的是( A |*0&平面直角坐标系中,已知 ?ABCD 的三个顶点坐标分别是A (m , n ),B (2,- 1),C (- m ,A •B •1 与/ 2的位置关系是3.如图,直线a ,4 •下列算式中,结果等于9 .如图,以圆0为圆心,半径为1的弧交坐标轴于A , B两点,P是,上一点(不与A , B重合),连接0P,设/ POB= a,则点P 的坐标是(BA . ( sin a, sin a)B . ( cos a, cos a)C.( cos a, sin a) D . ( sin a, cos a)10年龄/岁13141516频数515x10-x对于不同的X,下列关于年龄的统计量不会发生改变的是( )A .平均数、中位数B .众数、中位数C.平均数、方差D •中位数、方差11.已知点A (- 1, m), B (1, m) , C (2 , m+1)在同一个函数图象上,这个函数图象可以是A. C. D.2 _ 一一12 •下列选项中,能使关于x的一元二次方程ax - 4x+c=0 —定有实数根的是( )A . a> 0B . a=0 C. c> 0 D. c=0二、填空题(共6小题,每小题4分,满分24分)213 .分解因式:x - 4= _____________ .14. 若二次根式___________________________________________ 在实数范围内有意义,则x的取值范围是.15. 已知四个点的坐标分别是(- 1, 1),( 2, 2),( ., .), ( - 5,-),从中随机选取一J £J个点,在反比例函数沪二图象上的概率是________________ .£16. ____________________________________________________________________________ 如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上______________________________________ r下.(填3 317 .若 x+y=10 , xy=1,则 x y+xy 的值是 ________________ . 18. 如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60° A , B , C 都在格点上,则tan /ABC 的值是三、解答题(共9小题,满分90 分) 19. 计算:I -1|- - _+ (- 2016) 0.22. 列方程(组)解应用题:某班去看演出,甲种票每张 24元,乙种票每张18元.如果35名学生购票恰好用去 750元, 种票各买了多少张?23. 福州市2011 - 2015年常住人口数统计如图所示. 根据图中提供的信息,回答下列问题:(1) ____________________________________________________ 福州市常住人口数,2015年比2014年增加了 _____________________________________________________ 万人; (2) __________________________________________________________ 与上一年相比,福州市常住人口数增加最多的年份是 _______________________________________________ (3) 预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.f 人口数万人800-650V2011 2012 2013 ^14 ~201524. 如图,正方形 ABCD 内接于O O , M 为二中点,连接 BM , CM . (1) 求证:BM=CM ;(2) 当O O 的半径为2时,求』的长.(/O)20.化简:a -b -a+b21. 一个平分角的仪器如图所示,其中AB=AD , BC=DC .求证:/ BAC= / DAC .甲乙两二 125.如图,在 △ ABC 中,AB=AC=1 , BC=,在 AC 边上截取 AD=BC ,连接BD .判断 AD 2与AC ?CD 的大小关系;(2)求/ ABD 的度数.ABCD 中,AB=4 , AD=3 , M 是边CD 上一点,将 △ ADM 沿直线AM 对折,得到(1) 当AN 平分/ MAB 时,求DM 的长; (2) 连接BN ,当DM=1时,求△ ABN 的面积; (3) 当射线BN 交线段CD 于点F 时,求DF 的最大值.227.已知,抛物线y=ax+bx+c ( a 旳)经过原点,顶点为 A (h , k )( h 用) (1) 当h=1, k=2时,求抛物线的解析式;2(2) 若抛物线y=tx 2 (t 丸)也经过A 点,求a 与t 之间的关系式; (3) 当点A 在抛物线y=x 2 - x 上,且-2Gv 1时,求a 的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项) 1•下列实数中的无理数是( )1A . 0.7B .C . nD . - 8【考点】无理数.(1)通过计算, △ ANM .【专题】计算题.【解答】解:•••无理数就是无限不循环小数,且0.7为有限小数,丄为有限小数,-8为正数,都属于有理数,n为无限不循环小数,n为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2•如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A •同位角B •内错角C.同旁内角D •对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a, b被直线c所截,/ 1与/ 2是内错角.故选B .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边, 它们所在的直线即为【分析】无理数就是无限不循环小数,最典型就是n选出答案即可.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2, 1 ,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视被截的线.4 •下列算式中,结果等于a6的是()一 2 3^ 2 2 2A 4 2^ 222A. a +aB. a +a +aC. a ?aD. a ?a ?a【考点】同底数幕的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A : a4+a2力6,据此判断即可.2 2 2 2B :根据合并同类项的方法,可得 a +a +a =3a .3 5c:根据同底数幕的乘法法则,可得 a ?a =a .D :根据同底数幕的乘法法则,可得a2?a2?a2=a6.【解答】解:••• a4+a2旳6,•••选项A的结果不等于a6;2 2 2 2 T a +a +a =3a , •选项B的结果不等于a6;a2?a3=a5•选项C的结果不等于a6;a2?a2 ?a2=a6•选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幕的乘法法则:同底数幕相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变, 指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.15.不等式组-的解集是()A . x>- 1 B. x>3 C.- 1v x v3 D. x v3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.7. A , B 是数轴上两点,线段 AB 上的点表示的数中,有互为相反数的是(【解答】解:1 1I 好璋U 〔②解不等式①,得 x >- 1 , 解不等式②,得 x > 3,由①②可得,x >3,故原不等式组的解集是 x > 3. 故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法. 6.下列说法中,正确的是( ) A .不可能事件发生的概率为 0B .随机事件发生的概率为 .i —C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币 100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 P (A ) =1、不可能发生事件的概率 P (A ) =0对A 、B 、C 进行判定;根据频率与概率的区别对D 进行判定.【解答】解:A 、不可能事件发生的概率为 0,所以A 选项正确; B 、随机事件发生的概率在 0与1之间,所以B 选项错误; C 、 概率很小的事件不是不可能发生,而是发生的机会较小,所以C 选项错误;D 、 投掷一枚质地均匀的硬币 100次,正面朝上的次数可能为 50次,所以D 选项错误. 故选A .【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件 A 发生的频率mn 会稳定 在某个常数p 附近,那么这个常数 p 就叫做事件A 的概率,记为P ( A ) =p ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 P (A ) =1 ;不可能发生事件的概率P (A ) =0 .C .D .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.&平面直角坐标系中,已知?ABCD的三个顶点坐标分别是 A ( m, n), B (2,- 1), C (- m, -n),则点D的坐标是( )A . (- 2, 1) B.(- 2,- 1) C.(- 1,- 2) D . (- 1, 2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:••• A (m, n), C (- m,- n),•••点A和点C关于原点对称,•••四边形ABCD是平行四边形,• D和B关于原点对称,B (2, - 1),•••点D的坐标是(-2, 1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9 •如图,以圆0为圆心,半径为1的弧交坐标轴于A , B两点,P是「上一点(不与A , B重合),连接0P,设/ POB= a,则点P的坐标是( )A.( sin a, sin a) B .( cos a, cos a) C .( cos a, sin a) D .( sin a, cos a)【考点】解直角三角形;坐标与图形性质. 【专题】计算题;三角形.【分析】过P 作PQ 丄OB ,交OB 于点Q ,在直角三角形 OPQ 中,利用锐角三角函数定义表示出 OQ 与PQ ,即可确定出 P 的坐标.【解答】解:过 P 作PQ 丄OB ,交OB 于点Q , 在 Rt A OPQ 中,OP=1,Z POQ= a,••• sin a = , cosa=—":,即 PQ=sin a, OQ=cos a, 0〕 OF则P 的坐标为(cos a, sin a),【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的 关键.10年龄/岁 13 14 15 16 频数515X10-x对于不同的X ,下列关于年龄的统计量不会发生改变的是( )A .平均数、中位数B .众数、中位数C .平均数、方差D .中位数、方差 【考点】统计量的选择;频数(率)分布表. 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为 15岁与年龄为16岁的频数和为x+10 - x=10 , 则总人数为:5+15+10=30 ,故该组数据的众数为 14岁,中位数为: U =14岁,2即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,□ \B故选C .故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A (- 1, m), B (1, m), C (2, m+1)在同一个函数图象上,这个函数图象可以是( )【考点】坐标确定位置;函数的图象.【分析】由点A (- 1, m), B (1, m), C (2, m+1)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:•••点 A (- 1, m), B (1, m),••• A与B关于y轴对称,故A , B错误;••• B (1, m), C (2, m+1),•••当x> 0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12 .下列选项中,能使关于x的一元二次方程ax2- 4x+c=0 —定有实数根的是( )A . a> 0B . a=0 C. c> 0 D. c=0【考点】根的判别式.【分析】根据方程有实数根可得az4,且a希,对每个选项逐一判断即可.【解答】解:•一元二次方程有实数根,•△ = (- 4) 2- 4ac=16 - 4ac 为,且a和,•ac<4,且a M D;A、若a> 0,当a=1、c=5时,ac=5> 4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=O詔,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1) △>0?方程有两个不相等的实数根;(2) △ =0?方程有两个相等的实数根;(3) △<0?方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)213 .分解因式:x - 4= (x+2 )( x - 2) .【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2- 4= ( x+2)( x- 2).故答案为:(x+2 )( x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14. 若二次根式{苗在实数范围内有意义,则x的取值范围是x A 1 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1为,解得x A 1.故答案为:x>- 1 .【点评】主要考查了二次根式的意义和性质:概念:式子—(a%)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.,卞115. 已知四个点的坐标分别是(- 1, 1) ,( 2, 2),( ,-),(- 5,-[),从中随机选取一个点,在反比例函数y图象上的概率是_ .x 2-【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:•••- 1 x1 = - 1,2 >2=4,(-5) X(- ') =1 ,■■- 2个点的坐标在反比例函数y=图象上,•••在反比例函数y=图象上的概率是2^4=.y 2故答案为:'.2【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16. 如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r 上= r下.(填a ?? QQ a ??、V = V ”【考点】弧长的计算.【分析】禾U用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.卓R【点评】本题考查了弧长公式:圆周长公式:C=2 n R (2)弧长公式:匸. (弧长为I,圆心loU角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.3 317 .若x+y=10 , xy=1,则x y+xy 的值是98 .【考点】代数式求值.【分析】可将该多项式分解为xy (x2+y2),又因为x2+y2= (x+y) 2- 2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3/ 2 2、=xy (x +y )2=xy[ (x+y) - 2xy]2=1 X( 102- 2x1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形•解决本类问题的一般方法:若已知x2+y2=(x+y)2- 2xy,再将x+y与xy的值代入即可.18. 如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(/O)【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明/ AEB=90 °根据tan/ ABC=^,求出AE、EB即可解决问EE!题.【解答】解:如图,连接EA, EC,设菱形的边长为a,由题意得/ AEF=30 ° / BEF=60 ° AE= "a,EB=2a•••/ AEB=90 °••• tan/ ABC=「= =''.BE 2a 2【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19. 计算:-1|- : ?:+ (- 2016)0.x+y与xy的值,则为60° A , B , C都在格点上,则tan/ ABC的值是故答案为.2E【考点】有理数的混合运算;立方根;零指数幕.【分析】直接利用绝对值的性质以及立方根的定义和零指数幕的性质化简求出答案.【解答】解:1|- + (- 2016) 0=1 - 2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20. 化简:a- b-':亠:’a-Fb【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a - b-( a+b)=a- b - a- b=-2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21 . 一个平分角的仪器如图所示,其中AB=AD , BC=DC .求证:/ BAC= / DAC .【考点】全等三角形的性质.【分析】在△ ABC和厶ADC中,由三组对边分别相等可通过全等三角形的判定定理(△ ABC ◎△ ADC,再由全等三角形的性质即可得出结论.'AB^AD【解答】证明:在△ ABC和厶ADC中,有{氏二DC,•••△ ABC ADC ( SSS),•••/ BAC= / DAC .【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ ABC ◎△ADC .题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.SSS)证得本题属于基础22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元•如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张•然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:严尸厉.124x+18y=75O解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23•福州市2011 - 2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1) 福州市常住人口数,2015年比2014年增加了7 万人;(2) 与上一年相比,福州市常住人口数增加最多的年份是2014(3) 预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.T人口数万人700 - 720650-V20U 2012 2013 2014~2015【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2) 计算出每年与上一年相比,增加的百分率即可得知;(3) 可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750 - 743=7 (万人);727 - 720(2)由图可知2012年增加:————X100%胡.98% ,2013年增加:734-727 …X100% 弋.97%, 727743-7342014年增加:————X00% 羽.2%,734 'n750 - 7432015 年增加:————XI00% 弋.94%,743故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1) 7;( 2) 2014【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键. 24•如图,正方形ABCD内接于O O, M为:中点,连接BM , CM.(1) 求证:BM=CM ;(2) 当O O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:•••四边形ABCD是正方形, ••• AB=CD ,T M为:中点,•••「+.「=: +星即匸吓T••• BM=CM ;(2)解:TO O的半径为2,•O O的周长为4n,•的长=一用7i=-兀C £【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ ABC 中,AB=AC=1 , BC= __-,在AC 边上截取AD=BC,连接BD .:2 .(1)通过计算,判断AD2与AC?CD的大小关系;(2)求/ ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC?CD的值,从而可得到AD 2与AC?CD 的关系;(2)由(1)可得到BD2=AC?CD,然后依据对应边成比例且夹角相等的两三角形相似证明△ BCD ABC,依据相似三角形的性质可知/ DBC= / A , DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得/ ABD的度数.【解答】解:(1 )••• AB=BC=1 , BC=、2••• AD= , DC=1 = !.2; . 2 . 2••• AD =------------ =--------- AC ?CD=1 X———=------------- 匚,' 2 2 ..9•- AD 2=AC ?CD .2(2)T AD=BD , AD =AC ?CD ,2•- BD =AC ?CD,即• DB=CB=AD .•••/ A= / ABD,/ C=Z D .设/ A=x,则/ ABD=x,/ DBC=x,/ C=2x.•••/ A+ / ABC+ / C=180 °• x+2x+2x=180 °17 / 22AC^CB_,Z DBC= / A .解得:x=36 °•••/ ABD=36【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△ BCDABC是解题的关键.26 •如图,矩形ABCD中,AB=4 , AD=3 , M是边CD上一点,将△ ADM沿直线AM对折,得到△ ANM •(1)当AN平分/ MAB时,求DM的长;(2)连接BN,当DM=1时,求△ ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得/ MAN= / DAM,证出/ DAM= / MAN= / NAB,由三角函数得出DM=AD ?tan/ DAM=二即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出/ DMA= / MAQ,由折叠性质得出/ DMA= / AMQ , AN=AD=3 , MN=MD=1 ,得出/ MAQ= / AMQ,证出MQ=AQ,设NQ=x,贝AQ=MQ=1+x ,证出/ ANQ=90 °在RtA ANQ中,由勾股定理得出方程,解方程求出NQ=4 , AQ=5 ,即可求出△ ABN的面积;(3)过点A作AH丄BF于点H,证明△ ABH BFC,得出对应边成比例=•,得出当点N、HAt BC重合(即AH=AN )时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ ABH ◎△ BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1 )由折叠性质得:△ ANM ◎△ ADM ,•••/ MAN= / DAM ,•/ AN 平分/ MAB , / MAN= / NAB ,•••/ DAM= / MAN= / NAB ,•••四边形ABCD是矩形,•••/ DAB=90•••/ DAM=30••• DM=AD ?tan/ DAM=3 X an30 °3 x = ~ ;(2)延长MN交AB延长线于点Q,如图1所示:•••四边形ABCD是矩形,••• AB // DC ,•••/ DMA= / MAQ ,由折叠性质得:△ ANM ◎△ ADM ,•••/ DMA= / AMQ , AN=AD=3 , MN=MD=1 ,•••/ MAQ= / AMQ ,••• MQ=AQ ,设NQ=x,贝V AQ=MQ=1+x ,•// ANM=90 °•••/ ANQ=90 °在Rt A ANQ中,由勾股定理得:AQ2=AN2+NQ2,(x+1 ) 2=32+X2,解得:x=4,•NQ=4 , AQ=5 ,■/ AB=4 , AQ=5 ,…NAB= JNAQ= . X AN ?NQ= x X3^4=;j j 1 j E nJ(3)过点A作AH丄BF于点H,如图2所示:•••四边形ABCD是矩形,•AB // DC ,•••/ HBA= / BFC ,•// AHB= / BCF=90 °•△ ABH BFC ,.世=cm…二-,•/ AH *N=3 , AB=4 ,•当点N、H重合(即AH=AN )时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合, B、N、M三点共线,如图3所示: 由折叠性质得:AD=AH ,•/ AD=BC ,••• AH=BC ,在厶ABH和厶BFC中,迪二ZBCF,,AltBC•△ ABH ◎△ BFC ( AAS ),•CF=BH ,由勾股定理得:BH= 土H =、_]『_■、’=€ ,•CF= Jr•DF 的最大值=DC - CF=4 -二.壬3【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.227.已知,抛物线y=ax+bx+c ( a旳)经过原点,顶点为A (h, k)( h旳).(1)当h=1, k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t丸)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2- x上,且-2Gv 1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a (x - 1) 2+2,原点代入即可.(2)设抛物线为y=ax2+bx,贝U h=-二-,b= - 2ah代入抛物线解析式,求出k (用a、h表示),又抛物线y=tx2也经过A (h, k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1 )•••顶点为A (1, 2),设抛物线为y=a (x - 1) 2+2,•••抛物线经过原点,20=a (0 - 1) +2,二a= —2,•••抛物线解析式为y= —2x2+4x.(2)v抛物线经过原点,•设抛物线为y=ax2+bx,•・b= —2ah,2•y=ax —2ahx,••顶点 A (h, k),•k=ah2—2ah,抛物线y=tx2也经过A (h, k),•k=th 2,•th2=ah2—2ah2,•t= —a,(3)T点A在抛物线y=x2—x 上,2 2 2•k=h2—h,又k=ah2—2ah2,• h=V 1,①当1+a>0时,即a>—1时, 解得a> 0,竽'解得aw-专,②当1+a v 0时,即a v- 1时,弋综上所述,a的取值范围a> 0或aw-.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项) .下列实数中的无理数是(). . . .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . ..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于 的是(). . . . .不等式组的解集是(). >﹣ . > .﹣ < < . <.下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . ..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , ) .下表是某校合唱团成员的年龄分布年龄 岁频数﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . ..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ..若二次根式在实数范围内有意义,则 的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填 < < ).若 , ,则 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简: ﹣ ﹣..一个平分角的仪器如图所示,其中 , .求证: ..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是(). . . .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是 ,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,为无限不循环小数,为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题..如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线 , 被直线 所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于 的是(). . . .【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】 : ,据此判断即可.:根据合并同类项的方法,可得 .:根据同底数幂的乘法法则,可得 .:根据同底数幂的乘法法则,可得 .【解答】解: ,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果等于 .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确: 底数必须相同; 按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是(). >﹣ . > .﹣ < < . <【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式 ,得>﹣ ,解不等式 ,得> ,由 可得, > ,故原不等式组的解集是 > .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法. .下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 ( ) 、不可能发生事件的概率 ( ) 对 、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解: 、不可能事件发生的概率为 ,所以 选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选 .【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件 发生的频率 会稳定在某个常数 附近,那么这个常数 就叫做事件 的概率,记为 ( ) ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 ( ) ;不可能发生事件的概率 ( ) .. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段 上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段 符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段 上的点与原点的距离..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点 和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ( , ), (﹣ ,﹣ ),点 和点 关于原点对称,四边形 是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选: .【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , )【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ,交 于点 ,在直角三角形 中,利用锐角三角函数定义表示出 与 ,即可确定出 的坐标.【解答】解:过 作 ,交 于点 ,在 中, , ,, ,即 , ,则 的坐标为( , ),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁频数﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为 ﹣ ,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的 ,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . .【考点】坐标确定位置;函数的图象.【分析】由点 (﹣ , ), ( , ), ( , )在同一个函数图象上,可得 与 关于 轴对称,当 > 时, 随 的增大而增大,继而求得答案.【解答】解: 点 (﹣ , ), ( , ),与 关于 轴对称,故 , 错误;( , ), ( , ),当 > 时, 随 的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .【考点】根的判别式.【分析】根据方程有实数根可得 ,且 ,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ﹣ ,且 ,,且 ;、若 > ,当 、 时, > ,此选项错误;、 不符合一元二次方程的定义,此选项错误;、若 > ,当 、 时, > ,此选项错误;、若 ,则 ,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ( )( ﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解: ﹣ ( )( ﹣ ).故答案为:( )( ﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则 的取值范围是 ﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出 的取值范围.【解答】解:若二次根式在实数范围内有意义,则: ,解得 ﹣ .故答案为: ﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子( )叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数 图象上,再让在反比例函数 图象上点的个数除以点的总数即为在反比例函数 图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数 图象上,在反比例函数 图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填< < )【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,上下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ( )弧长公式: (弧长为 ,圆心角度数为 ,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若 , ,则 的值是 .【考点】代数式求值.【分析】可将该多项式分解为 ( ),又因为 ( ) ﹣ ,然后将 与 的值代入即可.【解答】解:( )( ) ﹣( ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知 与 的值,则 ( ) ﹣ ,再将 与 的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接 、 ,先证明 ,根据 ,求出 、 即可解决问题.【解答】解:如图,连接 , ,设菱形的边长为 ,由题意得 , , ,,.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简: ﹣ ﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ﹣ ﹣( )﹣ ﹣ ﹣﹣ .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中 , .求证: .【考点】全等三角形的性质.【分析】在 和 中,由三组对边分别相等可通过全等三角形的判定定理( )证得 ,再由全等三角形的性质即可得出结论.【解答】证明:在 和 中,有,( ),.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了 张,乙种票买了 张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了 张,乙种票买了 张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ,年增加: ,年增加: ,年增加: ,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形 是正方形,,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ,的长 .【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数.【考点】相似三角形的判定.【分析】( )先求得 、 的长,然后再计算出 与 的值,从而可得到 与 的关系;( )由( )可得到 ,然后依据对应边成比例且夹角相等的两三角形相似证明 ,依据相似三角形的性质可知 , ,然后结合等腰三角形的性质和三角形的内角和定理可求得 的度数.【解答】解:( ) , ,, ﹣ ., ..( ) , ,,即.又 ,., .., .设 ,则 , , .,.解得: ..【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 是解题的关键..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ,证出 ,由三角函数得出即可;( )延长 交 延长线于点 ,由矩形的性质得出 ,由折叠性质得出 , , ,得出 ,证出 ,设 ,则 ,证出 ,在 中,由勾股定理得出方程,解方程求出 , ,即可求出 的面积;( )过点 作 于点 ,证明 ,得出对应边成比例 ,得出当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,由折叠性质得: ,由 证明 ,得出 ,由勾股定理求出 ,得出 ,即可得出结果.【解答】解:( )由折叠性质得: ,,平分 , ,,四边形 是矩形,,,;( )延长 交 延长线于点 ,如图 所示:四边形 是矩形,,,由折叠性质得: ,, , ,,,设 ,则 ,,,在 中,由勾股定理得: , ( ) ,解得: ,, ,, ,;( )过点 作 于点 ,如图 所示: 四边形 是矩形,,,,,,, ,当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,如图 所示:由折叠性质得: ,,,在 和 中,,( ),,由勾股定理得: ,,的最大值 ﹣ ﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为 ( ﹣ ) ,原点代入即可.( )设抛物线为 ,则 ﹣, ﹣ 代入抛物线解析式,求出 (用 、 表示),又抛物线 也经过 ( , ),求出 ,列出方程即可解决.( )根据条件列出关于 的不等式即可解决问题.【解答】解:( ) 顶点为 ( , ),设抛物线为 ( ﹣ ) ,抛物线经过原点,( ﹣ ) ,﹣ ,抛物线解析式为 ﹣ .( ) 抛物线经过原点,设抛物线为 ,﹣,﹣ ,﹣ ,顶点 ( , ),﹣ ,抛物线 也经过 ( , ),,﹣ ,﹣ ,( ) 点 在抛物线 ﹣ 上,﹣ ,又 ﹣ ,,﹣ < ,﹣ < ,当 > 时,即 >﹣ 时,,解得 > ,当 < 时,即 <﹣ 时,解得 ﹣,综上所述, 的取值范围 > 或 ﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项) .下列实数中的无理数是()✌. . .⇨ .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是()✌. . . ..如图,直线♋,♌被直线♍所截, 与 的位置关系是()✌.同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于♋ 的是()✌.♋ ♋ .♋ ♋ ♋ .♋ ❿♋ .♋ ❿♋ ❿♋.不等式组的解集是()✌.⌧>﹣ .⌧> .﹣ <⌧< .⌧<.下列说法中,正确的是()✌.不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次.✌, 是数轴上两点,线段✌上的点表示的数中,有互为相反数的是()✌. . . ..平面直角坐标系中,已知 ✌的三个顶点坐标分别是✌(❍,⏹), ( ,﹣ ), (﹣❍,﹣⏹),则点 的坐标是()✌.(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于✌, 两点, 是上一点(不与✌, 重合),连接 ,设 ↑,则点 的坐标是()✌.(♦♓⏹↑,♦♓⏹↑) .(♍☐♦↑,♍☐♦↑) .(♍☐♦↑,♦♓⏹↑) .(♦♓⏹↑,♍☐♦↑).下表是某校合唱团成员的年龄分布年龄 岁 频数 ⌧ ﹣⌧对于不同的⌧,下列关于年龄的统计量不会发生改变的是()✌.平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,这个函数图象可以是()✌. . . ..下列选项中,能使关于⌧的一元二次方程♋⌧ ﹣ ⌧♍一定有实数根的是()✌.♋> .♋ .♍> .♍二、填空题(共 小题,每小题 分,满分 分).分解因式:⌧ ﹣ ..若二次根式在实数范围内有意义,则⌧的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数⍓图象上的概率是..如图所示的两段弧中,位于上方的弧半径为❒上,下方的弧半径为❒下,则❒上❒下.(填❽<❾❽❾❽<❾).若⌧⍓,⌧⍓,则⌧ ⍓⌧⍓ 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 ,✌, , 都在格点上,则♦♋⏹ ✌的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简:♋﹣♌﹣..一个平分角的仪器如图所示,其中✌✌, .求证: ✌ ✌..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形✌内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 ✌中,✌✌, ,在✌边上截取✌,连接 .( )通过计算,判断✌ 与✌❿的大小关系;( )求 ✌的度数..如图,矩形✌中,✌,✌, 是边 上一点,将 ✌沿直线✌对折,得到 ✌☠.( )当✌☠平分 ✌时,求 的长;( )连接 ☠,当 时,求 ✌☠的面积;( )当射线 ☠交线段 于点☞时,求 ☞的最大值..已知,抛物线⍓♋⌧ ♌⌧♍(♋♊)经过原点,顶点为✌(♒, )(♒♊).( )当♒, 时,求抛物线的解析式;( )若抛物线⍓♦⌧ (♦♊)也经过✌点,求♋与♦之间的关系式;( )当点✌在抛物线⍓⌧ ﹣⌧上,且﹣ ♎♒< 时,求♋的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是()✌. . .⇨ .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是⇨,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,⇨为无限不循环小数,⇨为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题. .如图是 个相同的小正方体组合而成的几何体,它的俯视图是()✌. . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线♋,♌被直线♍所截, 与 的位置关系是()✌.同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线♋,♌被直线♍所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于♋ 的是()✌.♋ ♋ .♋ ♋ ♋ .♋ ❿♋ .♋ ❿♋ ❿♋【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】✌:♋ ♋ ♊♋ ,据此判断即可.:根据合并同类项的方法,可得♋ ♋ ♋ ♋ .:根据同底数幂的乘法法则,可得♋ ❿♋ ♋ .:根据同底数幂的乘法法则,可得♋ ❿♋ ❿♋ ♋ .【解答】解: ♋ ♋ ♊♋ ,选项✌的结果不等于♋ ;♋ ♋ ♋ ♋ ,选项 的结果不等于♋ ;♋ ❿♋ ♋ ,选项 的结果不等于♋ ;♋ ❿♋ ❿♋ ♋ ,选项 的结果等于♋ .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:♊底数必须相同;♋按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是()✌.⌧>﹣ .⌧> .﹣ <⌧< .⌧<【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式♊,得⌧>﹣ ,解不等式♋,得⌧> ,由♊♋可得,⌧> ,故原不等式组的解集是⌧> .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法..下列说法中,正确的是()✌.不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 (✌) 、不可能发生事件的概率 (✌) 对✌、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解:✌、不可能事件发生的概率为 ,所以✌选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选✌.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件✌发生的频率❍⏹会稳定在某个常数☐附近,那么这个常数☐就叫做事件✌的概率,记为 (✌) ☐;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 (✌) ;不可能发生事件的概率 (✌) ..✌, 是数轴上两点,线段✌上的点表示的数中,有互为相反数的是()✌. . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段✌上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段✌符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段✌上的点与原点的距离..平面直角坐标系中,已知 ✌的三个顶点坐标分别是✌(❍,⏹), ( ,﹣ ), (﹣❍,﹣⏹),则点 的坐标是()✌.(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点✌和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ✌(❍,⏹), (﹣❍,﹣⏹),点✌和点 关于原点对称,四边形✌是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选:✌.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于✌, 两点, 是上一点(不与✌, 重合),连接 ,设 ↑,则点 的坐标是()✌.(♦♓⏹↑,♦♓⏹↑) .(♍☐♦↑,♍☐♦↑) .(♍☐♦↑,♦♓⏹↑) .(♦♓⏹↑,♍☐♦↑)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ✈,交 于点✈,在直角三角形 ✈中,利用锐角三角函数定义表示出 ✈与 ✈,即可确定出 的坐标.【解答】解:过 作 ✈,交 于点✈,在 ♦✈中, , ✈↑,♦♓⏹↑,♍☐♦↑,即 ✈♦♓⏹↑, ✈♍☐♦↑,则 的坐标为(♍☐♦↑,♦♓⏹↑),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁 频数 ⌧ ﹣⌧对于不同的⌧,下列关于年龄的统计量不会发生改变的是()✌.平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为⌧﹣⌧,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的⌧,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,这个函数图象可以是()✌. . . .【考点】坐标确定位置;函数的图象.【分析】由点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,可得✌与 关于⍓轴对称,当⌧> 时,⍓随⌧的增大而增大,继而求得答案.【解答】解: 点✌(﹣ ,❍), ( ,❍),✌与 关于⍓轴对称,故✌, 错误;( ,❍), ( ,❍),当⌧> 时,⍓随⌧的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于⌧的一元二次方程♋⌧ ﹣ ⌧♍一定有实数根的是()✌.♋> .♋ .♍> .♍【考点】根的判别式.【分析】根据方程有实数根可得♋♍♎,且♋♊,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ♋♍﹣ ♋♍♏,且♋♊,♋♍♎,且♋♊;✌、若♋> ,当♋、♍时,♋♍> ,此选项错误;、♋不符合一元二次方程的定义,此选项错误;、若♍> ,当♋、♍时,♋♍> ,此选项错误;、若♍,则♋♍♎,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式:⌧ ﹣ (⌧)(⌧﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:⌧ ﹣ (⌧)(⌧﹣ ).故答案为:(⌧)(⌧﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则⌧的取值范围是⌧♏﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出⌧的取值范围.【解答】解:若二次根式在实数范围内有意义,则:⌧♏,解得⌧♏﹣ .故答案为:⌧♏﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子(♋♏)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数⍓图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数⍓图象上,再让在反比例函数⍓图象上点的个数除以点的总数即为在反比例函数⍓图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数⍓图象上,在反比例函数⍓图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为❒上,下方的弧半径为❒下,则❒上❒下.(填❽<❾❽❾❽<❾)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,❒上 ❒下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ⇨ ( )弧长公式:●(弧长为●,圆心角度数为⏹,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若⌧⍓,⌧⍓,则⌧ ⍓⌧⍓ 的值是 .【考点】代数式求值.【分析】可将该多项式分解为⌧⍓(⌧ ⍓ ),又因为⌧ ⍓ (⌧⍓) ﹣ ⌧⍓,然后将⌧⍓与⌧⍓的值代入即可.【解答】解:⌧ ⍓⌧⍓⌧⍓(⌧ ⍓ )⌧⍓☯(⌧⍓) ﹣ ⌧⍓( ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知⌧⍓与⌧⍓的值,则⌧ ⍓ (⌧⍓) ﹣ ⌧⍓,再将⌧⍓与⌧⍓的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 ,✌, , 都在格点上,则♦♋⏹ ✌的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接☜✌、☜,先证明 ✌☜,根据♦♋⏹ ✌,求出✌☜、☜即可解决问题.【解答】解:如图,连接☜✌,☜,设菱形的边长为♋,由题意得 ✌☜☞, ☜☞,✌☜♋,☜♋✌☜,♦♋⏹ ✌ .故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣ .【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简:♋﹣♌﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ♋﹣♌﹣(♋♌)♋﹣♌﹣♋﹣♌﹣ ♌.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中✌✌, .求证: ✌ ✌.【考点】全等三角形的性质.【分析】在 ✌和 ✌中,由三组对边分别相等可通过全等三角形的判定定理( )证得✌☹✌,再由全等三角形的性质即可得出结论.【解答】证明:在 ✌和 ✌中,有,✌☹✌( ),✌ ✌.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 ✌☹✌.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了⌧张,乙种票买了⍓张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了⌧张,乙种票买了⍓张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ☟,年增加: ☟,年增加: ☟,年增加: ☟,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形✌内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形✌是正方形,✌,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ⇨,的长 ⇨⇨.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 ✌中,✌✌, ,在✌边上截取✌,连接 .( )通过计算,判断✌ 与✌❿的大小关系;( )求 ✌的度数.【考点】相似三角形的判定.【分析】( )先求得✌、 的长,然后再计算出✌ 与✌❿的值,从而可得到✌ 与✌❿的关系;( )由( )可得到 ✌❿,然后依据对应边成比例且夹角相等的两三角形相似证明✌,依据相似三角形的性质可知 ✌, ,然后结合等腰三角形的性质和三角形的内角和定理可求得 ✌的度数.【解答】解:( ) ✌, ,✌, ﹣ .✌ ,✌❿ .✌ ✌❿.( ) ✌,✌ ✌❿, ✌❿,即.又 ,✌., ✌.✌.✌ ✌, .设 ✌⌧,则 ✌⌧, ⌧, ⌧.✌ ✌ ,⌧⌧⌧.解得:⌧.✌.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 ✌是解题的关键..如图,矩形✌中,✌,✌, 是边 上一点,将 ✌沿直线✌对折,得到 ✌☠.( )当✌☠平分 ✌时,求 的长;( )连接 ☠,当 时,求 ✌☠的面积;( )当射线 ☠交线段 于点☞时,求 ☞的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ✌☠ ✌,证出 ✌ ✌☠ ☠✌,由三角函数得出 ✌❿♦♋⏹ ✌即可;( )延长 ☠交✌延长线于点✈,由矩形的性质得出 ✌ ✌✈,由折叠性质得出✌ ✌✈,✌☠✌, ☠,得出 ✌✈ ✌✈,证出 ✈✌✈,设☠✈⌧,则✌✈✈⌧,证出 ✌☠✈,在 ♦✌☠✈中,由勾股定理得出方程,解方程求出☠✈,✌✈,即可求出 ✌☠的面积;( )过点✌作✌☟☞于点☟,证明 ✌☟☞,得出对应边成比例 ,得出当点☠、☟重合(即✌☟✌☠)时,✌☟最大, ☟最小, ☞最小, ☞最大,此时点 、☞重合, 、☠、 三点共线,由折叠性质得:✌✌☟,由✌✌证明 ✌☟☹☞,得出 ☞☟,由勾股定理求出 ☟,得出 ☞,即可得出结果.【解答】解:( )由折叠性质得: ✌☠☹✌,✌☠ ✌,✌☠平分 ✌, ✌☠ ☠✌,✌ ✌☠ ☠✌,四边形✌是矩形,✌,✌,✌❿♦♋⏹ ✌♦♋⏹ ;( )延长 ☠交✌延长线于点✈,如图 所示:四边形✌是矩形,✌,✌ ✌✈,由折叠性质得: ✌☠☹✌,✌ ✌✈,✌☠✌, ☠,✌✈ ✌✈,✈✌✈,设☠✈⌧,则✌✈✈⌧,✌☠,✌☠✈,在 ♦✌☠✈中,由勾股定理得:✌✈ ✌☠ ☠✈ ,(⌧) ⌧ ,解得:⌧,☠✈,✌✈,✌,✌✈, ☠✌ ☠✌✈ ✌☠❿☠✈ ;( )过点✌作✌☟☞于点☟,如图 所示:四边形✌是矩形,✌,☟✌ ☞,✌☟ ☞,✌☟☞,,✌☟♎✌☠,✌,当点☠、☟重合(即✌☟✌☠)时,✌☟最大, ☟最小, ☞最小, ☞最大,此时点 、☞重合, 、☠、 三点共线,如图 所示:由折叠性质得:✌✌☟,✌,✌☟,在 ✌☟和 ☞中,,✌☟☹☞(✌✌),☞☟,由勾股定理得: ☟ ,☞,☞的最大值 ﹣ ☞﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线⍓♋⌧ ♌⌧♍(♋♊)经过原点,顶点为✌(♒, )(♒♊).( )当♒, 时,求抛物线的解析式;( )若抛物线⍓♦⌧ (♦♊)也经过✌点,求♋与♦之间的关系式;( )当点✌在抛物线⍓⌧ ﹣⌧上,且﹣ ♎♒< 时,求♋的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为⍓♋(⌧﹣ ) ,原点代入即可.( )设抛物线为⍓♋⌧ ♌⌧,则♒﹣,♌﹣ ♋♒代入抛物线解析式,求出 (用♋、♒表示),又抛物线⍓♦⌧ 也经过✌(♒, ),求出 ,列出方程即可解决.( )根据条件列出关于♋的不等式即可解决问题.【解答】解:( ) 顶点为✌( , ),设抛物线为⍓♋(⌧﹣ ) ,抛物线经过原点,♋( ﹣ ) ,♋﹣ ,抛物线解析式为⍓﹣ ⌧ ⌧.( ) 抛物线经过原点,设抛物线为⍓♋⌧ ♌⌧,♒﹣,♌﹣ ♋♒,⍓♋⌧ ﹣ ♋♒⌧,顶点✌(♒, ),♋♒ ﹣ ♋♒,抛物线⍓♦⌧ 也经过✌(♒, ),♦♒ ,♦♒ ♋♒ ﹣ ♋♒ ,♦﹣♋,( ) 点✌在抛物线⍓⌧ ﹣⌧上,♒ ﹣♒,又 ♋♒ ﹣ ♋♒ ,♒,﹣ ♎♒< ,﹣ ♎< ,♊当 ♋> 时,即♋>﹣ 时,,解得♋> ,♋当 ♋< 时,即♋<﹣ 时,解得♋♎﹣,综上所述,♋的取值范围♋> 或♋♎﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( ) A .3,6,1 B .3,6,-1 C .3,-6,1 D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6 B .-6 C .5 D .-5 5.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( )A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+2x )+ 20(1+x )2=28.87.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在B ′C 上,则∠B ′的大小为( ) A .42° B .48° C .52° D .58° 8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35°B .45°C .55°D .65°9.抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2,y 3的大小关系为( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 1<y 2<y 3第5题图第7题图ABCA 'B 'A第8题图10.某学习小组在研究函数y =16x 3-2x 的图象和性质时,已列表、描点并画出了图象的一部分,则方程16x 3-2x =1实数根的个数为( )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一元二次方程x 2-9=0的解是 .12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛.13.抛物线y =12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是 .14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t-1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .第10题图第16题图第15题图三、解答题(本大题共8小题,共72分)17.(本题8分)解方程x2-3x+1=018.(本题8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)直接写出方程ax2+bx+c=2的根;(2)直接写出不等式ax2+bx+c<0的解集.19.(本题8分) 关于x的一元二次方程x2+(2m-1)x+m2=0有实数根. (1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.20.(本题8分) 如图,△ABC是等边三角形.(1)作△ABC的外接圆;(2)在劣弧BC上取点D,分别连接BD,CD,并将△ABD绕A点逆时针旋转60°;(3)若AD=4,直接写出四边形ABDC的面积.21.(本题8分) 如图,AB为⊙O的直径,且AB=10,C为⊙O上一点,AC平分∠DAB交⊙O于点E,AE=6,,AD⊥CD于D,F为半圆弧AB的中点,EF交AC于点G.(1)求CD的长;(2)求EG的长.第18题图第20题图AB C第21题图A B22.(本题10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D .(1)如图1,已知矩形菜园的一边靠墙,且AD ≤MN ,设AD =x 米.①若a =20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; ②求矩形菜园ABCD 面积的最大值;(2)如图2,若a =20,则旧墙和木栏能围成的矩形菜园ABCD 面积的最大值是 米2.23.(本题10分) 如图,在等腰Rt △ABC 中,∠ACB =90°,点P 是△ABC 内一点,连接PA ,PB ,PC ,且PA,设∠APB =α,∠CPB =β.(1)如图1,若∠ACP =45°,将△PBC 绕点C 顺时针旋转90°至△DAC ,连结新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( ) A .3,6,1 B .3,6,-1 C .3,-6,1 D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6B .-6C .5D .-5A BCDMN NM DC BA第22题图2第22题图15.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( ) A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+2x )+ 20(1+x )2=28.87.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在B ′C 上,则∠B ′的大小为( ) A .42° B .48° C .52° D .58° 8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35°B .45°C .55°D .65°9.抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2,y 3的大小关系为( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 1<y 2<y 310.某学习小组在研究函数y =16x 3-2x 的图象和性质时,已列表、描点并画出了图象的一部分,则方程16x 3-2x =1实数根的个数为( )A .1 B.2C .3D .4第5题图第7题图ABCA 'B 'A第8题图第10题图二、填空题(每小题3分,共18分)11.一元二次方程x 2-9=0的解是 .12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛.13.抛物线y =12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是 .14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t -1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .三、解答题(本大题共8小题,共72分) 17.(本题8分)解方程x 2-3x +1=018.(本题8分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)直接写出方程ax 2+bx +c =2的根; (2)直接写出不等式ax 2+bx +c <0的解集.19.(本题8分) 关于x 的一元二次方程x 2+(2m -1)x +m 2=0有实数根. (1)求m 的取值范围;第16题图第15题图第18题图(2)若两根为x 1、x 2且x 12+x 22=7,求m 的值.20.(本题8分) 如图,△ABC 是等边三角形. (1)作△ABC 的外接圆;(2)在劣弧BC 上取点D ,分别连接BD ,CD ,并将△ABD 绕A 点逆时针旋转60°;(3)若AD =4,直接写出四边形ABDC 的面积.21.(本题8分) 如图,AB 为⊙O 的直径,且AB =10,C 为⊙O 上一点,AC 平分∠DAB 交⊙O 于点E ,AE =6,,AD ⊥CD 于D ,F 为半圆弧AB 的中点,EF 交AC 于点G . (1)求CD 的长; (2)求EG 的长.22.(本题10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D .(1)如图1,已知矩形菜园的一边靠墙,且AD ≤MN ,设AD =x 米.①若a =20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; ②求矩形菜园ABCD 面积的最大值;(2)如图2,若a =20,则旧墙和木栏能围成的矩形菜园ABCD 面积的最大值是 米第20题图ABC第21题图AB A BCDMN NM DC BA第22题图2第22题图12.23.(本题10分) 如图,在等腰Rt △ABC 中,∠ACB =90°,点P 是△ABC 内一点,连接PA ,PB ,PC ,且PA,设∠APB =α,∠CPB =β.(1)如图1,若∠ACP =45°,将△PBC 绕点C 顺时针旋转90°至△DAC ,连结新人教版九年级(上)期中模拟数学试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦 当”图案中既是轴对称图形又是中心对称图形的是( )2.若0x=是关于x 的一元二次方程22(1)310k x x k +--+=(k 为系数)的根,则k 的值为( ) A .k =1B .k =-1C .k ≠1D .k =±13.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和 改造,2016年县政府已投资5亿元人民币,若每年投资的平均增长率相同,预计2018 年投资7.2亿元人民币,那么每年投资的平均增长率为( ) A .20%、﹣220%B .40%C .﹣220%D .20%4.下列关于圆的叙述正确的有( )①圆内接四边形的对角互补;②相等的圆周角所对的弧相等; ③正多边形内切圆的半径与正多边形的半径相等; ④圆内接平行四边形是矩形. A .1个B .2个C .3个D .4个5.二次函数2281y x x =-+的最小值是( ) A .7B .-7C .9D .-96.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A′B′C′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2)D .(2,1)7. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y小聪观察上表,得出下面结论:①抛物线与x 轴的一个交点为(3,0);②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是直线12x =;④在对称轴左侧,y 随 x 增大而增大.其中正确有( )A .①②B .①③C .①②③D .①③④8.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,且 这两个正方形的边长都为2.若正方形A 1B 1C 1O 绕点O 转动,则两个正方形重叠部分的 面积为( ) A .1B .4C .16D .29.若二次函数2y x bx =+的图象的对称轴是经过(1,0)且平行于y 轴的直线,则关 于x 的方程23x bx -=的解是( )A .1213x x =-=-, B .1213x x ==-, C .1213x x ==, D .1213x x =-=, 10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD =4cm ,则球的半径长是( ) A .2cmB .2.5cmC .3cmD .4cm11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交 PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8 B .6 C .12 D .10 12.如图,无论x 为何值,2y ax bx c =++恒为正的条件是( ) A .20,40a b ac >-< B .20,40a b ac <-> C .20,40a b ac >-> D .20,40a b ac <-<13.如图,⊙M的半径为2,圆心M 的坐标为(3,4),点P 是⊙M上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( ) A .3 B .4 C .6 D .8 14.如图,正三角形EFG 内接于⊙O ,其边长为O 的内接正方形ABCD 的边 长为( )A B C .4 D .5二、填空题(共1大题,5小题,每小题3分,共15分)15.(1)关于x 的方程221)20kx k x k+++=-(有实数根,则k 的取值范围是(2)如图,AB是⊙O 的直径,C 、D 是⊙O 上的点,且OC ∥BD,AD 分别与BC 、OC 相交于点E 、F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ; ③BC 平分∠ABD ; ④△CEF ≌△BED .其中一定成立的是 (把你认为正确结论的序号都填上). (3)如图,《九章算术》是我国古代数学名著,书中有下列问题“今有勾八步,股十五 步,问勾中容圆径几何?”其意思是:今有直角三角形,勾(短直角边)长为8步,股 (长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是 步. (4)如图,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△AED 的位置,恰好使得 DC ∥AB ,则∠CAB 的大小为 .(5)如图,一段抛物线:(2)y x x =--(0≤x ≤2)记为C 1,它与x 轴交于两点O 、A 1; 将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;… 如此进行下去,直至得到C 7,若点P (13,m )在第7段抛物线C 7上,则m = .三、解答题(共6小题,共63分)16.(每小题5分,共10分)用合适的方法解一元二次方程: (1)2(4)5(4)x x +=+ (2)231212x x -=-17.(本小题10分)如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与 ⊙O 交于点C ,点D 是AP 的中点,连结CD . (1)求证:CD 是⊙O 的切线;(2)若AB =2,∠P =30°,求阴影部分的面积.18.(本小题10分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2 时,裁掉的正方形边长多大?19.(本小题9分)如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1) B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; (2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.20.(本小题11分)如图,∠BAC =60°,AD 平分∠BAC 交⊙O 于点D ,连接OB 、OC 、 BD 、CD .(1)求证:四边形OBDC 是菱形;(2)当∠BAC 为多少度时,四边形OBDC 是正方形?21.(本小题13分)如图,在平面直角坐标系中,二次函数24(0)y ax bx a =+-≠的 图象与x 轴交于点A (﹣2,0)与点C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴 交于点D .(1)求该二次函数的解析式;(2)若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB , PD ,BD ,AB .请问是否存在点P ,使得△BDP 的面积恰好等于△ADB 的面积?若存在 请求出此时点P 的坐标,若不存在说明理由.2018—2019学年度上学期期中学业水平质量调研试题九年级数学参考答案 2018.11二、填空题(共1大题,5小题,每新人教版数学九年级上册期中考试试题及答案一、细心选一选。
2015-2016学年福建省福州十中九年级(上)期中数学试卷一.选择题(每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)若关于x的方程(m﹣1)x2﹣3x+2=0是一元二次方程,则()A.m>1 B.m≠0 C.m≥0 D.m≠12.(4分)已知一元二次方程(x﹣1)(x﹣2)=0,则下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个负数根3.(4分)下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个4.(4分)二次函数y=x2﹣2x+1的图象与y轴的交点坐标是()A.(0,1) B.(2,0) C.(1,1) D.(2,2)5.(4分)将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)26.(4分)若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.27.(4分)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知E′D′=2,则BC的值是()A.1 B.2 C.4 D.58.(4分)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°9.(4分)已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2013 B.2015 C.2014 D.201010.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题,每小题4分,满分20分;请将答案填在答题卡相应位置)11.(4分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.12.(4分)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.13.(4分)如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是△DAC绕点C逆时针旋转°得到.14.(4分)二次函数y=x2+(m+1)x+m的图象与x轴的两个交点A、B,且AB=2,那么m=.15.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),且对称轴为x=1,给出下列四个结论:①b2﹣4ac>0;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论的序号是.(把你认为正确的序号都写上)三、解答题:(7题,共90分)16.(14分)解方程:(1)3x(x﹣1)=2(x﹣1);(2)x2﹣3x+1=0.17.(14分)(1)如图,正方形网格中,△ABC的顶点及点O都在格点上.①画出△ABC关于点O中心对称的对称图形;②画出△ABC绕点O顺时针旋转90°的图形.(2)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1﹣x2=0,求实数m的值.18.(11分)二次函数y=x2+bx+c的图象经过点(1,0),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴方程;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象,并根据图象直接写出不等式x2+bx+c>0的解集.19.(12分)“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:(1)降价后每件商品盈利元,商场日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,商场日盈利可达到2240元?20.(12分)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上一点,BE=DF.矩形AEGF的边EG与边CD相交于点H.设BE=x,四边形DHGF的面积为y.(1)求:y与x之间的函数关系式,并写出x的取值范围;(2)当BE为何值时,四边形DHGF的面积最大?21.(13分)如图,已知四边形ABCD是正方形,△AEF是等边三角形,E、F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.22.(14分)已知平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)过坐标系的原点O,与x轴的另一个交点为B,顶点坐标为A(,1).(1)求:a、b、c的值;(2)将△OAB绕原点O顺时针旋转120°,旋转后的三角形设为△OA′B′(点A′对应点A,点B′对应点B),试判断点B′是否在抛物线y=ax2+bx+c(a≠0)上;(3)设点P是抛物线y=ax2+bx+c(a≠0)上的一点,且PA=PA′,写出点P的坐标.2015-2016学年福建省福州十中九年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)若关于x的方程(m﹣1)x2﹣3x+2=0是一元二次方程,则()A.m>1 B.m≠0 C.m≥0 D.m≠1【解答】解:∵关于x的方程(m﹣1)x2﹣3x+2=0是一元二次方程,∴m﹣1≠0,∴m≠1.故选:D.2.(4分)已知一元二次方程(x﹣1)(x﹣2)=0,则下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个负数根【解答】解:∵(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2,∴方程有两个不相等的实数根,故选:A.3.(4分)下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选:C.4.(4分)二次函数y=x2﹣2x+1的图象与y轴的交点坐标是()A.(0,1) B.(2,0) C.(1,1) D.(2,2)【解答】解:x=0时,y=1,所以.图象与y轴交点的坐标是(0,1).故选:A.5.(4分)将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)2【解答】解:y=2x2向上平移3个单位得y=2x2+3.故选:A.6.(4分)若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.2【解答】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故选:C.7.(4分)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知E′D′=2,则BC的值是()A.1 B.2 C.4 D.5【解答】解:∵E′D′是△A′B′C′的中位线,∴B′C′=2D′E′=4,∵△ABC以点O为旋转中心,旋转180°后得到△A′B′C′,∴B′C′=BC=4.故选:C.8.(4分)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°【解答】解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC﹣∠DOC=50°.故选C.9.(4分)已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2013 B.2015 C.2014 D.2010【解答】解:∵抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2014=1+2014=2015,故选:B.10.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:根据图表,抛物线与y轴交与(0,6),①正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x==,∴②正确;设抛物线经过点(x,0),∴x==解得:x=3∴抛物线一定经过(3,0),故③错误;在对称轴左侧,y随x增大而增大,④错误故选:B.二.填空题(共5小题,每小题4分,满分20分;请将答案填在答题卡相应位置)11.(4分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).12.(4分)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是a<1.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a>0,解得:a<1.∴a的取值范围是a<1.故答案为:a<1.13.(4分)如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是△DAC绕点C逆时针旋转60°得到.【解答】解:∵△ABC和△ECD都是等边三角形,与△EBC的边相等的线段有AC=BC,CD=CE,线段AD,CD构成△DAC,∴△EBC可以看作是△DAC绕点C逆时针旋转60°得到.故答案是:60.14.(4分)二次函数y=x2+(m+1)x+m的图象与x轴的两个交点A、B,且AB=2,那么m=﹣1或3.【解答】解:依题意得:x2+(m+1)x+m=0,则抛物线与x轴的两个交点横坐标是a、b,所以|a﹣b|===2,即(m+1)2﹣4m=4,解得m1=﹣1,m2=3.故答案是:﹣1或3.15.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),且对称轴为x=1,给出下列四个结论:①b2﹣4ac>0;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论的序号是①③.(把你认为正确的序号都写上)【解答】解:①由图象可知:抛物线与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故①正确;②抛物线交y轴的正半轴,所以c>0,∵抛物线对称轴为x=﹣=1>0,且抛物线开口向下,∴a<0,b>0∴bc>0,故②错误;③∵x=﹣=1,∴2a+b=0,故③正确;④由图象可知:当x=1时,y=a+b+c>0,故④错误.故答案为①③.三、解答题:(7题,共90分)16.(14分)解方程:(1)3x(x﹣1)=2(x﹣1);(2)x2﹣3x+1=0.【解答】解:(1)3x(x﹣1)=2(x﹣1),3x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(3x﹣2)=0,x1=1,x2=;(2)x2﹣3x+1=0,∵a=1,b=﹣3,c=1,∴△=(﹣3)2﹣4=5>0,∴x=,∴x1=,x2=.17.(14分)(1)如图,正方形网格中,△ABC的顶点及点O都在格点上.①画出△ABC关于点O中心对称的对称图形;②画出△ABC绕点O顺时针旋转90°的图形.(2)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1﹣x2=0,求实数m的值.【解答】(1)解:①△ABC关于点O中心对称的对称图形△A′B′C′如图所示;②△ABC绕点O顺时针旋转90°的图形△A″B″C″如图所示;(2)解:∵x1﹣x2=0,∴x1=x2,∴△=b2﹣4ac=0,∴(2m﹣1)2﹣4m2=0,∴4m=1,解得m=.18.(11分)二次函数y=x2+bx+c的图象经过点(1,0),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴方程;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象,并根据图象直接写出不等式x2+bx+c>0的解集.【解答】解:(1)将(1,0),(3,0)代入y=x2+bx+c,得:,解得:b=﹣4,c=3;(2)由(1)知抛物线解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,顶点坐标为(2,﹣1),对称轴为直线x=2;(3)函数图象如下:由图象可知,不等式x2+bx+c>0的解集为x<1或x>3.19.(12分)“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:(1)降价后每件商品盈利(20﹣x)元,商场日销售量增加10x件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,商场日盈利可达到2240元?【解答】解:(1)(20﹣x),10x(2)根据题意得:(20﹣x)(100+10x)=2240,整理得,x2﹣10x+24=0,解得x1=4,x2=6答:每件商品降价4或6元时,商场日盈利可达到2240元.20.(12分)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上一点,BE=DF.矩形AEGF的边EG与边CD相交于点H.设BE=x,四边形DHGF的面积为y.(1)求:y与x之间的函数关系式,并写出x的取值范围;(2)当BE为何值时,四边形DHGF的面积最大?【解答】解:(1)∵AEGF为矩形,ABCD为正方形,∴∠F=∠G=∠HDF=90°,∴四边形DHGF是矩形,又DH=AE=AB﹣BE=4﹣x,∴y=DF•DH=x(4﹣x)=﹣x2+4x(0<x<4);(2)y=﹣x2+4x=﹣(x﹣2)2+4,∵a=﹣1<0,∴当x=2时,y有最大值为4,则当BE为2时,四边形DHGF的面积最大,最大值是4.21.(13分)如图,已知四边形ABCD是正方形,△AEF是等边三角形,E、F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=AD,AF=AE,∠B=∠D=90°,在Rt△ABF与Rt△ADE,,∴Rt△ABF≌Rt△ADE,∴∠DAE=∠BAF又∠DAE+∠BAF=∠BAD﹣∠EAF=90°﹣60°=30°∴∠DAE=15°;(2)设BF=x,由(1)可知DE=BF=x,则,CF=CE=1﹣xAB2+BF2=AF2,CF2+CE2=EF2,AF=EF,得:12+x2=2(1﹣x)2x1=2+,x2=2,∵0<x<1,∴x1=2+(舍去),x=2,=S四边形ABCD﹣2S△ABF﹣S△EFC=12﹣2×1×(2﹣)﹣(﹣1)2=2∴S△AEF﹣3;(3)依题意,点A可落在AB边上或BC边上.当点A落在AB边上时,设此时点A的对应点为M,则EA=EM,∵∠EAB=75°,∴∠AME=75°,∴m=∠AEM=180°﹣75°﹣75°=30°,当点A落在边BC上时,∵EA=EF,点A旋转后与点F重合,∴m=∠AEF=60°,综上,m=30°或m=60°.22.(14分)已知平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)过坐标系的原点O,与x轴的另一个交点为B,顶点坐标为A(,1).(1)求:a、b、c的值;(2)将△OAB绕原点O顺时针旋转120°,旋转后的三角形设为△OA′B′(点A′对应点A,点B′对应点B),试判断点B′是否在抛物线y=ax2+bx+c(a≠0)上;(3)设点P是抛物线y=ax2+bx+c(a≠0)上的一点,且PA=PA′,写出点P的坐标.【解答】解:(1)∵抛物线的顶点坐标为A(,1),∴抛物线解析式可变形为y=a+1,又∵抛物线过原点O(0,0),∴0=a+1,解得:a=﹣.∴y=﹣+1=﹣x2+x,∴a=﹣,b=,c=0.(2)令y=0,则﹣x2+x=0,解得:x1=0,x2=2.△OAB绕原点O顺时针旋转120°,即∠BOB′=120,则点B′在第三象限.过点B′作B′E⊥x轴于点E,则∠B′OE=60°,∵OB=OB′=2,∴B′E=OB′•sin∠B′OE=3,OE=OB′•cos∠B′OE=,∴点B′(﹣,﹣3).把x=﹣代入抛物线的解析式,得:y=﹣+1=﹣3,∴点B′(﹣,﹣3)在抛物线上.(3)∵A(,1),∴tan∠AOB=,OA==2,∴∠AOB=30°,∵△OAB绕原点O顺时针旋转120°,∴点A′在y轴负半轴上,∴A′(0,﹣2).设点P的坐标为(m,﹣m2+m),则PA=,PA′=,∵PA=PA′,∴=,整理,得:m2﹣3m=0,解得:m1=0,m2=3,经检验m1=0,m2=3均为方程的解,∴点P的坐标为(0,0)或(3,﹣3).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。